1	Online Supplementary Material
2	
3	Determinism and stochasticity in seed dispersal-successional feedbacks
4	
5	Nohemi Huanca Nuñez ¹ , Robin L. Chazdon ² , Sabrina E. Russo ¹
6	
7	
8	¹ School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA
9	² Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs,
10	Connecticut 06269-3043 USA
11	*Correspondence: E-Mail: nohemihuanca@huskers.unl.edu; telephone: 402-472-2720

12 Appendix S1: Supplemental Methods Section

13 Statistical Analysis: Constructing seed rain community matrices

14 All analyses were performed in R statistical software (R Core Development Team, 2019). We 15 constructed community matrices of the seed rain data in which each cell is the total number of all 16 seeds of each species recorded in each trap in a plot, summed over the 24 monitoring months in a 17 time period, separately for time periods 1997-1999 and 2015-2017 for a total of nine abundance community matrices. Based on the abundance matrices, we created incidence matrices 18 19 (presence/absence of species within a trap). We used these matrices for all analyses. Although the 20 seed rain in the mature forest was only quantified for time period 2015-2017, we assumed that the 21 composition of the seed rain of the mature forest would be similar in 1997-1999 since no major 22 disturbances or changes in forest structure have occurred to the mature forest plot. We therefore 23 compared data from the successional plots in both time periods with the mature forest data 24 collected in 2015-2017.

Using only successional plots at each time period (1997-1999 and 2015-2017), we determined species present during the 12 consecutive months at each time period. Also, using a generalized negative binomial model, where number of seeds was the response variable, trap and time periods were fixed factors and plot, month and species as random factors, we calculated which time period had higher species seed abundance by m². A similar model where plot and time period were fixed factors and, trap, month and species were random effects, calculated the species with highest and lowest abundance across all the successional plot.

Ν	Code	Genus	Species	Family
1	Abemos	Abelmoschus	moschatus	Malvaceae
2	Abupan	Abuta	panamensis	Menispermaceae
3	Acahay	Acacia	hayesii	Leguminosae
4	Acaten	Acacia	tenuifolia	Leguminosae
5	Aegela	Aegiphila	elata	Lamiaceae
6	Albsp	Albizia	sp	Leguminosae
7	Alcflo	Alchorneopsis	floribunda	Euphorbiaceae
8	Allplu	Allomarkgrafia	plumeriiflora	Apocynaceae
9	Anacra	Anaxagorea	crassipetala	Annonaceae
10	Annpap	Annona	papilionella	Annonaceae
11	Annsp	Annona	sp	Annonaceae
12	Anoret	Anomospermum	reticulatum	Menispermaceae
13	Apemem	Apeiba	membranacea	Malvaceae
14	Ardfim	Ardisia	fimbrillifera	Primulaceae
15	Ardnig	Ardisia	nigropunctata	Primulaceae
16	Arispr	Aristolochia	sprucei	Aristolochiaceae
17	Arrflo	Arrabidea	florida	Bignoniaceae
18	Astcon	Astrocaryum	confertum	Arecaceae
19	Bachon	Bactris	hondurensis	Arecaceae
20	Balele	Balizia	elegans	Leguminosae
21	Bighya	Bignonia	hyacinthina	Bignoniaceae
22	Brolac	Brosimum	lactescens	Moraceae
23	Bunoce	Bunchonsia	ocellata	Malpighiaceae
24	Byrart	Byrsonima	arthropoda	Malpighiaceae
25	Byrcra	Byrsonima	crassifolia	Malpighiaceae
26	Calbra	Calophyllum	brasiliense	Clusiaceae
27	Casarb	Casearia	arborea	Salicaceae
28	Cedodo	Cedrela	odorata	Meliaceae
29	Cesspa	Cespedesia	spathulata	Ochnaceae
30	Chrnic	Chrysochlamys	nicaraguensis	Clusiaceae
31	Cismic	Cissus	microcarpa	Vitaceae
32	Cispse	Cissus	pseudocyoides	Vitaceae
33	Cissp	Cissus	sp	Vitaceae
34	Cistro	Cissampelos	tropaeolifolia	Menispermaceae
35	Cisver	Cissus	verticillata	Vitaceae
36	Commex	Compsoneura	mexicana	Myristicaceae
37	Conple	Conceveiba	pleiostemona	Euphorbiaceae
38	Corbic	Cordia	bicolor	Boraginaceae
39	Crywar	Cryosophila	warscewiczii	Arecaceae
40	Cucsp	Cucurbitaceae	sp	Cucurbitaceae
41	Cupgla	Cupania	glabra	Sapindaceae
42	Cupliv	Cupania	livida	Sapindaceae
43	Davkun	Davila	kunthii	Dilleniaceae
44	Davnit	Davila	nitida	Dilleniaceae
45	Denarb	Dendropanax	arboreus	Araliaceae
46	Dicamp	Dicranostyles	ampla	Convolvulaceae
47	Dilsp	Dillacarapacea	sp	Dillacarapaceae

32	Table S1. List of codes	, scientific names,	and family for all	species in this	study.

48	Dolmul	Doliocarpus	multiflorus	Dilleniaceae
49	Dugsp	Duguetia	sp	Annonaceae
50	Eugsar	Eugenia	sarapiquensis	Myrtaceae
51	Eugsp	Eugenia	sp	Myrtaceae
52	Eutole	Euterpe	oleracea	Arecaceae
53	Eutpre	Euterpe	precatoria	Arecaceae
54	Fargla	Faramea	glandulosa	Rubiaceae
55	Farsp	Faramea	sp	Rubiaceae
56	Frisch	Fridericia	schumanniana	Bignoniaceae
57	Galsp	Gallesia	sp	Lauraceae
58	Geocon	Geonoma	congesta	Arecaceae
59	Goemei	Goethalsia	meiantha	Malvaceae
60	Goulup	Gouania	lupuloides	Rhamnaceae
61	Goupol	Gouania	polvgama	Rhamnaceae
62	Guaaer	Guatteria	aeruginosa	Annonaceae
63	Guaamp	Guatteria	amplifolia	Annonaceae
64	Guadio	Guatteria	diospyroides	Annonaceae
65	Guagui	Guarea	guidonia	Meliaceae
66	Guarec	Guatteria	recurvisepala	Annonaceae
67	Hamapp	Натреа	appendiculata	Malvaceae
68	Heisca	Heisteria	scandens	Olacaceae
69	Helapp	Heliocarpus	appendiculatus	Malvaceae
70	Herdid	Hernandia	didvmantha	Hernandiaceae
71	Hetsp	Heteropteris	sp	Malpighiaceae
72	Ilesku	Ilex	skutchii	Aquifoliaceae
73	Ingalb	Inga	alba	Leguminosae
74	Ingexa	Inga	exalata	Leguminosae
75	Ingoer	Inga	oerstediana	Leguminosae
76	Ingpun	Inga	punctata	Leguminosae
77	Ingsp	Inga	sp	Leguminosae
78	Ingthi	Inga	thibaudiana	Leguminosae
79	Ingumb	Inga	umbellifera	Leguminosae
80	Iridel	Iriartea	deltoidea	Arecaceae
81	Jaccop	Jacaranda	copaia	Bignoniaceae
82	Jubwil	Jubelina	wilburii	Malpighiaceae
83	Laepro	Laetia	procera	Salicaceae
84	Licmis	Licaria	misantlae	Lauraceae
85	Lozpit	Lozania	pittieri	Lacistemataceae
86	Mabocc	Mabea	occidentalis	Euphorbiaceae
87	Macsen	Machaerium	senmani	Leguminosae
88	Manhir	Mandevilla	hirsuta	Apocynaceae
89	Marnic	Maripa	nicaraguensis	Convolvulaceae
90	Mensp	Mendoncia	sp	Acanthaceae
91	Necmem	Nectandra	membranacea	Lauraceae
92	Ococer	Ocotea	cernua	Lauraceae
93	Ormsub	Ormosia	subsimplex	Leguminosae
94	Paslob	Passiflora	lobata	Passifloraceae
95	Paugra	Paullinia	granatensis	Sapindaceae
96	Paugrn	Paullinia	grandifolia	Sapindaceae
97	Pauing	Paullinia	ingifolia	Sapindaceae
98	Pauobo	Paullinia	obovata	Sapindaceae

99	Pausp	Paullinia	sp	Sapindaceae
100	Penmac	Pentaclethra	macroloba	Leguminosae
101	Phagui	Phanera	guianensis	Leguminosae
102	Phopul	Pholidostachys	pulchra	Arecaceae
103	Pincor	Pinzona	coriacea	Dilleniaceae
104	Pippoe	Piptocarpha	poeppigiana	Compositae
105	Plusti	Plukenetia	stipellata	Euphorbiaceae
106	Posgra	Posoqueria	grandiflora	Rubiaceae
107	Poubic	Pourouma	bicolor	Urticaceae
108	Poudur	Pouteria	durlandii	Sapotaceae
109	Poumin	Pourouma	minor	Urticaceae
110	Procos	Protium	costaricense	Burseraceae
111	Propan	Protium	panamense	Burseraceae
112	Propit	Protium	pittieri	Burseraceae
113	Prorav	Protium	ravenii	Burseraceae
114	Psybra	Psychotria	brachiata	Rubiaceae
115	Psyela	Psychotria	elata	Rubiaceae
116	Psymar	Psychotria	marginata	Rubiaceae
117	Psvoff	Psvchotria	officinalis	Rubiaceae
118	Psypan	Psychotria	panamensis	Rubiaceae
119	Psyrac	Psychotria	racemosa	Rubjaceae
120	Psysue	Psychotria	suerrensis	Rubiaceae
121	Pteroh	Pterocarpus	rohrii	Leguminosae
122	Ouaoch	Ouararibea	ochrocalyx	Malvaceae
123	Ransp	Randia	SD SD	Rubjaceae
124	Reisp	Reinhardtia	sp	Arecaceae
125	Rhokun	Rhodostemonodaphne	kunthiana	Lauraceae
126	Rhyery	Rhvnchosia	ervthrinoides	Leguminosae
127	Ricdre	Richeria	dressleri	Phyllanthaceae
128	Rindef	Rinorea	deflexiflora	Violaceae
129	Rolpit	Rollinia	pittieri	Annonaceae
130	Rolsp	Rollinia	sp	Annonaceae
131	Ryaspe	Ryania	speciosa	Salicaceae
132	Sensp	Senegalia	sp	Leguminosae
133	Sergon	Serjania	goniocarpa	Sapindaceae
134	Serpyr	Serjania	pyramidata	Sapindaceae
135	Sersp	Serjania	sp	Sapindaceae
136	Simama	Simarouba	amara	Simaroubaceae
137	Sipthe	Siparuna	thecaphora	Siparunaceae
138	Smidom	Smilax	domingensis	Smilacaceae
139	Smimol	Smilax	mollis	Smilacaceae
140	Smipur	Smilax	purhampuy	Smilacaceae
141	Smisp	Smilax	sp	Smilacaceae
142	Socexo	Socratea	exorrhiza	Arecaceae
143	Solsp	Solanum	sp	Solanaceae
144	Spasp	Spachea	sp	Malpighiaceae
145	Stesp	Stemmadenia	sp	Apocynaceae
146	Strmic	Stryphodendron	microstachyum	Leguminosae
147	Stylin	Stygmaphyllum	lindenianum	Malpighiaceae
148	Swacos	Swartzia	costaricensis	Leguminosae
149	Taccos	Tachigali	costaricensis	Leguminosae

150	Tanpyr	Tanaecium	pyramidatum	Bignoniaceae
151	Tapgui	Tapirira	guianensis	Anacardiaceae
152	Terama	Terminalia	amazonia	Combretaceae
153	Tethyd	Tetracera	hydrophila	Dilleniaceae
154	Tetpan	Tetragastris	panamensis	Burseraceae
155	Thitom	Thinouia	tomocarpa	Sapindaceae
156	Triles	Trichospermum	lessertianum	Malvaceae
157	Trimex	Trichospermum	mexicanum	Malvaceae
158	Trisep	Trichilia	septentrionalis	Meliaceae
159	Troinv	Trophis	involucrata	Moraceae
160	Trorac	Trophis	racemosa	Moraceae
161	Unopit	Unonopsis	pittieri	Annonaceae
162	Unosp	Unonopsis	sp	Annonaceae
163	Virkos	Virola	koschnyi	Myristicaceae
164	Virseb	Virola	sebifera	Myristicaceae
165	Virsp	Virola	sp	Myristicaceae
166	Visbac	Vismia	baccifera	Hypericaceae
167	Visbil	Vismia	billbergiana	Hypericaceae
168	Vitcoo	Vitex	cooperi	Lamiaceae
169	Vocfer	Vochysia	ferruginea	Vochysiaceae
170	Vocgua	Vochysia	guatemalensis	Vochysiaceae
171	Vouano	Vouarana	anomala	Sapindaceae
172	Welreg	Welfia	regia	Arecaceae
173	Xylboc	Xylopia	bocatorena	Annonaceae
174	Xylser	Xylopia	sericea	Annonaceae
175	Xylsei	Xylopia	sericophylla	Annonaceae
176	Xylsp	Xylosma	sp	Salicaceae
177	Zanekm	Zanthoxylum	ekmanii	Rutaceae
178	Zansp	Zanthoxylum	sp	Rutaceae

34 Table S2. Comparisons of species composition of the seed rain across four successional and mature forest plots over two time periods in Sarapiquí, Costa Rica. Summary statistics are for post-35 36 hoc tests after a significant pMANOVA test between successional and mature forests at each time 37 period (1997-1999 and 2015-2017), between successional forests at each of the two time periods, 38 and within successional forests across the two time periods, based on Holm-Bonferroni pairwise 39 comparisons. Successional forests plots were sampled over two time periods; time period 1, in 40 1997-1999 (A1-D1 forest plots) and time period 2 in 2015-2017 (A2-D2 forest plots), and the mature forest (M) was sampled only in 2015-2017. All the pairs of forest plots statistically different 41 42 from each other, after adjustment for multiple comparisons, are in bold under the *p adj* column.

Successional vs. Mature Forest in 1997-1999					
Plots	F	р	p adj		
A1 and M	10.27	0.001	0.036		
B1 and M	11.68	0.001	0.036		
C1 and M	10.98	0.001	0.036		
D1 and M	10.55	0.001	0.036		
Succe	ssional vs. Ma	ture Forest in	2015-2017		
Plots	F	р	p adj		
B2 and M	3.08	0.002	0.036		
C2 and M	2.75	0.009	0.039		
D2 and M	2.57	0.019	0.041		
A2 and M	9.64	0.001	0.036		
Acr	oss succession	al forests in 19	97-1999		
Plots	F	р	p adj		
A1 and B1	5.56	0.002	0.039		
B1 and C1	5.28	0.001	0.036		
B1 and D1	3.96	0.002	0.038		
C1 and D1	4.12	0.001	0.036		
Across successional forests in 2015-2017					
Plots	F	р	p adj		
A2 and B2	7.54	0.001	0.036		

B2 and C2	2.86	0.004	0.037
B2 and D2	2.18	0.003	0.036
C2 and D2	2.18	0.052	0.067
Within success	sional forests	between 1997-1	1999 vs. 2015-2017
Plot	F	р	p adj
A1 and A2	9.88	0.001	0.036
B1 and B2	9.05	0.001	0.036
C1 and C2	3.24	0.024	0.044

46 Table S3. Percentage and number of observed and shared species present in the seed rain in forests 47 of different successional ages compared with mature forest in Sarapiquí, Costa Rica. For forest 48 successional age, A1, B1, C1, D1 and A2, B2, C2, D2 represent the 1997-1999 and 2015-2017 49 time periods, respectively. Values inside parenthesis reflect the age of the successional forest at 50 1997 and 2017. Total no. species is the number of species present in the seed rain. Unique species No. (%) is the number and percentage of species respectively that are unique in the seed rain. All 51 52 species No. (%) is the total number and percentage of species respectively which are present in the 53 seed rain. Shared species No. (%) is the total number and percentage of species respectively which 54 are present in both the successional and the mature forest. All percentages are calculated based on 55 the total number of species.

Forest	Total no.	Successional forests	Matu	re Forest	Shared
successional age	species	Unique species No. (%)	All species No. (%)	Unique species No. (%)	species No. (%)
A1 (12)	86	35 (41%)	51 (59%)	35 (41%)	16 (18%)
B1 (15)	90	39 (43%)	51 (57%)	42 (47%)	9 (10%)
C1 (20)	88	37 (42%)	51 (58%)	36 (41%)	15 (17%)
D1 (25)	87	36 (41%)	51 (59%)	38 (44%)	13 (15%)
A2 (32)	70	19 (27%)	51 (73%)	23 (33%)	28 (40%)
B2 (35)	71	20 (28%)	51 (72%)	39 (55%)	12 (17%)
C2 (40)	69	18 (26%)	51 (74%)	31 (45%)	20 (29%)
D2 (45)	67	16 (24%)	51 (76%)	34 (51%)	17 (25%)

Figure S1. Map of the study region in Sarapiquí, Costa Rica, showing the locations of the five forest plots of different successional ages (A-D; red dots) and the mature forest (M; blue dot). Successional plots were sampled in two time periods, 1997-1999 with plot ages varying from 12 to 25 in 1997 and 2015-2017 with plots ages varying from 32 to 45 years old in 2017. The mature forest was sampled only in 2015-2017. See Table 1 in the main text for the details for each forest plot. The map was constructed using the *get_map* function in the ggmap package (Kahle and Wickham 2013).

66 Figure S2. (a) Variation in the seed rain across four successional forest plots by months over two 67 time periods in Sarapiquí, Costa Rica. Successional plots were sampled in two time periods, 1997-68 1999 (A-D) with plot ages varying from 12 to 25 in 1997 and 2015-2017 (A-D) with plots ages 69 varying from 32 to 45 years old in 2017 (Table 1). Different colors represent the different forest 70 plots; the 1997-1999 and 2015-2017 data are represented by a continuous and a dotted line, 71 respectively. (b) Differences in average abundance of seeds rain across four successional forest 72 plots and at two time periods (1997 – 1999 in red and 2015 – 2017 in blue) in Sarapiquí, Costa 73 Rica, after controlling for variation in seed abundance by species. See Table 1 in the main text for 74 details about each forest plot.

Figure S3. Abundance of woody species in the seed rain summed across four secondary forest plots in Sarapiquí, Costa Rica. The figure shows the 32 species that are higher or lower than the average seed abundance across all species. Nine species were significantly lower in abundance, and 23 species were higher in abundance, than the mean abundance across all species. Species abbreviations correspond to the first three letters of the genus and species (Table S1).

82

84 Figure S4. Abundance of seed rain across all secondary forests plots for species represented in seed traps continuously during all twelve months during 1997-1999 (top panel) and 2015-2017 85 86 (bottom panel) in Sarapiquí, Costa Rica. Species in 1997-1999 are light-demanding lianas 87 (Aristolochia sprucei and Pinzona coriacea) or light-demanding tree species (Cordia bicolor and Zanthoxylum sp). Species in 2015-2017 are two shade tolerant palms (Euterpe precatoria and 88 89 Welfia regia) and two light-demanding trees (Goethalsia meiantha and Laetia procera). Species 90 abbreviations correspond to the first three letters of the genus and species (Table S1). See Table 91 1 in the main text for details about the successional forest plots.

Figure S5. Null distributions of expected random Schoener's (*Cij*) co-occurrence indexes for species in successional vs mature forest plots, compared to the observed value, for each plot of different successional age. A1, B1, C1, D1 and A2, B2, C2, D2 represent successional plots in the 1997-1999 and 2015-2017 time periods, respectively. The red line represents the observed value, and the blue line is the mean, and the dotted blue lines are the 2.5th and 97.5th quantiles, of the null distribution. The standardized effect size of the co-occurrence index was calculated as the deviation of the observed value from the mean of the null distribution divided by the standard deviation of the null distribution.

0.6

9

10

0

0.0

0.2

0.4

cij's co-occurrence index

Density

Figure S6. Species accumulation curves based on rarefaction of the seed rain in four successional (A-D) and mature (M) forest plots in Sarapiquí, Costa Rica. Successional plots were sampled in 1997-1999 (A1-D1 in red) and 2015-2017 (A2-D2 in blue), and the mature forest (M in black) was sampled only in 2015-2017. Plot successional ages: A1 = 12 B1 = 15, C1 = 20, D1 = 25, A2 = 32, B2 = 35, C2 = 40, and D2 = 45 years old. (a) small seeds ($\leq 6 \text{ mm}$) and (b) large seeds (> 6 mm); (c) seeds of light demanding and (d) species shade tolerant species; (e) seeds of non-animal dispersed and (f) animal-dispersed species.

Figure S7. Decreasing proportion of immigrant seeds in secondary forests of increasing successional age in Sarapiquí, Costa Rica. The black line is the best fit line from ordinary least squares regression, and the gray shading indicates the confidence interval on the fit.

LITERATURE CITED

Kahle, D., and H. Wickham. 2013. ggmap: spatial visualization with ggplot2. R Journal 5: 144–161.