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Abstract

The role of balancing selection is a long-standing evolutionary puzzle. Balancing selection is a

crucial evolutionary process that maintains genetic variation (polymorphism) over extended pe-

riods, however, detecting it poses a significant challenge. Building upon the polymorphism-aware

phylogenetic models (PoMos) framework, we introduce PoMoBalance designed to disentangle

the interplay of mutation, genetic drift, directional and balancing selection pressures influenc-

ing population diversity. Rooted in the Moran model, PoMos have demonstrated efficiency in

species tree inference, capturing mutational effects, fixation biases, and GC-bias rates. Imple-

mented in the open-source RevBayes Bayesian framework, PoMoBalance offers a versatile tool

for multi-individual data analysis. This study extends PoMos’ capabilities to explore balancing

selection and disentangle it from GC-biased gene conversion. The novel aspect of our approach

in studying balancing selection lies in PoMos’ ability to account for ancestral polymorphisms

and incorporate parameters that measure frequency-dependent selection. We implemented val-

idation tests and assessed the model on the data simulated with SLiM and a custom Moran

model simulator. Real sequence analysis of Drosophila populations reveals insights into the evo-

lutionary dynamics of regions subject to frequency-dependent balancing selection, particularly

in the context of sex-limited colour dimorphism.

Keywords: polymorphism-aware phylogenetic models, balancing selection, GC-biased gene

conversion, Bayesian inference with MCMC, site frequency spectrum, species trees.
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1 Introduction

Balancing selection (BS) represents a form of natural selection that maintains beneficial ge-

netic diversity within populations (Bitarello et al., 2023). Multiple mechanisms contribute

to maintaining variation, such as the heterozygote advantage or overdominance (heterozygous

individuals having higher fitness), frequency-dependent selection (an individual’s fitness de-

pends on the frequencies of other phenotypes or genotypes), antagonistic selection (in contexts

like sexual conflicts or tissue-specific antagonism) and selection that changes through time or

space in population. The evidence for BS is extensive, including examples from immune re-

sponse such as the major histocompatibility complex (MHC) (Andrés et al., 2009; Spurgin and

Richardson, 2010; Bitarello et al., 2018), pathogen resistance (Bakker et al., 2006), plant and

fungi self-incompatibility (Lawrence, 2000; Castric and Vekemans, 2004), and sex-related genes

(Charlesworth, 2004; Connallon and Clark, 2014; Mank, 2017; Kim et al., 2019).

BS finds its roots in the ”balance hypothesis”, according to which populations exhibited high

levels of diversity, with natural selection maintaining a balance among different alleles (Dobzhan-

sky, 1955). Although the classical theory, describing population evolution through the interplay

of mutations and selections with varying strengths and effects whether positive or purifying, has

diminished the ubiquity of the balancing hypothesis, it remains a valuable concept for explaining

the persistence of polymorphisms over extended periods. Based on their temporal span, three

types of balancing selection exist according to Bitarello et al. (2023): ultra long-term (> 7×106

years, e.g., MHC locus (Kelley et al., 2005)), long-term (106 years, e.g., ERAP2 (Andrés et al.,

2010)) and recent (< 106 years, e.g., sickle-cell disease (Laval et al., 2019)).

The heterozygote advantage stands out as one of the initially proposed mechanisms for balancing

selection, with the textbook example of African populations: homozygous individuals are sus-

ceptible to sickle-cell disease, while heterozygous individuals exhibit resistance to malaria (Laval

et al., 2019). Another well-known mechanism is frequency-dependent balancing selection, ob-

served when the fitness of one individual depends on the frequencies of other phenotypes or

genotypes in the population. Very often, frequency-dependent selection manifests in the main-

tenance of several advantageous phenotypes in a population. In the context of this study, we

focus on long-term balancing selection (∼ 5 million years), leading to dimorphism in female

Drosophila erecta. This dimorphism may serve to help females avoid the costs associated with
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repeated matings (Yassin et al., 2016).

BS poses a significant challenge to detection methods due to its subtle nature, often entangled

with structural variants and linkage disequilibrium (Charlesworth, 2006; Fijarczyk and Babik,

2015). Recent efforts have been made to propose universal and robust frameworks for BS

detection. These include approaches based on genome scans with multiple summary statistics

and likelihood-ratio tests (Andrés et al., 2009; Siewert and Voight, 2017; Cheng and DeGiorgio,

2019, 2020, 2022), as well as deep-learning models (Sheehan and Song, 2016; Isildak et al.,

2021; Korfmann et al., 2023). Cheng and DeGiorgio (2022) strive to disentangle directional

selection (DS) from balancing selection, yet their approach requires intricate information about

populations such as recombination maps. Furthermore, current methods often exhibit low power

and are susceptible to false positives.

Evaluating the effect of BS remains challenging, requiring more model-based approaches (Fijar-

czyk and Babik, 2015; Bitarello et al., 2023). Specifically, we need models that go beyond the

heterozygote advantage, encompassing frequency-dependent selection, and incorporating both

balancing and directional selection. Moreover, these models should enable genome-wide infer-

ences and accommodate analyses across numerous individuals and populations. In this context,

we introduce a novel BS model that addresses these multifaceted aspects.

2 Materials and Methods

2.1 Modelling the Balancing Selection with PoMoBalance

The role of BS has been a topic of considerable debate over the last century Bitarello et al.

(2023). With the advent of new sequencing technologies, there has been a renewed interest in

this phenomenon. Some models, such as those based on heterozygote advantage and sexual

antagonism, have been proposed by Connallon and Clark (2014); Zeng et al. (2021). While

these models are valuable for describing allele frequency dynamics in populations, they become

impractical for inference due to their lack of generality and expanding parameter space.

Thus, a flexible enough to capture the intricate effects of BS yet simple model is required

for inferring frequency-dependent selection. PoMos prove to be valuable for this purpose, as

they are rooted in polymorphisms characterized by the prolonged existence of multiple genetic
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variations — markers of BS (Bitarello et al., 2023). This phenomenon manifests in a shift in

the site frequency spectrum (SFS) towards an excess of intermediate frequency variants. These

are sometimes identifiable by a peak in the intermediate frequencies of the SFS that cannot

be explained by the interplay between mutation, genetic drift, and directional selection, as

mentioned in Andrés et al. (2010), thus, it is associated with BS.

The PoMoBalance model (depicted in Figure 1 (A)) can be regarded as an extension of the

PoMos with allelic selection introduced by Borges et al. (2019); Borges and Kosiol (2020); Borges

et al. (2022a,b). We will refer to the latter as PoMoSelect henceforth for brevity. It is part of a

family of models known as PoMos, as defined by De Maio et al. (2013, 2015) and then followed

by Schrempf et al. (2016, 2019). PoMos are continuous-time Markov chain models based on the

Moran model (Moran, 1958). The Moran model is a stochastic process that simulates a virtual

population of N haploid individuals, with the power to incorporate boundary mutations and

directional selection. It bears similarities to the Wright-Fisher model, which counts time in the

number of generations. In contrast, the Moran model is continuous-time, measuring time in the

number of births (Lanchier, 2017). This characteristic makes the Moran model advantageous

for phylogeny and experimental evolution approaches that rely on a continuous-time paradigm.

In this paper, we extend the Moran model to include balancing selection. The model encompasses

4 + 6(N − 1) distinct states, with 4 monomorphic boundary states, denoting scenarios in which

all individuals share the same allele. In contrast, the intermediate 6(N − 1) states represent

polymorphisms, where some individuals possess different alleles. In this model, we consider

biallelic polymorphisms only. The alleles are denoted as ai (depicted as blue circles) and aj

(depicted as orange circles), signifying the four nucleotides i, j = {A,C,G, T}. The combinations

of alleles, indicated as aiaj , represent the possible pairs without repetition, namely AC, AG,

AT , CG, CT , or GT .

The model incorporates mutation rates, µaiaj and µajai (as illustrated in Figure 1 (A)), which

govern transitions from the monomorphic states, representing boundary mutations. Very often

the reversibility of the model is defined from certain symmetries. In PoMoSelect the mutation

rates are presented as µaiaj = ρaiajπaj and µajai = ρajaiπai similar to Tavare (1986), where

ρajai are exhangeabilities and πaj are nucleotide base frequencies. If ρaiaj = ρajai the model is

reversible, and it is non-reversible otherwise.
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In the previous PoMos, frequency shifts between polymorphic states are governed by genetic drift

and directional selection favouring or disfavouring the reproduction of the ai allele. The fitness

values are represented by φai = 1 + σai , where σai is a selection coefficient. In PoMoBalance,

these frequency shifts additionally include balancing selection transition rates are regulated by

the concept of multiplicative fitness, expressed by the following equation

Φ
a∓i,j
n =

n(N − n)

N︸ ︷︷ ︸
drift

DS︷ ︸︸ ︷
(1 + σai,j )β

1
2

[
|n−Baiaj |−|n∓1−Baiaj |+1

]
aiaj︸ ︷︷ ︸

BS

(1)

where there are three components: the first fraction corresponds to genetic drift or neutral mu-

tations and the second multiplier represents directional selection, modelled similarly to previous

PoMos. The final term in the form of a power-law function characterizes BS. It is governed by

two key factors: the strength of BS, denoted as βaiai (with βaiai > 0), and a preferred frequency

denoted as Baiaj . The preferred frequency, a natural number within the range 0 < Baiaj < N ,

designates the position of the polymorphic peak associated with BS in the SFS. Note that if

βaiai = 1 the resulting model aligns with the PoMoSelect model. We modelled BS in a frequency-

dependent manner, in which the strength of balancing selection governing the frequency shifts

towards a favoured frequency.

Reversibility criteria for PoMoBalance are different from those for the PoMoSelect model due to

the higher complexity of the transition rates from the polymorphic states brought by balancing

terms. PoMoBalance is reversible only if exhangeabilities are symmetric and the preferred

frequency is in the middle of the chain Baiaj = N/2, where N is be even, for more details see

Section Supplementary Material 1.

Furthermore, we always assume that both Baiaj and βaiai are symmetric. The strength of

BS operates similarly to directional selection, but rather than favouring the fixation of alleles,

it promotes the persistence of polymorphisms. In Figure 1 (A), we visualize this additional

attraction towards the preferred polymorphic state with dark red arrows when βaiai > 1. After

replacing variables and simplifying the expressions with power terms, the transition rates become

Φ
a∓i,j
n = n(N−n)

N φai,jβaiaj , if n < Baiaj , and the absence of the BS attractor is indicated with

light red crossed arrows in the figure when Φ
a∓i,j
n = n(N−n)

N φai,j , if n ≥ Baiaj . To provide a more

concrete example, we represent the transition rates of a population with N = 4 individuals in

Figure 1 (B), where the preferred state is B = 2. It is important to note that in cases where
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... ...

Nai (N − 1)ai,1aj 1ai, (N − 1)aj Naj(N − n)ai, naj

ajai
Φ
a−i
N−1

µaiaj

Φ
a−i
n

Φ
a+j
1

Φ
a−i
1

Φ
a+j
N−1

µajai

Φ
a+j
n

pull towards preffered frequency Baiaj

no pull

no pull

pull towards preffered frequency Baiaj

...
...

... ...
...

4A 3A,T A,3T 4T2A,2T

aj = Tai = A

3
4φT

µAT

φT

3
4φAβAT

3
4φTβTA

3
4φA

µTA

φA

preffered frequency

N = 4

A T

B

A

BAT = 2

Baiaj

Figure 1: (A) PoMoBalance model, presented as a Markov chain Moran-based model. The boundary
states (monomorphic) are denoted by larger circles. These states encompass N individuals, with the
left side showcasing individuals carrying the ai allele (depicted as blue circles), and the right side rep-
resenting individuals with the aj allele (represented by orange circles). In contrast, all the intermediate
states, reflecting polymorphic conditions, are displayed using smaller circles. The transition rates from
the monomorphic states are determined by mutation rates, whereas the transition rates from the poly-
morphic states are governed by the multiplicative fitness as indicated in Equation (1). Additionally, the
multiplicative fitness encapsulates not only the DS effect but also the influence of BS, which exerts a
force towards the state with the preferred allele frequency, Baiaj

, represented by dark red arrows. If the
transition occurs against this preferred state, there is no such attracting force, signified by the light red
crossed arrows. (B) A specific instance of the PoMoBalance model, featuring a population size of N = 4.

βaiai < 1, we do not model balancing selection, but instead a form of purging selection occurs that

leads to the removal of polymorphisms more than expected by drift (see Section Supplementary

Material 1).

In the broader context, the PoMoBalance model can be characterised through the instantaneous

rate matrix denoted as Q, where each specific transition rate within the model corresponds to

an element of this matrix

q{nai,(N−n)aj}→{mai,(N−m)aj} =

µaiaj if n = N,m = N − 1

µajai if n = 0,m = 1

n(N−n)
N (1 + σai)β

1
2

[
|n−Baiaj |−|n+1−Baiaj |+1

]
aiaj if m = n+ 1

n(N−n)
N (1 + σaj )β

1
2

[
|n−Baiaj |−|n−1−Baiaj |+1

]
aiaj if m = n− 1

0 if |m− n| > 1

,
(2)
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where the variables n and m represent absolute frequencies of alleles. Since PoMoBalance is

Moran-based model, the allele frequency shifts exceeding one are prohibited, as specified in the

final condition outlined in Equation (2). The diagonal elements of this matrix are determined

such that the sum of each respective row is equal to zero.

Both the PoMoSelect and PoMoBalance models have been incorporated into a Bayesian phy-

logenetic inference framework RevBayes (Höhna et al., 2016; Hohna et al., 2017; Höhna et al.,

2018; Borges et al., 2022b), available at https://revbayes.github.io/, employing a probabilistic

graphical model representation.

2.2 Bayesian Inference using PoMoBalance with RevBayes

For over a decade, PoMos have been integrated and adopted within the fields of phylogenetic

inference. Initially, employing Maximum Likelihood approaches for neutral models in software

like HyPhy (De Maio et al., 2013) and IQ-Tree (Schrempf et al., 2019). Subsequently, these

models progressed to include allelic selection within Bayesian frameworks, facilitated by R-

packages (Borges et al., 2019) and RevBayes (Borges et al., 2022a,b).

The advantage of using RevBayes for implementing PoMos is the flexibility of the use of prob-

abilistic graphical models allowing us to combine complex models while taking advantage of

communicating them with users through extensive tutorials and discussion forums. RevBayes

employs a Bayesian inference based on the Markov chain Monte Carlo (MCMC) sampler and it

is an open-source framework for phylogenetic inference, molecular dating, discrete morphology

and ancestral state reconstruction. Our implementation of PoMoBalance within RevBayes al-

lows users to infer phylogenetic trees, allelic selection and now to identify balancing selection.

In contrast to the previous approaches for detecting BS (Hudson et al., 1987; Tajima, 1989;

Siewert and Voight, 2017; Cheng and DeGiorgio, 2020; Isildak et al., 2021), our software al-

lows not only identifying balancing selection but also quantifying its strength and pinpointing

the alleles and their frequencies under selection at phylogenetic scales. For a detailed guide on

implementing RevBayes scripts with PoMoBalance, please refer to the PoMoBalance tutorial

(https://revbayes.github.io/tutorials/pomobalance/).

In PoMos’ data input, count files are employed, which can be generated from FASTA sequences

of multiple individuals and species or VCF files with the corresponding reference using the
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cflib package available on GitHub at https://github.com/pomo-dev/cflib (Schrempf et al.,

2016). Additionally, RevBayes includes a built-in tool to correct for sampling biases, which can

be helpful when the number of individuals sampled from populations varies and when it differs

from the PoMo population size. These biases may emerge from undersampling genetic diversity,

where polymorphic sites sampled from larger populations may erroneously appear monomorphic.

To address this, the binomial sampling method, as initially proposed by Schrempf et al. (2016),

assists in smoothing out sampling biases at the tips of a phylogenetic tree.

Additionally, PoMoSelect includes a rescaling tool for adjusting inferred parameters across dif-

ferent population sizes. Parameters calculated in the PoMos, originally in terms of virtual

population sizes, can be rescaled to represent the actual population sizes. This rescaling is

achieved using the mapping method introduced by Borges et al. (2019).

RevBayes offers several PoMo functions tailored to different inference scenarios, including fnPomoKN,

fnReversiblePomoKN, fnPomoBalanceKN and fnReversiblePomoBalanceKN. The first two func-

tions are discussed in detail by Borges et al. (2022b). The roles and input parameters for each

function are summarised in Table 1. They are designed to infer data from K alleles, with the

Function Description Parameters

fnPomoKN Describes the evolution of a population K, N , µ, φ
with K alleles and N individuals subjected to
mutational bias and selection.

fnReversiblePomoKN Particular case of PoMoKN when mutations K, N , π, ρ,
are considered reversible. φ

fnPoMoBalanceKN Describes the evolution of a population K, N , µ, φ,
with K alleles and N individuals subjected to β, B
mutational bias, selection and balancing selection.

fnReversiblePomoBalanceKN Particular case of PoMoBalanceKN when K, N , π, ρ,
mutations are considered reversible and φ, β

the preferred frequency is in the middle B = N
2 .

Table 1: PoMo functions and parameters in RevBayes.

most common scenario involving K = 4, although other options (e.g., K = 2) are also avail-

able. Additionally, RevBayes accommodates the parameters of the Moran model outlined in

Subsection 2.1, including

1. The virtual population size N .
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2. Two vectors defining the mutation rates through nucleotide base frequencies π = (πA, πC , πG, πT )

and exhangeabilities ρ = (ρAC , ρAG, ρAT , ρCG, ρCT , ρGT ), where µAC = ρACπC and similar

mutations follow accordingly.

3. A vector encompassing allele fitnesses, which, in our case, reflects GC-biased gene conver-

sion (gBGC) as previously inferred by Borges et al. (2019). This phenomenon is modelled

akin to DS, with relative fitnesses for C and G alleles higher than those for A and T alleles.

It is represented via the vector φ = 1+σ = (1, 1+σ, 1+σ, 1), where σ represents a GC-bias

rate.

4. Two vectors specifying the strength and location of the balancing selection peak at each

edge: β = (βAC , βAG, βAT , βCG, βCT , βGT ) and B = (BAC , BAG, BAT , BCG, BCT , BGT ).

For the Bayesian inferences conducted here, we employ dnDirichlet priors on base frequencies

π and mvBetaSimplex moves due to their sum-to-unity nature. For ρ, σ and β dnExponential

priors are chosen as appropriate priors for positive real parameters. We use standard mvScale

moves for these variables, but if they exhibit correlation, we may introduce additional moves

like mvUpDownScale, mvAVMVN, mvSlice or mvEllipticalSliceSamplingSimple to mitigate the

correlation. In some cases, we observed a correlation between σ and β, and incorporating the

mvAVMVN move helped to resolve it for some chains. The preferred frequency B is a positive

natural number within the range 0 < B < N , and Uniform priors in this range are set. The

variable is rounded on each MCMC step to obtain discrete results. We introduce two moves,

mvSlide and mvScale, to enhance parameter space exploration. Such a technique leads to faster

convergence compared to UniformNatural prior and discrete variable moves. We assign different

weights to each move; however, the specific values are less critical since autotuning of weights

occurs during the MCMC burn-in period. Our analysis involves running both the Metropolis-

Hastings MCMC sampler (mcmc), and where relevant, the Metropolis-coupled MCMC sampler

(mcmcmc), which includes high-temperature and cold chains to overcome local minima. Both

versions normally run 4 parallel chains to ensure convergence.

2.3 Data Simulation and Analysis

Extensive testing of PoMoBalance has been conducted across multiple scenarios, employing

data simulated through different techniques. Firstly, we conducted a built-in validation analysis
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within RevBayes. Subsequently, a custom five-species tree (refer to Figure 3 (A)) was simulated

using a Moran simulator in RevBayes. This was done to ensure the precise recovery of parameters

from data simulated under the same model but in diverse evolutionary settings, including drift,

CG-biased gene conversion, balancing selection, and a combination of balancing selection and

gBGC. For drift and gBGC, we simulated 105 genomics sites, while for BS and the intertwined

scenario of BS and gBGC, we required 8× 105 to achieve satisfactory convergence.

Furthermore, we assessed the performance of our package using data simulated within the evo-

lutionary framework SLiM (Haller and Messer, 2019). In this test, we used a tree including

four great ape species: orangutans from Borneo and Sumatra islands, chimpanzees, and humans

(refer to Figure S2). This tree had been previously estimated without balancing selection us-

ing PoMos by Schrempf et al. (2016). The great ape species are of particular interest in the

context of our paper as they exhibit several well-documented instances of balancing selection,

such as those observed in the MHC locus (Cagan et al., 2016). Another classical example of

heterozygote advantage is sickle-cell disease, extensively studied in humans, however, its role in

other great ape species remains a subject of debate (Laval et al., 2019). In SLiM simulations,

we implemented heterozygote advantage within the great apes tree to simulate balancing selec-

tion. Unlike the Moran simulator, SLiM simulations incorporated three regimes: drift, gBGC,

and BS, as opposed to four. This adjustment was necessary due to the heterozygote advantage

overpowering gBGC in SLiM. Other features not explicitly considered by the Moran model but

simulated in SLiM are genetic recombination and demography. Refer to Section Supplementary

Material 2 for more details on SLiM simulations.

Following this, we applied PoMoBalance to real datasets exhibiting balancing selection associated

with sexual dimorphism in Drosophila erecta females (Yassin et al., 2016). This case was chosen

to exemplify frequency-dependent balancing selection in sexual selection, a topic of increasing

interest (Croze et al., 2017). Please refer to Section 7 for data availability details. Sequences

were obtained for the tan gene in the tMSE region. In addition to Drosophila erecta dark (7

individuals) and light (9 individuals), we extract data of multiple individuals from four closely

related subspecies: D. santomea (10 individuals), yakuba (15 individuals), melanogaster (22

individuals) and simulans (18 individuals). We performed the sequence alignment using MAFFT

software (Rozewicki et al., 2019), filtered out sites containing more than 50% missing data and

converted them into count files using the cflib package (Schrempf et al., 2016). The final
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sequences contained ∼ 400 sites. The data analysis pipeline is available in the supplementary

repository (https://github.com/sb2g14/PoMoBalance).

3 Results

3.1 Validation Analysis for PoMoSelect and PoMoBalance

To validate the implementations of PoMoSelect and PoMoBalance, as depicted in Figure 2, we

employ the Simulation-Based Calibration (SBC) procedure implemented in RevBayes (Talts

et al., 2020). This approach is commonly used to assess the accuracy of model implementations.

In our study, we evaluate both the allelic selection model proposed previously by Borges et al.

(2022b) and the model that incorporates allelic selection and balancing selection, as outlined in

Equation (2).

The primary objective of SBC is to test the accuracy of parameter inference through the following

steps:

1. Drawing multiple parameter values (1000 in our study) from the priors.

2. Simulating data samples (1000 sites) with these parameter values.

3. Performing MCMC inference for each sample.

4. Calculating coverage probabilities.

Coverage probabilities (Talts et al., 2020) are estimated based on the observation that 90%

(or any arbitrary percentage) of credible intervals obtained with MCMC should contain the

simulated parameter value in 90% of the samples. SBC leverages the frequentist properties of

Bayesian inference.

In Figure 2, we conduct SBC for four PoMo functions in both reversible and non-reversible

implementations, simulating the trees with five taxa and a uniform topology. The markers in

the figure represent coverage probabilities for various parameters, including tree branch lengths

(red), fitnesses (φ, yellow), nucleotide base frequencies (π, green), exhangeabilities (ρ, purple),

mutation rates (µ, magenta) BS strengths (β, teal) and preferred frequencies (B, cyan). Different

marker types distinguish values corresponding to different alleles or their combinations as per
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Figure 2: Coverage probabilities determined through validation analysis within RevBayes, employing
distinct computational routines for reversible scenarios: (A) PoMoSelect and (B) PoMoBalance, as well
as for non-reversible scenarios: (C) PoMoSelect and (D) PoMoBalance. The red dashed lines indicate
90% confidence intervals and fixed virtual population size for all cases was N = 4.

Subsection 2.2. Notably, nucleotide base frequencies exhibit a single coverage probability due to

their origin from dnDirichlet. For fitnesses, three coverage probabilities are observed instead

of four. This adjustment is made by fixing one of them to mitigate correlations between specific

allelic fitnesses. The 90 % confidence bounds for MCMC are shown by red dashed lines.

Despite using a small virtual population size (N = 4) for computational efficiency, the majority

of coverage probabilities lie within or very close to the confidence bounds, ensuring the validity

of the implementations. It is expected that the robustness of the results would improve with

larger populations.

3.2 Testing PoMoBalance on the data generated with Moran and SLiM sim-

ulators

In this subsection, we assess the performance of the PoMoBalance model using data simulated

under various evolutionary scenarios with two different simulators. The details for the data gen-

erated with the first simulator, referred to as the Moran simulator, are depicted in Figures 3 (A),
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Figure 3: (A) Phylogenetic tree simulated using the Moran simulator within RevBayes, the branch lengths
are expressed in numbers of generations; the tree remains fixed for these analyses (B) Site-frequency
spectrum (SFS) of the data with balancing selection (BS) simulated using the Moran model with N = 6
(blue stars), with the tree from (A) exhibiting good agreement with the SFS obtained from the inference
using PoMoBalance (orange diamonds); the inset magnifies the BS peak. (C) Phylogenetic tree of great
apes simulated with SLiM and subsequently inferred with RevBayes, the branch lengths are expressed
in the number of substitutions per site. Posterior probabilities are indicated at the nodes. Images are
distributed under a Creative Commons license from Wikimedia and Microsoft. (D) Comparison of the
SFS with N = 10, akin to (B), obtained from the simulated data with SLiM and the tree from (C). The
SFS representation (aiaj) includes AC, AG, AT , CG, CT and GT , demonstrating similarity in all cases.

(B) and 4 (A), (B), (C). In this analysis, we utilise RevBayes and our PoMoBalance implemen-

tation to simulate PoMo states from the non-reversible Moran model for generality, employing

pre-selected parameter values akin to the scenario described in the previous subsection. How-

ever, in this case, we employ a custom phylogenetic tree depicted in Figure 3 (A), use only a

few parameter sets (shown in Supplementary Table S1) and omit the calculation of coverage

probabilities. Instead, we evaluate how far the inferred values deviate from the true values, as

illustrated in Figure 4 (A), (B) and (C).

Additionally, we compare the SFS in Figure 3 (B), calculated from the simulated data depicted

by blue stars, with theoretical predictions derived using parameters inferred with PoMoBalance
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illustrated with red diamonds. These theoretical predictions are estimated numerically from

the PoMo matrix in Equation (2), using the Markovian property dP (t)/ dt = P (t)Q, where

P (t) = exp(tQ). By matrix exponentiation at very long times (t = 106), we obtain the stationary

distribution for the PoMo states, which coincides with the SFS. Further details about stationary

frequencies in the PoMoBalance model can be found in Supplementary Figure S1.
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Figure 4: Posterior distributions of inferred parameters compared to their expected values. Subplots (A),
(B), and (C) employ the Moran model simulator, in Figure 3 (A) and (B). Conversely, subplots (D), (E),
and (F) use the SLiM simulator, akin to Figure 3 (C) and (D). Data simulations encompass four regimes:
D for drift, GC for GC-biased gene conversion, BS for balancing selection, and GC+BS for the combi-
nation of gBGC and BS. Inference methods include BalFB, representing inference with PoMoBalance
while fixing preferred frequencies B, and Bal, representing regular inference with PoMoBalance. True
values are indicated by dashed and dot-dashed lines in corresponding colours. (A) Posterior plots for
the GC-bias rate σ, with green and blue boxplots indicating simulated data in regime D inferred with
BalFB and BS inferred with Bal. Magenta and black distributions correspond to regime GC inferred
with BalFB and GC+BS inferred with Bal. (B) Estimates for mutation rates, and (C) strengths of BS in
the simulation scenario GC+BS. (D) Posterior plots for SLiM data inference in three simulation regimes
D (green), BS (blue) and GC (magenta), analogous to (A), indicating the GC-bias rate σ. (E) Estimates
for mutation rates and (F) strengths of balancing selection corresponding to the BS simulation scenario
in SLiM.

In Figure 4 (A), (B) and (C), we present posterior distributions derived from MCMC inference

with the data simulated with the Moran model. The data is simulated under four evolutionary
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regimes: D for neutral mutations or drift (depicted in green), GC for GC-biased gene conversion

(gBGC, in magenta), BS for balancing selection (in blue), and GC+BS for the combination of

gBGC and BS (in black). Refer to Supplementary Table S1 for the true values and inferred

parameters. Figure 3 (B) illustrates the SFS for the last case. In the estimation of the posterior

in all cases, we discard the MCMC burn-in period.

Within the box plots in Figure 4 (A), we display estimates for the GC-bias rate in all four

regimes, which align well with the true values indicated by dashed and dot-dashed lines of the

respective colours. Mutation rates are shown in Figure 4 (B), and BS strengths are depicted

in Figure 4 (C) focusing solely on the GC+BS regime for brevity. Posterior plots for preferred

frequencies are not presented due to spike-like distributions as MCMC chains converge to the

true values Baiaj = 2 during the burn-in period. This corresponds to the BS peak in the

Figure 3 (B) inset.

In Figures 3 (C), (D) and 4 (D), (E), (F), we utilise the evolutionary simulation framework

SLiM proposed by Haller and Messer (2019). For this simulation, we employed the great apes

tree in Figure S2, implementing heterozygote advantage with SLiM (see Section Supplementary

Material 2 for details). The tree inferred with RevBayes in Figure 3 (C) is comparable to the

simulated tree, with posterior probabilities at each node equal to 1. The SFS in Figure 3 (C)

is extracted from the data and features a well-distinguished peak that is effectively captured by

the inference.

In SLiM simulations, we implemented three regimes (D, GC, and BS). The posterior distributions

for GC-bias rate in these regimes are illustrated in Figure 4 (D). We obtain reasonable estimates

in the D and GC regimes, but in the BS regime, σ is overestimated. This occurrence is due to the

challenge of distinguishing σ and π for small virtual populations. While not easily discernible

in the mutation rates presented in Figure 4 (E), it becomes apparent when examining the

inferred nucleotide base frequencies π (refer to Supplementary Table S2). Increasing the virtual

PoMo size to N = 20 resolves this problem partially resulting in much lower σBS−Bal=0.008.

In this analysis, our focus is on the estimation of BS strength, which shows promising results

in Figure 4 (E). The preferred frequencies are also inferred accurately, similar to the Moran

simulator.
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3.3 Detection of Balancing Selection in Drosophila erecta

In this analysis, we examine sequences derived from experimental genomic data of various

Drosophila subspecies. We specifically explore the example of sexual dimorphism in the tMSE

gene region, featuring the tan gene observed in Drosophila erecta females, as studied by Yassin

et al. (2016). Table 2 presents the results of Tajima’s D (Tajima, 1989) and HKA-like (Begun

et al., 2007) tests indicating the potential presence of BS in the tMSE region in contrast to neutral

sequences 5-kb upstream and 10-kb downstream from the region.

The conclusion is drawn from a significant elevation of Tajimas D in the region of interest. Re-

garding the HKA-like test, we observe a notably higher proportion of polymorphic sites (Pol)

between dark and light Drosophila erecta lines compared to divergent (Div) sites between both

erecta lines and Drosophila orena, a closely related species to erecta. This increased poly-

morphism suggests the presence of BS. However, the chi-square test performed on these short

sequences does not yield a significant result. In Yassin et al. (2016), the test is conducted on

longer sequences containing the tMSE region and leads to a significant result.

Gene region Tajima’s D Pol Div Pol/Div

tMSE 3.99 51 28.5 1.78
5-kb upstream -1.1 40 51.9 0.77

10-kb downstream 0.88 32 33.5 0.95

Table 2: Results of Tajima’s D and HKA-like tests, including the number of polymorphic sites (Pol)
between dark and light Drosophila erecta lines and divergent (Div) sites between both erecta lines and
Drosophila orena in the tMSE region, along with two neutral regions.

We begin the inference with PoMoSelect to determine the tree and the level of gBGC in

Drosophila subspecies. We analyse tMSE region in Drosophila erecta dark and light as well

as santomea, yakuba, melanogaster and simulans. The tree topology obtained with PoMos, as

shown in Figure 5, closely resembles the topology obtained by Yassin et al. (2016) using the

multispecies coalescent method.

The gBGC rate σSel, inferred with PoMoSelect alongside the tree in Figure 5, is shown in

Figure 6 (A) with green box plot, and it is quite low, as observed in experiments (Robinson et al.,

2014). Refer to Supplementary Table S3 for the inferred parameters and Effective Sample Sizes

(ESS). The black box plots in Figure 6 show the posterior distributions of the parameters inferred

with PoMoBalance for four Drosophila subspecies, namely D. erecta dark and light, melanogaster

and simulans. Here we discard sequences of D. santomea and yakuba since they introduce noise
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Figure 5: Phylogenetic tree inferred from the sequencing data obtained in the tMSE region across six
subspecies of Drosophila. Images of D. santomea, yakuba, melanogaster and simulans are credited to
Darren Obbard, while those of D. erecta are reproduced from Yassin et al. (2016) under Creative Commons
licence 4.0.

into BS detection due to low numbers of individuals in the dataset, while still acceptable for

PoMoSelect analysis. The results for all subspecies are presented in the Supplementary Material,

Figures S3 and S4.

σ P
oM
oS
el
ec
t

σ P
oM
oB
al
an
ce

0.0

0.1σ

A

µA
C
µA
G
µA
T
µ C

G
µ C

T
µG

T
µ C

A
µG

A
µ T
A
µG

C
µ T
C
µ T
G

0.1

0.2

µ

B

βA
C
βA
G
βA
T
β C
G
β C
T
βG
T

1

2

3

β

C

BA
C
BA

G
BA

T

B C
G
B C

T
BG

T

2

4

6

8

B
D

Figure 6: Posterior distributions derived from experimental data extracted from the tMSE region of six
subspecies, as shown in Figure 5 for PoMoSelect inference, and four Drosophila subspecies, namely D.
erecta dark and light, melanogaster and simulans for PoMoBalance inference. The corresponding SFS for
the PoMobalance is presented in Figure 7. (A) Estimated rates of gBGC with PoMoSelect in green and
PoMoBalance in black. (B) Mutation rates, (C) strength of BS and (D) preferred frequencies for BS, all
inferred using PoMoBalance.

The posterior distribution for σPoMoBalance in Figure 6 (A), inferred with PoMoBalance, is much

wider than those for σPoMoSelect as it is challenging to detect GC-bias and BS simultaneously.

Thus, we advocate a mixed approach by running PoMoSelect and PoMoBalance in parallel to

get more accurate estimates. For example, we learn the tree topology from PoMoSelect and

then fix the estimated topology for PoMoBalance analysis. The mutation rates in Figure 6 (B)

show great convergence and ESS > 200 for all MCMC chains. The presence of BS is detected
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in most of the spectra, indicated by β > 1 in Figure 6 (C), while for βAT , we observe purging of

selection, indicated by β < 1. The preferred frequencies in Figure 6 (D) coincide or are not far

away from the positions of BS peaks in the experimental SFS as shown in Figure 7.
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Figure 7: SFS representation for the tMSE region corresponding to the PoMoBalance analysis in Figure 6
for four subspecies of Drosophila, depicted in blue stars, compared with the inferred SFS indicated by
red diamonds.

We performed all analyses using the UK Crop Diversity: Bioinformatics HPC Resource and

the parallel implementation of RevBayes with 24 parallel processes. The computational time

was 85 hours for PoMoSelect (6 subspecies, each containing 6-25 individuals) and 118 hours

(4 subspecies, each containing 6-25 individuals) for PoMoBalance to analyse the tMSE region.

For comparison, multispecies coalescent analysis for 2 species with introgression but without BS

would take 5 days (Flouri et al., 2020).

4 Discussion

Our study validated the implementations of PoMoSelect and PoMoBalance through SBC in

Subsection 3.1. Additionally, we conducted a diverse set of tests using data generated from both

our custom simulator, based on the Moran model, and the evolutionary simulation framework
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SLiM in Subsection 2.1 (Haller and Messer, 2019). The PoMos demonstrated notable adaptabil-

ity, particularly in the context of inferring data simulated via SLiM, which incorporates more

complex evolutionary dynamics than the Moran model.

While SLiM, grounded in the Wright-Fisher model, shares similarities with the Moran model,

it introduces additional complexities such as genetic recombination, population demography

(changes in population sizes), and diploid organisms with intricate interactions between drift

and heterozygote advantage. Despite these challenges, PoMoBalance performs well in locating

balancing selection polymorphic peaks. To align SLiM diploids with PoMos, we treated them

as two haplotypes in PoMos.

Notably, while overestimating the GC-bias rate, PoMoBalance excelled in identifying preferred

frequencies, specifically in the middle of the SFS, corresponding to heterozygote advantage in

SLiM. This represents a unique advantage compared to previous methods (Hudson et al., 1987;

Tajima, 1989; Siewert and Voight, 2017; Cheng and DeGiorgio, 2020; Isildak et al., 2021), which,

while suggestive of the presence of balancing selection, cannot pinpoint specific combinations of

alleles, strengths, and preferred frequencies of balancing selection. It is important to acknowledge

potential correlations between β and σ, which limits their inference. To address this, we advocate

for incorporating extra moves into the MCMC, as discussed in Subsection 2.2.

In Subsection 3.3, we applied PoMoSelect and PoMoBalance to analyse experimental genomic

data from Drosophila erecta, specifically focusing on the tMSE region known to exhibit balancing

selection (Yassin et al., 2016). Our application of PoMos reproduced previous insights by Yassin

et al. (2016) into the phylogenetic relationships among Drosophila subspecies.

Note, that the outcomes of the inference for CG-bias rate and mutation rates are presented in

terms of the virtual PoMos population sizes, which typically differ from the actual population

sizes. To accurately reflect the actual population dynamics in Drosophila, it is necessary to map

the values of µ, σ, β and B from virtual PoMos size to effective population size. This mapping

results in substantially reduced parameter values for σ and µ, as found by Borges et al. (2019),

given the large effective population sizes characteristic of Drosophila (Kelley et al., 2005). The

mapping for the preferred frequency is relatively straightforward, and we plan to propose a

mapping for the BS strengths in future research.

Through PoMoBalance analysis, we detect BS in the majority of allele combinations, in contrast
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to the absence of BS peaks in neutral regions. Additionally, we observe the purging of selection

for AT alleles, signifying the removal of polymorphisms at a rate higher than expected under

neutral conditions. While this discovery showcases the flexibility of our method, interpreting its

biological implications is challenging. Moreover, such interpretation might be unnecessary, as

the mean value for βAT is only slightly smaller than 1, indicating neutrality expectations and

suggesting a relatively weak effect.

5 Conclusion

We incorporated the PoMoBalance model, a generalised form of PoMos capable of detecting BS,

into RevBayes, a widely used phylogenetic software based on Bayesian inference. This integra-

tion enriches the resources available to researchers engaged in phylogenetic analysis, providing

a robust framework for precise species tree inference and concurrent parameter estimation. No-

tably, our implementation allows for the estimation of balancing selection, including preferred

frequencies and specific alleles under selection, while also disentangling it from other forms of

selection. PoMoBalance exhibits versatility in capturing various selection types, including purg-

ing selection, observed when the level of observed polymorphisms is lower than expected via

genetic drift and directional selection. These effects may arise from a combination of dominance

effects, such as underdominance, or purifying selection in the context of background selection,

etc.

In general, we provide a comprehensive framework to use PoMos for the estimation of phy-

logenetic trees, GC-bias and BS. The approach involves several key steps. First, we employ

the PoMoSelect to estimate tree topology, GC-bias rate, and mutations. Subsequently, we use

PoMoBalance to estimate all parameters, allowing branch lengths to vary while maintaining a

fixed topology learned from PoMoSelect. It is worthwhile to validate the results by comparing

the inferred values with PoMoBalance estimates that include a fixed GC-bias rate learned from

PoMoSelect. The selection of the best candidates is based on the agreement between the inferred

SFS and that estimated from the data. Lastly, in this framework, PoMoBalance is selectively

applied to regions that are likely under balancing selection, such as the MHC locus in Homo

sapiens.

The adaptability and versatility of PoMos address a need in the analysis of complex genomic

20

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2023.12.11.571102doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.11.571102
http://creativecommons.org/licenses/by/4.0/


datasets since our framework provides accurate phylogenetic inferences across multiple timescales

and demonstrate potential for application in genome-wide scans through the parallel inference of

multiple genomic regions. In future, we aim to investigate additional genomic factors intertwined

with balancing selection, with a specific focus on exploring the role of linkage disequilibrium and

its impact on the detection of BS.

6 Software Availability

The software RevBayes (Höhna et al., 2016; Hohna et al., 2017; Höhna et al., 2018) is available at

https://revbayes.github.io/. PoMoBalance tutorial at https://revbayes.github.io/tutorials/pomobalance/.

7 Data Availability

The data and the code for PoMoBalance analysis concerning SBC, Moran simulator and SLiM

are available via GitHub (https://github.com/sb2g14/PoMoBalance). The sequencing data for

Drosophila erecta and orena used in the analysis was previously published by Yassin et al.

(2016), the data for multiple individuals of other related subspecies of Drosophila was obtained

via BLAST.
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Supplementary Material 1 Stationary Distribution and Reversibil-

ity in PoMoBalance

The stationary distribution ψ provides the opportunity to investigate the long-term behavior

of the interplay between mutational bias, genetic drift, directional, and balancing selection on

population diversity. In the biallelic case, the Moran dynamic exemplifies a birth-and-death

process, known for its reversibility. Consequently, we obtained the stationary distribution by

initially formulating the detailed balance equations. To simplify the notation, we redefine the

state {nai, (N − n)aj} to only represent the frequency of the ai allele: i.e., {n}.

ψ{n}q
{nai,(N−n)aj}→{(n+1)ai,(N−n−1)aj} = ψ{n+1}q

{(n+1)ai,(N−n−1)aj}→{nai,(N−n)aj} . (S1)

The detailed balance equations allow us to derive the following recursive formula, which is

employed to obtain the stationary quantities for both fixed and polymorphic states

ψ{n} = ψ{0}

n∏
k=1

q{k−1}→{k}

q{k}→{k−1}
. (S2)

If we set n = N , the recursive formula becomes

ψ{N} = ψ{0}

N∏
k=1

q{k−1}→{k}

q{k}→{k−1}
= ψ{0}

q{0}→{1}

q{1}→{0}
· · · q

{n−1}→{n}

q{n}→{n−1}
· · · q

{N−1}→{N}

q{N}→{N−1}
, (S3)

from which by considering the rates of the process defined in the rate matrix Q in Equation

(2), we find the normalized stationary quantities for the fixed states

ψ{N}

ψ{0}
=
µajai
µaiaj

(1 + σai)
N−1

(1 + σaj )
N−1β

2Baiaj−N . (S4)

An interesting aspect is that the differentiated impact of BS in the fixed states disappears when

the balanced frequency sits in the middle of the frequency spectrum (i.e., Baiaj = N/2). By

applying the Kolmogorov criterion to each closed chain in the PoMoBalance model described

with Equation (2) we ensure that reversibility is satisfied when Baiaj = N/2 and breaks in all

other cases.

The stationary distributions ψ{n} may be multiplied by any arbitrary constant without affecting
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the final result thanks to the normalisation condition. Thus, we are safe to assume that we

could set

ψ{0} = k−1µaiaj (1 + σaj )
N−1 , (S5)

where k is obtained from the normalisation condition
∑N

i=0 ψ{i} = 1. Then from equation (S4)

we find

ψ{N} = k−1µajai(1 + σai)
N−1β2Baiaj−N . (S6)

Similarly to the fixed states, the stationary measures for the polymorphic states can be derived

using the recursive formula in equation (S2)

ψ{n} = ψ{0}
q{0}→{1}

q{1}→{0}
· · · q

{k}→{k+1}

q{k}→{k−1}
· · · q

{n−1}→{n}

q{n}→{n−1}

= k−1µajaiµaiaj
N

n(N − n)
(1 + σaj )

N−n−1(1 + σai)
n−1βBaiaj−|n−Baiaj |−1 .

(S7)

This solution clearly illustrates the contribution of mutational bias, genetic drift, directional

selection, and BS to the frequency of polymorphic states. As expected, the BS term is highest

when n = Baiaj and decays in the direction of the boundary states. This feature becomes evident

when we compare the stationary distribution with and without the effect of BS in Figure S1.
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Figure S1: The plots depict the stationary distribution of a population of N = 100 individuals, and a
biallelic locus with alleles A and a that evolves under under mutational bias (µAa = 0.02 > µaA = 0.01),
directional selection (σA = 0.01 > σa = 0.0) and three regimes of BS. Here we present frequencies in the
range [1, N − 1] to avoid very high tails that dominate the BS peak.

Because we are interested in modelling BS, we have been assuming that βaiaj acts to maintain

diversity at a certain frequency Baiaj . Mathematically speaking, we have been assuming that

βaiaj > 1. However, an interesting behaviour emerges when βaiaj < 1. In this case, the BS

term acts to purge variation more than what is already expected by genetic drift and directional

selection, as shown in Figure S1. We refer to this regime as purging selection.
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We normalize the obtained stationary quantities obtained in equations (S5), (S6) and (S7) to

sum up to 1. The stationary distribution normalization constant is

k = µaiaj (1 + σaj )
N−1 + µajaiµaiaj

N−1∑
n=1

N

n(N − n)
(1 + σaj )

N−n−1(1 + σai)
n−1β

Baiaj−|n−Baiaj |−1
aiaj

+ µajai(1 + σai)
N−1β2Baiaj−N . (S8)

Supplementary Material 2 Simulations with SLiM

The original scripts for SLiM simulations can be found in the supplementary repository

(https://github.com/sb2g14/PoMoBalance). We ran nucleotide models, simulating 105 genomic

sites with drift only using ‘initializeMutationTypeNuc("m1", 0.5, "f", 0.0)‘, drift+gc-

bias using ‘initializeGeneConversion(0.3, 1500, 0.80, 1.0)‘, drift+heterozygote advan-

tage with ‘initializeMutationTypeNuc("m2", 1.1, "f", 0.1)‘, where the coefficient 1.1

simulates overdominance. We set the mutation rate to 10−6 and the recombination rate to

10−5. These rates are higher than physiological ones for computational purposes, but they work

well for the purposes of our analysis.

borneo

chimp

human

sumatra

3480

2160

1440

1440

120

120

Figure S2: Phylogenetic tree simulated with SLiM, the inferred tree is presented in Figure 3 (C), here
the branch lengths are expressed in the simulated generations.

We initialised a population of 2000 individuals of Homininae and evolved them for 10000 pop-

ulations as a burn-in step. Then we split them into 1000 of Hominini and 1000 of Gorillini.
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Following the numbers of generations shown in Figure 1 we end up with Orangutan sumatra,

Orangutan borneo, chimp and human, each containing 500 individuals.

Finally, the ancestral sequences (.FASTA) and polymorphic data (.VCF) are written out as output

for each population.

Note that in the inference with the data simulated with SLiM, as shown in Table S2, the BS

strengths β for the neutral case and GC-biased case are significantly underestimated (the most

are 0.7 instead of 1). This is presumably due to noise in the simulations, especially when SLiM

diploids are mapped to small population sizes in PoMos. Interestingly, with an increase in the

population size, such misspecification is reduced, and for N = 20, we obtain β = 0.9.
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Supplementary Material 3 Supplementary Figures
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Figure S3: SFS representation for the tMSE region in six subspecies of Drosophila, denoted by blue stars,
is compared with the SFS inferred using PoMoBalance, represented by red diamonds.
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Drosophila subspecies. The corresponding tree and SFS are presented in Figure 5 and S3. (A) Estimated
rates of gBGC with PoMoSelect in green and PoMoBalance in black. (B) Mutation rates, (C) strength
of BS and (D) preferred frequencies for BS, all inferred using PoMoBalance.
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Supplementary Material 4 Supplementary Tables

Drift GC-bias

Variable True Posterior 95 % True Posterior 95 %
values mean credible interval values mean credible interval

sigma 0 0.042 [0, 0.205] 0.1 0.098 [0.0013, 0.197]

pi A 0.25 0.257 [0.253, 0.261] 0.25 0.249 [0.244, 0.255]
pi C 0.25 0.252 [0.247, 0.256] 0.25 0.254 [0.248, 0.259]
pi G 0.25 0.242 [0.238, 0.247] 0.25 0.249 [0.244, 0.254]
pi T 0.25 0.249 [0.244, 0.254] 0.25 0.248 [0.243, 0.253]

rho AC 0.1 0.098 [0.095, 0.1] 0.1 0.099 [0.096, 0.101]
rho AG 0.1 0.1 [0.098, 0.103] 0.1 0.1 [0.097, 0.103]
rho AT 0.1 0.098 [0.096, 0.101] 0.1 0.1 [0.097, 0.103]
rho CG 0.1 0.102 [0.099, 0.105] 0.1 0.1 [0.097, 0.103]
rho CT 0.1 0.099 [0.097, 0.102] 0.1 0.098 [0.095, 0.1]
rho GT 0.1 0.101 [0.098, 0.103] 0.1 0.102 [0.1, 0.105]

beta AC 1 1.039 [0.968, 1.198] 1 1.014 [0.911, 1.098]
beta AG 1 1.01 [0.876, 1.198] 1 1.018 [0.926, 1.113]
beta AT 1 1.006 [0.976, 1.035] 1 0.998 [0.959, 1.042]
beta CG 1 0.978 [0.945, 1.03] 1 0.997 [0.969, 1.025]
beta CT 1 1.003 [0.807, 1.147] 1 0.999 [0.892, 1.077]
beta GT 1 1.029 [0.959, 1.232] 1 0.991 [0.894, 1.072]

BS GC-bias + BS

sigma 0 0.0014 [0, 0.004] 0.1 0.0014 [0, 0.004]

pi A 0.25 0.248 [0.242, 0.253] 0.25 0.254 [0.247, 0.26]
pi C 0.25 0.254 [0.249, 0.258] 0.25 0.252 [0.247, 0.258]
pi G 0.25 0.245 [0.242, 0.249] 0.25 0.247 [0.243, 0.252]
pi T 0.25 0.253 [0.25, 0.257] 0.25 0.248 [0.243, 0.252]

rho AC 0.1 0.102 [0.099, 0.106] 0.1 0.098 [0.094, 0.101]
rho AG 0.1 0.101 [0.099, 0.105] 0.1 0.102 [0.099, 0.105]
rho AT 0.1 0.101 [0.098, 0.104] 0.1 0.099 [0.095, 0.102]
rho CG 0.1 0.1 [0.097, 0.102] 0.1 0.1 [0.097, 0.103]
rho CT 0.1 0.098 [0.095, 0.1] 0.1 0.099 [0.096, 0.101]
rho GT 0.1 0.101 [0.099, 0.103] 0.1 0.098 [0.096, 0.1]

B AC 2 2 [2.0, 2.0] 2 2 [2.0, 2.0]
B AG 2 2 [2.0, 2.0] 2 2 [2.0, 2.0]
B AT 2 2 [2.0, 2.0] 2 2 [2.0, 2.0]
B CG 2 2 [2.0, 2.0] 2 2 [2.0, 2.0]
B CT 2 2 [2.0, 2.0] 2 2 [2.0, 2.0]
B GT 2 2 [2.0, 2.0] 2 2 [2.0, 2.0]

beta AC 2 1.991 [1.934, 2.047] 2 1.991 [1.934, 2.047]
beta AG 2 1.982 [1.931, 2.029] 2 1.982 [1.931, 2.029]
beta AT 2 1.994 [1.958, 2.029] 2 1.994 [1.958, 2.029]
beta CG 2 2.067 [2.022, 2.117] 2 2.067 [2.022, 2.117]
beta CT 2 2.013 [1.98, 2.043] 2 2.013 [1.98, 2.043]
beta GT 2 1.969 [1.939, 1.996] 2 1.969 [1.939, 1.996]

Table S1: Results of converged MCMC chain for Figure 3 (A), (B) and 4 (A), (B), (C).
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Drift GC-bias

Variable True Posterior 95 % True Posterior 95 %
values mean credible interval values mean credible interval

sigma 0 0.0026 [0, 0.0058] 0.04 0.032 [0.023, 0.042]

pi A 0.25 0.252 [0.248, 0.257] 0.25 0.166 [0.16, 0.172]
pi C 0.25 0.249 [0.245, 0.253] 0.25 0.23 [0.224, 0.238]
pi G 0.25 0.248 [0.244, 0.252] 0.25 0.302 [0.294, 0.311]
pi T 0.25 0.251 [0.246, 0.255] 0.25 0.301 [0.291, 0.311]

rho AC 0.04 0.041 [0.04, 0.043] 0.03 0.047 [0.044, 0.049]
rho AG 0.04 0.042 [0.041, 0.044] 0.03 0.037 [0.035, 0.038]
rho AT 0.04 0.041 [0.039, 0.043] 0.03 0.031 [0.029, 0.032]
rho CG 0.04 0.042 [0.04, 0.044] 0.03 0.031 [0.03, 0.033]
rho CT 0.04 0.039 [0.038, 0.041] 0.03 0.029 [0.028, 0.031]
rho GT 0.04 0.039 [0.037, 0.04] 0.03 0.03 [0.028, 0.031]

beta AC 1 0.71 [0.692, 0.727] 1 0.749 [0.73, 0.769]
beta AG 1 0.719 [0.7, 0.736] 1 0.822 [0.799, 0.845]
beta AT 1 0.714 [0.696, 0.732] 1 1.094 [1.069, 1.12]
beta CG 1 0.7 [0.682, 0.717] 1 0.794 [0.775, 0.814]
beta CT 1 0.711 [0.693, 0.73] 1 0.849 [0.815, 0.883]
beta GT 1 0.733 [0.714, 0.751] 1 0.694 [0.668, 0.718]

BS

sigma 0 0.017 [0.01, 0.025]

pi A 0.25 0.268 [0.259, 0.276]
pi C 0.25 0.233 [0.224, 0.241]
pi G 0.25 0.231 [0.222, 0.238]
pi T 0.25 0.269 [0.261, 0.277]

rho AC 0.00032 0.00031 [0.00029, 0.00034]
rho AG 0.00032 0.00032 [0.0003, 0.00034]
rho AT 0.00032 0.0003 [0.00027, 0.00032]
rho CG 0.00032 0.00033 [0.0003, 0.00036]
rho CT 0.00032 0.00029 [0.00027, 0.00031]
rho GT 0.00032 0.00029 [0.00027, 0.00032]

B AC 5.0 5.0 [5.0, 5.0]
B AG 5.0 5.0 [5.0, 5.0]
B AT 5.0 5.0 [5.0, 5.0]
B CG 5.0 5.0 [5.0, 5.0]
B CT 5.0 5.0 [5.0, 5.0]
B GT 5.0 5.0 [5.0, 5.0]

beta AC 7.0 6.956 [6.814, 7.085]
beta AG 7.0 6.958 [6.827, 7.095]
beta AT 7.0 6.981 [6.839, 7.107]
beta CG 7.0 7.093 [6.956, 7.228]
beta CT 7.0 7.158 [7.027, 7.304]
beta GT 7.0 7.074 [6.934, 7.217]

Table S2: Results of converged MCMC chain for Figure 3 (C), (D) and 4 (D), (E), (F).
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PoMoSelect PoMoBalance

Variable Posterior 95 % ESS Posterior 95 % ESS
mean credible interval mean credible interval

sigma 0.00081 [0, 0.0023] 7660 0.022 [0, 0.074] 472

pi A 0.176 [0.139, 0.216] 1773 0.422 [0.358, 0.488] 341
pi C 0.292 [0.254, 0.33] 3696 0.32 [0.278, 0.365] 1645
pi G 0.225 [0.191, 0.258] 3760 0.151 [0.115, 0.193] 241
pi T 0.306 [0.272, 0.343] 4787 0.107 [0.082, 0.134] 641

rho AC 0.028 [0.021, 0.036] 2950 0.178 [0.135, 0.226] 759
rho AG 0.032 [0.024, 0.041] 3008 0.255 [0.193, 0.331] 2654
rho AT 0.025 [0.019, 0.031] 2267 0.304 [0.238, 0.379] 1920
rho CG 0.022 [0.018, 0.026] 4943 0.224 [0.173, 0.28] 1286
rho CT 0.02 [0.017, 0.023] 4726 0.344 [0.284, 0.409] 2377
rho GT 0.018 [0.015, 0.021] 4042 0.379 [0.286, 0.485] 406

B AC - - - 2.995 [3.0, 3.0] 2375
B AG - - - 2.86 [2.0, 3.0] 1315
B AT - - - 1.954 [1.0, 4.0] 386
B CG - - - 3 [3.0, 3.0] 29347
B CT - - - 2.016 [2.0, 2.0] 6304
B GT - - - 2.638 [2.0, 3.0] 165

beta AC - - - 2.091 [1.782, 2.417] 3515
beta AG - - - 1.73 [1.47, 2.009] 1166
beta AT - - - 0.898 [0.854, 0.941] 1646
beta CG - - - 1.796 [1.526, 2.067] 4819
beta CT - - - 1.508 [1.291, 1.73] 559
beta GT - - - 2.011 [1.752, 2.283] 9919

Table S3: Results of the inference combined from 4 MCMC chains for Figure 6 and 7.
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