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Abstract

Understanding a cell’s expression response to genetic perturbations helps to address important
challenges in biology and medicine, including the function of gene circuits, discovery of therapeu-
tic targets and cell reprogramming and engineering. In recent years, Perturb-seq, pooled genetic
screenswith single cell RNA-seq (scRNA-seq) readouts, has emerged as a commonmethod to collect
such data. However, irrespective of technological advances, because combinations of gene pertur-
bations can have unpredictable, non-additive effects, the number of experimental configurations far
exceeds experimental capacity, and for certain cases, the number of available cells. While recentma-
chine learningmodels, trained on existing Perturb-seq data sets, can predict perturbation outcomes
with some degree of accuracy, they are currently limited by sub-optimal training set selection and
the small number of cell contexts of training data, leading to poor predictions for unexplored parts
of perturbation space. As biologists deploy Perturb-seq across diverse biological systems, there is
an enormous need for algorithms to guide iterative experiments while exploring the large space
of possible perturbations and their combinations. Here, we propose a sequential approach for de-
signing Perturb-seq experiments that uses the model to strategically select the most informative
perturbations at each step for subsequent experiments. This enables a significantly more efficient
exploration of the perturbation space, while predicting the effect of the rest of the unseen perturba-
tions with high-fidelity. Analysis of a previous large-scale Perturb-seq experiment reveals that our
setting is severely restricted by the number of examples and rounds, falling into a non-conventional
active learning regime called “active learning on a budget”. Motivated by this insight, we develop
ITERPERT, a novel active learning method that exploits rich and multi-modal prior knowledge in
order to efficiently guide the selection of subsequent perturbations. Using prior knowledge for this
task is novel, and crucial for successful active learning on a budget. We validate ITERPERT using in-
silico benchmarking of active learning, constructed from a large-scale CRISPRi Perturb-seq data
set. We find that ITERPERT outperforms other active learning strategies by reaching comparable ac-
curacy at only a third of the number of perturbations profiled as the next best method. Overall, our
results demonstrate the potential of sequentially designing perturbation screens through ITERPERT.
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1 Introduction
The expression response of a cell to a genetic perturbation reveals fundamental insights into cell and gene func-
tion [1]. Perturb-seq is a relatively recent technology for pooled genetic screens with a single-cell RNA seq
(scRNA-seq) readout of the expression response to a perturbation [2, 3, 4]. Perturb-seq provides insights into
gene regulatory machinery [5], helps identify target genes for therapeutic intervention [6], and can facilitate the
engineering cells with a specific target state [7, 8]. Recent technical advances have enhanced the scope, scale and
efficiency of Perturb-Seq [9, 4, 10]. However, because of the plethora of biological contexts, across cell types,
states and stimuli, and the need to test combinations of perturbations (due to the possibility of non-additive
genetic interactions), the number of required experiments explodes combinatorially. With trillions of potential
experimental configurations or more, it becomes unrealistic to conduct all of them directly [8, 11].

Recently, researchers proposedmachine learning models to predict perturbation outcomes [12, 13, 14]. Such
models are trained on existing Perturb-seq datasets [10, 2, 8, 11] and then predict expression outcomes of unseen
perturbations, of single genes or their combinations. While promising, these models suffer from a selection
bias caused by the design of the original experiment used for training, in terms of selected perturbations and
biological conditions. In particular, the training data are often profiled to answer a specific biological question,
but not to maximize the predictive accuracy of the machine learning model across a large pool of unprofiled
perturbations.

In this work, we present a novel paradigm for exploring a perturbation space by executing a sequence of
Perturb-seq experiments. At the core of this paradigm lies a sequential optimal design procedure that inter-
leaves the machine learning model and the wet-lab, where the Perturb-seq assay is performed. At each step of
the sequence, we acquire data and use it to re-train the machine learning model. Then, we apply an optimal
design strategy to select a batch of perturbation experiments that will most benefit the model to predict all of
the unprofiled perturbations. The key idea is to sample the perturbation space intelligently by considering per-
turbations that aremost informative and representative to themodel, while accounting for diversity. Using this
strategy, we can run as few perturbation experiments as possible, while obtaining a model that has sufficiently
explored the perturbation space.

This idea is well-studied in the machine learning literature, and is the topic of active learning [15]. Active
learning has been used in practice across many domains, such as document classification [16], medical imag-
ing [17] and speech recognition [18]. However, we noticed that effective active learning approaches necessitate a
substantial initial set of labeled examples (i.e., in our case, profiled perturbations), complemented by numerous
batches that collectively result in tens of thousands of labeled data points [19, 20]. In contrast, the constraints
of iterative Perturb-seq in the lab make such conditions unattainable, both in terms of cost and time (as shown
in our economic analysis in Section 3.1). In this “budgeted” regime, it has been reported that random selection
outperforms most active learning strategies [21, 22, 23].

We therefore propose a new strategy called ITERPERT (ITERative PERTurb-seq) that tackles the active learn-
ing on a budget setting for Perturb-seq data. Motivated by a data-driven analysis, our key observation is that
when on a budget, it may be beneficial to combine the evidence from the data with publicly available sources
of prior-knowledge, especially in the first few rounds. Such examples of prior knowledge include Perturb-seq
data fromrelated systems, large scale genetic screenswith othermodalities, such as genome-scale optical pooled
screens [24, 25], and data on physical molecular interactions, such as protein complexes [26, 27]. This prior infor-
mation spans multiple modalities such as networks, text, image, and 3D structure, which may be challenging to
exploit during active learning. We overcome this by defining reproducing kernel Hilbert spaces on each of the
modalities, and applying a kernel fusion strategy [28] to combine information from multiple sources.

To compare ITERPERT against other commonly used methods, we conducted an extensive empirical study
using a large-scale single-gene CRISPRi Perturb-seq dataset collected in a cancer cell line (K562 cells) [11] and
benchmarked 8 recent active learning strategies. ITERPERT achieved similar accuracy as the best active learning
strategy but with three times fewer perturbations profiled as the training data. ITERPERT also showed robust
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Figure 1: Sequential designofPerturb-seq experiments. a. Illustrationof the iterative Perturb-seq procedure. In each
round, a batch of perturbations is selected and the corresponding experiments are conducted. Then, a machine learning
model is updated with these newly-profiled perturbations. An active learning strategy uses the model’s predictions to
select the set of perturbations for the next round. Through this iteration, the goal is to reach high accuracy with aminimal
number of experiments. b. Illustration of ”active learning on a budget”. Active learning for Perturb-seq is highly restricted
to much fewer profiled perturbations (i.e., labeled examples) compared to a conventional active learning setting. This
motivates the development of a specialized method for this setting. c. Exploratory data analysis shows that the model
kernel suffers from poor representation when few perturbations have been profiled (low budget). However, other data
sources, described in Section 3.3, contain rich and complementary information that can be potentially transferred to the
model kernel, motivating ITERPERT.

performance in both essential genes screens and genome-scale screens, and when considering batch effects
across iterations.

To summarize, our contributions are (1) proposing a sequential experimental design approach to Perturb-
seq profiling for efficient exploration of a perturbation space; (2) identifying the algorithmic problem of active
learning on a budget in this setting; (3) proposing a new active learning strategy that incorporates prior infor-
mation and obtains a speedup of more than three times over the best baseline strategy.

2 Background

Perturb-seq prediction model. We consider a predictive model 𝑓𝜃 with parameters 𝜃 that maps a set of
perturbations P = (𝑃1, · · · , 𝑃𝑀 ) to the post-perturbed expression outcome ŷ ∈ ℝ𝐿 , where 𝐿 denotes the
number of genes with measured expression levels. We denote the set of available Perturb-seq training data as
Dtrain = Xtrain × Ytrain, whereXtrain = {P𝑖}𝑁train

𝑖=1 and Ytrain = {y𝑖}𝑁train
𝑖=1 , respectively.

Several models have been designed for this specific task [12, 13, 29, 30], and our proposed framework can
be adapted for any of those (refer to Section 5). However, in the remainder of this paper we focus on adopting
the current state-of-the-art model GEARS [12] as the prediction model for active learning. GEARS is a deep
learning model customized for perturbation prediction that uses graph neural networks (GNN) to incorporate
gene ontology and gene co-expression graphs to learn perturbation embeddings from data. GEARS uses a focal
loss as the objective function during training in order to assign higher weight to differentially expressed genes:
L = 1

|D|
∑ |D|

𝑢=1
1
𝐿

∑𝐿
𝑣=1(y𝑢

𝑣 − ŷ𝑢
𝑣)2+𝛾 , where 𝛾 = 2 and ŷ𝑢

𝑣 , y𝑢
𝑣 are the predicted and true expression level of gene

𝑣 after perturbation 𝑢, respectively.

Batch-mode pool-based active learning. Except for the specific low-budget setting, the active learning prob-
lem we are interested in has been well-studied in the literature [15] and corresponds to batch-mode pool-based
active learning. It can be formulated as follows: We consider an initial labeled training set D(0)

train and an unla-
beled pool setX(0)

pool. In each subsequent round 𝑖, we first train a model 𝑓𝜃 on D
(𝑖−1)
train . Then, an active learning
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selection strategy 𝑔 takes in (1) a pre-specified batch size 𝑁batch, (2) the training set D
(𝑖−1)
train , (3) the unlabeled

pool set X(𝑖−1)
pool , and (4) the model 𝑓𝜃 and selects a batch Xbatch ⊂ X

(𝑖−1)
pool . We then acquire the labels Ybatch

for Xbatch (i.e., for our biological setting, we run the perturbation experiment). Finally, we update the labeled
set D(𝑖)

train = D
(𝑖−1)
train ∪ Xbatch and pooled setX

(𝑖)
pool = X

(𝑖−1)
pool \ Xbatch. We proceed with the next round until a

total of 𝑅 rounds is reached.
Recently, the algorithmic framework by Holzmüller et al. [31] unified a large number of existing methods

for this task. Their approach relies on reproducing kernel Hilbert spaces (RKHS), and computations on kernel
matrices. Specifically, it consists of three steps. (1) Base kernel calculation. We construct a positive semi-definite
kernel 𝑘 : X× X→ ℝ to capture how the predictions from 𝑓𝜃 change with respect to X. A common choice
is to build a finite-dimensional feature map 𝜙 : X→ ℝ𝑑 with 𝑘 (𝑥, 𝑥′) = ⟨𝜙(𝑥) , 𝜙(𝑥′)⟩. Typical examples are
the full gradient kernel, obtained for 𝜙grad(𝑥) = ∇𝜃 𝑓𝜃 (𝑥), as well as the last layer kernel 𝜙ll(𝑥) = ∇W(𝐿) 𝑓𝜃 (𝑥),
where W(𝐿) is denoted as the last layer parameter of the model 𝑓𝜃 . We note that because there are 𝐿 gene
expression levels to predict for each perturbation, we are interested in a multi-task prediction problem. Yet,
we may still operate within this framework. Indeed, even though the gradient vector ∇𝜃 𝑓𝜃 becomes a Jaco-
bian matrix Jac 𝑓𝜃 (𝜃), we may just identify the matrix space to a finite-dimensional vector space. (2) Kernel
transformation. While the base kernel defines the relation among inputs, it often requires an additional kernel
transformation step for better performance, such as min-max normalization. (3) Selection rule. Lastly, given the
transformed kernel, a selection method is invoked. The overall principle is to select informative and represen-
tative points that account for diversity. Since our proposed strategymodifies neither the kernel transformation
nor the selection rules, we refer the readers to [31] for a more detailed review.

3 Method

3.1 Sequential design of Perturb-seq experiment

We now describe the unique challenges that may arise while designing an active learning strategy for the se-
quential design of Perturb-seq experiments.

Problemdefinition. We consider an initial Perturb-seq readout D(0)
train and a pool of unperturbed genesX

(0)
pool.

In each round 𝑖, we train a perturbation prediction model 𝑓𝜃 using available data D
(𝑖−1)
train . Then, an active learn-

ing selection strategy 𝑔 selects a batchXbatch ∈ X
(𝑖−1)
pool . We then conduct a wet-lab Perturb-seq experiment on

these selected perturbations and obtain a batch of new readouts Ybatch, and proceed with the next round. The
goal is find a selection strategy 𝑔 that minimizes the model’s prediction errorL(𝑖) on all the perturbations. For
evaluation purposes, we evaluate the performance on a hold-out set of perturbations Dtest at each round 𝑖.

Experimental setup. We focus on a CRISPRi Perturb-seq screen on cells from the K562 cell line undergoing
2,058 single-gene perturbations (essential genes as defined in [11]). We construct a benchmark to simulate the
real-world active learning loop. First, we randomly select a hold out set of 205 perturbations for evaluation.
This randomly selected hold out set gauges a model’s capacity to predict the entire perturbation space. Next,
we set the number of rounds 𝑅 = 5 and the number of perturbations that can be performed in each round
𝑁batch = 100. For the sake of a fair comparison, we fix a random initial set of 100 perturbations for all methods.
We measure the error at round 𝑖 using the GEARS training loss at the hold out test set.

Economic analysis reveals active learning on a budget setting. Our problem is drastically different from
the conventional active learning setting in several ways. First, previous works focus on single-output classifica-
tion/regression tasks [32, 31], while the outcome of a Perturb-seq experiment is high-dimensional. This means
that the predictive model may be harder to learn and thus may require more data.

Second, in a typical setting, the initial labeled set |Dtrain | is large enough for model training [32], followed
by a large number of labels queried per round. However, this large number of labeled data is unattainable for
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Perturb-seq data, because each perturbation is associated with a high cost. Perturb-seq’s cost (currently domi-
nated by the cost of scRNA-seq) for one perturbation can be estimated as the price of processing and sequencing
a cell (varies across techniques, for droplet-based microfluidics, ∼0.5$ [33]) times the number of guides per per-
turbation (∼2) times the number of cells per guide (∼30) in addition to the pro-rated cost of labor, instruments,
and quality control. Thus, a single perturbation is currently estimated to cost more than $30, making the num-
ber of perturbations intrinsically limited per round. Indeed, most Perturb-seq experiments reported to date are
in the order of hundreds of perturbations [34, 8, 2, 10], largely driven by cost, as the experiment scales readily to
genome-scale in the lab.

Third, previous works assume that many rounds of data acquisition can be performed. For example, the
recent GeneDisco active learning challenge uses up to 40 rounds [35]. In contrast, each round of a Perturb-
seq experiment is time-consuming. With some variation due to differences in the experimental platform, on
average, each round of Perturb-seq takes at least a month (1 week for oligonucleotides synthesis, 1 week for
library cloning, 1 week for titering, and 1 week for experiments). Thus, the number of rounds 𝑅 should be small
since the total time grows linearlywith 𝑅 for sequential Perturb-seq design. 40 rounds correspond tomore than
3 years of implementation and is thus not realistic with current assay capabilities. This is why in our setting, we
use 𝑅 = 5.

Overall, we are operating in a different regime that we summarize as active learning on a budget [32]. We
demonstrate below that this has significant impact on the design of the active learning strategy.

3.2 Data-drivenmotivation for incorporating prior knowledge

We hypothesize that the setting of active learning on a budget will affect the performance of any active learning
strategy significantly because of the estimation of the kernel matrix, and therefore also the estimated relation-
ships between perturbations, may be highly biased. We next present an analysis to support this hypothesis.

Testing alignment of kernels. We develop a simple test to gauge the quality of any kernel for downstream
utilization in an active learning strategy. Since we have access to ground truth data (i.e., the outcome of all
perturbations), we construct a ground truth kernel 𝑘truth with 𝜙truth(𝑥) = y, wherey denotes the experimental
result. We expect the kernel matrix K̃ to reflect pairwise perturbation relationships, up to experimental noise.
Therefore, the kernel matrix K derived from the predictive model 𝑓𝜃 should ideally be aligned as closely to the
ground truth kernel as possible. To measure the alignment between the query kernel K and the ground truth
kernel K̃, we use the kernel alignment score KA(K, K̃) [36] defined as the cosine similarity between the two
matrices (using the inner product canonically induced by Frobenius norm).

Poor alignment of the predictive model kernel when on a budget. We apply a baseline active learning
algorithm for five rounds, where, at each round, we randomly query 100 new perturbations (random selection
rule). At each of these five rounds, we also retrieve the perturbation prediction model, compute the kernel
matrices and calculate the alignment scorewith ground truth. Tomake these kernelmatrices comparable across
rounds, we calculate them on the list of perturbations in the pool set of the last round. We observe that as
the number of profiled perturbations increases, the model kernel alignment score also increases (Figure 1c).
However, the alignment scores are low during the first few rounds, suggesting that the kernel matrix does
not accurately represent the similarities between perturbations. This will lead to suboptimal selections since
selection rules solely rely on the kernel to make selections.

Prior knowledge contains auxiliary information of perturbation relationships. To tackle the insuffi-
ciency of the model kernel, we hypothesize that we can leverage abundant information about perturbation
relationships stored in other sources of prior knowledge. To support this hypothesis, we collect a list of such
sources and derive kernels that represent perturbation similarities (details about the sources and kernel deriva-
tions appear in Section 3.3). Using the same kernel alignmentmetric (Figure 1c), we observe that kernels derived
from prior information have better alignment with the ground truth kernel compared to the model predictive
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Figure 2: Illustration of ITERPERT. Driven by the exploratory data analysis in Section 3.2, we introduce ITERPERT, an
active learning selection approach that integrates a wide range of multi-modal prior knowledge to tackle the problem of
active learning on a budget for Perturb-seq data. Our primary technique involves enhancing themodel kernel when faced
with budget constraints. We achieve this by transforming each source ofmulti-modal prior knowledge into a reproducing
kernel Hilbert space through diverse featurization methods for each modality, explained in Section 3.3 These kernels are
then fused to refine the model kernel, ensuring a more precise characterization of perturbation relations. We then apply
standard selection rules to this enhanced kernel, giving rise to ITERPERT.

kernel, especially in the first 2 rounds, suggesting rich information that could be complementary to the model
kernel. This motivates us to design a method that integrates prior knowledge into active learning strategies.

3.3 ITERPERT: a multi-modal prior-guided active learning strategy

Overview. Motivated by the exploratory analysis in Section 3.2, we propose ITERPERT, an active learning strat-
egy that incorporates diverse sources of prior knowledge to complement the model kernel when on a budget.
The key step of our method consists in defining a kernel on each source of prior knowledge and combining
those kernels with the model kernel to capture the relations between perturbations more accurately. This new
prior-fused kernel is then followed by standard selection rules to form an active learning strategy.

Kernelized multi-modal prior information. Prior knowledge may come from diverse modalities, such as
images, texts, and networks; therefore, how to employ these sources of prior knowledge for active learning
is not straightforward. The information needed for active learning is not the raw prior knowledge, but the
relations between the perturbed genes captured in the prior knowledge (e.g., using a kernel matrix). Thus, we
propose to define a kernel 𝑘 (𝑥, 𝑥′) = ⟨𝜙prior(𝑥) , 𝜙prior(𝑥′)⟩ for each source of prior knowledge. Here, we
introduce 6 distinct categories of prior knowledge, explain how to engineer a featuremap 𝜙, and provide insight
onwhy each one should intuitively helpmap the perturbation space. The detailed preprocessing for each source
can be found in Appendix A.
(1) Additional Perturb-seq data. Multiple Perturb-seq experiments have been conducted across several cell con-

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 13, 2023. ; https://doi.org/10.1101/2023.12.12.571389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.12.571389


texts [34]. Perturb-seq data from other cell contexts or experiments contain useful prior information since
certain relations between perturbations might be either context-agnostic or at least transferable to the cell con-
text of interest. For each perturbation 𝑥, 𝜙(𝑥) is defined as the mean of pseudo-bulk expression change from
the non-targeting control cells from the Perturb-seq readouts.
(2) Optical pooled screens (OPS). OPS [24, 25] data consists of cell morphological images associated with a ge-
netic perturbation in each individual cell in a pool. Intuitively, perturbations that elicit similar morphological
phenotypes could also have similar expression phenotypes. For each perturbation 𝑥, 𝜙(𝑥) is the imaging fea-
tures from CellProfiler [37], an image processing software that extracts morphology profiles.
(3) scRNA-seq atlas. Genes that are co-expressed together likely belong to similar pathways, and perturbations
in the same pathway tend to have similar expression effects. Thus, gene co-expression data could be useful for
the prediction task. For each perturbation 𝑥, 𝜙(𝑥) is the list of normalized gene expression measurements for
gene 𝑥 across a collection of scRNA-seq experiments [38]. The kernel matrix derived from this feature map
corresponds to the co-expression matrix.
(4) Protein structures. If the proteins encoded by the perturbed genes have similar structures, they are more
likely to have similar functions, and similar perturbation outcomes [26]. For each perturbation 𝑥, we obtain its
protein coding sequence, and then feed it into a recent protein language model (15B ESMmodel [27]) to obtain
structural features 𝜙(𝑥).
(5) Protein-protein interaction network (PPI). A PPI network connects proteins that physically interact with
each other [39]. Intuitively, a physical interaction between two proteins suggest that they might participate
in a shared biomolecular pathway or complex. Thus, perturbations of genes coding for physically interacting
proteins might lead to similar effects [40]. For each perturbation 𝑥, 𝜙(𝑥) is a node embedding of 𝑥 in the PPI
network, such as node2vec [41].
(6) Literature. Perturbations that are mentioned in similar contexts in the literature are more likely to have
similar functions and phenotypes. To encode this, for each perturbation 𝑥, 𝜙(𝑥), we feed the corresponding
gene name to a recent large language model that is fine-tuned on biological literature (e.g. BioGPT [42]) and use
the text embedding as the feature map.

Kernel fusion. The kernelization step enables integration across kernels with diverse modalities, since it con-
verts different modalities into one — a kernel matrix of the same size. Now, we study how to fuse all the
prior kernels with the model kernel. Given the set of prior kernels {𝑘1, · · · , 𝑘𝑚} and their kernel matrices
{K1, · · · ,K𝑚}, we update the model kernel matrix K at each round to obtain the kernel matrix K̂ for our
active learning procedure as follows:

K̂ = FUSION(K,K1, · · · ,K𝑚)

Since the different prior kernels have different feature map dimensions, and the kernel corresponds to taking
the dot product between feature maps, the scale differs significantly across kernels. Thus, to avoid one kernel
with a large scale overriding the others, we apply a min-max scale normalization to each kernel.

We experiment withmultiple strategies for theFUSION operator, including element-wise operators, such
as mean, max, and product, and adaptive kernel aggregation methods, such as the kernel alignment weighted
operator and the kernel regression operator. A discussion and performance study of these fusion operator
appears in Appendix B. Interestingly, the mean operator K̂ = 1

𝑚+1 (K + K1 + · · · + K𝑚) has the best empirical
performance. Additionally, this approach has the theoretical advantage of guaranteeing that the fused kernel
is positive and semi-definite (PSD), which is a required property for several downstream selection rules [31].
Note that the mean operator also has an interpretation in the feature maps space, where it is equivalent to the
concatenation of all the feature maps.

Selection rule. ITERPERT onlymodifies the base kernel and is agnostic to the selection rule. For the sake of sim-
plicity, in our experiments, we apply ITERPERT with only one popular rule called greedy distance maximization.
This method greedily select points with maximum distance to all previously selected points [43]. Particularly,
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Figure 3: a. ITERPERT achieves significant speedup ofmodel learning compared to the best baseline and random selection.
Focal loss (training objective of the base model, y axis) across active learning rounds (x axis). We conduct 10 random runs
where the solid line is the average and the error bar is the 95% confidence interval of the mean. b. Detailed breakdown of
state-of-the-art active learning baselines. The best baseline is TypiClust [32]. Plot as in panel a, with the solid line denoting
the average across 10 runs. c. Detailed breakdown of individual prior-augmented active learning. The solid line is the
average across 5 runs. Error bars are not visualized in panels b and c for visual clarity and can be found in Appendix C.

given the prior-fused kernel 𝑘 , for a perturbation 𝑖 in the pool set and any point 𝑗 in the selected set, it first cal-

culates the distance 𝑑𝑖 𝑗 =
√
𝑘 (𝑥𝑖 , 𝑥𝑖) + 𝑘 (𝑥 𝑗 , 𝑥 𝑗) − 2𝑘 (𝑥𝑖 , 𝑥 𝑗). This is equivalent to taking the squared distance

in the feature map space. Next, it selects point 𝑖∗ greedily as

𝑖∗ = argmax𝑖∈Xremmin 𝑗∈Xsel𝑑𝑖 𝑗 , (1)

where Xsel is the union of the training set and the points already selected, and Xrem is the pool set excluding
the already selected points.

4 Experiment
We conduct experiments to demonstrate ITERPERT’s advantage over state-of-the-art active learning strategies
in efficiently designing Perturb-seq experiments. We also conduct systematic ablation studies to delineate the
contribution of each prior information source. We evaluate the performance of our benchmarked methods in
various settings, including an extension to a larger pool size by leveraging a genome-scale Perturb-seq screen
and also accounting for batch effects across rounds.

Benchmarking state-of-the-art active learning methods. We first benchmark the set of active learning
methods (Figure 3b) available from the open-source repository released by Holzmüller et al. [31]. We observed
that all active learningmethods have better performance than uniform/random sampling. The best-performing
method was TypiClust [32], which is a recent active learning on a budget method that prioritizes typical exam-
ples instead of uncertain examples and shows significant improvement over random selection. This corrobo-
rates our hypothesis that the problem of sequential Perturb-seq experimental design corresponds to the setting
of active learning on a budget.

ITERPERT achieves significant improvement over the best baseline. We report the performance of ITER-
PERT against the best active learning baseline and random sampling in Figure 3a. Importantly, ITERPERT uses
roughly one round to reach the same accuracy as five rounds of uniform sampling, reflecting a greater than
5-fold speedup. Similarly, ITERPERT uses roughly 1.5 rounds (through linear extrapolation) to reach the same
accuracy as five rounds of uniform sampling, reflecting a more than 3-fold speedup. We also observe similar
improvements in other biologically meaningful metrics, such as the mean squared error (MSE) of predicted ex-
pression profiles calculated on the top 20 differentially expressed genes in each perturbation (Figure 4a) and the
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Figure 4: Biologically meaningful metrics as used in [12]. Metrics (y axis)
across active learning rounds (x axis). Eachmethod is averaged across 10 runs
and error bar is the 95% CI of the mean. a. MSE of top 20 differentially ex-
pressed genes per perturbation. b. Pearson correlation coefficient between
the predicted and true expression changes (centered on non-targeting con-
trols). ITERPERT-Prior-Only is an ablation of ITERPERT where we remove the
model kernel. Best baseline is TypiClust [32].

Figure 5: Performance for genome-scale
K562 CRISPRi screen. Focal loss (y axis)
across active learning rounds (x axis).
Solid line: mean over 10 runs, error bar:
95% CI of the mean. Best baseline is Typi-
Clust [32]. Results for other baselines can
be found in Appendix D.

Pearson correlation coefficient over changes in gene expression (Figure 4b). This showcases that ITERPERT is an
efficient method for designing Perturb-seq experiments. Moreover, the first round had the steepest increase of
accuracy for ITERPERT, confirming our data analysis in Section 3.2 on the usefulness of prior knowledge.

Dissecting ITERPERT performance across multi-modal priors. To further understand the origin of the
performance improvement of ITERPERT, we conduct several ablations. First, we report performance when us-
ing a single prior kernel, so that we may understand which prior source contributes most to the performance
of the method (Figure 3c). Aggregation of all priors outperformed any individual prior alone. This showcases
synergies across the diverse sources of prior knowledge. Comparing across priors, the best-performing prior is
the Perturb-seq data in RPE1 cells, highlighting that there is transferable information across Perturb-seq experi-
ments, even from different cell contexts. Optical pooled screens were also strongly informative, demonstrating
that cell morphology carries shared information with Perturb-seq outcomes. Notably, different cell contexts
and treatment/phenotypes of OPS lead to different improvement levels. The HeLa cell line seems to have a
larger contribution to model performance increase than an OPS in the A549 cell line. Other prior knowledge
sources, such as literature and a scRNA-seq atlas, also showan improvement, while PPI has limited contribution,
maybe due to noise. Overall, perturbation-specific priors have richer signals compared to general gene-based
priors. We also conduct an ablationwherewe remove themodel kernel (Figure 4a,b). We observe a performance
degradation, highlighting the synergy between prior knowledge and the model kernel.

Extension to genome-scale experiment. Thepool set of the essential genes in K562 dataset is relatively small
(<2,000 perturbations). For many real-world applications of Perturb-seq, one may want to select from a larger
pool set size, for example, in genome-scale screens or in combinatorial screens. To gauge the improvement
in larger setups, we conducted another experiment by leveraging the genome-scale K562 CRISPRi perturb-seq
screen from [11]. This dataset has 9,748 single-gene perturbations and thus corresponds to a much larger pool of
possible perturbations. We set 𝑁batch = 300 and performed 𝑅 = 3 rounds in total. We report the performance
in Figure 5. We find that ITERPERT consistently displays a significant efficiency improvement over both the
random and best active learning baselines, especially in the first round.

Accounting for batch effects across rounds. One important consideration when developing an active learn-
ing strategy for Perturb-seq data is that there are batch effects across rounds (Figure 6a), which could bias the
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Figure6: a. Batch effects exist across active learning rounds, which could biasmodel training and selection. b. Illustration
of simulation evaluation settings where we restrict the cells from the selected perturbations in each round to certain
batches (lanes) such that different rounds use cells from different batches. c. Active learning performance in the batch
effect setting. Each method is averaged across 10 runs and error bar is 95% CI. Best baseline is TypiClust [32].

predictive model and selection strategy. To evaluate the our method’s robustness to this, we simulate batch
effects by leveraging the batch information in the dataset, which consists of 48 batches (lanes) (Figure 6b). In
particular, we restrict the cells for Xbatch in each round to come from different batches (8 batches for each
round), to ensure that the model experiences some batch effects. We conduct the same experiment and report
the performance in Figure 6c. We observe that the absolute value of the loss is worse than in the previously
explored settings without batch effects. This may mainly be due to the fact that 6 times fewer cells are available
for training. In this challenging setting, we still observe that ITERPERT has a more efficient selection strategy
compared to the best baseline and uniform sampling.

5 Related works

Active learning. We highlight recent advancements that we consider as baselines and refer the readers to
surveys [15, 31, 44] for a more comprehensive overview. BALD [45] selects instances where the model’s predic-
tions exhibit the most disagreement across possible parameter configurations, focusing on uncertainty. Batch-
BALD [46] is an extension of BALD and it selects batches of data points to maximize joint information and re-
duce redundancy in batch selection. Core-Set [43] identifies a subset of data that summarizes the entire dataset,
aiming for comparable performance with fewer training examples. BADGE [47] chooses data points based on
diverse gradient embeddings, capturing instances that offer varied learning experiences. ACS-FW [48] uses the
Frank-Wolfe optimization algorithm to select instances from the pool set whose conic combinations best repre-
sent the entire set to promote representativeness. LCMD [31] first finds the largest cluster for representativeness
and then enforces diversity by picking the maximum distance point within this cluster.

Active learning on a budget. Active learning on a budget has been studied in [21, 22, 23]. They showed that
in this setting, random selection outperforms most deep active learning strategies. This phenomenon is often
explained by the poor ability of neural models to capture uncertainty on a small budget. The recently pro-
posed method TypiClust [32] prioritizes typical examples instead of uncertain examples and shows significant
improvement over random selection. We consider it as our baseline. Note that with ITERPERT, we do not pro-
pose a new selection rule but instead use prior information to adjust the estimation of the perturbation space.
We show that ITERPERT has significant improvement over TypiClust, but we leave the problem of integrating
ITERPERT with TypiClust as future work.
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Perturbation prediction models. CellOracle[29] relies on gene regulatory network inference and conducts
linear network propagation of perturbation signals to make predictions. CPA[30] uses a non-linear composi-
tional autoencoder to predict effects but it is restricted to predicting seen perturbations. GEARS [12] is a deep
learning model customized for perturbation prediction. It is based on a GNN perturbation and cell encoder
with a deep composition layer that simulates multi-gene perturbations on cells, and it features a loss function
focusing on differentially expressed genes. Recently, single-cell foundation models have gained popularity and
claim to excel at perturbation outcome prediction. Notably, scGPT [13] uses a generative pre-training objective
over a massive scRNA-seq atlas and is finetuned on perturbation prediction tasks. However, it requires the
perturbed genes to be detected in the scRNA-seq experiment, which is not the case for many perturbations in
our data set. Although we use GEARS in this work, the approach is general and applicable to other models.

Active learning for genomics experimental design. Sequential optimal design is increasingly popular in
high throughput genomics assays. The main task is to identify genes that maximize an endpoint such as cell
proliferation [49, 50]. Note that this setting is highly different from ours, because there, the goal is to identify
a data point in the data distribution with the highest response (Bayesian optimization). In contrast, we are
interested in selecting points that enable a machine learning model to reduce the overall loss across the data
distribution (active learning). The more related work GeneDisco [35] is a benchmark for the sequential design
of genetic perturbation experiments, proposing both Bayesian optimization and active learning tasks. The key
difference in our work is that we focus on active learning for expensive Perturb-seq, where the response is
high-dimensional expression profiles, while GeneDisco focuses on functional genomics CRISPR assays with a
single scalar readout. This leads to different base prediction models and a different active learning setting than
the one discussed in Section 3.1. Also note that we have included the active learning methods benchmarked in
GeneDisco (BADGE, KMeans, BALD) in our baselines, and in this study, our proposed method ITERPERT has
significantly better performance.

6 Discussion
We introduced an iterative Perturb-seq procedure for efficient design of perturbation experiments. We high-
lighted the challenges of active learning on a budget constraints and evaluated current active learning tech-
niques. Motivated by an initial data analysis, we presented ITERPERT, a new active learning strategy that incor-
porates multi-modal priors, achieving over three times the speed of the best baseline.

While ITERPERT shows promise in designing efficient Perturb-seq experiments, it still faces limitations, and
further work is necessary for its practical implementation. For instance, while we strive to simulate a realistic
setting in-silico, several points of divergence could occur in practice. One such divergence is experimental batch
effects, which could be more significant than those considered in our setting. Moreover, while our method
is very useful for mapping genome-scale single-gene perturbations, further work is needed to extend this ap-
proach tomulti-gene (combinatorial) perturbations that are currently intractable to experimentally interrogate
in an exhaustive way. Extending the framework to multi-gene perturbations requires higher-order kernels or
the use of tensor product spaces, which presents an interesting methodological challenge that we leave for fu-
ture work. Similarly, extensions to chemical perturbations or optical readouts are also exciting future avenues.
More specific to our prior-guided strategy, while our empirical study finds that mean fusion works the best, it
is not context-specific. Ideally, different combinations of prior information could be automatically picked in
different cell contexts. Lastly, with the increasing interest in models to predict the outcome of perturbations,
we expect more base prediction models to become available. While our proposed active learning strategy is
compatible with any of these, future work remains to investigate ITERPERT performance with these methods.

Overall, we believe that the sequential design of Perturb-seq could drastically reduce the experimental cost
of understanding a complex space of perturbations, thanks to its sample efficiency, and could help answer cen-
tral biological questions, such as the effect of multi-gene perturbations.
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Appendix
In Appendix A, we describe pre-processing steps for each prior source we leverage. In Appendix B, we

describe different fusion operators to fuse across prior kernels and report their empirical performance. In
AppendixC,we further provide plots of themain experiments that include all error bars since they arewithheld
for the sake of visibility in the main text. In Appendix D, we discuss the experiments on the genome-scale
Perturb-seq data and report the obtained performance metrics.

A Data processing onmulti-modal priors
1. Additional Perturb-seq data: we use the essential-wide RPE1 cell line CRISPRi dataset from the same
paper [11] as the K562 dataset. Particularly, for each perturbation, we obtain theNTC centered pseudobulk
expression profile and use that as the feature embedding. For genome-scale experiment, since we do not
have another cell line with genome-scale perturbations, we remove this prior source.

2. Optical pooled screens: [25] conducts a genome-wide optical pooled screen and calculated CellProfiler
features for each perturbation. We retrieve each perturbation embedding from https://github.com/
broadinstitute/2022_PERISCOPE#downloading-profiles. Notably, we use the median aggrega-
tionversion. ForA549,weused20200805_A549_WG_Screen_guide_normalized_median_merged_
ALLBATCHES_ALLWELLS.csv.gz. For HeLa, we used both DMEM 20210422_6W_CP257_
guide_normalized_median_merged_ALLBATCHES___DMEM___ALLWELLS.csv andHPLM
20210422_6W_CP257_guide_normalized_median_merged_ALLBATCHES___HPLM___
ALLWELLS.csv.

3. scRNA-seq atlas: we used processed scRNA profiles aggregated from multiple scRNA-seq experiments
in [38] (https://github.com/FinucaneLab/pops).

4. Protein structures: we retrieve the protein coding sequence of the corresponding gene perturbation from
uniprot and then feed each into ESM-2 15 billion parameter model(https://huggingface.co/facebook/
esm2_t48_15B_UR50D) and the output [CLS] token embedding is used as the protein embedding.

5. Protein-protein interaction network: we used the PPI knowledge network from https://arxiv.org/
abs/2306.04766, and apply node2vec (https://github.com/eliorc/node2vec) to obtain each gene em-
bedding.

6. Literature: we feed the genenameof eachperturbation intoBioGPT (https://huggingface.co/microsoft/
BioGPT-Large) and we use the [CLS] token embedding as the gene embedding.

B Fusion operator
We experiment with multiple strategies for the FUSION operator, including element-wise operators:

1. Mean operator: K̂ = 1
𝑚+1 (K + K1 + · · · + K𝑚)

2. Max operator: K̂ = MAX(K,K1, · · · ,K𝑚)

3. Product operator: K̂ = K × K1 × · · · × K𝑚
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We also experiment with adaptive kernel aggregation methods. Given the subset of kernel matrix with
ground truth at round 𝑖 called K(𝑖)

truth, we can estimate the kernel alignment scores 𝐾𝐴(K,K(𝑖)
truth), where 𝐾𝐴

[36] is defined as the cosine similarity between the two matrices (using the inner product canonically induced
by Frobenius norm). The kernel alignment weighted operator is then defined as

K̂ = 𝐾𝐴(K,K(𝑖)
truth) ∗ K + 𝐾𝐴(K1,K(𝑖)

truth) ∗ K1 + · · · + 𝐾𝐴(K𝑚,K(𝑖)
truth) ∗ K𝑚.

Another learnable operator is to estimate the weights 𝛼, 𝛼1, · · · , 𝛼𝑚 by solving a linear regression problem
to fit the ground truth sub-kernel from prior sub-kernel using validation dataset at each round 𝑖:

K(𝑖)
truth ≈ 𝛼 ∗ K(𝑖) + 𝛼1 ∗ K(𝑖)

1 + · · · + 𝛼𝑚 ∗ K(𝑖)
𝑚 ,

and then use the weights to update the entire kernel

K̂ = 𝛼 ∗ K + 𝛼1 ∗ K1 + · · · + 𝛼𝑚 ∗ K𝑚.

We report performance comparisons of these different operators in Figure 7. We observe that the mean
operator has the best empirical performance. We hypothesize that the reason for this that while the learnable
operators can capture context-specific relations among the kernels, their estimation is biased due to the limited
size of available data for each round. We also experimented with non-linear integration of kernels, but they
easily led to overfitting. In the end, we adopt the mean fusion operator.
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Figure 7: Performance comparison on a seed different from themain experiments across different fusion operators. Mean
operator has the best empirical performance.

C Error bars for baselines
Error bars are omitted in Figures 3b and 3c in the main paper to make the plots easier to read. We here report
the error bar for Figure 3b (breakdown of active learning baselines) in Figure 8 and the error bar for Figure 3c
(breakdown of individual prior information) in Figure 9.
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Figure 8: Performance comparison across different baselines with error bar corresponding to 95% confidence interval.

D Baseline performance for genome-scale perturbation screen
In Figure 10, we report the performance of all the baseline state-of-the-art active learning strategies on the
genome-scale perturbation screen that were omitted in Figure 5.
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Figure 9: Performance comparison across different prior information with error bar corresponding to 95% confidence
interval.

Figure 10: Performance comparison across baselinemethods for genome-scaleK562 screenswith error bar corresponding
to 95% confidence interval.
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