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ABSTRACT
The human red blood cell has served as a starting point for the application and development of systems
biology approaches due to its simplicity, intrinsic experimental accessibility, and importance in human health
applications. Here, we present a multi-scale computational model of the human red blood cell that accounts
for the full metabolic network, key proteins (>95% of proteome mass fraction), and several macromolecular
mechanisms. Proteomics data are used to place quantitative constraints on individual protein complexes
that catalyze metabolic reactions, as well as a total proteome capacity constraint. We explicitly describe
molecular mechanisms—such as hemoglobin binding and the formation and detoxification of reactive oxygen
species—and takes standard hematological variables (e.g., hematocrit, hemoglobin concentration) as input,
allowing for personalized physiological predictions. This model is built from first principles and allows for direct
computation of physiologically meaningful quantities such as the oxygen dissociation curve and an accurate
computation of the flux state of the metabolic network. More broadly, this work represents an important step
toward including the proteome and its function in whole-cell models of human cells.
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INTRODUCTION

The blood is a window through which we can explore human
health and disease [50]. The human red blood cell (RBC)—the
most abundant human cell [46]—has historically been used as the
starting point for the application and development of systems bi-
ology models due to its relative simplicity, intrinsic accessibility,
and the vast amounts of data and information available on its
biochemistry and physiology [52]. While the RBC lacks cellular
compartments and the ability to produce energy using oxidative
phosphorylation, it is heavily involved in the transport and ex-
change of gases throughout the body, including O2, CO2 [17], and
NO [15]. The ability to model and compute physiological states
of the RBC is thus crucial to our understanding of how our blood
performs vital systems-level functions.

Since the 1970s, mathematical models have been used to study
the dynamics of RBC metabolism [42]. Other modeling formalisms,
like constraint-based modeling methods [51], have been used
to study mechanisms underlying cellular metabolism [8, 38, 53].
These constraint-based methods have evolved to allow for the
study of system dynamics [27, 48, 9], although kinetic models are
best suited to exploring temporal dynamics at short time scales [20].
From the first whole-cell kinetic model of RBC metabolism in the
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late 1980s [22, 23, 24, 25], researchers have examined various as-
pects of RBC metabolism through kinetic modeling including reg-
ulatory network structure [41], the role of 2,3-diphosphoglycerate
(2,3-DPG) in binding hemoglobin [32, 34, 33], hereditary glucose-6-
phosphate dehydrogenase (G6PDH) deficiency [35], and personal-
ized pharmacodynamics [7]. There lies a gap, however, between
what can be computationally modeled using kinetic approaches
(limited by parameterization and network scale) and constraint-
based approaches (limited by the completeness of the network
structure).

Here, we address this gap with the development of a whole-
cell model of the metabolism of the human Red Blood Cell and
Macromolecular Mechanisms (RBC-MM). This model is built from
first principles and uses kinetic and thermodynamic constraints
to represent macromolecular mechanisms such as O2 and CO2
binding to hemoglobin and the detoxification of reactive oxygen
species (ROS). Further, we account for the limitation to maximum
reaction velocity due to finite enzyme abundance and effective
turnover rate through the integration of recently published tar-
geted proteomic data [10]. We validate our model against previous
computational models and experimental data, demonstrating the
ability of the RBC-MM to compute physiologically meaningful
quantities and phenotypes, such as the oxygen dissociation curve
(ODC). We anticipate that the computational modeling framework
presented here will help usher in a new frontier in metabolic mod-
eling that integrates non-metabolic mechanisms to better represent
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the functions of complex biological systems.

RESULTS

We begin by detailing the construction and scope of the RBC-MM
model. We then proceed to demonstrate its simulation capacity,
providing validation of various computed phenotypes and quan-
tities. Finally, we compute systems-level properties of the RBC
network.

Model construction
The RBC-MM model is constructed starting from the iAB-RBC-283
metabolic network reconstruction of RBC metabolism. iAB-RBC-
283 represents a knowledgebase which includes 283 metabolic
genes, 292 reactions, and 267 metabolites [6]. These metabolites
include small molecules, cofactors, and trace minerals. For a
model having n reactions and m metabolites, flux balance analy-
sis (FBA) [39] computes the optimal metabolic state of a cell. A
metabolic state is defined by a vector of reaction fluxes v ∈ Rn (in
mmol/gDW/h), by solving the linear program:

maximize
v

cTv subject to Sv = 0, l ≤ v ≤ u, (1)

where c ∈ Rn is the vector of objective coefficients, S ∈ Rm×n is
the matrix of reaction stoichiometries, and l ∈ Rn, u ∈ Rn are the
lower and upper bounds on the fluxes.

We have expanded this model to account for macromolecules
present in the RBC (Figure 1). Specifically, we (i) account for the
limitation to maximum reaction rate due to finite enzyme abun-
dance and effective turnover rate and (ii) limited total protein mass
in a cell. We implement these constraints in a manner similar to
previous methods [3, 2]. The FBA problem associated with this
expanded model is called protein-constrained FBA (PconFBA) [36].

In addition to fluxes, PconFBA also computes enzyme complex
concentrations e ∈ Rr (in mmol/gDW), and protein concentrations
p ∈ Rs (in mmol/gDW). We constrain the total protein mass (P)
using the molecular weight of each protein (w). Each protein con-
centration is constrained by the measured concentration (Φ), while
accounting for measurement error (ε). Protein concentrations are
also constrained by enzyme complex stoichiometry (a). Given the
above constraints, the PconFBA problem is formulated as follows:

maximize
e,p,v

cTv (2)

subject to S · v = 0, (3)

∑
k

wk pk ≤ P, (4)

pk ≤ Φmeas
k + ε, ∀k, (5)

pk ≥ Φmeas
k − ε, ∀k, (6)

vj ≤ ∑
l∈CPLX(j)

elk
eff
j,l , (7)

pk = ∑
l∈CPLX(pk)

ak,lel , (8)

pk, vj ≥ 0, ∀j, k, (9)

where CPLX(j) is the index set of reactions that are catalyzed
by enzyme complex j, and keff

j,l is the effective rate constant for
the reaction l being catalyzed by enzyme j. The model includes
quantitative constraints for 306 biochemical reactions and accounts
for 2,653 total proteins using published proteomic data [10].

Next, we mathematically extend this protein-constrained model
with key molecular mechanisms that describe RBC physiology.

Hemoglobin mechanisms. The RBC plays a vital role in the respi-
ratory function of blood, delivering dissolved oxygen and oxygen
bound to hemoglobin (oxyhemoglobin) from the lungs to the tis-
sues [17]. In return, tissues transport CO2 back to the lung, where
carbonic anhydrase converts biocarbonate into CO2 and H2O. The
CO2 can be transported dissolved in the blood or can be bound
to hemoglobin, depending on the concentration of O2 and CO2
in the blood [29]. The Bohr Effect [44, 4] describes how the ODC
shifts based on the concentrations of CO2 and protons affect the
affinity of hemologlobin for O2; the Haldane Effect describes how
the ODC shifts based on the concentration of O2 affects the affinity
of hemoglobin for CO2 and protons. The ODC is also dependent
upon the intracellular of 2,3-diphosphoglycerate (2,3-DPG), a gly-
colytic intermediate and competitive inhibitor of oxygen binding
to Hb [28].

We model the kinetics of hemoglobin (Hb) binding with oxygen,
carbon dioxide, and 2,3-DPG. We use a cooperative mechanism
(i.e., the affinity for oxygen increases with more bound oxygen)
with allosteric inhibition by 2,3-DPG [40]. We model the binding of
CO2 to Hb to account for the Bohr Effect. Here we use the notation
Hb∗i to denote a relaxed (i.e., active) form i of Hb and the notation
Hb† to denote a tense (i.e., inactive) form; i indicates the number of
oxygen species bound to Hb. The full reaction schema (Figure 1C)
is detailed below:

Hb∗0 + O2 
 Hb∗1 (10)

Hb∗1 + O2 
 Hb∗2 (11)

Hb∗2 + O2 
 Hb∗3 (12)

Hb∗3 + O2 
 Hb∗4 (13)

Hb∗0 + 23DPG 
 DHb† (14)

Hb∗i -(CO2)j + CO2 
 Hb∗i -(CO2)j+1 (15)

Hb∗i + H+ 
 Hb∗i -H+ (16)

where i ∈ {0, 1, 2, 3, 4} represents the number of bound O2
molecules and j ∈ {0, 1, 2, 3} represents the number of bound
CO2 molecules. To model these Hb binding kinetics, we intro-
duce additional variables for the concentrations of Hb (all possible
bound states), O2, CO2, 2,3-DPG, H2O, OH−, and H+.

Generation and detoxification of reactive oxygen species (ROS).
Hb in its alternative oxygen-bound forms is prone to auto-
oxidation [30], resulting in the formation of ROS. We reconstructed
and included the following ROS generation reactions that involved
Hb [43] (Figure 1D) in the RBC-MM model:

Hb∗2 → Hb∗1 + O·−2 (17)

O·−2 → H2O2 (18)

Hb∗1 + H2O2 → Hb(IV) = O (19)

Hb(IV) = O + H2O2 → Hb(III)-O·−2 (20)

Hb(III)-O·−2 → Heme degradation + Fe(III) (21)

where the heme degradation product results in membrane dam-
age, particularly observed in senescent RBCs [43]. Further, we
explicitly model ROS detoxification through superoxide dismutase
(Equation 22) and catalase (Equation 23):

2 H+ + 2 O·−2 → H2O2 + O2 (22)

2 H2O2 → 2 H2O + O2 (23)

where the rate of both reactions is extremely high [1, 43].
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Fig. 1 Overview of the RBC-MM model’s scope, including (A) integration of Hb reactions with the metabolic network, (B) quantitative
protein constraints and crowding constraints (measured data from [10]), (C) Hb binding reactions, and (D) ROS detox mechanisms.

Model simulation
The modeling formalism described above for the RBC-MM model
is built from first principles and takes a number of typically mea-
sured hematological variables as input (Table 1).

Computing the oxygen dissociation curve. We validated the
physiological utility of the RBC-MM model by computing the
oxygen dissociation curve (ODC) and comparing it to experimen-
tally measured values. We explored three primary validations
(Figure 2): (i) simulation of the ODC for nominal physiological
values, (ii) qualitatively reproducing the Bohr Effect, and (iii) quan-
titatively recapitulating measured shifts due to varying concentra-
tions of 2,3-DPG. We computed the curve using nominal baseline
parameter values for the model (Table 1) according to the equation:

% saturation =
O2 occupancy

O2 capacity
× 100 (24)

where the occupancy and capacity represent all binding states of
Hb. We found that the curve is highly sensitive to the Keq values

used for the binding of Hb to various substrates. To examine this
behavior, we used values from the literature [13, 19] and also fit
the those parameters to measured data [47] (Figure 2A). It is not
surprising that simulations using literature parameterization does
not match measured data due to the differences between in vitro
and in vivo Keq values (see Supplemental Data).

Next, we tested the model’s ability to qualitatively reproduce
the Bohr Effect—i.e., a shift of the ODC to the left with increas-
ing pCO2 (Figure 2B). We observed that the model did indeed
reproduce this behavior, matching the same qualitative trends
previously observed from Hill-type models [14, 13].

We then tested the model’s ability to recapitulate the well-
described dependence of the ODC on the intracellular concen-
tration of 2,3-DPG [31, 26, 16]. We parameterized the model with
measured values [16] using the reported hematocrit (40%), pH
(7.195), and Hb concentration (14.75 g/dL blood); the osmotic
coefficient of Hb [45] was used to convert the reported Hb concen-
trations. We performed a sweep across the five different concen-
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Fig. 2 Computation of the oxygen dissociation curve (ODC). (A) Baseline computation for physiological values; measured data
from [47]. (B) Computing the Bohr Effect demonstrates the expected qualitative shift of the ODC to the left with increasing pCO2. (C)
Computing the effect of varying 2,3-DPG concentrations on the ODC; measured data from [16].

Table 1 Input parameters for the RBC-MM model; defaults are
set according to literature values for hemoglobin concentra-
tion [12] and 2,3-DPG concentration [11].

Input variable
Default (physiological)

value Units

Hemoglobin concen-
tration

15.5 g/dL blood

Hematocrit 45 %
Altitude 0 (sea level) m
Temperature 37 (body temperature) ◦C
Partial pressure car-
bon dioxide (pCO2)

40 mmHg

Intracellular pH 7.24 -
2,3-DPG concentra-
tion

4.47 mmol/L

trations of 2,3-DPG reported by Duhm [16] (Figure 2C): 0.1, 1.9,
4.4, 11.6, and 23.0 (µmoles/g RBC). These values were converted
to units of mmol/L RBC before integration with the model. The
model closely predicted the ODC for higher concentration values
but underpredicted the saturation at lower concentrations. This
result is likely due to parameterization of the Keq values.

Computing the concentrations of hemoglobin bound states. In
the modeling formalism described here, each Hb form is repre-
sented as a separate variable. Thus, we can compute the concen-
tration of each bound state of Hb by solving a system of linear
equations based on the Keq values for each binding reaction [40].
The computed concentrations of all Hb bound states for the base-
line simulation with fitted Keq values (Figure 2A) are reported in
Table 2. There is no experimental data with which to validate these
computationally predicted values, but the values are in general
agreement with estimates.

DISCUSSION

The human RBC plays a crucial role in higher-level physiological
function through regulating gas exchange and transport. While
a variety of modeling formalisms have been used to model some
of these mechanisms, the most prevalent model type to date is a

Hill-type model [13], an empirical model. We have built a model
that integrates these important macromolecular mechanisms with
the complete known metabolic network of the RBC to compute
functional states and phenotypic properties of the RBC. These
results have several primary implications.

First, the modeling formalism presented here allows for the
computation of physiological-scale phenotypes using mechanistic
information. Such a framework will allow for the integration of
whole-body deep-phenotyping data [50] to help identify causative
factors important for the onset and progression of blood disor-
ders. While constraint-based models have previously been used
to explore whole-body physiology [5], these efforts were limited
to studying the metabolic network. Here, we have extended the
capabilities of the model to include non-metabolic macromolecular
mechanisms that perform crucial physiological functions in our
cell type of interest.

Second, we have computed the ODC of the human RBC from
first principles using a model parameterized with standard hema-
tological measurements. In other words, we model the binding
of Hb to its various substrates using kinetic relationships instead
of empirical relationships (e.g., a Hill-type model [13]). Such a
modeling formalism allows for the explicit computation of the
concentration of bound Hb forms. While the technology does not
yet exist to experimentally measure these compounds, the ability
to computationally predict them—while validating the overall phe-
notypic predictions—provides insight into the functional state of
the blood’s gas transport and exchange system.

Third, this framework will enable the computation of person-
alized phenotypic responses. The use of electronic health records
for personalized medical research has been increasing over the last
decade [21, 49, 18], but we still need a unifying framework for the
elucidation of causal biological mechanisms from such data [52].
The work presented here represents an important step in this di-
rection, providing a computational network-based framework that
integrates deep-phenotyping data typically recorded in a patient
electronic health record (e.g., hematocrit, Hb concentration) to pro-
vide mechanistic predictions. By nature, these predictions offer
mechanistic explanations for the observed model behavior.

Here, we have reported the most comprehensive model of the
RBC to date that comprises the complete metabolic network, pri-
mary ROS detoxification, and O2, CO2, and 2,3-DPG binding to Hb.
We validated this model by computing the ODC and comparing
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Table 2 Computed fractions of hemoglobin binding states (in percentages of total hemoglobin); j ∈ {0, 1, 2, 3, 4} represents the number
of bound CO2 molecules.

pO2 (mmHg) Hb0 Hb1 Hb2 Hb3 Hb4 Hb-DPG Hb0-CO2,j Hb1-CO2,j Hb2-CO2,j Hb3-CO2,j Hb4-CO2,j Hb-H

0.00 0.90 0.00 1.00e-08 0.00 0.00 84.52 8.65 0.00 1.00e-08 0.00 0.00 5.93

12.87 0.68 3.67 3.53 2.94 2.43 63.49 6.50 4.13 3.56 2.65 1.97 4.45

25.74 0.29 3.13 6.04 10.03 16.60 27.11 2.77 3.53 6.08 9.05 13.47 1.90

38.61 0.10 1.64 4.75 11.83 29.38 9.48 0.97 1.85 4.78 10.68 23.85 0.66

51.48 0.04 0.86 3.32 11.02 36.50 3.73 0.38 0.97 3.34 9.95 29.63 0.26

64.35 0.02 0.49 2.36 9.81 40.59 1.70 0.17 0.55 2.38 8.86 32.95 0.12

77.22 0.01 0.30 1.74 8.70 43.20 0.87 0.09 0.34 1.75 7.85 35.07 0.06

90.10 0.01 0.20 1.33 7.77 45.00 0.49 0.05 0.22 1.34 7.01 36.53 0.03

102.97 0.00 0.14 1.05 7.00 46.33 0.30 0.03 0.15 1.06 6.32 37.61 0.02

115.84 0.00 0.10 0.85 6.35 47.34 0.19 0.02 0.11 0.85 5.74 38.43 0.01

with experimentally measured values under different physiolog-
ical conditions. The scope of this model could yet be expanded,
namely through the addition of nitric oxide signaling, which will al-
low for additional physiologically relevant phenotypic predictions
and insights. Taken together, this work represents a step toward
marrying physiological deep-phenotyping data with a mechanistic
computational framework capable of providing causal insights
into the physiology of human blood.

METHODS

To compute the ODC, we solve the optimization problem described
in Equations (1-9) as we sweep across different pO2 values. At
each pO2 value, we recompute the concentrations of all Hb bound
states. For the baseline simulations shown in Figure 2, we selected
Keq values from a normal distribution using a 15% standard error
50 simulations and report the 95% confidence intervals for the 50
simulated curves, showing the mean trajectory; for the 2,3-DPG
simulations, we selected Keq values from a normal distribution
using a 5% standard error for 50 simulations and report the 95%
confidence intervals, showing the mean trajectory. The 2,3-DPG
concentrations from [16] were converted into units of mmol/L
RBC using the reported density of RBC as 1.110 g/mL [37].

Pseudo-first-order elementary rate constant (kPERC) values [40]
are used to help sample the kinetically feasible flux solution space
through setting constraints on reactions. We used literature values
for “known” kcat values and sampled remaining keff values from

v =
kcat

Km [E][S] (25)

kcat

Km [S] =
v
[E]

(26)

where the quantity kcat

km [S] is keff. Sampling was performed with a
lower bound for the objective function, sodium-potassium trans-
port (NaKt), set to 90% of the maximum value to estimate the
physiologically relevant solution space.

The concentrations of various macromolecule bound states are
modeled based on Keq values where available:

Keq =
kf

kr =
Π[product]
Π[reactant]

. (27)

The total mass of Hb is constant,

Hbtotal = ∑ Hb-S (28)

where S represents all bound species: O2, CO2, 2,3-DPG, and H+.
This formulation allows us to solve the system of equations rep-
resented by Equations (27) and (28) for the concentration of each
bound state as previously described [40]. See the Supplemental
Methods for full details on the solving procedure and model pa-
rameterization.
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