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Abstract11

Explaining variation in life history strategies is a long-standing goal of evolutionary biology.12

For plants, annual and perennial life histories are thought to reflect adaptation to13

environments that differ in the frequency of stress events such as drought. Here we test this14

hypothesis in Heliophila (Brassicaceae), a diverse genus of flowering plants native to Africa,15

by integrating 34 years of satellite-based drought measurements with 2192 herbaria16

occurrence records. Consistent with predictions from classic life history theory, we find that17

perennial Heliophila species occur in environments where droughts are significantly less18

frequent compared to annuals. These associations are predictive while controlling for19

phylogeny, lending support to the hypothesis that drought related natural selection has20

influenced the distributions of these strategies. Additionally, the collection dates of annual21

and perennial species indicate that annuals escape drought prone seasons during the seed22

phase of their life cycle. Together, these findings provide empirical support for classic23

hypotheses about the drivers of life history strategy in plants - that perennials out compete24

annuals in environments with less frequent drought and that annuals are adapted to25

environments with more frequent drought by escaping drought prone seasons as seeds.26

Keywords: drought adaptation, life history evolution, remote sensing, phylogeography,27

herbaria records28
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Drought frequency predicts life history strategies in Heliophila29

Introduction30

Understanding the causes and consequences of life history variation is a longstanding31

goal of ecology and evolutionary biology (Cole, 1954). In plants, life histories are especially32

diverse, with herbaceous species that complete their life cycle in a number of weeks to trees33

that live for thousands of years (Brown, 1996). Along this continuum in angiosperms an34

important division exists, distinguishing annuals which complete their seed to seed life cycle35

within a single calendar year from perennials which can persist over multiple years. Annual36

plants flower once, set seed, senesce, and then die, spending at least some portion of the year37

as a seed, where they are relatively protected from environmental stress. In contrast,38

perennial plants can continue vegetative growth after reproduction and must survive39

conditions experienced during all seasons. These represent fundamentally different life40

history strategies, but the ecological factors that explain their evolution and distributions41

remain empirically uresolved (Friedman & Rubin, 2015).42

Classical theory predicts shorter life spans in environments where adult mortality is43

high (Charnov & Schaffer, 1973; Stearns, 1992; Franco & Silvertown, 1996). In plants, this44

has been extended to the hypothesis that annuality is adaptive when it allows plants to45

escape drought (Schaffer & Gadgil, 1975). Lack of water is perhaps the greatest threat to46

survival during vegetative or reproductive growth and annuals can remain dormant (and47

protected as a seed) during drought. Thus, environments with greater seasonal drought48

frequency may select for annual life histories that complete reproduction prior to drought49

prone seasons. Conversely, environments with less frequent drought may select for perennial50

species, which benefit from multiple bouts of reproduction and competitive advantage by51

preventing recruitment of annual species (Corbin & D’Antonio, 2004). These predictions52

have been supported by the observation of annuals in arid environments in Oryza perennis53

(Morishima et al., 1984) and Oenothera (Evans et al., 2005). Additionally, annual and54
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perennial species of Nemesia were qualitatively associated with winter rather and summer55

rainfall environments respectively (Datson et al., 2008) and annual species of Scorzoneroides56

were associated with environments classified as unpredictable (Cruz-Mazo et al., 2009).57

However, whether the history frequency of drought events indeed predicts the distributions58

annual or perennial life history strategies has yet to be tested.59

Here we combine a long-term global dataset of satellite detected drought events with60

metadata from natural history collections to test these classic hypotheses within the African61

endemic mustard genus, Heliophila L. (Brassicaceae). If annuality is an adaptive strategy62

allowing plants to escape drought prone seasons, then drought frequency should predict the63

distribution of life history strategies across landscapes, and annual species should be more64

commonly associated with drought prone regions than perennial species. Furthermore, if65

annual species have adapted to escape drought prone seasons, observations of growing annual66

species (i.e. occurring in forms other than seed) should be rare during drought prone seasons.67

Phylogenetic relatedness can influence tests of associations between species’ traits and their68

environments (Felsenstein, 1985; Barrett et al., 1996), and therefore we assessed the69

relationship between life history distribution and drought frequency in a phylogenetic70

context.71

Materials and Methods72

Data73

Availability. All analyses were performed using R. All data and the source code to74

produce this manuscript are available at https://github.com/greymonroe/heliophila.75

Software used is listed in the supplement.76

Satellite-detected drought data. Remotely sensed data is a powerful tool for77

characterizing seasonal patterns in drought because it is less limited in spatial and temporal78
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scope and resolution than weather stations or field observations (AghaKouchak et al., 2015).79

To quantify the frequency of drought during different seasons across landscapes, we used the80

remotely sensed Vegetative Health Index (VHI), which measures landscape scale reductions81

in plant cover and temperature conditions characteristic of drought (Kogan, 2001).82

Generated from data collected by NOAA AVHRR satellites since 1981, the VHI combines83

Normalized Difference Vegetation Index (NDVI) derived measures of vegetative stress84

(Vegetative Condition Index - VCI) with temperature stress indicated by anomalies in85

thermal spectra (Temperature Condition Index - TCI). The VHI of year y during week w of86

[1, 52] at pixel i is derived from the following equations, where n is the number of years87

observed.88

V CIy,w,i = 100NDV Iy,w,i −NDV Imin

NDV Imax −NDV Imin

TCIy,w,i = 100Ty,w,i − Tmin

Tmax − Tmin

V HIy,w,i = 0.5(V CIy,w,i) + 0.5(TCIy,w,i)

where NDV Imin = min(NDV I1981,w,i...NDV I1981+n,w,i) and89

NDV Imax = max(NDV I1981,w,i...NDV I1981+n,w,i) and Tmin = min(T1981,w,i...T1981+n,w,i)90

and Tmax = max(T1981,w,i...T1981+n,w,i)91

Thus, VHI measurements are standardized according to conditions historically92

observed at each locations. These measurements have been validated and generally used for93

evaluating drought risk and predicting crop yields in agriculture (e.g., Rojas et al., 2011;94

Kogan et al., 2016). But they also present a new tool to study seasonal patterns in the95

frequency of drought across environments and to test hypotheses about the effect of drought96

on ecological and evolutionary processes (Kerr & Ostrovsky, 2003). As such, the VHI has97
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been applied recently to study drought related ecology of natural species and proven useful98

for predicting intraspecific variation in drought tolerance traits and genes (Mojica et al.,99

2016; Dittberner et al., 2018; Monroe et al., 2018b). Here, we accessed VHI data at 16km2
100

resolution from 1981 to 2015101

(https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php) to characterize the102

seasonal drought frequencies experienced by annual and perennial Heliophila species.103

Life history data for Heliophila. Heliophila is a genus of flowering plants104

endemic to the southern portion of Africa including the Cape Floristic and Succulent Karoo105

Regions. These are among the most botanically diverse environments on Earth and the106

Heliophila species occurring there are considered to make up the most diverse genus of the107

family Brassicaceae (Mummenhoff et al., 2005; Mandáková et al., 2012). This genus includes108

both perennial and annual species and this change in life history strategy has likely arisen109

multiple independent times (Appel & Al-Shehbaz, 1997; Mummenhoff et al., 2005).110

Furthermore, the fine scale climatic heterogeneity of Southern Africa is ideal for studying the111

distribution of traits in relation to environmental parameters (Sayre et al., 2013). We used112

life histories reported by Mummenhoff et al. (2005), grouping species with annual or113

perennial life histories. Perenniality was defined based any form of perennial life history (e.g.,114

herbs, shrubs, mixed, etc). Because the nature of species reported with mixed traits were115

unknown (i.e. plasticity vs. genetic variation), we classified these species here as perennial116

since they can maintain vegetative growth after reproduction at least to some capacity.117

Heliophila occurrence records. Botanists have collected and maintained over 350118

million botanical specimens worldwide over the past 300 years (Thiers, 2016). Herbarium119

specimens and their associated metadata have been used since the 1960s to study species’120

geographical distributions (reviewed by Willis et al. (2017) and Lang et al. (2018)). And as121

they become digitized (Soltis, 2017), these collections have been used to study relationships122

between trait distributions, geography, and climate (Davis et al., 2015; Stropp et al., 2016;123
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Wolf et al., 2016; Václavı’k et al., 2017). To characterize the distributions of annual and124

perennial Heliophila species, all records for the genus Heliophila were downloaded from the125

Global Biodiversity Information Facility (gbif.org) on July 21, 2018 (GBIF, 2018).126

Sequence data for phylogeny. An alignment of ITS I and II sequences for127

Heliophila species was obtained from the authors of Mandáková et al. (2012). Individual ITS128

I and II sequences for Aethionema grandiflorum, Alliaria petiolata, Cardamine matthioli,129

Chamira circaeoides, and Rorippa amphibia were downloaded from Genbank.130

Analyses131

Drought frequency calculations. To characterize drought regimens across the132

distributions of annual and perennial species of Heliophila, we calculated drought during133

different seasons at the location of observations for Heliophila records using the VHI.134

Specifically, we created global maps of the frequencies of observing drought conditions135

(VHI<40, NOAA) during the winter (quarter surrounding winter solstice), spring (quarter136

surrounding spring equinox), summer (quarter surrounding summer solstice) and fall (quarter137

surrounding fall equinox) from 1981 to 2015. From these maps, the drought frequency during138

the winter, spring, summer, and fall were extracted for the locations of all GBIF records.139

Filtering of occurrence records. To avoid instances with spurious location data,140

we filtered raw GBIF by restricting our analyses to include only:141

• records for species with reported life history142

• records with geospatial data143

• records without known geospatial coordinate issues (i.e., coordinates reported are those144

of herbarium)145

• records from collection sites classified as land pixels in the VHI dataset146

• records from Africa (to exclude locations of cultivation)147
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• records without duplicates (i.e., identical species, location, collection date)148

Phylogeny construction. Out group ( Aethionema grandiflorum, Alliaria petiolata,149

Cardamine matthioli, Chamira circaeoides, and Rorippa amphibia) and ingroup Heliophila150

ITS I and II sequences were aaligned using MAFFT (Katoh et al., 2002) with strategy151

G-INS-I, offset value 0.1, and all other options set as default. The GTR + Γ model of152

nucleotide substitution was determined to best fit the data based on AIC using jModelTest2153

(Guindon & Gascuel, 2003; Darriba et al., 2012). A maximum clade credibility tree with154

branch lengths as relative time was estimated by summarizing data from six runs of155

100,000,000 generations of Bayesian Markov chain Monte Carlo conducted in BEAST 2156

(Bouckaert et al., 2014). Model selection and phylogenetic analyses were conducted through157

the CIPRES Science Gateway (Miller et al., 2010).158

Comparison of drought frequency between annual and perennial species.159

To evaluate the hypothesis that annual and perennial life history strategies reflect160

adaptations to alternative drought regimes, we tested the corresponding prediction that the161

observed distributions of annual and perennial Heliophila species would be significantly162

associated with historic drought frequency. First, we compared the frequency of drought163

during the winter, spring, summer, and fall between total occurrence records of annual and164

perennial species by t-tests. To account for variation in the number of occurrence records per165

species, we next calculated the mean drought frequency during the winter, spring, summer166

and fall for each species. Because shared evolutionary history of closely related species can167

lead to spurious associations between traits and environments (Felsenstein, 1985), we tested168

for a relationship between life history strategy and drought frequency while controlling for169

phylogeny using phylogenetic logistic regression (Ives & Garland, 2010).170

Collection dates. To test the hypothesis that annual species have adapted to171

escape drought prone seasons as seeds, collection dates for herbarium specimens were172

compared between annual and perennial species. Comparisons of distributions were made by173
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Two-sample Kolmogorov-Smirnov test and Barlett variance test.174

Results175

Out of 8670 Heliophila GBIF records, 6634 were for species with reported life history176

(Mummenhoff et al., 2005), 2856 had geospatial data, 2833 did not have geospatial issues,177

2684 were located on pixels classified as land having drought measurements, 2543 were178

located in Africa, 2192 were not duplicated. Thus, after all filtering steps, 2192 records for179

42 species (Figure 1, Table S1) passed for further analyses. The number of samples varied180

between species, with a mean of 52.19 samples per species. H. rigidiuscula had the most181

records, 201, and H. cornellsbergia the fewest, 2 (Table S1).182

There were clear visual differences between the distributions of the 960 annual and the183

1232 perennial Heliophila observation records (see Figure S1 for maps of individual species).184

While annual species were generally found in the western regions of South Africa and185

Namibia, primarily in the Cape Floristic Region and Succulent Karoo (Figure 2a), the186

occurrence of perennials extended to the east coast of South Africa (Figure 2b).187

The frequency of drought varied considerably across the ranges of Heliophila species188

(Figure 2c-f). This heterogeneity is expected, given that this is one of the most climatically189

diverse regions of the Earth (Sayre et al., 2013). It is worth noting the east to west cline in190

drought frequency observed during the summer, which distinguishes the high drought191

frequency of the Kalahari Sands and Namid Desert phytogeographic regions from the low192

drought frequency of the Drakensberg Mountains and Coastal Zambesian phytogeographic193

regions. In the Cape phytogeographic region there was finer scale heterogeneity in drought194

frequency during the summer.195

Theory predicts that annuality should be adaptive in places where stresses such as196

drought are more common. Conversely, perenniality should be adaptive in places where such197
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a b
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Figure 1 . Species and examples of herbaria specimens of Heliophila (a) Phylogeny and life

history strategies of species studied. Orange circles at branch tips mark annual species and

blue circles mark perennial species. Example herbaria specimens accessed via GBIF of (a) H.

minima, (b) H. deserticola, (c) H. coronopifolia and (d) H. ephemera. Images (a,c,d) courtesy

of The Bavarian Natural History Collections (CC BY-SA 4.0) and (b) The London Natural

History Museum (CC BY 4.0). Links to images are found in the supplement.

stresses are less frequent. We found that the frequency of drought was significantly higher at198

the locations of occurrence records for annual species. When comparing across all occurrence199
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Figure 2 . Locations of occurrence records of (a) annual and (b) perennial Heliophila. Drought

frequency during the (c) winter, (d) spring, (e) summer and (f) fall measured using the

VHI. (g) Drought frequencies during each season at the observation locations of annual and

perennial Heliophila (t tests, ** = p < 0.01).
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records (all records rather than species means, Figure 2g), the frequency of drought was200

significantly higher at the location of annuals during the winter (t = 10.65, p = 0.00), spring201

(t = 10.73, p = 0.00), summer (t = 12.67, p = 0.00), and fall (t = 15.26, p = 0.00). Because202

a comparison across all occurrence records does not account for variation in the number of203

records per species (Table S1) or species relatedness (Figure 1a), we also tested whether204

mean drought frequency values of each species were significantly different between annuals205

and perennials using phylogenetic logistic regression. We found that the mean drought206

frequencies were significantly higher (α = 0.05) in annual species during the spring, summer,207

and fall (Table 1, Figure 3a). These findings indicate that common acestry alone does not208

explain differences the drought frequencies experienced between the environments of annual209

and perennial Heliophila.210

The preceding results indicate that annual species are found in environments where211

droughts are significantly more frequent, especially in the summer and fall. Classic life212

history theory hypothesizes that annuality reflects adaptation to such environments because213

it allows species to escape stressful conditions. If this is the case, we would expect that214

annuals spend the drought prone seasons of summer and fall as seeds. To test this215

hypothesis, we compared the dates of occurrence records between annual and perennial216

Heliophila species. The distributions reveal a considerable difference in the timing of217

observation of these two life histories. In comparison to perennials, which appear to be218

collected throughout the year, annuals are almost exclusively observed during the winter and219

spring (Figure 3b). The differences between the distribution of collection dates were220

significant by all tests (ks.test D = 0.25, p = 0; bartlett.test K2 = 503.18, p = 0.00) This is221

consistent with a model of life history in which annual species flower in the spring, set seed,222

senesce, and die before the summer. Thus, these annual species are likely to remain dormant223

during the summer and fall, when drought is the strongest predictor of the distributions of224

annual and perennial life histories (Figure 3a).225
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Table 1

Phylogenetic logistic regressions between life

history, and the mean drought frequency

observed at specimen sites of Heliophila

species the winter, spring, summer, and fall.

Predictor Estimate P

Intercept 0.7231 0.6636

Winter drought freq. -1.5452 0.7274

Intercept 5.0107 0.0534

Spring drought freq. -12.9014 0.0464

Intercept 7.7093 0.0054

Summer drought freq. -19.9056 0.0042

Intercept 7.0162 0.0082

Fall drought freq. -20.8174 0.0067

Note. Annual species were scored as 0 and

perennial species as 1.

Discussion226

To test the hypothesis that annual and perennial plants reflect adaptation to227

alternative drought environments we examined the landscape distribution of life history228

strategies in the large and diverse mustard genus, Heliophila. Using metadata of 2192229

occurrence records and a 34 year dataset of satellite-detected droughts, we tested the230

prediction that annual species are more often observed in drought-prone locations than231

perennial species, when controlling for phylogenetic relatedness. We found that drought232

frequency is significantly different between the distributions of annual and perennial species,233
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Figure 3 . (a) Comparison (mean +- SE) of drought frequency across seasons measured at the

GBIF records of annual and perennial species of Heliophila. (phylogenetic logistic regression,

* = p < 0.05, ** = p < 0.01) (b) Collection dates of GBIF records of annual and perennial

species of Heliophila.

with annuals being found in environments with more frequent drought, and that this signal234

is strongest during the seasons when annuals are likely escaping via seed dormancy. These235

results remain significant while controlling for the phylogenetic relationships of Heliophila236

species, yielding support for the role that natural selection has played in driving237

contemporary distributions of these alternatives strategies in relation to drought regimens.238

We cannot eliminate the possibility that confounding traits or environmental variables239
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are the causative factors explaining variation in the distributions of annual and perennial240

species. Nevertheless, these results provide quantitative support for the classic prediction241

that annual species are found in environemnts that experience more frequent drought than242

perennial species. These findings complement previous reports of qualitative associations243

between annuality with enviroments characterized as having increased aridity (Evans et al.,244

2005), alternative precipitation defined habitats (Morishima et al., 1984; Datson et al., 2008),245

or greater unpredictability (Cruz-Mazo et al., 2009). However, to our knowledge this is the246

first study to demonstrate a significant association between life history and drought in a247

phylogenetic context informed by large scale species distribution data and long term drought248

measures.249

Unfortunately, herbarium collections and their associated data do not represent250

systematic or random sampling of a species distribution. Significant biases in collecting exist,251

which we have not necessarily controlled for here, and may have some effect on our findings,252

such as a bias toward collecting near roads or near the locations of natural history collections253

(Daru et al., 2018). Future research will benefit from systematic sampling efforts to avoid254

these noted biases. However, the ecosystems of southern Africa include several biodiversity255

hotspots and are among the most botanically well sampled regions on Earth (Daru et al.,256

2018), suggesting that this may currently be the optimal region for our analyses of life257

history distribution. Indeed, we were able to use 2192 occurrence records to study 42 species,258

which represents a significant advance over relying on personal observations to characterize259

species distributions.260

These findings support classical theoretical predictions about the adaptive value of261

annual and perennial life history strategies. Taken together, they suggest that in Heliophila,262

annual species are adapted to environments with increased summer droughts by avoiding263

these seasons in a dormant seed phase of their life cycle. They also suggest that perenniality264

is adaptive in environemnts where droughts are less frequent. While most previous work has265
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focused on describing the evolutionary origins of annuality (Barrett et al., 1996; Conti et al.,266

1999; Andreasen & Baldwin, 2001; Verboom et al., 2004; Friedman & Rubin, 2015) there are267

at least a few other cases where perenniality appears to have arisen from an annual ancestor268

(Bena et al., 1998; Tank & Olmstead, 2008). And while early theory predicted selection for269

annuality when adult morality is high (Stearns, 1992), we also find evidence that perenniality270

could be explained by reduced frequency of drought. The phylogeny reveals several271

transitions from annual to perennial life history (Figure 1a) and the distributions of272

perennial Heliophila extend into regions where drought frequency is low (Figure 2b, Figure273

S1). Perennials may be able to out complete annual relatives in environments where the274

infrequency of drought favors strategies that allow plants to benefit from growth over many275

seasons. This also suggests that annuals rely on drought as a source of disturbance for276

seedling recruitment when competing with perennials (Corbin & D’Antonio, 2004). Indeed,277

no annual species were observed in the low drought regions of eastern South Africa (Figure 2,278

Figure S1).279

These findings suggest that species with locally adaptive life history strategies could be280

threatened by rapidly changing drought regimens (Dai, 2011). This could have impacts on281

ecosystem functioning and processes such as carbon cycling if life history traits evolve or the282

composition of annual and perennial species changes in response (Garnier et al., 1997;283

Roumet et al., 2006; Monroe et al., 2018a). Furthermore, the frequency of drought may be284

an important factor when considering the use of perennial cropping systems (Parry et al.,285

2005; Lelièvre & Volaire, 2009).286

In conclusion, we find strong support for classic life history theory which predicts that287

annuality is adaptive in environments where droughts occur more frequently. Additionally,288

we report evidence consistent with a life history model in annuals in which they escape289

drought prone seasons during the seed phase of their life cycle. Finally, we find evidence that290

the distributions of perennial lineages may indicate a competitive advantage in areas where291
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droughts are infrequent. More broadly, this work highlights the irreplaceable value of natural292

history collections and demonstrates the power of combining such information with large293

scale remote sensing data to address outstanding classic hypotheses in ecology and evolution.294
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2018), MASS (Version 7.3.51.1; Venables & Ripley, 2002), Matrix (Version 1.2.15; Bates &504

Maechler, 2018), MCMCglmm (Version 2.26; Hadfield, 2010), mvtnorm (Version 1.0.8; Genz505

& Bretz, 2009), papaja (Version 0.1.0.9842; Aust & Barth, 2018), phylolm (Version 2.6; Ho &506

Ane, 2014), phytools (Version 0.6.60; Revell, 2012), purrr (Version 0.2.5; Henry & Wickham,507

2018), raster (Version 2.8.4; Hijmans, 2018), readr (Version 1.2.1; Wickham et al., 2017),508

shape (Version 1.4.4; Soetaert, 2018), sp (Version 1.3.1; Pebesma & Bivand, 2005), stringr509

(Version 1.3.1; Wickham, 2018b), tibble (Version 1.4.2; Müller & Wickham, 2018), tidyr510

(Version 0.8.2; Wickham & Henry, 2018), and tidyverse (Version 1.2.1; Wickham, 2017) for511

all our analyses.512
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Supplementary tables and figures.513

Table S1

Heliophila species records and the mean drought frequencies during

different seasons at the location of records

Species LH n Winter Spring Summer Fall

Heliophila acuminata a 28 0.32 0.38 0.41 0.36

Heliophila africana a 91 0.33 0.35 0.34 0.34

Heliophila amplexicaulis a 60 0.32 0.36 0.39 0.33

Heliophila arenaria a 65 0.34 0.37 0.38 0.34

Heliophila carnosa p 129 0.33 0.37 0.39 0.31

Heliophila cedarbergensis p 3 0.40 0.43 0.32 0.27

Heliophila collina a 16 0.35 0.47 0.48 0.45

Heliophila cornellsbergia a 2 0.33 0.42 0.35 0.21

Heliophila cornuta p 101 0.35 0.40 0.40 0.34

Heliophila coronopifolia a 40 0.37 0.42 0.40 0.37

Heliophila crithmifolia a 97 0.35 0.42 0.45 0.38

Heliophila descurva a 12 0.36 0.38 0.38 0.29

Heliophila deserticola a 133 0.48 0.48 0.46 0.45

Heliophila digitata a 30 0.33 0.38 0.44 0.38

Heliophila dregeana p 17 0.33 0.37 0.33 0.32

Heliophila elongata p 82 0.26 0.32 0.30 0.25

Heliophila ephemera a 3 0.14 0.27 0.31 0.26

Heliophila esterhuyseniae p 3 0.21 0.30 0.37 0.27

Heliophila eximia p 12 0.42 0.41 0.32 0.34

Heliophila gariepina a 12 0.50 0.53 0.48 0.41

Heliophila glauca p 35 0.29 0.35 0.34 0.33

Heliophila juncea p 150 0.32 0.37 0.39 0.35

Heliophila linearis p 94 0.32 0.33 0.28 0.30
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Heliophila macowaniana a 31 0.33 0.38 0.44 0.39

Heliophila macra p 22 0.30 0.30 0.32 0.29

Heliophila macrosperma p 5 0.28 0.36 0.35 0.25

Heliophila minima p 35 0.36 0.45 0.51 0.39

Heliophila namaquana a 16 0.39 0.46 0.48 0.39

Heliophila nubigena p 19 0.31 0.36 0.43 0.38

Heliophila pectinata a 16 0.27 0.34 0.50 0.34

Heliophila polygaloides p 12 0.40 0.48 0.42 0.34

Heliophila pubescens a 9 0.31 0.40 0.48 0.39

Heliophila pusilla a 45 0.32 0.38 0.38 0.34

Heliophila rigidiuscula p 201 0.30 0.33 0.28 0.24

Heliophila scoparia p 106 0.31 0.37 0.36 0.31

Heliophila seselifolia a 80 0.36 0.42 0.45 0.40

Heliophila suavissima p 92 0.30 0.39 0.42 0.31

Heliophila subulata p 103 0.29 0.33 0.31 0.29

Heliophila tricuspidata p 8 0.28 0.33 0.38 0.30

Heliophila trifurca a 77 0.45 0.48 0.48 0.43

Heliophila tulbaghensis p 3 0.36 0.41 0.36 0.35

Heliophila variabilis a 97 0.35 0.41 0.40 0.37

Note. LH = Life history (a = annual, p = perennial). n=sample size of

GBIF records. Seasons are mean drought frequencies observed at

locations of records.
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Figure S1 . Maps of occurrence records for individual species. Orange points indicate annual

species. Blue points indicate perennial species.
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