1	Reclassification of Pterulaceae Corner (Basidiomycota: Agaricales)
2	introducing the ant-associated genus Myrmecopterula gen. nov.,
3	Phaeopterula Henn. and the corticioid Radulomycetaceae fam. nov.
4	
5	Caio A. Leal-Dutra ^{1,5} , Gareth W. Griffith ¹ , Maria Alice Neves ² , David J. McLaughlin ³ , Esther G. McLaughlin ³ ,
6	Lina A. Clasen ¹ & Bryn T. M. Dentinger ⁴
7	
8	¹ Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion
9	SY23 3DD WALES
10	² Micolab, Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina,
11	Florianópolis, Santa Catarina, Brazil
12	³ Department of Plant and Microbial Biology, University of Minnesota, 1445 Gortner Avenue, St. Paul,
13	Minnesota 55108, USA
14	⁴ Natural History Museum of Utah & Biology Department, University of Utah, 301 Wakara Way, Salt Lake
15	City, Utah 84108, USA
16	⁵ CAPES Foundation, Ministry of Education of Brazil, P.O. Box 250, Brasília – DF 70040-020, Brazil
17	
18	Author's e-mails in order :
19	caioboss@gmail.com
20	gwg@aber.ac.uk (*Corresponding author)
21	maliceneves@gmail.com
22	davem@umn.edu
23	pterula@yahoo.com
24	linaclasen@gmail.com
25	bryn.dentinger@gmail.com
26	
27	
28	
29	

30 ABSTRACT

31

32	Pterulaceae was formally proposed to group six coralloid and dimitic genera [Actiniceps (=Dimorphocystis),
33	Allantula, Deflexula, Parapterulicium, Pterula and Pterulicium]. Recent molecular studies have shown that
34	some of the characters currently used in Pterulaceae Corner do not distinguish the genera. Actiniceps and
35	Parapterulicium have been removed and a few other resupinate genera were added to the family. However,
36	none of these studies intended to investigate the relationship between Pterulaceae genera. In this study, we
37	generated 278 sequences from both newly collected and fungarium samples. Phylogenetic analyses support by
38	morphological data allowed a reclassification of Pterulaceae where we propose the introduction of
39	Myrmecopterula gen. nov. and Radulomycetaceae fam. nov., the reintroduction of Phaeopterula, the
40	synonymisation of Deflexula in Pterulicium and 51 new combinations. Pterula is rendered polyphyletic
41	requiring a reclassification; thus, it is split into Pterula, Myrmecopterula gen. nov., Pterulicium and
42	Phaeopterula. Deflexula is recovered as paraphyletic alongside several Pterula species and Pterulicium, and is
43	sunk into the latter genus. Phaeopterula is reintroduced to accommodate species with darker basidiomes. The
44	neotropical Myrmecopterula gen. nov. forms a distinct clade adjacent to Pterula, and most members of this
45	clade are associated with active or inactive attine ant nests. The resupinate genera Coronicium and Merulicium
46	are recovered in a strongly supported clade close to Pterulicium. The other resupinate genera previously
47	included in Pterulaceae, and which form basidiomes lacking cystidia and with monomitic hyphal structure
48	(Radulomyces, Radulotubus and Aphanobasidium), are reclassified into Radulomycetaceae fam. nov Allantula
49	is still an enigmatic piece in this puzzle known only from the type specimen that requires molecular
50	investigation. A key for the genera of Pterulaceae and Radulomycetaceae fam. nov. is provided here.
51	
52	
53	KEYWORDS
54	Molecular phylogeny; fungal taxonomy; Pleurotineae; corticioid fungi; coralloid fungi; clavarioid fungi; coral
55	mushroom; Aphyllophorales; fungal diversity; neotropical fungi; attine ants; fungus-farming ants; Attini; Attina
56	
57	

2

59 INTRODUCTION

- 60 The history of Pterulaceae Corner begins with the hesitant proposal of the genus *Pterula* Fr. (hereinafter
- 61 abbreviated as *Pt.*) in the 1820s and 1830s by Elias Magnus Fries (Fries 1821, 1825, 1830). The typification of
- 62 this genus was the subject of discussion by Lloyd (1919) and finally enlightened by Corner (1952c) in a
- 63 thorough discussion on the timeline of Fries' decisions.
- 64
- 65 The number of species in *Pterula* grew during the late 19th and early 20th centuries, with J.H. Léveille, N.T
- 66 Patouillard, P. C. Hennings, P. A. Saccardo, C. G. Lloyd, C. L. Spegazzini and M. J. Berkeley being the most
- 67 active in the naming of taxonomic novelties of *Pterula* in this period (Corner 1950, 1970). Lloyd (1919) devoted
- an entire chapter to discuss the taxonomy of the genus.
- 69
- 70 However, the major contribution to the genus was made by E. J. H. Corner who added at least 45 new taxa
- 71 (Corner 1950, 1952b, 1970, 1966, 1967). Corner (1950) created the Pteruloid series in Clavariaceae Chevall. to
- 72 group, besides *Pterula*, other genera with coralloid basidiome and dimitic hyphal system. The Pteruloid series
- 73 was raised by Donk (1964) to Pteruloideae, a subfamily of Clavariaceae.
- 74
- 75 Pterulaceae was formally proposed by Corner (1970) including the genera from the original Pteruloideae:
- 76 Allantula Corner, Deflexula Corner, Dimorphocystis Corner (=Actiniceps Berk. & Broome), Parapterulicium
- 77 Corner, *Pterula* and *Pterulicium* Corner (hereinafter abbreviated as *Pm.*) (Corner 1950, 1952a, b, 1970) (Fig. 1).
- 78
- **Fig. 1 Diversity of coralloid genera of Pterulaceae.** A-F: *Myrmecopterula* (A: *Apterostigma sp.* nest with *M*.
- 80 *velohortorum* with *Myrmecopterula sp.* SAPV1 growing atop of the garden veil; B, C, F: *Myrmecopterula sp.*
- 81 D: Apterostigma sp. nest with M. nudihortorum; E: M. moniliformis). G-H: Pterula (G: P. cf. loretensis; H: P.
- 82 cf. verticillata). I-L: Pterulicium (I: P. secundirameum; J: P. aff fluminensis; K: P. lilaceobrunneum. L: P.
- 83 sprucei). M-O: Phaeopterula (M: Phaeopterula sp.; N: P. stipata; O: P. juruensis). Close observation on photos
- 84 B and C reveal the basidiomes growing from granular substrate resembling substrate of ants' fungus garden.
- 85 Photos D and G kindly provided by Ted Schultz and Michael Wherley respectively. Scale bars: 1 cm.

- 87 Following Corner's reclassifications, the major changes in Pterulaceae have resulted from molecular
- 88 phylogenetic analyses. Actiniceps Berk. & Broome was shown within Agaricales to be distantly related to

89	Pterulaceae and Parapterulicium was removed to Russulales (Dentinger and McLaughlin 2006; Leal-Dutra et al.
90	2018). Four resupinate genera were transferred to Pterulaceae: Aphanobasidium Jülich, Coronicium J. Erikss. &
91	Ryvarden, Merulicium J. Erikss. & Ryvarden, and Radulomyces M.P. Christ. (Larsson 2007; Larsson et al.
92	2004) and, finally, the new poroid genus Radulotubus Y.C. Dai, S.H. He & C.L. Zhao was proposed in the
93	family (Zhao et al. 2016) (Fig. 2).
94	
95	Fig. 2 Corticioid genera of Pterulaceae (A-C) and Radulomycetaceae (D-F). A: Coronicium alboglaucum.
96	B-C: Merulicium fusisporum. D: Radulomyces confluens. E: Radulotubus resupinatus. F: Aphanobasidium cf.
97	pseudotsugae. Photos kindly provided by L. Zíbarová (A and F), S. Blaser (B and C), D.J. Harries (D) and C.L.
98	Zhao (E). Scale bars: 1 cm.
99	
100	Pterulaceae has attracted more attention recently following the discovery of two distinct symbionts of fungus-
101	farming ants in the genus Apterostigma Mayr. Despite the absence (hitherto) of any teleomorph, phylogenetic
102	analyses placed both species [Pterula nudihortorum Dentinger and Pterula velohortorum Dentinger, previously
103	known as G2 and G4 (Dentinger 2014)] in a strongly supported clade within Pterulaceae (Munkacsi et al. 2004;
104	Villesen et al. 2004).
105	
106	Whilst these earlier phylogenetic studies did not focus on resolving evolutionary relationships of the genera,
107	they did demonstrate that the coralloid genera of Pterulaceae are clearly polyphyletic. Amongst the
108	morphological characters previously used to separate the genera, but now known to be phylogenetically
109	unreliable, is the orientation of basidiome growth that differentiates Pterula from Deflexula and the presence of
110	a corticioid patch at the base of the basidiome in Pterulicium. Therefore, the reclassification of Pterulaceae is
111	required to restore the monophyly of the genera.
112	
113	Our recent fieldwork in Brazil and sampling of fungarium material has yielded sequence data from many
114	specimens not previously included in phylogenetic analysis, permitting a comprehensive reappraisal of the
115	phylogeny of Pterulaceae. Here we present a proposal for a new classification based on the phylogeny inferred
116	from three nuclear loci (nrITS, nrLSU and RPB2), including representatives of all genera currently accepted in
117	Pterulaceae except Allantula. Despite several attempts for recollecting Allantula in its type locality, the

118 monotypic genus is still only known from the type specimen collected by Corner (1952a).

119	
120	METHODS
121	Collections and morphological observations
122	Several field campaigns between 2011-2017 have obtained new specimens from >15 locations in nine states
123	across Brazil (Amazonas, Espírito Santo, Minas Gerais, Pará, Paraíba, Paraná, Rio de Janeiro, Rio Grande do
124	Sul and Santa Catarina).
125	
126	The samples were dried in a low-heat food dehydrator and deposited at FLOR, HSTM, INPA, K and RB.
127	Herbarium acronyms follow Index Herbariorum (Thiers continuously updated). Morphological identification
128	and taxonomy of Pterulaceae are treated sensu Corner. Microscopic observations followed the methods
129	described in Leal-Dutra (2015) and Leal-Dutra et al. (2018).
130	
131	DNA extraction, amplification, cloning and sequencing
132	DNA was extracted from dried basidiomes or freeze-dried culture first grinding with liquid nitrogen followed by
133	lysis with CTAB buffer (100 mM Tris-HCl pH 8.0, 1.4 M NaCl, 20 mM EDTA, 2% CTAB), clean-up with
134	chloroform: isoamyl alcohol (24:1), wash with isopropanol (0.6 vol.) and a final wash with 70% ethanol.
135	
136	Partial sequences of the nrITS, nrLSU and RPB2 were amplified by PCR using the primer pairs listed on Table
137	1 and following the cycling conditions in the original publications. PCR products were purified using 2 U of
138	Exonuclease I (Thermo Fisher Scientifics) and 1 U FastAP Thermosensitive Alkaline Phosphatase (Thermo
139	Fisher Scientifics) per 1 µl of PCR product, incubated at 37 °C for 15 min, followed by heat inactivation at 85
140	°C for 15 min. The samples were then sent for Sanger sequencing at the FIOCRUZ-MG sequencing platform
141	(Belo Horizonte, Brazil; through the FungiBrBOL project), the IBERS Translational Genomics Facility
142	(Aberystwyth University) or Jodrell Laboratory (Royal Botanic Gardens, Kew). The same PCR primers were
143	used for sequencing; additional primers were used to sequence the nrLSU and RPB2 (Table 1).
144	
145	
146	
147	
148	
149	

Table 1 Primers used in this study for PCR and sequencing.

Primer	Region	Application	Sequence	Reference
ITS8F	nrITS	PCR and sequencing	AGTCGTAACAAGGTTTCCGTAGGTG	(Dentinger et al. 2010)
ITS6R	nrITS	PCR and sequencing	TTCCCGCTTCACTCGCAGT	(Dentinger et al. 2010)
LROR	nrLSU	PCR and sequencing	ACCCGCTGAACTTAAGC	(Vilgalys and Hester 1990)
LR7	nrLSU	PCR and sequencing	TACTACCACCAAGATCT	(Vilgalys and Hester 1990)
LR5	nrLSU	Sequencing	TCCTGAGGGAAACTTCG	(Vilgalys and Hester 1990)
fRPB2-5F	RPB2	PCR and sequencing	GAYGAYMGWGATCAYTTYGG	(Liu et al. 1999)
bRPB2-7.1R	RPB2	PCR and sequencing	CCCATRGCYTGYTTMCCCATDGC	(Matheny 2005)
bRPB2-6F	RPB2	Sequencing	TGGGGYATGGTNTGYCCYGC	(Matheny 2005)

151 Chromatograms were checked and sequences assembled and edited using GENEIOUS 10.0.2 (Kearse et al.

152 2012). Samples presenting indels were cloned using pGEM-T Easy Vector Systems (Promega) into Subcloning

153 Efficiency DH5α Competent Cells (Invitrogen). Up to five clones from each sample were amplified and

154 sequenced as above. The clones sequences were treated as in Leal-Dutra et al. (2018).

155

156 Moreover, 27 sequences of nrITS (4), nrLSU (10) and RPB2 (13) were mined from 13 previously assembled

157 and unpublished genomes using NCBI BLAST+ package v2.7.1 (Camacho et al. 2009). Two sequences of each

158 Pterulaceae genus were used as query and the best hit based on the combination of e-value and bit score was

selected; the same hit should usually appear for all query sequences. In one case (sample KM190547), more

160 than one optimal hit was found; the subject sequences were compared for occurrence of indels and treated as

161 virtual clones (VC). These sequences are included in the dataset (Table 2).

162

163 The sequences generated in this study have been submitted to GenBank (Table 2).

164

165 Table 2: Details of new sequences generated in this study used in the tree of Fig. 3. (a full version is presented

as excel file in Additional file 1).

167

168 <u>Phylogenetic analyses</u>

169	A preliminary maximum-likelihood (ML) analysis was conducted with the sequences generated in this study
170	alongside GenBank sequences to find the best outgroup for Pterulaceae based on previous studies (Dentinger et
171	al. 2016; Zhao et al. 2016; Matheny et al. 2006; Larsson 2007) and to assess the similarities between the cloned
172	sequences (Additional file 1; Additional file 2).
173	
174	Additional file 1: Full details of all samples studied here (simplified in Table2; as excel file)
175	Additional file 2: Additional phylogenetic reconstructions, including detailed analyses relating to Figure 3
176	
177	A reduced version of the previous dataset with only one sequence from each cloned sample was created. After
178	removing nearly identical sequences with no phylogenetic resolution. The final dataset was comprised of 119
179	sequences, including 32 sequences from GenBank and using four sequences of Stephanospora Pat. as outgroups,
180	and was divided into five partitions for further analyses: ITS1, 5.8S, ITS2, LSU and RPB2.
181	
182	Each partition was aligned separately with MAFFT v7.311 (Katoh and Standley 2013) using the E-INS-i
183	algorithm for ITS1 and ITS2, and L-INS-i for 5.8S, LSU and RPB2. The alignments were examined and
184	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends.
184 185	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends.
184 185 186	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best-
184 185 186 187	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder
184 185 186 187 188	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder (option -m MF+MERGE) allowing the partitions to share the same set of branch lengths but with their own
184 185 186 187 188 189	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder (option -m MF+MERGE) allowing the partitions to share the same set of branch lengths but with their own evolution rate (-spp option) (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017). Branch support was assessed
184 185 186 187 188 189 190	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder (option -m MF+MERGE) allowing the partitions to share the same set of branch lengths but with their own evolution rate (-spp option) (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017). Branch support was assessed with 1000 replicates of ultrafast bootstrapping (UFBoot) (Hoang et al. 2018) and allowing resampling partitions
184 185 186 187 188 189 190 191	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder (option -m MF+MERGE) allowing the partitions to share the same set of branch lengths but with their own evolution rate (-spp option) (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017). Branch support was assessed with 1000 replicates of ultrafast bootstrapping (UFBoot) (Hoang et al. 2018) and allowing resampling partitions and then sites within these partitions to reduce the likelihood of false positives on branch support (option -bspec
184 185 186 187 188 189 190 191 192	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder (option -m MF+MERGE) allowing the partitions to share the same set of branch lengths but with their own evolution rate (-spp option) (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017). Branch support was assessed with 1000 replicates of ultrafast bootstrapping (UFBoot) (Hoang et al. 2018) and allowing resampling partitions and then sites within these partitions to reduce the likelihood of false positives on branch support (option -bspec GENESITE).
184 185 186 187 188 189 190 191 192 193	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder (option -m MF+MERGE) allowing the partitions to share the same set of branch lengths but with their own evolution rate (-spp option) (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017). Branch support was assessed with 1000 replicates of ultrafast bootstrapping (UFBoot) (Hoang et al. 2018) and allowing resampling partitions and then sites within these partitions to reduce the likelihood of false positives on branch support (option -bspec GENESITE).
184 185 186 187 188 189 190 191 192 193 194	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder (option -m MF+MERGE) allowing the partitions to share the same set of branch lengths but with their own evolution rate (-spp option) (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017). Branch support was assessed with 1000 replicates of ultrafast bootstrapping (UFBoot) (Hoang et al. 2018) and allowing resampling partitions and then sites within these partitions to reduce the likelihood of false positives on branch support (option -bspec GENESITE).
184 185 186 187 188 189 190 191 192 193 194 195	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder (option -m MF+MERGE) allowing the partitions to share the same set of branch lengths but with their own evolution rate (-spp option) (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017). Branch support was assessed with 1000 replicates of ultrafast bootstrapping (UFBoot) (Hoang et al. 2018) and allowing resampling partitions and then sites within these partitions to reduce the likelihood of false positives on branch support (option -bspec GENESITE). Bayesian Inference (BI) was implemented using MRBAYES v3.2 (Ronquist et al. 2012) with two independent runs, each one with four chains and starting from random trees. The best-fit evolutionary models and
184 185 186 187 188 189 190 191 192 193 194 195 196	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder (option -m MF+MERGE) allowing the partitions to share the same set of branch lengths but with their own evolution rate (-spp option) (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017). Branch support was assessed with 1000 replicates of ultrafast bootstrapping (UFBoot) (Hoang et al. 2018) and allowing resampling partitions and then sites within these partitions to reduce the likelihood of false positives on branch support (option -bspec GENESITE). Bayesian Inference (BI) was implemented using MRBAYES v3.2 (Ronquist et al. 2012) with two independent runs, each one with four chains and starting from random trees. The best-fit evolutionary models and partitioning scheme for these analyses were estimated as for the ML analysis but restricting the search to models
184 185 186 187 188 189 190 191 192 193 194 195 196 197	corrected manually in AliView v1.5 (Larsson 2014) and trimmed to remove uneven ends. Maximum-likelihood tree reconstruction was performed with IQ-TREE v1.6.7.1 (Nguyen et al. 2015). The best- fit evolutionary models and partitioning scheme for this analysis were estimated by the built-in ModelFinder (option -m MF+MERGE) allowing the partitions to share the same set of branch lengths but with their own evolution rate (-spp option) (Chernomor et al. 2016; Kalyaanamoorthy et al. 2017). Branch support was assessed with 1000 replicates of ultrafast bootstrapping (UFBoot) (Hoang et al. 2018) and allowing resampling partitions and then sites within these partitions to reduce the likelihood of false positives on branch support (option -bspec GENESITE). Bayesian Inference (BI) was implemented using MRBAYES v3.2 (Ronquist et al. 2012) with two independent runs, each one with four chains and starting from random trees. The best-fit evolutionary models and partitioning scheme for these analyses were estimated as for the ML analysis but restricting the search to models implemented on MRBAYES (options -m TESTMERGEONLY -mset mrbayes). Chains were run for 10 ⁷

199	were used to calculate a 50% majority consensus tree and Bayesian Posterior Probability (BPP). The
200	convergence of the runs was assessed on TRACER v1.7 (Rambaut et al. 2018) to ensure the potential scale
201	reduction factors (PSRF) neared 1.0 and the effective sample size values (ESS) were sufficiently large (>200).
202	
203	Nodes with BPP ≥ 0.95 and/or UFBoot ≥ 95 were considered strongly supported.
204	
205	Alignment and phylogenetic trees are deposited in Treebase (ID: 24428).
206	
207	RESULTS
208	From this section, all taxa are treated by the nomenclatural treatment proposed in this study.
209	
210	<u>Field data</u>
211	Fieldwork resulted in the discovery of approximately 100 new specimens, now placed within Pterulaceae (Table
212	2). Axenic culture isolation was also possible from several of these specimens.
213	
214	Phylogenetic analyses
215	A total of 278 sequences from 123 samples were generated in this study: 153 nrITS, 74 nrLSU and 51 RPB2; 61
216	from cloning and 40 from genome mining. The final alignment consisted of 113 sequences with 2737 characters
217	and 1050 parsimony-informative sites. The BI analysis converged both runs as indicated by the effective sample
218	sizes (ESS) of all parameters above 2800 and the potential scale reduction factors (PSRF) equal 1.000 for all the
219	parameters according to the 95% HPD Interval.
220	
221	The new classification proposed in this study (Fig. 3), highlights six main clades containing nine genera are
222	highlighted: Radulomycetaceae (containing Aphanobasidium, Radulotubus and Radulomyces), Phaeopterula
223	(hereinafter abbreviated as Ph.; previously Pterula spp.), Coronicium superclade (grouping Merulicium and
224	Coronicium), Pterulicium (previously Pterulicium, Pterula spp. and Deflexula spp,), Pterula and
225	Myrmecopterula (Myrmecopterula gen. nov., previously Pterula spp.).
226	
227	Fig. 3 Maximum-likelihood tree of Pterulaceae and Radulomycetaceae. Support values on the branches are
228	UFBoot/BPP and showed only for UFBoot \geq 70 and BPP \geq 0.70 and branch length \geq 0.003 substitutions per site.

- 229 Details for the complete tree can be found in Additional file 2 and TreeBase (ID: 24428). Scale bar: nucleotide
- substitutions per site.
- 231
- 232 *Radulomycetaceae (UFBoot=99; BPP=1)*
- 233 This clade groups with strong support three of the five resupinate genera recognized in Pterulaceae, namely
- 234 Aphanobasidium (UFBoot=100; BPP=1), Radulotubus (UFBoot=100; BPP=1) and Radulomyces
- 235 (UFBoot=100; BPP=0.86). The placement of Aphanobasidium and Radulomyces into Pterulaceae was
- previously shown by phylogenetic reconstructions of corticioid taxa (Larsson et al. 2004; Larsson 2007).
- 237 Radulotubus was proposed by Zhao et al. (2016) as sister clade of Radulomyces to accommodate one species
- 238 bearing poroid hymenophore. In our analyses, *Radulotubus* was recovered in the same position as in the original
- 239 publication. This is the only poroid species within Pterulaceae.
- 240
- 241 No members of the three genera within this superclade are pteruloid (i.e. coralloid basidiomes with dimitic
- 242 hyphal system) in their morphology and consequently we propose the creation of Radulomycetaceae fam. nov.
- to accommodate them, as discussed in greater detail below. The current sister clade to Pterulaceae in our
- analyses is Stephanosporaceae Oberw. & E.Horak, from which members of the Radulomycetaceae clade are
- clearly distinct phylogenetically and morphologically.
- 246

247 *Phaeopterula (UFBoot=100; BPP=1)*

248 Phaeopterula received maximum support in both analyses. It includes Pterula stipata Corner, Pterula anomala

- 249 P. Roberts, Pterula juruensis (Henn.) Corner and other species which all have dark brown basidiomes. This
- 250 clade is the first coralloid lineage to diverge within Pterulaceae. As these species render Pterula paraphyletic, a
- 251 reclassification is needed. The generic name Phaeopterula (Henn.) Sacc. & D. Sacc was originally proposed as
- a subgenus of *Pterula* to accommodate *Ph. hirsuta* Henn. and *Ph. juruensis* (Hennings 1904; Hennings 1899).
- 253 We propose its reintroduction to distinguish these brown-pigmented taxa from *Pterula* s.s.

254

255 *Coronicium superclade (UFBoot=98; BPP=1)*

- 256 This clade groups the remaining two resupinate genera of Pterulaceae, the monospecific Merulicium and
- 257 *Coronicium (UFBoot=100; BPP=1).* Both genera form resupinate basidiomes but differ in the hyphal system
- 258 present (dimitic in *Merulicium*, monomitic in *Coronicium*). Some *Pterulicium* species also show transitions in

259	their morphology to a resupinate state. Corner (1950) showed that Pm. xylogenum (Berk. & Broome) Corner
260	could form monomitic corticioid patches independent of the coralloid state and even in its absence, thus
261	appearing to be truly corticioid. Furthermore, experimental studies on Pm. echo D.J. McLaughlin & E.G.
262	McLaughlin show a dimitic, resupinate, fertile corticioid phase both on agar and when cultured on cocoa twigs
263	(McLaughlin and McLaughlin 1980; McLaughlin et al. 1978; McLaughlin and McLaughlin 1972). Despite the
264	morphological distinctiveness from the rest of Pterulaceae, there is a trend in the morphology and strong
265	phylogeny support for the placement of the Coronicium superclade among Pterula/Myrmecopterula and
266	Pterulicium clades within Pterulaceae.
267	
268	Pterulicium (UFBoot=99; BPP=1)
269	Two type species, Pterulicium xylogenum and Deflexula fascicularis, are nested within this clade alongside
270	several species currently assigned to Pterula but which all have simple basidiomes (unbranched or limited
271	branching). The Pterula species are interspersed with some Deflexula, rendering both genera polyphyletic.
272	Pterulicium xylogenum forms a well-supported subclade with Pterula secundiramea (Lév.) Corner (=Pm.
273	palmicola Corner). Deflexula fascicularis forms a subclade with other Deflexula species that share globose
274	spores, an unusual feature within Pterulaceae, most of which form ellipsoid to subamygdaliform spores.
275	
276	Pterula (UFBoot=100; BPP=1)
277	This clade groups the true <i>Pterula</i> spp. that are represented by very bushy coralloid basidiomes, usually robust
278	and taller than those of <i>Pterulicium</i> , stipe concolorous with hymenophore and lacking a cottony subiculum.
279	
280	Pterula has a mainly pantropical and pan-subtropical distribution, with occurrence reported to all continents
281	except Antarctica (Corner 1970).
282	
283	Myrmecopterula (UFBoot=97; BPP=1)
284	This sister clade of <i>Pterula</i> represents the newly proposed genus (see below). It groups the two species
285	cultivated by attine ants in the Apterostigma pilosum group with M. moniliformis and several unidentified free-
286	living species. The species in this clade are only known from the Neotropics. Myrmecopterula is divided in
287	seven subclades (Fig. 3) representing the two mutualists (MUT 1-2), three closely related to M. velohortorum

288 (SAPV 1-3), one closely related to *M. nudihortorum* (SAPN1) and one of unknown relationship (SAPX1).

289	
290	<u>Taxonomy</u>
291	Radulomycetaceae Leal-Dutra, Dentinger, G.W. Griff., fam. nov.
292	MycoBank MB831047 (Fig. 2D-F)
293	
294	Etymology
295	From the type genus Radulomyces.
296	
297	Diagnosis
298	Basidiome resupinate, effused, mostly adnate, ceraceous, hymenophore smooth, tuberculate, odontioid, raduloid
299	or poroid. Hyphal system monomitic, generative hyphae with clamps, hyaline, thin- to slightly thick-walled.
300	Cystidia absent. Basidia terminal clavate or other form if pleural, usually with 4-sterigmata and a basal clamp.
301	Basidiospores ellipsoid to globose, hyaline, mostly smooth, thin- to slightly thick-walled, acyanophilous,
302	inamyloid and non-dextrinoid.
303	
304	Type genus
305	Radulomyces M.P. Christ.
306	
307	Notes
308	Radulomyces, Aphanobasidium and Radulotubus are placed in Radulomycetaceae fam. nov. Larsson (2007)
309	suggested that Lepidomyces Jülich has affinities to Aphanobasidium and could possibly be placed in
310	Pterulaceae. However, no sequence data for the genus are available. Lepidomyces is described as bearing
311	pleurobasidia as in Aphanobasidium, but also leptocystidia as in Coronicium and Merulicium. Given its
312	morphological similarities to the Aphanobasidium and the Coronicium superclade, we suggest to keep
313	Lepidomyces as incertae sedis until molecular data are available to confirm its phylogenetic position.
314	
315	Phaeopterula (Henn.) Sacc. & D. Sacc., Syll. fung. 17: 201 (1905)
316	(Fig. 1M-O)
317	
318	Basionym

319	Pterula subgen Pha	<i>conterula</i> Henn	in Warburg	Monsunia $1 \cdot 9$	(1899)	[1900]
010	I ICINIU SUUZOII. I IIU	<i>opiciala</i> main.	m warourz.	monsunu 1 .	(10////	

320	
321	Type Species
322	Phaeopterula hirsuta (Henn.) Sacc. & D. Sacc.
323	
324	Updated description:
325	Basidiomes Pteruloid solitary or gregarious, scarcely branched to almost bushy, monopodial and slightly
326	symmetric, branches from light brownish pink or greyish to pale brown and stipe dark reddish to rusty brown.
327	Stipe surface glabrous with agglutinated hyphae (not sclerotioid) to villose-tomentose. Dark brown mycelial
328	cords usually present. Hyphal system dimitic with thick-walled skeletal hyphae, generative hyphae thin-walled
329	and often clamped. Hymenial cystidia absent, caulocystidia sometimes present. Basidia terminal, clavate to
330	suburniform. Basidiospores less than $9\mu m$ varying between pip-shaped, subamygdaliform and ellipsoid.
331	Growing on dead twigs or dead wood.
332	
333	Notes
334	Hennings (1899) created the subgenus Phaeopterula to accommodate Pterula hirsuta that was distinguished
335	from other Pterula spp. by its reportedly brown spores. Hennings (1904) later described a second species in the
336	subgenus, Ph. juruensis, but noted that it was morphologically quite distinct from Ph. hirsuta. Phaeopterula was
337	raised to genus level by Saccardo and Saccardo (1905) who cited only Ph. juruensis. Pterula hirsuta was
338	recombined in <i>Dendrocladium</i> by Lloyd (1919) but later put back in <i>Pterula</i> by Corner (1950), even though
339	Corner did not confirm the presence of brown spores in the samples he examined. Although we also have not
340	observed pigmented spores in any of these taxa, dark brown pigments in the stipe hyphae are a consistent and
341	diagnostic feature in this group, so we resurrect the name Phaeopterula and reassign the reference to brown in
342	the name (phaeo-) to the brown hyphal pigments rather than brown-pigmented basidiospores.
343	
344	Pterulicium Corner, Monograph of Clavaria and allied Genera: 689, 699 (1950)
345	(Fig. 1I-L)
346	
347	Type Species
348	Pterulicium xylogenum (Berk. & Broome) Corner

349	
350	Updated description
351	Basidiomes pteruloid rarely corticioid, solitary or gregarious, simple or scarcely branched, occasionally
352	exhibiting abundant unilateral branching (Fig. 1I and 1L), with colour varying from creamy white to brown on
353	the stipe and creamy white on the tips or creamy white or pale lilaceous to pale brown on uniformly coloured
354	basidiomes. Stipe surface sometimes sclerotioid [see Corner, (1950)]. Hyphal system dimitic with slightly thick-
355	walled skeletal hyphae, generative hyphae thin-walled and often clamped. Hymenial cystidia usually present,
356	caulocystidia sometimes present. Basidia terminal, clavate to suburniform. Basidiospores shape varying between
357	globose to subglobose, pip-shaped, amygdaliform to subamygdaliform, ellipsoid. Growing on dead leaves, dead
358	twigs or dead wood, rarely as a pathogen or endophyte of living plants.
359	
360	Notes
361	Deflexula is synonymised with Pterulicium in this study. In addition, several species previously placed in
362	Pterula are transferred to Pterulicium (see the new combinations below). Other Pterula species that might need
363	to be recombined in <i>Pterulicium</i> , require further investigation since their original descriptions do not provide
364	enough information to confidently assign them here.
365	
366	Myrmecopterula Leal-Dutra, Dentinger & G.W. Griff., gen. nov.
367	MycoBank MB831048 (Fig. 1A-F)
368	
369	Etymology
370	From the ancient Greek word μύρμηκος (=mýrmēkos), genitive form of μύρμηξ (=mýrmēx), ants. Thus, Pterula
371	of the ants, due to the observed relationship of most taxa in this genus with nests of fungus-growing ants.
372	
373	Type Species
374	Myrmecopterula moniliformis (Henn.) Leal-Dutra, Dentinger & G.W. Griff.
375	
376	Diagnosis
377	Usually associated with the nests of ants, growing on top or from living or dead nest or being cultivated by the
378	ants. Bushy pteruloid basidiome, white-cream to light-brown and greyish surface, normally concolorous or stipe

379	with a darker tone than the hymenophore, arising from cottony subiculum with mycelial cords, stipe surface
380	sterile, dimitic hyphal system, relatively small spores (usually less than 7µm wide), or no basidiome. Differs
381	from <i>Pterula</i> by the presence of the cottony subiculum.

382

383 Notes

384	Basidiomes of Myrmecopterula species are very similar to Pterula in habit, shape and colour, but they differ in
385	the presence of mycelial cords and of a cottony subiculum from which basidiomes emerge. Some species of
386	Myrmecopterula arise from soil, while others superficially appear to grow on wood. Closer observation of
387	wood-dwelling basidiomes revealed that rather than being lignicolous, instead they grow from a loose, granular
388	substrate within a cavity inside the wood. This substrate in some cases resembles the substrate in the fungus
389	gardens of Apterostigma pilosum group ants. In addition, M. moniliformis, which arises from soil, has been
390	found emerging from active and inactive attine nests, (S. Sourell, pers. comm.; M.C. Aime, pers. comm.). Thus,

all but one of the *Myrmecopterula* taxa found to date are associated with attine ants, of which the two farmed

392 mutualist species (*M. nudihortorum* and *M. velohortorum*) are best known (REF). The five other species (of

393 which only *M. moniliformis* is named) are less well studied and may play a role in decomposition of residual

394 substrates in abandoned fungus garden, or potentially even as mycoparasites of the ant cultivar. In contrast, no

395 *Pterula* spp. have any reported association with ants, but instead are found growing directly from wood and leaf

396 litter.

397

398	Myrmecopterula moniliformis	(Henn.)) Leal-Dutra,	Dentinger &	& G.W.	Griff.,	comb. nov.
-----	-----------------------------	---------	---------------	-------------	--------	---------	------------

399 MycoBank MB831049 (Fig. 1E)

400

401 Basionym: Lachnocladium moniliforme Henn., Hedwigia 43(3): 198 (1904).

402

403 Synonym: Pterula moniliformis (Henn.) Corner, Ann. Bot., Lond., n.s. 16: 569 (1952). Thelephora clavarioides

404 Torrend, *Brotéria*, sér. bot. **12**(1): 61 (1914).

405

406 Description in (Corner 1952b).

407

408 Myrmecopterula nudihortorum (Dentinger) Leal-Dutra, Dentinger & G.W. Griff., comb. nov

409	MycoBank MB831050 (Fig. 1D)
410	
411	Basionym: Pterula nudihortorum Dentinger [as 'nudihortus', later referred to as 'nudihorta'], Index Fungorum
412	98 : 1 (2014).
413	
414	Updated Description
415	In the field, it is recognized by the absence of any veil on the fungus garden in the Apterostigma nests, usually
416	inside decomposing trunks or underground. In culture, it forms very little aerial mycelium and exhibits very
417	slow growth (2-3 mm/week radial growth rate on PDA at 25C). Hyphal clamps abundant.
418	
419	Notes
420	This species was formerly known as the ant cultivar G4. It is only known from the nest of fungus-growing ants
421	in the Apterostigma pilosum group in the A. manni subclade (Schultz 2007).
422	
423	Myrmecopterula velohortorum (Dentinger) Leal-Dutra, Dentinger & G.W. Griff., comb. nov.
424	MycoBank MB831051 (Fig. 1A)
425	
426	Basionym: Pterula velohortorum Dentinger [as 'velohortus', later referred to as 'velohorta'], Index Fungorum
427	98 : 1 (2014).
428	
429	Updated description.
430	In the field, it is recognized by the Apterostigma garden covered by a mycelial veil, usually inside decomposing
431	trunks, below the leaf litter or hanging on exposed surfaces aboveground. In culture, it forms very cottony aerial
432	mycelia with presence of racquet hyphae (Fig. 5 in Additional file 3). Large and abundant hyphal clamps. Slow
433	growth rate, but faster than M. nudihortorum.
434	
435	Additional file 3: Additional images of coralloid Pterulaceae and micrographs of Myrmecopterula
436	velohortorum.
437	
438	Notes

- 439 This species was formerly known as the ant cultivar G2. It is only known from the nest of fungus-growing ants
- 440 in the Apterostigma pilosum group in the A. dentigerum subclade (Schultz 2007).
- 441

442 Discussion

- 443 Introduction of Radulomycetaceae
- 444 We consider that it is better to erect a new family for these three genera than to leave them in Pterulaceae where
- they are clearly phylogenetically and morphologically distinct from nearly all the other member of Pterulaceae.
- 446 In contrast, *Merulicium* (Fig. 2B-C) and *Coronicium* (Fig. 2A) form corticioid basidiomes but our phylogenetic
- 447 analyses place them clearly within Pterulaceae. Two Pterulicium species, Pm. echo and Pm. xylogenum, also
- 448 form both pteruloid and corticioid basidiomes, either independently or together (McLaughlin and McLaughlin
- 449 1980; Corner 1950).
- 450
- 451 Whilst the corticioid basidiomes of *Merulicium* and *Pm. echo* contain a dimitic hyphal system, typical of
- 452 Pterulaceae, those of *Coronicium* spp. and *Pterulicium xylogenum* form a monomitic hyphal system, like all
- 453 members of Radulomycetaceae. However, no members of Radulomycetaceae form cystidia, whereas these cells
- 454 are found in most Pterulaceae (McLaughlin and McLaughlin 1980; Corner 1970, 1967, 1952a, b, 1950;
- 455 Bernicchia and Gorjón 2010), including *Coronicium* spp.
- 456
- 457 Thus, Radulomycetaceae fam. nov. is morphologically characterized by the combination of resupinate
- 458 basidiomes, monomitic hyphal system and lack of cystidia. Moreover, our phylogenetic analyses strongly
- 459 support the segregation of Radulomycetaceae fam. nov. from Pterulaceae.
- 460

461 <u>Reintroduction of Phaeopterula</u>

- 462 *Phaeopterula* spp. are distinct from other pterulaceous genera due to the distinctive brown colour of the main
- 463 axis of the basidiome and monopodial/symmetric branching of these structures. This contrasts with other
- 464 Pterulaceae which are either highly branched (bushy) and of uniform colour (*Pterula* and *Myrmecopterula*) or
- 465 pigmented only at the stipe base, and (mostly) unbranched (*Pterulicium*). Hennings (1899) originally defined
- 466 Phaeopterula by its brown spores. Corner (1950) cast doubt on the significance of this trait but our results show
- that, despite an apparently misguided justification, Hennings was correct to group *Ph. juruensis* with *Ph.*
- 468 hirsuta.

Δ	6	a
4	υ	3

470	All <i>Phaeopterula</i> spp.	are exclusively found	l on decaying wood,	whereas members of	f other genera of
	I I I I I I I I I I I I I I I I I I I				

471 Pterulaceae inhabit more diverse lignocellulosic substrates. Given the basal position of *Phaeopterula* in

472 Pterulaceae, and the fact that all members of the sister family Radulomycetaceae are also lignicolous on wood,

- 473 this habit is parsimoniously the ancestral condition. The reintroduction of *Phaeopterula* aims to pay tribute to
- 474 Paul Hennings' work and his contribution to the taxonomy of Pterulaceae.
- 475
- 476 Synonymy of Deflexula with Pterulicium

477 Besides the paraphyly represented by *Phaeopterula*, the *Pterulicium* clade shows the clear polyphyly of *Pterula*

- 478 and *Deflexula*. Several species in the two latter genera are intermixed in a strongly supported subclade (Fig. 3).
- 479 The presence of the type species of both *Deflexula* and *Pterulicium* within this clade requires that only one name
- 480 be kept. Both genera were proposed by Corner (1950), to accommodate the dimitic and coralloid (but non-
- 481 bushy) species, not fitting the description of *Pterula*. The name *Pterulicium* was based on a 'portmanteau'
- 482 combination of *Pterula* and *Corticium* to reflect the presence of a corticioid patch at the stipe base (Corner
- 483 1950). However, this patch has only been reported in two species, *Pterulicium xylogenum* (Corner 1950) and
- 484 *Pm. echo* (McLaughlin and McLaughlin 1980). *Deflexula* was named for the downward-oriented (positively
- 485 geotropic) basidiomes (Corner 1950). Corner (1950) stated that the resupinate patch in *Pterulicium xylogenum* is
- 486 monomitic, can exist independently of the coralloid basidiome and is fertile when facing downward; he
- 487 suggested that there was a close similarity between *Deflexula* and *Pterulicium* in the way the resupinate patch
- 488 develops from the base of the basidiome. He also made a case for the formation of a fertile hymenium when
- 489 facing downward in the two genera as supporting this similarity. Nonetheless, experimental studies on *Pm. echo*
- 490 show that orientation of the hymenium does not affect the ability to produce spores, i.e., the hymenium is
- 491 ageotropic (McLaughlin et al. 1978) and raised doubts about the validity of the genus *Deflexula*. This
- 492 morphological distinction is not supported by phylogenetic analysis (Dentinger et al. 2009, Fig. 3) and its
- 493 emphasis through taxonomic preservation would perpetuate misunderstanding. Accordingly, we propose to
- 494 retain *Pterulicium* for this clade to avoid major misinterpretations of the species morphology.

495

496 Introduction of Myrmecopterula gen. nov.

497 Two species of Pterulaceae are cultivated by fungus-farming ants of the *Apterostigma pilosum* group in South

498 and Central America (Dentinger et al. 2009; Munkacsi et al. 2004; Villesen et al. 2004; Mueller et al. 2018).

499	Despite intensive investigation, neither has been observed to form basidiomes, but <i>M. velohortorum</i> is	

500 characterised by the formation of a veil of mycelium around the fungus garden, whilst *M. nudihortorum* lacks

- 501 this veil. We recovered both species in a strongly supported clade, as a sister clade of *Pterula*, alongside five
- 502 other subclades containing fertile, apparently free-living species.
- 503
- All the samples in this clade were collected from neotropical habitats (Fig. 1A-F), mostly as part of our recent
- 505 fieldwork. During sampling campaigns by ourselves and others, it was observed that many of the 'free-living'
- 506 specimens were associated in some way with living ant colonies or abandoned attine nests. Two
- 507 *Myrmecopterula* samples belonging to subclade SAPV1 (CALD170307-02 and CALD170307-03; Fig. 1A)
- 508 were found forming basidiomes atop two distinct but adjacent (1 m apart) living Apterostigma nests in
- 509 Amazonian Rainforest. The cultivated mutualists from both nests were also analysed and found to belong to *M*.
- 510 *velohortorum* confirming that the basidiomes were not linked to the cultivated mycelia in these nests. The third
- 511 member of subclade SAPV1 was also reported forming a nascent basidiome on a living Apterostigma nest in
- 512 Panama (Munkacsi et al. 2004). *M. moniliformis* (SAPN1; Fig. 1E) has been reported to be found outside both
- 513 active and apparently inactive (see Myrmecopterula: Notes on Taxonomy section above) attine nests (S. Sourell,
- 514 pers. comm.; M.C. Aime, pers.comm.) as was CALD170315-04 (SAPV2; Fig. 1B) and CALD170122-04
- 515 (SAPV3; Fig. 1C). Lastly, the mycelium of one sample (JSP 07-03 B 5.1; SAPV3) was isolated from a living
- 516 *Atta capiguara* nest by Pereira et al. (2016).
- 517
- 518 The observations above and the phylogenetic analyses suggests that association with attine ants is a widespread
 519 trait amongst members of this clade, hence its naming as *Myrmecopterula*.
- 520
- 521 The ecological roles of Pterulaceae are not well understood, most being classified from superficial observations
- 522 as saprotrophs, growing on wood or leaf litter, with wood decay potentially being the ancestral state as discussed
- 523 above. Whilst many species are found inhabiting soil or litter, two species are reported to associate with living
- 524 plants, namely Pterula cf. tenuissima, endophytic in asymptomatic leaves of Magnolia grandiflora, and
- 525 *Pterulicium xylogenum*, causal agent of culm rot disease of bamboo (Munkacsi et al. 2004; Villesen et al. 2004;
- Harsh et al. 2005) and possibly also a pathogen of sugarcane [see Corner (1952b)].
- 527

528	Most recent attention on Pterulaceae has been lavished on the ant-cultivated mutualists <i>M. nudihortorum</i> and <i>M.</i>
529	velohortorum. These were once thought to be sister clades (Munkacsi et al. 2004; Villesen et al. 2004) but are
530	now known to be only distantly related within the Myrmecopterula clade (Dentinger et al. 2009, Fig. 3). This
531	suggests two possibilities for the evolution of the Myrmecopterula-Apterostigma mutualism: 1) that it evolved
532	independently on two occasions or, 2) that it is an ancestral condition of all Myrmecopterula. However, it is at
533	present unclear whether the extant mutualistic association found for M. nudihortorum and M. velohortorum is
534	ancestral, implying that the other taxa escaped the mutualism, or whether the looser association with ant nests
535	widespread amongst members of Myrmecopterula was more recently elevated to a higher level of
536	interdependence for these two species, as suggested by Dentinger et al. (2009).
537	
538	The basis of the association of 'free-living' species with attine ants and/or their abandoned nests is unclear.
539	Given the apparent preference of some for abandoned nests, they may be specialised early stage colonisers of
540	ant nest debris. A further possibility is that they are cheaters, deriving nutrition from the ant-collected biomass
541	but not reciprocating by producing hyphae palatable to ants. This would represent a novel form of fungal
542	mimicry, perhaps achieved by the ants' inability to differentiate hyphae of closely related species. Lastly, they
543	may be mycoparasitic, including on ant cultivars, although there is currently no direct evidence supporting this
544	hypothesis.
545	
546	Re-delimitation of Pterulaceae
547	All the accepted genera in Pterulaceae were sampled in this study except for the monotypic Allantula. One
548	specimen, with morphology consistent with Corner's description of Allantula diffusa, with pteruloid basidiomes
549	borne on slender mycelial cords as curved intercalary swellings, was collected during our fieldwork (Fig. 1M).
550	Phylogenetic reconstruction placed this specimen firmly within Phaeopterula. However, we have been unable to
551	obtain the type specimen (no other collections authenticated exist) for more detailed analysis.
552	
553	Thus, we re-delimit Pterulaceae containing six genera: Allantula, Coronicium, Merulicium, Myrmecopterula,
554	Phaeopterula, Pterula and Pterulicium.
555	
556	
557	

558	Conclusion
559	In this study, we presented a reclassification of Pterulaceae based on morphological and phylogenetic analyses
560	with samples from six out of seven genera previously accepted in the family. Three early diverging resupinate
561	genera were placed in Radulomycetaceae fam. nov. (Aphanobasidium, Radulomyces and Radulotubus),
562	Myrmecopterula gen. nov. was erected to accommodate ant associated species previously classified in Pterula;
563	several species from the latter were also recombined in the reintroduced Phaeopterula and in Pterulicium, and
564	finally Deflexula was synonymised with Pterulicium. Pterulaceae was thus re-delimited to accommodate seven
565	genera Allantula, Coronicium, Merulicium, Myrmecopterula, Phaeopterula, Pterula and Pterulicium.
566	
567	Some species kept in <i>Pterula</i> might also need to be recombined since the original description was not enough to
568	make these changes. Type specimens should be analysed considering the delimitations proposed in this study.
569	
570	Key to genera of Pterulaceae and Radulomycetaceae fam. nov.
571	1.1 Cultivated by ants on Apterostigma pilosum group, basidiomes absent Myrmecopterula*
572	1.2 Growing free-living, basidiomes present
573	2.1 Basidiomes resupinate to effused
574	2.2 Basidiomes coralloid, thread like or allantoid**
575	3.1 Hymenophore surface poroid
576	3.2 Hymenophore surface smooth, tuberculate, odontioid to raduloid or merulioid 4
577	4.1 Cystidia present
578	4.2 Cystidia absent
579	5.1 Hyphal system monomitic
580	5.2 Hyphal system dimitic
581	6.1 Spores ellipsoid to navicular, thin-walled, cystidia with incrustation Coronicium
582	6.2 Spores amygdaliform, slightly thick-walled, cystidia smooth Pterulicium xylogenum***

583	7.1 Hymenophore surface merulioid, presence of cystidia with resinous excretion
584	7.2 Hymenophore surface smooth, cystidia smooth Pterulicium echo***
585	8.1 Basidia pleural Aphanobasidium
586	8.2 Basidia terminal
587	9.1 Spores ellipsoid to globose
588	9.2 Spores amygdaliform
589	10.1 Basidiome allantoid with swollen fertile regions intercalating with mycelial chords Allantula
590	10.2 Basidiome coralloid or thread like 11
591	11.1 Stipe and base of branches very dark brown fading towards the tips Phaeopterula
592	11.2 Basidiomes uniformly coloured or only the stipe light brown coloured 12
593	12.1 Basidiomes simple or scarcely branched, growing up- or downwards Pterulicium
594	12.2 Basidiomes densely ramified, always ageotropic 13
595	13.1 Cottony subiculum present, associated with attine ants Myrmecopterula
596	13.2 Cottony subiculum absent, without association with attine ants Pterula
597	
598	* Myrmecopterula cultivated by Apterostigma was never reported forming basidiomes.
599	** Allantoid = sausage-shaped, in this case with inflated portions of hymenium intercalating with rhizomorph
600	[see Allantula in Corner (1952a)]
601	*** Pterulicium xylogenum and Pm. echo can have corticioid growth independently of coralloid basidiomes.
602	The cystidia in the former may be either present or absent.

603 ACKNOWLEDGEMENTS

604	The authors are grateful to the managers of Parque Nacional da Tijuca (ICMBio), Floresta Nacional do Tapajós,
605	Parque Nacional do Iguaçú, Parque Nacional da Serra dos Orgãos and Reserva Biológica Augusto Ruschi, for
606	logistical support and collection permits. Biological Dynamics of Forest Fragmentation Project (BDFFP) for
607	providing logistical and field support. This is publication XXX of the BDFFP - INPA/STRI Technical Series
608	(field reserve; location of specimen used here). We thank Supercomputing Wales for computing support. We are
609	also thankful for the kind support and loan from the following herbaria: FLOR (Universidade Federal de Santa
610	Catarina), K (Royal Botanical Gardens, Kew), INPA (Instituto Nacional de Pesquisas da Amazônia), HSTM
611	(Universidade Federal do Oeste do Pará), CGE (Cambridge University). We thank the FungiBrBOL project for
612	use of the FIOCRUZ-MG sequencing platform. The researchers who kindly collect and provide samples or
613	photos, or helped in other way to this study: Ted Schultz, M. Cathie Aime, Dennis Desjardin, D. Jean Lodge,
614	Bitty Roy, Michael Wherley, Tobias Policha, Jesse McAlpine, Tommy Jenkinson, Rocío Manobanda, Celeste
615	Heisecke, Altielys C. Magnago, Eduardo P. Fazolino, Ariadne N. M. Furtado, Emerson L. Gumboski, Elisandro
616	R. Drechsler-Santos, Julia Simon, Cauê Oliveira, Stefan Blaser, David J. Harries, Genivaldo Alves da Silva,
617	Susanne Sourell, Lucie Zíbarová and André Rodrigues, Quimi Vidaurre Montoya, Louro Lima, Ocírio Juruna de
618	Souza Pereira, Laura Martínez-Suz, Shaun Pennycook, Phillip Camarota Moura and Rafael Trevisan.
619	
620	DECLARATION
621	Ethics approval and consent to participate

- 622 Not applicable
- 623

624 Adherence to national and international regulations

- 625 For samples obtained from fungarium collections, appropriate permissions were granted. Field sampling was
- 626 undertaken with appropriate permissions from Brazilian authorities.
- 627
- 628 Consent for publication
- 629 All authors have approved the manuscript for submission
- 630

631 Availability of data and material

- 632 All the sequences generated in this study are deposited in GenBank (accession numbers can be found in
- 633 Additional file 1). Alignments used to generate the phylogenies are deposited on TreeBase (ID: 24428). Samples
- are deposited in the fungaria indicated on Aditional file 1, some might be available from the authors via request.
- 635

636 Competing interests

- 637 The authors declare no competing interests
- 638

639 Funding

- 640 This article is part of the PhD thesis of CALD. CALD scholarship was provided by Coordination for the
- 641 Improvement of Higher Education Personnel Brazil, BEX 2145/15-4. Funding was provided in part from a
- 642 Systematics and Taxonomy (SynTax) grant (Biotechnology and Biological Sciences Research Council, Natural
- 643 Environment Research Council) to BTMD. Funding was provided in part by the National Geographic Society
- 644 (No. 8317-07 to B.A. Roy and B.T.M. Dentinger) and the National Science Foundation (DEB-0841613 to B.A.
- 645 Roy and B.T.M. Dentinger). The Institute of Biological, Environmental and Rural Sciences receives strategic
- funding from the Biotechnology and Biological Sciences Research Council (BBSRC; BBS/OS/GC/000011B).
- 647

648 Authors' contributions

- 649 CALD, BTMD, MAN, DJM, EGM and LAC conducted field sampling; CALD and LAC conducted the
- 650 sequencing and phylogenetic analyses; CALD, GWG and BTMD wrote the manuscript with input from DJM,
- 651 EGM, LAC and MAN

652

653 **REFERENCES**

- 654 Bernicchia A, Gorjón SP (2010) Corticiaceae s.l. Fungi Europaei, vol 12. Candusso, Italia
- 655 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+:
- architecture and applications. BMC Bioinformatics 10 (1):421. doi:10.1186/1471-2105-10-421
- 657 Chernomor O, von Haeseler A, Minh BQ (2016) Terrace Aware Data Structure for Phylogenomic Inference
- from Supermatrices. Systematic Biology 65 (6):997-1008. doi:10.1093/sysbio/syw037
- 659 Corner EJH (1950) A monograph of Clavaria and allied genera, vol 1. Annals of Botany memoirs. Dawsons,
- 660 London

- 661 Corner EJH (1952a) Addenda Clavariacea I. Two new Pteruloid genera and Deflexula. Annals of Botany 16
- 662 (2):269-291
- 663 Corner EJH (1952b) Addenda Clavariacea II. Pterula and Pterulicium. Annals of Botany 16 (4):531-569
- 664 Corner EJH (1952c) Generic names in Clavariaceae. Transactions of the British Mycological Society 35
 665 (4):285-298
- 666 Corner EJH (1957) Some clavarias from Argentina. Darwiniana 11 (2):193-206
- 667 Corner EJH (1966) Clavarioid genera and Thelephora from the Congo. Bulletin du Jardin botanique de l'État a
- 668 Bruxelles 36 (Fasc. 3):257-279
- 669 Corner EJH Clavarioid fungi of the Solomon Islands. In: Proceedings of the Linnean Society of London, 1967.
- 670 vol 2. Oxford University Press, pp 91-106
- 671 Corner EJH (1970) Supplement to "A Monograph of Clavaria and Allied Genera". Beihefte zur Nova Hedwigia672 33:1-299
- 673 Dentinger BTM (2014) Nomenclatural novelties. Index Fungorum (98):1
- 674 Dentinger BTM, Gaya E, O'Brien H, Suz LM, Lachlan R, Díaz-Valderrama JR, Koch RA, Aime MC (2016)
- Tales from the crypt: genome mining from fungarium specimens improves resolution of the mushroom tree
- of life. Biological Journal of the Linnean Society 117 (1):11-32. doi:10.1111/bij.12553
- 677 Dentinger BTM, Lodge DJ, Munkacsi AB, Desjardin DE, McLaughlin DJ (2009) Phylogenetic Placement of an
- 678 Unusual Coral Mushroom Challenges the Classic Hypothesis of Strict Coevolution in the Apterostigma
- Pilosum Group Ant-Fungus Mutualism. Evolution 63 (8):2172-2178. doi:10.1111/j.1558-
- 680 5646.2009.00697.x
- 681 Dentinger BTM, Margaritescu S, Moncalvo J-M (2010) Rapid and reliable high-throughput methods of DNA
- extraction for use in barcoding and molecular systematics of mushrooms. Molecular Ecology Resources 10
- **683** (4):628-633. doi:10.1111/j.1755-0998.2009.02825.x
- 684 Dentinger BTM, McLaughlin DJ (2006) Reconstructing the Clavariaceae using nuclear large subunit rDNA
- sequences and a new genus segregated from Clavaria. Mycologia 98 (5):746-762. doi:DOI
- 686 10.3852/mycologia.98.5.746
- 687 Dogma IJ (1966) Philippine Clavariaceae. I. The pteruloid series. Philippine Agriculturist 49 (10):18
- 688 Donk MA (1964) A conspectus of the families of Aphyllophorales. Persoonia 3 (2):199-324
- 689 Fries EM (1821) Systema Mycologicum volumen I, vol 1. Ex Officina Berlingiana. Lund & Greifswald
- 690 Fries EM (1825) Systema Orbis Vegetabilis Typographia Academia. Lundae, Sweden

- 691 Fries EM (1830) Eclogae fungorum, praecipue ex herbariis germanorum de scriptorum. Linnaea
- Harsh SNK, Singh YP, Gupta HK, Mushra BM, McLaughlin DJ, Dentinger B (2005) A new culm rot disease of
- bamboo in India and its management. J Bamboo Rattan 4:387-398
- Hennings P (1899) Fungi monsunenses. Monsunia 1:38
- Hennings P (1904) Fungi amazonici II, a cl. Ernesto Ule collecti. Hedwigia 43:242-273
- Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: Improving the Ultrafast
- 697 Bootstrap Approximation. Molecular biology and evolution 35 (2):518-522. doi:10.1093/molbev/msx281
- 698 Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model
- selection for accurate phylogenetic estimates. Nature Methods 14:587. doi:10.1038/nmeth.4285
- 700 Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in
- performance and usability. Molecular biology and evolution 30 (4):772-780. doi:10.1093/molbev/mst010
- 702 Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S,
- 703 Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: An integrated and
- extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28
- 705 (12):1647-1649. doi:10.1093/bioinformatics/bts199
- 706 Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics
- 707 30 (22):3276-3278. doi:10.1093/bioinformatics/btu531
- T08 Larsson K-H (2007) Re-thinking the classification of corticioid fungi. Mycological research 111 (9):1040-1063
- 709 Larsson K-H, Larsson E, Kõljalg U (2004) High phylogenetic diversity among corticioid homobasidiomycetes.
- 710 Mycological research 108 (09):983-1002
- 711 Leal-Dutra CA (2015) Contribuições Taxonômicas e Filogenéticas ao Estudo de Pterulaceae (Agaricales)
- 712 Coraloides. Universidade Federal de Santa Catarina, Florianópolis
- 713 Leal-Dutra CA, Neves MA, Griffith GW, Reck MA, Clasen LA, Dentinger BTM (2018) Reclassification of
- 714 Parapterulicium Corner (Pterulaceae, Agaricales), contributions to Lachnocladiaceae and Peniophoraceae
- 715 (Russulales) and introduction of Baltazaria gen. nov. MycoKeys 37. doi:10.3897/mycokeys.37.26303
- 716 Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA
- 717 polymerse II subunit. Molecular biology and evolution 16 (12):1799-1808
- 718 Lloyd CG (1919) Mycological notes. Mycological Writings 5 (60):15
- 719 Maas Geesteranus R (1964) Notes on Hydnums—II. Persoonia-Molecular Phylogeny and Evolution of Fungi 3
- 720 (2):155-192

- 721 Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide
- sequences (Inocybe; Agaricales). Molecular phylogenetics and evolution 35 (1):1-20
- 723 Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo J-M, Ge Z-W, Yang Z-L, Slot JC, Ammirati JF,
- 724 Baroni TJ (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98 (6):982-
- 725 995
- 726 McLaughlin DJ, McLaughlin EG (1972) Pure Culture Studies of Fruiting and Sporulation in a Clavarioid
- 727 Fungus, Pterula sp. Mycologia 64 (3):599-608. doi:10.2307/3757875
- 728 McLaughlin DJ, McLaughlin EG (1980) A new species of Pterula (Aphyllophorales) with corticioid
- 729 characteristics. Canadian Journal of Botany 58 (12):1327-1333. doi:10.1139/b80-163
- 730 McLaughlin EG, McLaughlin DJ, Adson DE (1978) Developmental anatomy of a dimitic basidiomycete,
- 731 Pterula sp. Canadian Journal of Botany 56 (3):288-296. doi:10.1139/b78-036
- 732 Mueller UG, Kardish MR, Ishak HD, Wright AM, Solomon SE, Bruschi SM, Carlson AL, Bacci M (2018)
- 733 Phylogenetic patterns of ant-fungus associations indicate that farming strategies, not only a superior fungal
- cultivar, explain the ecological success of leafcutter ants. Molecular Ecology 27 (10):2414-2434.
- 735 doi:10.1111/mec.14588
- 736 Munkacsi A, Pan J, Villesen P, Mueller U, Blackwell M, McLaughlin D (2004) Convergent coevolution in the
- 737 domestication of coral mushrooms by fungus–growing ants. Proceedings of the Royal Society of London B:
- 738 Biological Sciences 271 (1550):1777-1782
- 739 Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A Fast and Effective Stochastic
- Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular biology and evolution 32 (1):268-
- 741 274. doi:10.1093/molbev/msu300
- 742 Pereira JS, Costa RR, Nagamoto NS, Forti LC, Pagnocca FC, Rodrigues A (2016) Comparative analysis of
- fungal communities in colonies of two leaf-cutting ant species with different substratum preferences.
- 744 Fungal Ecology 21:68-75. doi:<u>https://doi.org/10.1016/j.funeco.2016.03.004</u>
- 745 Remsberg RE (1940) A New Species of *Pistillaria* on Rice Straw. Mycologia 32 (5):4.
- 746 doi:10.1080/00275514.1940.12017444
- 747 Roberts P (1999) Clavarioid fungi from Korup National Park, Cameroon. Kew Bulletin:517-539
- 748 Saccardo PA, Saccardo D (1905) Sylloge Fungorum, vol XVII. Patavii, Italy
- 749 Schultz TR (2007) The fungus-growing ant genus Apterostigma in Dominican amber. In: Snelling R, BL Fisher,
- 750 PS Ward (ed) Advances in ant systematics (Hymenoptera: Formicidae): homage to E. O. Wilson 50 years

- 751 of contributions., vol 80. Memoirs of the American Entomological Institute. American Entomological
- 752 Institute, Gainesville, FL, pp 425-436
- 753 Spegazzini C (1921) Mycetes chilenses. Boletín de la Academia Nacional de Ciencias en Córdoba 25:124
- 754 Index Herbariorum: A global directory of public herbaria and associated staff. (continuously updated)
- 755 <u>http://sweetgum.nybg.org/science/ih/.</u>
- 756 Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal
- 757 DNA from several Cryptococcus species. Journal of Bacteriology 172 (8):4238-4246
- 758 Villesen P, Mueller UG, Schultz TR, Adams RM, Bouck AC (2004) Evolution of ant Cultivar specialization
- 759 and cultivar switching in Apterostigma fungus □ growing ants. Evolution 58 (10):2252-2265
- 760 Zhao C-L, Chen H, He S-H, Dai Y-C (2016) Radulotubus resupinatus gen. et sp. nov. with a poroid
- 761 hymenophore in Pterulaceae (Agaricales, Basidiomycota). Nova Hedwigia 102 (3-4):3-4

762

763 ADDITIONAL NOMENCLATURAL NOVELTIES

- 764
- 765 Phaeopterula anomala (P. Roberts) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 766 MycoBank MB830999
- 767 Basionym: Pterula anomala P. Roberts, Kew Bull. 54(3): 528 (1999).
- 768 Description in Roberts (1999).
- 769
- 770 Phaeopterula hirsuta (Henn.) Sacc. & D. Sacc., Syll. fung. (Abellini) 17: 201 (1905)
- 771 MycoBank MB469044
- 772 Basionym: Pterula hirsuta Henn., in Warburg, Monsunia 1: 9 (1899) [1900].
- 773 Synonym: Dendrocladium hirsutum (Henn.) Lloyd, Mycol. Writ. 5: 870 (1919).
- 774 Description in Corner (1950).
- 775
- 776 Phaeopterula juruensis Henn. ex Sacc. & D. Sacc., Syll. fung. (Abellini) 17: 201 (1905)
- 777 MycoBank MB634235 (Fig. 10)
- 778 Basionym: Pterula juruensis Henn. [as 'Phaeopterula juruensis'], Hedwigia 43(3): 175 (1904).
- 779 Synonym: Dendrocladium juruense (Henn.) Lloyd, Mycol. Writ. 5: 870 (1919).
- 780 Descriptions in Corner (1950, 1952b).

781	
782	Phaeopterula stipata (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
783	MycoBank MB831000 (Fig. 1N)
784	Basionym: Pterula stipata Corner, Ann. Bot., Lond., n.s. 16: 568 (1952).
785	Description in Corner (1952b).
786	
787	Phaeopterula taxiformis (Mont.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
788	MycoBank MB831001
789	Basionym: Pterula taxiformis Mont., Syll. gen. sp. crypt. (Paris): 181 (1856).
790	Synonyms: Lachnocladium taxiforme (Mont.) Sacc., Syll. fung. (Abellini) 6: 740 (1888). Pterula humilis Speg.,
791	Revista Argent. Hist. Nat. 1(2): 110 (1891). Pterula humilis var. tucumanensis Speg., Anal. Mus. nac. B. Aires,
792	Ser. 3 12 : 280 (1909).
793	Descriptions in Corner (1950, 1952b).
794	
795	Phaeopterula taxiformis var. gracilis (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
796	MycoBank MB831002
797	Basionym: Pterula taxiformis var. gracilis Corner, Ann. Bot., Lond., n.s. 16: 568 (1952).
798	Description in Corner (1952b).
799	
800	Pterulicium argentinum (Speg.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
801	MycoBank MB831003
802	Basionym: Mucronella argentina Speg., Anal. Mus. nac. Hist. nat. B. Aires 6: 178 (1898) [1899].
803	Synonyms: Deflexula argentina (Speg.) Corner, Ann. Bot., Lond., n.s. 16: 276 (1952). Deflexula lilaceobrunnea
804	var. elongata Corner, Ann. Bot., Lond., n.s. 16: 276 (1952).
805	Description in Corner (1952a, 1970)
806	
807	Pterulicium argentinum var. ramosum (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
808	MycoBank MB831004
809	Basionym: Deflexula argentina (Speg.) Corner, Ann. Bot., Lond., n.s. 16: 276 (1952).
810	Description in Corner (1970).

811	
812	Pterulicium bambusae (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
813	MycoBank MB831005
814	Basionym: Pterula bambusae Corner, Beih. Nova Hedwigia 33: 209 (1970).
815	Description in Corner (1970).
816	
817	Pterulicium bromeliphilum (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
818	MycoBank MB831006
819	Basionym: Pterula bromeliphila Corner, Beih. Nova Hedwigia 33: 210 (1970).
820	Description in Corner (1970).
821	
822	Pterulicium brunneosetosum (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
823	MycoBank MB831007
824	Basionym: Pterula brunneosetosa Corner, Ann. Bot., Lond., n.s. 16: 566 (1952)
825	Descriptions in Corner (1952b, 1957, 1970).
826	
827	Pterulicium campoi (Speg.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
828	MycoBank MB831008
829	Basionym: Pterula campoi Speg., Bol. Acad. nac. Cienc. Córdoba 25: 29 (1921).
830	Descriptions in Corner (1970) and Spegazzini (1921).
831	
832	Pterulicium caricis-pendulae (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
833	MycoBank MB831009
834	Basionym: Pterula caricis-pendulae Corner, Beih. Nova Hedwigia 33: 211 (1970).
835	Description in Corner (1970).
836	
837	Pterulicium crassisporum (P. Roberts) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
838	MycoBank MB831010
839	Basionym: Pterula crassispora P. Roberts, Kew Bull. 54(3): 531 (1999).
840	Description in Roberts (1999).

841	
842	Pterulicium cystidiatum (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
843	MycoBank MB831011
844	Basionym: Pterula cystidiata Corner, Ann. Bot., Lond., n.s. 16: 567 (1952).
845	Description in Corner (1952b).
846	
847	Pterulicium debile (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
848	MycoBank MB831012
849	Basionym: Pterula bromeliphila Corner, Monograph of Clavaria and allied Genera, (Annals of Botany
850	Memoirs No. 1): 698 (1950).
851	Description in (Corner 1950).
852	
853	Pterulicium echo (D.J. McLaughlin & E.G. McLaughlin) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
854	MycoBank MB831013
855	Basionym: Pterula echo D.J. McLaughlin & E.G. McLaughlin, Can. J. Bot. 58: 1328 (1980).
856	Description in McLaughlin and McLaughlin (1980).
857	
858	Pterulicium epiphylloides (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
859	MycoBank MB831014
860	Basionym: Pterula epiphylloides Corner, Ann. Bot., Lond., n.s. 16: 567 (1952).
861	Description in Corner (1952b).
862	
863	Pterulicium epiphyllum (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
864	MycoBank MB831015
865	Basionym: Pterula epiphylla Corner, Monograph of Clavaria and allied Genera, (Annals of Botany Memoirs
866	No. 1): 698 (1950).
867	Description in (Corner 1950).
868	
869	Pterulicium fasciculare (Bres. & Pat.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
870	MycoBank MB831016

- 871 Basionym: Pterula fascicularis Bres. & Pat., Mycol. Writ. 1: 50 (1901).
- 872 Synonym: Deflexula fascicularis (Bres. & Pat.) Corner, Monograph of Clavaria and allied Genera, (Annals of
- 873 Botany Memoirs No. 1): 395 (1950).
- 874 Description in Corner (1950).
- 875
- 876 *Pterulicium fluminense* (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 877 MycoBank MB831017
- 878 Basionym: Pterula fluminensis Corner, Ann. Bot., Lond., n.s. 16: 567 (1952).
- 879 Descriptions in Corner (1952b, 1970).
- 880
- 881 *Pterulicium gordium* (Speg.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 882 MycoBank MB831018
- 883 Basionym: Clavaria gordius Speg., Anal. Soc. cient. argent. 17(2): 83 (1884).
- 884 Synonym: Pterula gordius (Speg.) Corner, Monograph of Clavaria and allied Genera, (Annals of Botany
- 885 Memoirs No. 1): 513 (1950).
- 886 Description in (Corner 1950).
- 887
- 888 Pterulicium gordium var. macrosporum (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 889 MycoBank MB831019
- 890 Basionym: Pterula gordius var. macrospora Corner, Proc. Linn. Soc. London 178: 100 (1967).
- 891 Description in Corner (1967).
- 892
- 893 Pterulicium gracile (Desm. & Berk.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 894 MycoBank MB831020
- Basionym: Typhula gracilis Desm. & Berk., Ann. nat. Hist., Mag. Zool. Bot. Geol. 1: 202 (1838).
- 896 Synonyms: Pistillaria gracilis (Desm. & Berk.) Pat., Tab. analyt. Fung. (Paris)(6): 30 (1886). Hirsutella
- gracilis (Desm. & Berk.) Pat., Revue mycol., Toulouse 14(no. 54): 69 (1892). Pterula gracilis (Desm. & Berk.)
- 898 Corner, Monograph of Clavaria and allied Genera, (Annals of Botany Memoirs No. 1): 514 (1950). Clavaria
- aculina Quél., C. r. Assoc. Franç. Avancem. Sci. 9: 670 (1881) [1880]. Pistillaria aculina (Quél.) Pat., Tab.
- 900 analyt. Fung. (Paris)(6): 29 (fig. 570) (1886). Ceratella aculina (Quél.) Pat., Hyménomyc. Eur. (Paris): 157

- 901 (1887). Cnazonaria aculina (Quél.) Donk, Meded. Bot. Mus. Herb. Rijks Univ. Utrecht 9: 97 (1933). Pistillaria
- 902 aculina subsp. juncicola Bourdot & Galzin, Hyménomyc. de France (Sceaux): 138 (1928) [1927]. Pistillaria
- 903 aculina subsp. graminicola Bourdot & Galzin, Hyménomyc. de France (Sceaux): 139 (1928) [1927]. Pistillaria
- 904 aculina subsp. acicula Bourdot & Galzin, Hyménomyc. de France (Sceaux): 139 (1928) [1927]. Typhula
- 905 brunaudii Quél., C. r. Assoc. Franç. Avancem. Sci. 13: 283 (1885) [1884]. Clavaria brunaudii (Quél.) Sacc.,
- 906 Syll. fung. (Abellini) 6: 730 (1888). Ceratella ferryi Quél. & Fautrey, Revue mycol., Toulouse 15(no. 57): 15
- 907 (1893). Pistillaria ferryi (Quél. & Fautrey) Sacc., Syll. fung. (Abellini) 11: 141 (1895). Pistillaria ferryi subsp.
- 908 tremula Sacc., Syll. fung. (Abellini) 17: 202 (1905). Mucronella rickii Oudem., Ned. kruidk. Archf, 3 sér. 2(3):
- 909 667 (1902). Cnazonaria rickii (Oudem.) Donk, Meded. Bot. Mus. Herb. Rijks Univ. Utrecht 9: 99 (1933).
- 910 Ceratellopsis rickii (Oudem.) Corner, Monograph of Clavaria and allied Genera, (Annals of Botany Memoirs
- 911 No. 1): 205 (1950).
- 912 Description in (Corner 1950).
- 913
- 914 *Pterulicium incarnatum* (Pat.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 915 MycoBank MB831021
- 916 Basionym: Pterula incarnata Pat., in Patouillard & Lagerheim, Bull. Herb. Boissier 3(1): 58 (1895)
- **917** Description in (Corner 1950, 1970)
- 918
- 919 *Pterulicium intermedium* (Dogma) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 920 MycoBank MB831022
- 921 Basionym: Pterula intermedia Dogma, Philipp. Agric. 49: 852 (1966)
- 922 Descriptions in (Corner 1970) and Dogma (1966)
- 923
- 924 Pterulicium laxum (Pat.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 925 MycoBank MB831023
- 926 Basionym: Pterula laxa Pat., Bull. Soc. mycol. Fr. 18(2): 175 (1902).
- 927 Description in (Corner 1950, 1970) Pat. 1902
- 928
- 929 Pterulicium lilaceobrunneum (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov. (Fig. 1K)
- 930 MycoBank MB831024

- 931 Basionym: Deflexula lilaceobrunnea Corner, Monograph of Clavaria and allied Genera, (Annals of Botany
- 932 Memoirs No. 1): 695 (1950).
- 933 Description in Corner (1952a).
- 934
- 935 *Pterulicium lilaceobrunneum* var. *evolutius* (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 936 MycoBank MB831025
- 937 Basionym: Deflexula lilaceobrunnea var. evolutior Corner, Beih. Nova Hedwigia 33: 197 (1970).
- 938 Description in Corner (1970).
- 939
- 940 *Pterulicium longisporum* (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 941 MycoBank MB831026
- 942 Basionym: Pterula longispora Corner, Ann. Bot., Lond., n.s. 16: 567 (1952)
- 943 Description in (Corner 1952b).
- 944
- 945 *Pterulicium macrosporum* (Pat.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 946 MycoBank MB831027
- 947 Basionym: Ceratella macrospora Pat., in Patouillard & Lagerheim, Bull. Soc. mycol. Fr. 8(3): 119 (1892).
- 948 Synonyms: Pistillaria macrospora (Pat.) Sacc., Syll. fung. (Abellini) 11: 142 (1895). Pterula macrospora (Pat.)
- 949 Corner, Monograph of Clavaria and allied Genera, (Annals of Botany Memoirs No. 1): 518 (1950).
- 950 Description in (Corner 1950, 1970). Pat 1892
- 951
- 952 Pterulicium majus (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 953 MycoBank MB831028
- 954 Basionym: Deflexula major Corner, Ann. Bot., Lond., n.s. 16: 277 (1952).
- 955 Description in Corner (1952a).
- 956
- 957 Pterulicium mangiforme (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 958 MycoBank MB831029
- 959 Basionym: Deflexula mangiformis Corner, Ann. Bot., Lond., n.s. 16: 278 (1952).
- 960 Description in Corner (1952a).

961	
962	Pterulicium microsporum (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
963	MycoBank MB831030
964	Basionym: Deflexula microspora Corner, Bull. Jard. bot. État Brux. 36: 264 (1966).
965	Description in Corner (1966).
966	
967	Pterulicium nanum (Pat.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
968	MycoBank MB831031
969	Basionym: Pterula nana Pat., Bull. Soc. mycol. Fr. 18(2): 175 (1902).
970	Synonyms: Deflexula nana (Pat.) Corner, Bull. Jard. bot. État Brux. 36: 264 (1966). Pterula vanderystii Henn.
971	[as 'vanderysti'], Ann. Mus. Congo Belge, Bot., Sér. 5 2(2): 96 (1907). Deflexula vanderystii (Henn.) Corner,
972	Ann. Bot., Lond., n.s. 16: 284 (1952).
973	Description in Corner (1966).
974	
975	Pterulicium naviculum (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
976	MycoBank MB831032
977	Basionym: Pterula navicula Corner, Ann. Bot., Lond., n.s. 16: 568 (1952).
978	Description in (Corner 1952b).
979	
980	Pterulicium oryzae (Remsberg) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
981	MycoBank MB831033
982	Basionym: Pistillaria oryzae Remsberg, Mycologia 32(5): 668 (1940).
983	Synonym: Pterula oryzae (Remsberg) Corner, Monograph of Clavaria and allied Genera, (Annals of Botany
984	Memoirs No. 1): 519 (1950).
985	Descriptions in (Corner 1950) and Remsberg (1940)
986	
987	Pterulicium phyllodicola (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
988	MycoBank MB831034
989	Basionym: Pterula phyllodicola Corner, Beih. Nova Hedwigia 33: 220 (1970).
990	Description in Corner (1970)

991	
992	Pterulicium phyllophilum (McAlpine) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
993	MycoBank MB831035
994	Basionym: Clavaria phyllophila McAlpine, Agric. Gaz. N.S.W., Sydney 7: 86 (1896).
995	Synonym: Pterula phyllophila (McAlpine) Corner, Monograph of Clavaria and allied Genera, (Annals of
996	Botany Memoirs No. 1): 520 (1950).
997	Description in (Corner 1950).
998	
999	Pterulicium rigidum (Donk) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
1000	MycoBank MB831036
1001	Basionym: Pterula rigida Donk, Monograph of Clavaria and allied Genera, (Annals of Botany Memoirs No.
1002	1): 698 (1950).
1003	Description in Corner (1950)
1004	
1005	Pterulicium sclerotiicola (Berthier) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
1006	MycoBank MB831037
1007	Basionym: Pterula sclerotiicola Berthier, Bull. trimest. Soc. mycol. Fr. 83: 731 (1968) [1967]
1008	Description in Corner (1970)
1009	
1010	Pterulicium secundirameum (Lév) Leal-Dutra, Dentinger, G.W. Griff., comb. nov. (Fig. 11)
1011	MycoBank MB831038
1012	Basionym: Clavaria secundiramea Lév., Annls Sci. Nat., Bot., sér. 3 2: 216 (1844).
1013	Synonyms: Pterula secundiramea (Lév.) Speg., Bol. Acad. nac. Cienc. Córdoba 11(4): 466 (1889). Deflexula
1014	secundiramea (Lév.) Corner, Beih. Nova Hedwigia 33: 199 (1970). Pterula palmicola Corner, Ann. Bot., Lond.,
1015	n.s. 16 : 568 (1952) syn. nov.
1016	Descriptions in Corner (1950, 1952b).
1017	Notes
1018	The synonymisation of <i>Pm. palmicola</i> (samples M50 and M83) in <i>Pm. secundirameum</i> (samples M70 and

1019 genome5) is based on our phylogenetic results and morphological comparisons. The only morphological

- 1020 difference between the two species is the shape of the basidiome, however, the other characters are similar and
- 1021 both species are nested together within our tree (Additional file 2).
- 1022
- 1023 Pterulicium sprucei (Mont.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov. (Fig. 1L)
- 1024 MycoBank MB831039
- 1025 Basionym: Hydnum sprucei Mont., Syll. gen. sp. crypt. (Paris): 173 (1856).
- 1026 Synonyms: Pterula sprucei (Mont.) Lloyd, Mycol. Writ. 5: 865 (1919). Deflexula sprucei (Mont.) Maas Geest.,
- 1027 Persoonia 3(2): 179 (1964). Pterula pennata Henn., Hedwigia 43(3): 174 (1904). Deflexula pennata (Henn.)
- 1028 Corner, Ann. Bot., Lond., n.s. 16: 278 (1952).
- 1029 Description in Corner (1952a) as *D. pennata*, Corner (1970) and Maas Geesteranus (1964).
- 1030
- 1031 Pterulicium subsimplex (Henn.) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 1032 MycoBank MB831040
- 1033 Basionym: Pterula subsimplex Henn., Hedwigia 36(4): 197 (1897).
- 1034 Synonyms: Deflexula subsimplex (Henn.) Corner, Ann. Bot., Lond., n.s. 16: 279 (1952). Pterula nivea Pat., Bull.
- 1035 Soc. mycol. Fr. 18(2): 174 (1902). Deflexula nivea (Pat.) Corner, Monograph of Clavaria and allied Genera,
- 1036 (Annals of Botany Memoirs No. 1): 398 (1950). Mucronella pacifica Kobayasi, Bot. Mag., Tokyo 53: 160
- 1037 (1939). Deflexula pacifica (Kobayasi) Corner, Monograph of Clavaria and allied Genera, (Annals of Botany
- 1038 Memoirs No. 1): 399 (1950).
- 1039 Descriptions in Corner (1952a) and Corner (1950) as D. pacifica.
- 1040
- 1041 Pterulicium subsimplex var. multifidum (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 1042 MycoBank MB831041
- 1043 Basionym: Deflexula subsimplex var. multifida Corner, Ann. Bot., Lond., n.s. 16: 282 (1952).
- 1044 Description in Corner (1952a).
- 1045
- 1046 *Pterulicium subtyphuloides* (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- **1047** MycoBank MB831042
- 1048 Basionym: Pterula subtyphuloides Corner, Monograph of Clavaria and allied Genera, (Annals of Botany
- 1049 Memoirs No. 1): 698 (1950).

- 1050 Description in Corner (1950).
- 1051
- 1052 *Pterulicium sulcisporum* (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 1053 MycoBank MB831043
- 1054 Basionym: Deflexula sulcispora Corner, Ann. Bot., Lond., n.s. 16: 283 (1952).
- 1055 Description in Corner (1952a).
- 1056
- 1057 *Pterulicium tenuissimum* (M.A. Curtis) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- **1058** MycoBank MB831044
- 1059 Basionym: Typhula tenuissima M.A. Curtis, Am. Journ. Art. Scienc. 6: 351 (1848).
- 1060 Synonym: Pterula tenuissima (M.A. Curtis) Corner, Monograph of Clavaria and allied Genera, (Annals of
- 1061 Botany Memoirs No. 1): 524 (1950).
- 1062 Description in Corner (1950).
- 1063
- 1064 *Pterulicium ulmi* (Peck) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- 1065 MycoBank MB831045
- 1066 Basionym: Mucronella ulmi Peck, Ann. Rep. Reg. N.Y. St. Mus. 54: 154 (1902) [1901].
- 1067 Synonym: Deflexula ulmi (Peck) Corner, Monograph of Clavaria and allied Genera, (Annals of Botany
- 1068 Memoirs No. 1): 400 (1950).
- 1069 Description in Corner (1950, 1970).
- 1070
- 1071 *Pterulicium velutipes* (Corner) Leal-Dutra, Dentinger, G.W. Griff., comb. nov.
- **1072** MycoBank MB831046
- 1073 Basionym: Pterula velutipes Corner, Ann. Bot., Lond., n.s. 16: 569 (1952).
- 1074 Description in Corner (1952b).
- 1075
- 1076
- 1077

1078 Captions for Figures and Additional files:

1079

080	Fig. 1 Diversi	ity of coralloid ge	enera of Pterulaceae.	A-F: Myrmeco	pterula (A: A	pterostigma s	o. nest with M.
-----	----------------	---------------------	-----------------------	--------------	---------------	---------------	-----------------

- 1081 velohortorum with Myrmecopterula sp. SAPV1 growing atop of the garden veil; B, C, F: Myrmecopterula sp.
- 1082 D: Apterostigma sp. nest with M. nudihortorum; E: M. moniliformis). G-H: Pterula (G: P. cf. loretensis; H: P.
- 1083 cf. verticillata). I-L: Pterulicium (I: P. secundirameum; J: P. aff fluminensis; K: P. lilaceobrunneum. L: P.
- 1084 sprucei). M-O: Phaeopterula (M: Phaeopterula sp.; N: P. stipata; O: P. juruensis). Close observation on photos
- 1085 B and C reveal the basidiomes growing from granular substrate resembling substrate of ants' fungus garden.
- 1086 Photos D and G kindly provided by Ted Schultz and Michael Wherley respectively. Scale bars: 1 cm.
- 1087
- 1088 Fig. 2 Corticioid genera of Pterulaceae (A-C) and Radulomycetaceae (D-F). A: Coronicium alboglaucum. B-C:
- 1089 Merulicium fusisporum. D: Radulomyces confluens. E: Radulotubus resupinatus. F: Aphanobasidium cf.
- 1090 pseudotsugae. Photos kindly provided by L. Zíbarová (A and F), S. Blaser (B and C), D.J. Harries (D) and C.L.
- 1091 Zhao (E). Scale bars: 1 cm.
- 1092
- 1093 Fig. 3 Maximum-likelihood tree of Pterulaceae and Radulomycetaceae. Support values on the branches are
- 1094 UFBoot/BPP and showed only for UFBoot \geq 70 and BPP \geq 0.70 and branch length \geq 0.003 substitutions per site.
- 1095 Details for the complete tree can be found in Additional file 2 and TreeBase (ID: 24428). Scale bar: nucleotide
- substitutions per site.
- 1097
- 1098
- 1099 Additional file 1: Full details of all samples studied here (simplified in Table2; as excel file)
- 1100
- 1101 Additional file 2: Additional phylogenetic reconstructions, including detailed analyses relating to Figure 3
- 1102
- 1103 Additional file 3: Additional images of coralloid Pterulaceae and micrographs of Myrmecopterula

1104 velohortorum.

Taxon (former genus in brackets)	DNA sample ID	Herbarium voucher	Country	Region	ITS	LSU	RPB2
Coronicium alboglaucum	K15	K(M) 170129	UK	England	MK953245	_	_
Coronicium gemmiferum	K13	K(M) 133847	UK	England	MK953246	_	_
Coronicium gemmiferum	K14	K(M) 68853	UK	England	MK953247	MK953403	_
Merulicium fusisporum	K16	K(M) 45181	UK	England	MK953248	_	_
Myrmecopterula (Pterula) moniliformis	F92 Consensus 1	INPA 280127	Brazil	Amazonas	MK953251	MK953405	MK944362
Myrmecopterula (Pterula) moniliformis	M39	FLOR 56397	Brazil	Paraíba	MK953253	MK953406	_
Myrmecopterula (Pterula) moniliformis	MCA	not deposited	_	_	MK953239	MK953392	MK944363
Myrmecopterula (Pterula) nudihortorum	F144 Consensus 1	not deposited	Brazil	Amazonas	MK953257	MK953393	MK944364
Myrmecopterula (Pterula) nudihortorum	KM190547_VC1	K(M) 190547	Panama	_	MK953240	MK953394	MK944365
Myrmecopterula (Pterula) sp.	F103	HSTM-Fungos 9931	Brazil	Pará	MK953260	MK953407	MK944325
Myrmecopterula (Pterula) sp.	F138	FLOR 63724	Brazil	Paraná	MK953262	MK953409	_
Myrmecopterula (Pterula) sp.	F40	FLOR 63725	Brazil	Paraná	MK953264	MK953410	MK944327
Myrmecopterula (Pterula) sp.	F82 Consensus 1	not deposited	Brazil	Amazonas	MK953269	MK953412	MK944366
Myrmecopterula (Pterula) sp.	F94	HSTM-Fungos 9928	Brazil	Pará	MK953274	MK953414	MK944329
Myrmecopterula (Pterula) sp.	F99	HSTM-Fungos 9930	Brazil	Pará	MK953276	MK953415	MK944330
Myrmecopterula (Pterula) sp.	M111	FLOR 56451	Brazil	Santa Catarina	MK953277	_	_
Myrmecopterula (Pterula) sp.	M40 Consensus 1	FLOR 56398; K(M)	Brazil	Paraíba	MK953280	MK953416	MK944367

Table 2: Details of new sequences generated in this study used in the tree of Fig. 3. (a full version is presented as excel file in Additional file 1).

Myrmecopterula (Pterula) sp.	M69	FLOR 56418	Brazil	Rio Grande do Sul	MK953281	MK953395	MK944368
Myrmecopterula (Pterula) velohortorum	F114	not deposited	Brazil	Espírito Santo	MK953282	MK953396	MK944369
Myrmecopterula (Pterula) velohortorum	F117	not deposited	Brazil	Santa Catarina	MK953283	_	_
Myrmecopterula (Pterula) velohortorum	F135	not deposited	Brazil	Pará	MK953285	_	_
Myrmecopterula (Pterula) velohortorum	F136	not deposited	Brazil	Pará	MK953286	_	_
Myrmecopterula (Pterula) velohortorum	F137	not deposited	Brazil	Pará	MK953287	_	-
Myrmecopterula (Pterula) velohortorum	F140 Clone 1	not deposited	Brazil	Amazonas	MK953288	_	-
Myrmecopterula (Pterula) velohortorum	F152	not deposited	Brazil	Santa Catarina	MK953290	_	_
Myrmecopterula (Pterula) velohortorum	KM190546	K(M) 190546	Panama	_	MK953242	MK953397	MK944370
Myrmecopterula (Pterula) velohortorum	RC12 Consensus 1	not deposited	Brazil	Amazonas	MK953291	_	_
Phaeopterula (Pterula) anomala	KM38182	K(M) 38182	Cameroon	_	MK953295	_	_
Phaeopterula (Pterula) cf. juruensis	F45 Consensus 1	FLOR 63732	Brazil	Paraná	MK953296	MK953417	MK944331
Phaeopterula (Pterula) cf. juruensis	F79 Consensus 1	FLOR 63717	Brazil	Paraná	MK953299	MK953418	_
Phaeopterula (Pterula) cf. stipata	F66 Consensus 1	HSTM-Fungos 9938	Brazil	Pará	MK953301	_	_
Phaeopterula (Pterula) cf. stipata	F98 Consensus 1	HSTM-Fungos 9929	Brazil	Pará	MK953302	_	_
Phaeopterula (Pterula) cf. taxiformis	M4	FLOR 56367	Brazil	Santa Catarina	MK953303	MK953419	_
Phaeopterula (Pterula) juruensis	F41	FLOR 63728	Brazil	Paraná	MK953304	MK953420	MK944332
Phaeopterula (Pterula) juruensis	M21	FLOR 56381	Brazil	Minas Gerais	MK953305	_	-

Phaeopterula (Pterula) juruensis	M36	FLOR 56396	Brazil	Santa Catarina	MK953307	MK953422	_
Phaeopterula (Pterula) sp.	F63 Consensus 1	HSTM-Fungos 9935	Brazil	Pará	MK953316	MK953425	MK944335
Phaeopterula (Pterula) sp.	F78 Clone 1	FLOR 63716	Brazil	Paraná	MK953321	MK953428	MK944338
Phaeopterula (Pterula) sp.	KM135954	K(M) 135954	Belize	_	MK953326	_	_
Phaeopterula (Pterula) sp.	KM137475	K(M) 137475	Puerto Rico	_	MK953327	_	_
Phaeopterula (Pterula) stipata	M15 Consensus 1	FLOR 56375	Brazil	Minas Gerais	MK953330	MK953431	_
Phaeopterula sp. (Allantula?)	F7 Consensus 1	HSTM-Fungos 9944	Brazil	Pará	MK953331	MK953432	MK944339
Pterula cf plumosa	KM167176	K(M) 167176	Ethiopia	_	MK953333	_	_
Pterula cf. loretensis	RLC273	K(M) 205553	Ecuador	Imbabura	MK953334	MK953398	MK944371
Pterula multifida	KM195746	K(M) 195746	UK	England	MK953335	MK953399	MK944372
Pterula sp.	F42	FLOR 63729	Brazil	Paraná	MK953336	MK953433	_
Pterula sp.	F48	FLOR 63735	Brazil	Paraná	_	MK953434	-
Pterula sp.	M112 Consensus 1	FLOR 56452	Brazil	Santa Catarina	MK953337	MK953435	MK944340
Pterula sp.	M153	FLOR 57849	Brazil	Santa Catarina	MK953339	MK953436	MK944341
Pterula sp.	M54	FLOR 56407	Brazil	Santa Catarina	MK953341	MK953438	-
Pterula sp.	M71 Consensus 1	FLOR 56424	Brazil	Santa Catarina	MK953342	MK953439	MK944342
Pterula sp.	KM141379	K(M) 141379	Puerto Rico	_	MK953344	_	_
Pterula sp.	KM167221	K(M) 167221	Australia	Queensland	MK953345	_	-
Pterula subulata	KM145950	K(M) 145950	Italy	_	MK953346	_	_

Pterula subulata	KM167186	K(M) 167186	Sweden	_	MK953347	_	_
Pterula verticillata	KM27119	K(M) 27119	Brunei	_	MK953348	_	_
Pterulicium (Deflexula) fasciculare	KM167225	K(M) 167225	Australia	-	MK953349	_	_
Pterulicium (Deflexula) fasciculare	KM167227	K(M) 167227	Malaysia	_	MK953350	_	_
Pterulicium (Deflexula) lilaceobrunneum	M117	FLOR 56455	Brazil	Rio de Janeiro	MK953351	MK953440	MK944343
Pterulicium (Deflexula) secundirameum	BZL44	RB 575791	Brazil	Rio de Janeiro	MK953353	MK953400	MK944373
Pterulicium (Deflexula) secundirameum	M50	FLOR 56403	Brazil	Santa Catarina	MK953354	MK953442	MK944344
Pterulicium (Deflexula) sp.	KM167228	K(M) 167228	Malaysia	_	MK953357	_	_
Pterulicium (Deflexula) sp.	KM167233	K(M) 167233	Sierra Leone	_	MK953358	_	_
Pterulicium (Deflexula) sprucei	F68	HSTM-Fungos 9940	Brazil	Pará	MK953361	MK953447	MK944349
Pterulicium (Deflexula) subsimplex	KM160100	K(M) 160100	Ecuador	_	_	MK953449	_
Pterulicium (Deflexula) subsimplex	M33	FLOR 56393	Brazil	Santa Catarina	MK953363	MK953450	MK944351
Pterulicium (Pterula) brunneosetosum	M35 Consensus 1	FLOR 56395	Brazil	Santa Catarina	MK953366	MK953452	MK944353
Pterulicium (Pterula) caricispendulae	KM155784	K(M) 155784	UK	England	MK953367	_	_
Pterulicium (Pterula) sp.	F20	INPA 280129	Brazil	Amazonas	MK953370	MK953454	_
Pterulicium (Pterula) sp.	F21	INPA 280132	Brazil	Amazonas	MK953371	MK953455	MK944355
Pterulicium (Pterula) sp.	F26	not deposited	Brazil	Espírito Santo	MK953372	MK953456	MK944356
Pterulicium (Pterula) sp.	F30	not deposited	Brazil	Espírito Santo	MK953373	MK953457	MK944357
Pterulicium (Pterula) sp.	F57	HSTM-Fungos 9925	Brazil	Pará	MK953376	MK953460	MK944359

Pterulicium (Pterula) sp.	F76 Consensus 1	HSTM-Fungos 9950	Brazil	Pará	MK953382	MK953461	MK944360
Pterulicium (Pterula) sp.	M1	FLOR 56364	Brazil	Santa Catarina	MK953383	MK953462	MK944361
Pterulicium (Pterula) sp.	M6	FLOR 56369	Brazil	Santa Catarina	MK953384	MK953463	_
Pterulicium (Pterulicium) xylogenum	KM167222	K(M) 167222	Bangladesh	_	MK953387	—	—
Aphanobasidium pseudotsugae	K6	K(M) 170662	UK	England	MK953243	MK953402	_
Aphanobasidium pseudotsugae	K7	K(M) 180787	UK	Scotland	MK953244	_	_
Radulomyces confluens	KM167249	K(M) 167249	Brazil	-	MK953388	_	_
Radulomyces confluens	KM167250	K(M) 167250	Argentina	-	MK953389	_	_
Radulomyces confluens	KM181613	K(M) 181613	UK	England	MK953390	MK953401	MK944374
Radulomyces copelandii	M150	K(M) 173275	USA	_	MK953391	MK953465	_

vas not e under

