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Abstract 18 

Deep-sea bathymodioline mussels gain their nutrition from intracellular bacterial 19 

symbionts. Their sulfur-oxidizing (SOX) symbionts were recently shown to encode abundant 20 

toxin-related genes (TRGs) in their genomes, which may play a role in beneficial host-microbe 21 

interactions. Here, we compared TRGs in the genomes of SOX symbionts from 10 22 

bathymodioline mussel and two sponge species to better understand their potential functions 23 

and evolutionary origins. Despite the close phylogenetic relatedness of these symbionts, the 24 

number and classes of encoded toxins varied greatly between host species. One of the TRG 25 

classes, YDs, has experienced gene expansions multiple times, suggesting that these genes are 26 

under adaptive selection. Some symbiont genomes contained secretion systems, which can play 27 

a role in host-microbe interactions. Both TRGs and secretion systems had a heterogeneous 28 

distribution, suggesting that these closely related bacteria have acquired different molecular 29 
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mechanisms for interacting with the same family of animal hosts, possibly through convergent 30 

evolution. 31 

Introduction 32 

Beneficial associations between animals and bacteria are virtually universal (McFall-33 

Ngai et al. 2013). Many beneficial bacteria are acquired from the environment during host 34 

development, but the mechanisms that underpin host-symbiont recognition, invasion of host 35 

tissues or cells, and maintenance of the associations, are still not well understood (Pel and 36 

Pieterse 2013). In contrast, the molecular mechanisms pathogens use to interact with their hosts 37 

have been intensively studied (e.g. Sansonetti 2002; Di Genova and Tonelli 2016; Kaufmann 38 

and Dorhoi 2016; Kendall and Sperandio 2016). A number of pathogen-encoded proteins that 39 

interfere with host cell activity have been described and characterized as toxins (Lang et al. 40 

2010; Aktories 2011; Huber et al. 2016). Large-scale bacterial genome sequencing has revealed 41 

toxin-related genes (TRGs) in the genomes of many beneficial bacteria with homology to 42 

characterized toxins of pathogens. This suggests that pathogens and beneficial bacteria use 43 

similar molecular mechanisms to interact with their hosts (Moya et al. 2008; Pérez-Brocal et 44 

al. 2011).  45 

Bathymodioline mussels thrive at deep-sea hydrothermal vents and cold seeps by 46 

gaining nutrition from intracellular sulfur- and methane-oxidizing bacteria, which they harbor 47 

in their gill cells (Fisher et al. 1987; Duperron et al. 2009; Ponnudurai et al. 2016). Sayavedra 48 

et al. (2015) recently discovered diverse and abundant TRGs in the genomes of the sulfur-49 

oxidizing (SOX) symbionts from two Bathymodiolus mussel species. These TRGs were 50 

hypothesized to play a role in beneficial host-microbe interactions, including host-symbiont 51 

communication and defense against parasites (Sayavedra et al., 2015). The sulfur-oxidizing 52 

(SOX) symbionts are acquired from the environment by each new host generation (Won et al. 53 

2003; Wentrup et al. 2014), but little is known about the mechanisms the symbionts use to 54 

invade and survive within host cells.  55 

In this study, we investigated the distribution of toxin-related genes (TRGs) in the SOX 56 

symbionts of ten Bathymodiolus species and in the closely-related SOX symbionts of two deep-57 

sea sponge species. We hypothesized that TRGs encoded by all symbionts associated with a 58 

certain animal group (mussels or sponges) would be essential for interactions with their animal 59 

host such as recognition and invasion of host cells. Furthermore, given that TRGs were most 60 

likely acquired by the SOX symbionts through horizontal gene transfer, we aimed to 61 

understand how TRG acquisition has influenced genome evolution in this closely-related group 62 

of symbiotic bacteria. 63 
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Results and Discussion 64 

Phylogenomic analyses reveal two well-supported symbiont clades 65 

Previously, genome sequences were available from the SOX symbionts of three 66 

bathymodioline species from vents in the Pacific and Atlantic Oceans (Ikuta et al. 2015; 67 

Sayavedra et al. 2015). We sequenced and assembled the draft genomes of SOX symbionts 68 

from seven additional mussel species from vents and seeps around the world (Table 1, 69 

Supplementary Table 1). Furthermore, we assembled SOX symbiont genomes from 70 

metagenomes of three poecilosclerid sponges from the Gulf of Mexico that co-occur with two 71 

of the bathymodioline species investigated in this study (Rubin-Blum et al. 2017). The draft 72 

genomes sequenced in this study were between 90.8 to 98.5% complete, and were sequenced 73 

to depths ranging from 24x to 3600x. Their estimated genome sizes ranged from 1.41 to 2.82 74 

Mbp. Many of these symbiont genomes may thus be larger than the only closed genome, that 75 

of the SOX symbiont of B. septemdierum, which is 1.47 Mbp (Ikuta et al. 2015). 76 

We constructed a well-supported phylogenomic tree with 38 orthologous protein-77 

coding genes from the sponge and mussel SOX symbionts and their close relatives. Consistent 78 

with previous 16S rRNA phylogenies, the SOX symbionts from mussels, sponges and clams 79 

did not form a monophyletic clade, as they were interspersed with free-living sulfur-oxidizing 80 

bacteria called ‘SUP05’ (Petersen et al. 2012; Sayavedra et al. 2015). The sponge-associated 81 

SOX symbionts formed a cluster together with most Bathymodiolus SOX symbionts, which we 82 

termed Clade 1 (Fig. 1 and Fig. 2). The symbionts of two mussel species, B. heckerae 83 

(BheckSOX) and B. sp. nov GoM (BspGoMSOX), clustered in a separate well-supported clade, 84 

together with the cultivated sulfur oxidizer Candidatus Thioglobus autotrophica EF1 and 85 

SUP05 bacteria from the Pacific Northwest (Clade 2, Fig. 1). The intermixing of symbiotic and 86 

free-living bacteria in our phylogenomic analysis, and in previous 16S rRNA phylogenies, 87 

suggests that either 1) free-living SOX bacteria acquired the ability to associate with 88 

bathymodioline mussels multiple times or 2) the free-living bacteria that fall within the highly 89 

supported clade of SOX symbionts from mussels, sponges and clams evolved from a symbiotic 90 

ancestor. So far, there is no evidence that these symbionts have a free-living stage that is 91 

metabolically active, although very closely-related free-living bacteria from the SUP05/Ca. 92 

Thioglobus clade are often abundant in hydrothermal vent environments (Anantharaman et al. 93 

2012; Meier et al. 2017). In fact, the symbionts may rely on their hosts for some essential 94 

metabolites since they appear to lack two enzymes considered to be critical for anaplerotic 95 

metabolism (Ponnudurai et al. 2016). However, the isolate Ca. Thioglobus autotrophica also 96 
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lacks one of these central metabolic enzymes: malate dehydrogenase. Thus, a free-living 97 

existence may be possible without enzymes previously assumed to be essential. We cannot rule 98 

out either of our two explanations above, but clearly, the well-supported clustering of sponge 99 

and mussel symbionts suggests that they shared a common ancestor, possibly undergoing a 100 

host-switching event, as well as multiple lifestyle switches from free-living to symbiotic and 101 

possibly symbiotic to free-living. 102 

Horizontal acquisition, expansion and diversification of toxin-related 103 

gene families 104 

SOX symbiont genomes from the two mussel species described by Sayavedra et al. 105 

(2015) encoded TRGs from three toxin classes: 1) RTX, or ‘repeat in toxin’ proteins, 2) 106 

MARTX toxins, which are large proteins containing multiple repeat motifs and domains of 107 

diverse functions, and 3) YD repeat toxins, named for their characteristic repeat sequence. In 108 

this study, we searched for TRGs in the SOX symbiont genomes of eight additional mussel 109 

species and two sponge species, as well as their closest free-living and symbiotic relatives 110 

(Table 1) (see SI Materials and Methods).  111 

We consistently found TRGs in the SOX symbiont genomes of mussels and sponges, 112 

and these were highly abundant in the symbionts of mussel species (Fig. 1). In contrast, none 113 

of the genome sequences from bacteria closely related to the mussel and sponge SOX 114 

symbionts, such as free-living SUP05 and the vertically-transmitted, obligate intracellular 115 

symbionts of clams, encoded TRGs (Fig. 1). 116 

MARTX. One toxin class, MARTX, was found in all of the mussel SOX symbiont 117 

genomes, regardless of whether they belonged to Clade 1 or 2. Intriguingly, MARTX were not 118 

found in any of the sponge symbiont genomes, even though these symbionts formed a highly-119 

supported phylogenomic cluster together with mussel SOX symbionts. MARTX-like genes are 120 

known to be enriched in the genomes of symbiotic and pathogenic bacteria that associate with 121 

eukaryotes, and often have domains involved in attachment (Satchell 2011). The presence of 122 

MARTX-like genes in all mussel SOX symbionts from two distinct clades, and their absence 123 

in closely related free-living bacteria and the symbionts of clams and sponges, is consistent 124 

with a role in specific interactions with the mussel hosts, which could include attachment and 125 

recognition during colonization and intracellular infection of host gill cells. The length, 126 

sequences, domain content and arrangement of MARTX genes were highly diverse as shown 127 

previously for symbionts of two mussel species (Sayavedra et al. 2015) (Fig. 3). Despite this 128 

variable domain architecture, the symbionts of all 10 mussel species investigated had at least 129 
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one MARTX-like gene with domains involved in attachment such as haemmagglutinin, 130 

cadherin, and integrin, indicating their role in attachment to host cells (Supplementary Table 131 

2). If they are involved in attachment, they might also play a key role in mediating recognition 132 

and specificity. The mussel SOX symbioses are clearly highly specific: all except one of the 133 

known host species associate with only one or two 16S rRNA SOX types, which are not found 134 

in any other mussel species (see Duperron et al. 2008 for the only known exception). This host 135 

specificity is strictly maintained even when multiple mussel species co-occur, such as B. 136 

brooksi and B. heckerae at cold seeps in the Gulf of Mexico (Raggi et al. 2013). The highly 137 

divergent sequence and domain architectures of the MARTX genes in different symbiont 138 

lineages might be one of the mechanisms that determine this specificity. Although lacking 139 

MARTX genes, the SOX symbionts of sponges encoded proteins with leucine-rich repeats and 140 

cadherin domains, which have been hypothesized to play a role in recognition in shallow-water 141 

sponge symbioses (Thomas et al. 2010; Hentschel et al. 2012). 142 

RTX and YD repeats. The second toxin class, RTX, was found in some but not all 143 

mussel and sponge symbionts from Clade 1, and not in any of the Clade 2 symbionts. The third 144 

class of genes, YDs, was found in all members of Clade 1 except the basal B. septemdierum 145 

symbiont (Fig. 1). Clade 2 symbionts did not contain any YD repeat genes, but these symbionts 146 

co-exist in a dual symbiosis with Clade 1 symbionts that did encode YD repeats (Fig. S1). 147 

These observations support the following hypotheses: I) RTX and YD repeats are not essential 148 

for establishing and maintaining an intracellular symbiotic association with mussels, II) RTX 149 

genes were acquired by the common ancestor of Clade 1 and lost on multiple occasions, III) 150 

YD genes were acquired by the common ancestor of Clade 1, and YD genes were subsequently 151 

lost in the B. septemdierum symbiont, and IV) gene duplication contributed to the expansion 152 

of the YD genes (SI Results and Discussion). Given that YD and RTX appear to not be essential 153 

for intracellular symbiosis, their main role might be to defend their hosts against possible 154 

pathogens or parasites (SI Results and Discussion). 155 

Secretion system genes. Secretion systems (SS) are often essential for pathogens to 156 

survive inside host cells (Green and Mecsas 2016). We therefore searched for SS components 157 

in the genomes of the SOX symbionts and their free-living relatives. We found genes encoding 158 

components of almost all known SS types. Like the TRGs, these SS components were patchily 159 

distributed among the SOX symbiont genomes, and not a single SS was specific to all of the 160 

intracellular bacteria (Supplementary Table 3). 161 

All genome bins from SOX symbionts of Clades 1 and 2 encoded VgrG, a component 162 

of the type VI SS (T6SS). Although none of the genomes analyzed in this study encoded the 163 

full suite of T6SS genes, VrgG alone may allow the export of toxins without the full T6SS gene 164 
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array (Hachani et al. 2014). This gene was also present in some of the free-living SOX relatives. 165 

Three genes considered essential for T4SS were present in three of the thirteen SOX symbionts 166 

of Clade 1 and in both SOX symbionts of Clade 2, but not in any of the free-living or clam 167 

SOX. Most of the T4SS present in the mussel SOX symbionts encoded a relaxase that can 168 

interact with DNA, supporting a role in conjugation (Abby et al. 2016). In some pathogens, the 169 

same T4SS can carry out dual functions in conjugation and host colonization (Dehio 2008). 170 

The BheckSOX of Clade 2 encoded an additional T4SS of the type VirB/D, which was 171 

not found in any other mussel SOX symbionts. The BheckSOX VirB/D-T4SS shares a similar 172 

genomic architecture with systems used for both conjugation (e.g. Vibrio parahaemolyticus), 173 

and for host cell invasion and persistence through secretion of toxic effectors (e.g. Bartonella 174 

henselae str. Houston-1) (Seubert et al. 2003; Schmid et al. 2004; Dehio 2008; Gokulan et al. 175 

2013). A phage integrase was found upstream of the VirB/D T4SS gene cluster, raising the 176 

possibility that, just as in pathogens, beneficial bacteria could be acquiring and exchanging 177 

secretion systems from bacteriophages (Guy et al. 2013).  178 

Conclusions 179 

The SOX symbionts of deep-sea mussels and sponges encoded a highly diverse array 180 

of toxin-related and secretion system genes. Our comparative genomic analyses identified only 181 

one toxin class, MARTX, which was common to all mussel SOX symbionts and might 182 

therefore be a gene class essential for host-microbe interactions such as recognition, attachment 183 

and symbiont uptake in the mussel symbioses. All other TRGs and secretion systems had a 184 

heterogeneous distribution in the symbionts we investigated, which attests to the complex and 185 

varied routes of genome evolution taken by the members of this closely-related group of 186 

symbiotic bacteria. If the SOX symbionts use their species-specific sets of TRGs and secretion 187 

systems to interact with their respective hosts, this would be an example of convergent 188 

evolution in which free-living bacteria took multiple unique evolutionary trajectories to 189 

become intracellular symbionts of animals, depending on the genes they acquired. 190 

TRGs and T4SS that could export protein effectors were not present in free-living 191 

SUP05, even though these bacteria are often found in hydrothermal vent plumes in close 192 

proximity to mussels (Sylvan et al. 2012; Anantharaman et al. 2014). It is therefore likely that 193 

these genes were acquired from other free-living or host-associated bacteria. Gene flow 194 

between these bacterial donors, SUP05 bacteria, and SOX symbionts in a ‘free-living’ stage in 195 

the environment could lead to the evolution of novel symbiont and free-living lineages (SI 196 

Results and Discussion) (Roux et al. 2014, our own unpublished data). Further investigation of 197 
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horizontal gene transfer and genome evolution in groups of closely related bacteria such as the 198 

SUP05 and SOX symbionts, could reveal how free-living bacteria become symbionts. 199 

Some pathogen groups such as Pseudomonas aeruginosa show a similar pattern to the SOX 200 

symbionts we investigated, with species- or strain-specific differences in their genomic 201 

complement of toxins and virulence factors (Huber et al. 2016). In P. aeruginosa, these 202 

genomic differences are clearly reflected in major phenotypic differences such as severity of 203 

human disease. At the morphological level, the SOX symbionts of different mussel and sponge 204 

species do not show clear differences. However, just as in pathogens, the underlying genomic 205 

variation between symbionts could result in differences in the way these diverse symbionts 206 

interact with their hosts. For example, some host species seem to consistently carry a higher 207 

symbiont load than others (Duperron et al. 2008; Raggi et al. 2013), and this could not only be 208 

due to differences in the availability of their energy sources, but also to differences in the rates 209 

of symbiont acquisition, maintenance, proliferation and digestion by the host. TRGs and SSs 210 

are likely to affect such host-microbe interactions and could thus have a significant impact on 211 

the functioning and stability of these symbioses (Huber et al. 2016). 212 
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 Figures 419 

 420 
Fig. 1. Phylogenomic tree of symbiotic and free-living SOX, estimated with 38 orthologous protein-421 
coding genes, and the corresponding distribution of TRGs in these SOX. Filled circles represent a 422 
posterior probability higher than 0.9. The blue arrow indicates the proposed acquisition of RTX genes, 423 
green arrow of YD-repeat genes. All genomes shown in this tree were searched for all TRGs. Single 424 
arrows represent possible gene acquisition; double arrows indicate possible gene duplications; asterisks 425 
show possible gene loss events. The color of the arrows and stars corresponds to the TRG class. The 426 
number of individuals sequenced per species and geographic location is shown in Supplementary Table 427 
1.  T = Ca. Thioglobus; B = Bathymodiolus; sym = symbiont. 428 
 429 
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 430 

Fig. 2. Bivalve phylogeny and symbiont phylogeny. The maximum-likelihood host phylogeny was 431 
reconstructed based on cytochrome oxidase I (COI). Symbiont phylogeny was estimated with 38 432 
orthologous protein-coding genes. 433 
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 434 
Fig. 3. Domain structure of MARTX-like genes that have the most similar domain architecture to the 435 
MARTX-like genes from Clade 2 SOX symbionts (Fig. 1). The tree was estimated with the domain 436 
distance among proteins with DoMosaics (Moore et al. 2014). The descriptions of these domains are 437 
available in Supplementary Table 2. Locus tags of the MARTX genes from the SOX symbionts are 438 
shown at the nodes.  439 
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Tables 440 

Table 1. Overview of sulfur-oxidizing bacteria analyzed in this study.  441 

Organism Sampling site Ecosystem 
GC 

content 
(%) 

Approx. 
Sequencing 
Depth (X) 

Completeness 
(%) 

Genome 
Size 

(Mbp) 
 

No. of 
scaffolds 
(>1000 

bp) 

Host- 
associated 

B. azoricus 
symbiont1 

Menez Gwen, 
MAR Vent 38.20 8 90.60 1.66 239 

B. sp. 9° South, 
Lilliput 

symbiont1 

9°S, Lilliput, 
MAR Vent 38.23 22 95.39 2.29 52 

B. thermophilus 
symbiont+ Crab-Spa, EPR Vent 38.4 199 97.86 2.25 149 

B. 
puteoserpentis 

symbiont+ 

Logatchev, 
MAR Vent 37.67 3600 97.7 2.19 77 

B. sp. 5° South, 
Clueless 

symbiont+ 

5°S, Clueless, 
MAR Vent 37.81 102 98.52 2.43 383 

B. sp. 5° South, 
Wide Awake 

symbiont+ 

5°S, Wide 
Awake, MAR Vent 37.76 226 96.55 2.54 382 

B. heckerae 
symbiont  
(Clade 2)+ 

Chapopote, 
GoM Seep 37.41 557 96.58 1.96 236 

B. heckerae 
symbiont  
(Clade 1)+ 

Chapopote, 
GoM Seep 38.82 223 97.19 1.49 110 

B. brooksi 
symbiont+ 

Chapopote, 
GoM Seep 36.63 187 97.2 2.82 374 

B. septemdierum 
symbiont2 Myojin Knoll Vent 38.74 505 98.68 1.47 1 

B. sp. nov GoM 
symbiont  

(Clade 2) +,* 
DC673, GoM Seep 36.91 103 98.01 2.19 322 

B. sp. nov GoM 
symbiont  

(Clade 1) +,* 
DC673, GoM Seep 38.77 26 90.83 1.41 168 

C. okutani3 Sagami Bay Seep 31.59 - 93.58 1.02 1 

C. magnifica4 9°N, EPR Vent 34.03 - 94.84 1.16 1 

Encrusting 
sponge 

symbiont9 
Mictlan, GoM Seep 38.77 50 96.89 2.20 207 

Encrusting 
sponge 

symbiont9 

Chapopote, 
GoM Seep 38.71 50 96.03 2.93 378 

Branching 
sponge 

symbiont9 

Chapopote, 
GoM Seep 39.19 500 95.2 2.09 105 

Free-
living 

SUP055 Saanich Inlet OMZ 39.29 - 85.76 1.37 97 

Candidatus 
T. singularis 

PS16 
Puget Sound Pelagic (5 

m depth) 37.44 - 98.68 1.71 1 

Candidatus T. 
autotrophica 

EF17 
Effingham Inlet 

Pelagic, 
redox 

gradient 
 (60 m 
depth) 

39.14 - 99.18 1.51 1 

Thiomicrospira 
crunogena 

XCL-28 
EPR Vent 43.13 - 100 2.43 1 

442 
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B., Bathymodiolus; C., Calyptogena; T, Thioglobus; GoM, Gulf of Mexico; EPR, East Pacific Rise; MAR, 
Mid-Atlantic Ridge; OMZ, oxygen minimum zone. 
*Symbionts of this species were characterized in this study (SI Results and Discussion); +Sequenced in this 
study; 1(Sayavedra et al., 2015); 2(Ikuta et al., 2015); 3(Kuwahara et al., 2007); 4(Newton et al., 2007); 
5(Walsh et al., 2009); 6(Marshall and Morris, 2015); 7(Shah and Morris, 2015); 8(Scott et al., 2006); 
9Sequenced by Rubin-Blum et al., (2017), assembled in this study. 
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