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Site Country Latitude Longitude 
Annual Rainfall 

(mm) 
Inga 

Species (n) 

Barro Colorado Island Panama 9°S 80°W 2623 14 

Nouragues 
French 
Guiana 

4°N 53°W 3000 46 

Tiputini 
(Yasuni National 

Park) 
Ecuador 0°N 75°W 3200 41 

Los Amigos 
(Madre de Dios) 

Peru 13°S 70°W 2648 39 

Manaus Brazil 2°S 60°W 2100 29 

 

Table S1 Site and Sampling information for all 98 study species 

 



 

 

 

Fig. S1 A) Defense investment traits mapped on to the Inga phylogeny. Number of unique 

compounds per species, percent of leaf dry weight invested in secondary metabolism per species, 

and the phytochemical diversity (measured as functional Hill numbers, q = 2) of each species 

profile are represented by points. Horizontal bars indicate one standard deviation. Dotted red 

lines represent mean trait values across all species and the blue line represents the mean value for 
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phytochemical diversity estimated in the null model. B) Defense investment trait correlations: (1) 

Phytochemical diversity vs. percent of leaf dry weight invested in secondary metabolism, (2) 

phytochemical diversity vs. number of compounds, and (3)  percent of leaf dry weight invested 

in secondary metabolism  vs. number of compounds. Points represent individual Inga species; 

red lines represent the phylogenetic linear model estimate of best fit (package: phylolm1). 

Pearson's correlation (ρ), and R-squared are reported, and significance of model fit is represented 

by asterisks (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***) 

 

 

Fig. S2 Compound based molecular network containing all compounds observed in 98 study 

species. Nodes represent individual compounds identified in the metabolomics pipeline, and 

connections between compounds (edges) are based on MS/MS cosine similarity score from 

GNPS (https://gnps.ucsd.edu).  Node color represents compound annotations into major 



 

compound classes. Unconnected nodes at the bottom of the network are spectrally unique 

compounds, that did not match with any other compound in the network, a common feature of 

ms/ms based metabolomics studies.  

 

 

 

Fig. S3 Correlation between chemical similarity and phylogenetic distance (My) for all 

interspecific comparisons. The solid red line represents the mean chemical similarity score 

observed in the null model which simulates the expected chemical similarity between two 

randomly assembled chemical profiles. The dashed red lines represent 2 standard deviations 

above and below the null mean. 
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Fig. S4 (A) Expression of defensive compound classes mapped on the Inga phylogeny: Total number of 

compound classes expressed per species, followed by expression per species of distinct classes 

including quinic acid gallates, tyrosine and related depsides, flavones, flavonoids, flavan-3-ols, and 



 

saponins. Expression of individual compound classes is measured as a percentage of the total MS-level-

1 ion current (TIC; metric of abundance) constituted by each class. Phylogenetic signal of each 

compound class and its significance are represented by Blomberg's K and corresponding p-values. (B) 

Structural Equation Model (SEM) showing correlation between investment in major defense compound 

classes produced by Inga. Significant (p < 0.05) relationships between compound classes indicated by a 

correlation value listed next to arrows. Solid black arrows represent direct biosynthetic links, regardless of 

significance of the correlation in the SEM. Dashed grey arrows represent significant indirect relationships 

between compound classes.  
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Fig. S5 Biosynthetic context of phenolic compounds in Inga: (A) Structures and substructures of 

compounds observed in a survey of 98 focal species and their positions in the biosynthetic 

pathways that produce them. Compounds that accumulate to significant levels are red and 

bold; low abundance are black and non-accumulating intermediates are light grey. Wavy bonds 

indicate variable stereochemistry. Compound names for each compound are listed in Table S3.  

Marvin was used for drawing, displaying and characterizing chemical structures, substructures 

and reactions, Marvin 20.20.0, ChemAxon (https://www.chemaxon.com)  

 

https://www.chemaxon.com/


 

 

Fig. S6 Illustration of Lego-chemistry concept based on annotation of monomeric and polymeric 

Flavan-3-ol compounds observed in Inga based on NMR structure elucidation and MS/MS 

annotation.  Red substructures represent commonly observed R-Groups, which are added in a 

combinatorial manner to generate a variety of compounds.   
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Table S2  Maximum-likelihood estimates for different evolutionary models of trait evolution. For 

each trait we fit three models of trait evolution: A random walk model characterized by 

Brownian Motion (BM), The Ornstein-Uhlenbeck (OU) model where a trait evolves under BM 

with a constraining central tendency, and a divergent adaptation (DA) model where trait values 

the OU model but different lineages interact such that lineage’s mean values diverge. We 

selected the best model based on AIC; significance of model parameters was evaluated by 

likelihood ratio (LR) tests to determine if a more complex model was significant. Significance 

indicated by asterisks (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).  

 



Null model for phytochemical diversity and chemical similarity:

Dale Forrister

01/15/2020

Analogous to studies on community assembly, we built a null model in order to put our measure of
phytochemical diversity and chemical similarity in perspective. In our model we assembled compounds into
chemical profiles through a bifurcating process from root to tip on the Inga phylogenetic tree. We chose this
null model because it fixed the number of compounds produced by each species as well as the number of
compounds shared between closely related species, while generating chemical profiles randomly drawn from
the entire chemical space. Below, we provide the r code for this model as well as key graphs that describe our
dataset. We also outline key assumptions assumptions in the model.

1.0 Overview of input data:

1.1 The Inga Phylogeny

This is a species level phylogeny meaning all accessions collected at multiple sites have been combined into a
single tip for all sites.

We have 98 species in the phylogeny and it has to be rooted with the Zygia outgroup
inga.tree_rooted <- read.tree(here("data", 

"Inga_Astralconstrained_datedTreePL_sptree_FINAL_Match_Utl.tre")) plot(inga.tree_rooted, 

no.margin = T, edge.width = 2, cex = 0.5, align.tip.label = T)
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edulisoerstediana
ingoidesfosteriana
sapindoidesstriatasetosathibaudianaariaM30
rubiginosacayennensiscocleensisfastuosavelutina
goldmaniiveraleiocalycina.affleiocalycinaspectabilissplendenspunctatasuaveolensT85T82LA41
lomatophyllapoeppigianasubcapitataacuminatavenusta
longipedunculatagrandifloralongiflorachartacea
acrocephalamelinonismultinervis
acreanaT18
pitmaniitomentosaalata
pezizifera.affpeziziferaruiziana
cylindricacoruscansT29auristellaeT51M18cordatoalata
nouragensismarginatabourgoniiT21nobilisvismiifoliaLA48cinnamomeamicrocomaumbelliferaT50brevialata
brachystachys.affumbraticaumbellifera.affM71
brevipesflagelliformisbrachystachysobidensis
heterophyllavirgultosalateriflora
loubryanaparaensisM25laurinaalbaM27sertulifera
jenmaniicapitata33brachyrhachis.affcapitata35capitata12stipularistenuistipulaglomerifloraLA17huberi
gracilifoliakursariiulei
retinocarpaZygia mediana

1.2 Inga Chemistry:

Next, we load in chemistry dataset. These include:

1) sampsByCompounds = matrix contain expression of each compound in each sample.
2) pairwise.comps.all = pairwise matrix with cosine similarities between compounds. This is produced by

GNPS.
3) pairwise.comps.all_dist = Same thing but converted to distance matrix (1-similarity)
4) phy_code is a key for linking sample names to the phylogeny tip names.

2.0 “Evolving” random samples on a phylogenetic tree:

In our model we assembled compounds into chemical profiles through a bifurcating process from root to tip
on the Inga phylogenetic tree. Specifically, we seeded the root node with a chemical profile by drawing at
random n compounds from the entire chemical space. We then generated all decedents of this node by: 1)
inheriting/passing on a certain percent of compounds in the original profile 2) drawing new compounds, at
random such that the new node had n compounds = n compounds observed or estimated in the original data.
tree <- read.tree(text = "((Species_1,Species_2),Species_3);")
plotTree(tree, offset = 1) | tiplabels() | nodelabels()
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Species 1

Species 2

Species 3

1

2

3

4

5

## logical(0)

For example, in the above simple phylogenetic tree nodes are labeled as blue squares and tips are labeled with
yellow squares. We first seed Node 4 with a randomly sampled chemical profile. We then generate Species 3,
and node 5. For every node which has decedents, this process is repeated until all tips have been generated.
Thus, we then take the generated profile from Node 5 and we modify it to produce Species 2 and Species 1
via the same process.

2.1 Walking through the phylogenetic tree and determining decendents from curent node:

We started by making table of all parents and decedents on the tree. This allows us to walk through the tree
generating decedents in the correct order.
tree <- inga.tree_rooted
total_nodes <- length(tree$tip.label) + Nnode(tree)
cur_node <- 1 + length(tree$tip.label)

child <- Descendants(tree, cur_node, "children")
while_loop_DF <- data.frame(parent = cur_node, child = child)
nodes_to_do <- data.frame(parent = cur_node, child = child)

while (nrow(while_loop_DF) > 0) {
node = while_loop_DF$child[1]
parent = paste("Node_", while_loop_DF$parent[1], sep = "")

while_loop_DF <- while_loop_DF[-1, ]
next_nodes <- Descendants(tree, node, "children")
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if (length(next_nodes) > 0) {
while_loop_DF <- rbind(while_loop_DF, data.frame(parent = node, child = next_nodes))
nodes_to_do <- rbind(nodes_to_do, data.frame(parent = node, child = next_nodes))

}
}

nodes_to_do$parent <- paste("Node_", nodes_to_do$parent, sep = "")
nodes_to_do$child_name <- NA
nodes_to_do$child_name[nodes_to_do$child > 99] <- paste("Node_", nodes_to_do
$child[nodes_to_do$child >

99], sep = "")
nodes_to_do$child_name[nodes_to_do$child < 99] <- tree$tip.label[nodes_to_do
$child[nodes_to_do$child <

99]]

head(nodes_to_do)## parent child child_name
## 1 Node_99 100 Node_100
## 2 Node_99 98 Zygia_mediana
## 3 Node_100 101 Node_101
## 4 Node_100 193 Node_193
## 5 Node_101 102 Node_102
## 6 Node_101 191 Node_191

2.2 Seeding the the root node:

first generate root node by taking a random sample based on the independentswap method using the picante
package. Note, to get a sense of variability and stochasticity in our null model, We randomized the entire
matrix and then used each row of the matrix as the seed in 98 independent iterations (i)

starting node, is a vector containing the abundance of each compound.
i = 1
sampsByCompounds_rand <- randomizeMatrix(sampsByCompounds, null.model = "independentswap",

iterations = 10^6)

starting_node <- sampsByCompounds_rand[i, ]

starting_node[1:25]

## 2 3 5 6 7 8 9 11 12 13 14
## 0 0 0 0 0 0 0 0 0 978045 488904
## 15 16 17 18 19 21 22 23 24 25 26
## 0 0 0 0 0 0 0 0 0 0 0
## 27 28 29
## 0 0 0

2.3 inheriting compounds:

The first step in the process of generating a decedent nodes or tips is to inherent some portion of the
compounds currently produced in the parent node, defined by the parameters n_comps_shared. See sections
3.1 for details on how this was determined.

To do this we get a list of all compounds present in a parent node and randomly sample ncomps_to_inherit.
We then modify the abundance of these compounds by sampling from the actual abundances of that compound
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found in all samples.
n = 1
all_comps <- colnames(sampsByCompounds)

starting_node <- sampsByCompounds_rand[i, ]
sampsByCompounds_Evolved <- data.frame()
sampsByCompounds_Evolved <- rbind(sampsByCompounds_Evolved, starting_node)

sampsByCompounds_Evolved$node_label <- "Node_99"

sampsByCompounds_Evolved <- sampsByCompounds_Evolved[, c(ncol(sampsByCompounds_Evolved),
2:ncol(sampsByCompounds_Evolved) - 1)]

names(sampsByCompounds_Evolved) <- c("node_label", names(sampsByCompounds))

sampsByCompounds_Evolved[, 1:10]

## node_label 2 3 5 6 7 8 9 11 12
## 1 Node_99 0 0 0 0 0 0 0 0 0

child = as.character(nodes_to_do$child_name[n])
parent = as.character(nodes_to_do$parent_names[n])

Two functions. . .
inherit_comps <- function(parent, child, starting_node) {

# if parent = starting node else get parent from evolved comps dataframe
# (sampsByCompounds_Evolved)
if (parent == "Node_99") {

parent_comps <- starting_node
} else {

parent_comps <- sampsByCompounds_Evolved[sampsByCompounds_Evolved$node_label ==
parent, -1]

}

# number of compounds in parent node
parent_comp_ncomps <- sum(parent_comps > 0)

# determine how many compounds to inherit if child is an internal node we sample
# from the distribution we find in the actual data child is a tip, we use the
# actual percent from that node in the transitions data
if (grepl("Node", child)) {

child,ncomps_to_inherit <- round(as.numeric(round(anc_state_ncomps[child])) * 
sample(transitions$per_shared_

1))
while (ncomps_to_inherit > length(which(parent_comps > 0))) {

ncomps_to_inherit <- round(as.numeric(round(anc_state_ncomps[child])) *

sample(transitions$per_shared_child, 1))
}

} else {
ncomps_to_inherit <- transitions$ncomps_shared[transitions$child == child]

}

# sample ncomps_to_inherit from list of compounds present in the parent.
comps_to_inherit <- sample(names(parent_comps)[which(parent_comps > 0)], 
ncomps_to_inherit, replace = F)
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# adjust the abundance of each of the compounds present.
orig_abund_vect <- as.numeric(sampsByCompounds_Evolved[which(sampsByCompounds_Evolved$node_label ==

parent), -1])
evolved_abund_vect <- orig_abund_vect

evolved_abund_vect[which(!all_comps %in% comps_to_inherit)] <- 0

# for comps that are being inherited sample new abundances based on the
# abundances in the real data.
for (comp in 1:length(comps_to_inherit)) {

species_abundances <- sampsByCompounds[, comps_to_inherit[comp]]
pot_abundance <- species_abundances[which(species_abundances > 0)]
replacement_abundance <- pot_abundance[sample(1:length(pot_abundance), 1)]
evolved_abund_vect[which(all_comps == comps_to_inherit[comp])] <- replacement_abundance

}
return(evolved_abund_vect)

}

2.4 sampling new compounds

Next, we randomly draw from the entire space to add compounds such that the decedent node contains a
total of n compounds. Note the probability of drawing each compound is determined by its frequency in the
actual data. See sections 3.2 for details on how this parameter was determined.
sample_new_comps <- function(parent, child, evolved_abund_vect) {

# step 1 sample new comps that aren't already present in order to bring ncomps
# for that sample up to what it is in the actual data.
if (grepl("Node", child)) {

ncomps_to_add <- as.numeric(round(anc_state_ncomps[child])) - ncomps_to_inherit
} else {

ncomps_to_add <- transitions$ncomps_new[transitions$child == child]
}

new_comps <- 
sample(all_comps[which(sampsByCompounds_Evolved[which(sampsByCompounds_Evolved
$node_label

==
$node_label ==

parent), -1] == 0)], prob = 
comp_frequency[which(sampsByCompounds_Evolved[which(sampsByCompounds_Evolved 
parent), -1] == 0)], ncomps_to_add, replace = F)

# step 2 alter the abundance of the inherited compounds
for (comp in 1:ncomps_to_add) {

species_abundances <- sampsByCompounds[, new_comps[comp]]
pot_abundance <- species_abundances[which(species_abundances > 0)]
replacement_abundance <- pot_abundance[sample(1:length(pot_abundance), 1)]
evolved_abund_vect[which(all_comps == new_comps[comp])] <- replacement_abundance

}

return(evolved_abund_vect)
}
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Finally, we then add the new profile to our master list of sampsByCompounds_Evolved.

 sampsByCompounds_Evolved <- rbind(sampsByCompounds_Evolved,c(child,evolved_abund_vect))



We then precede to the next row in nodes_to_do, repeating the above two steps until all rows of nodes_to_do
have been completed.

3.0 Determining the key pararameters n_compounds_shared and n_compounds total

Our goal is to generate a null model that is directly comparable to the actual data for Inga chemistry. This
as much as possible we derive all parameters from the actual values observed in the data.

In our null model we set out to control two aspects of the underlying data 1) fix the number of compounds
produced by a given species. 2) Fix the number of compounds shared between two closely related species.

Controlling for these two variables is particularly important when building a null model for the expected
chemical similarity between two species. We could have used a more simple null model, in which null chemical
profiles are assembled by drawing the mean number of compounds at random from the network. However, this
null model would ignore the underlying phylogenetic structure of the data. It is plaussible that evolutionary
history plays a role in determine the number of compounds a given compound produces as well as the number
of compounds shared between two spaces. By holding these two variables fixed in our null model we hoped to
observe the effect of which compounds are in each species, not the effect of how many compounds it produced
or shared with its ancestor.

3.1 Determine the number of compounds for each species and for each ancestral node.

We simply fixed the number of compounds produced by each species so that it was the same in both the null
and real data for every species. We then tested for phylogenetic signal in the number of compounds produced
by a species and used ancestral state reconstruction to estimate the number of compounds at each internal
node in the phylogeny.
sampsByCompounds_pres_abs <- (sampsByCompounds > 0) * 1
ncomps <- rowSums(sampsByCompounds_pres_abs > 0)
ncomps <- setNames(ncomps, rownames(sampsByCompounds_pres_abs))
obj <- contMap(inga.tree_rooted, ncomps, plot = F)
plot(obj)
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edulisoerstedianaingoidesfosterianasapindoidesstriatasetosathibaudianaariaM30rubiginosacayennensiscocleensisfastuosavelutinagoldmaniiveraleiocalycina.affleiocalycinaspectabilissplendenspunctatasuaveolensT85T82LA41lomatophyllapoeppigianasubcapitataacuminatavenustalongipedunculatagrandifloralongiflorachartaceaacrocephalamelinonismultinervisacreanaT18pitmaniitomentosaalatapezizifera.affpeziziferaruizianacylindricacoruscansT29auristellaeT51M18cordatoalatanouragensismarginatabourgoniiT21nobilisvismiifoliaLA48cinnamomeamicrocomaumbelliferaT50brevialatabrachystachys.affumbraticaumbellifera.affM71brevipesflagelliformisbrachystachysobidensisheterophyllavirgultosalaterifloraloubryanaparaensisM25laurinaalbaM27sertuliferajenmaniicapitata33brachyrhachis.affcapitata35capitata12stipularistenuistipulaglomerifloraLA17huberigracilifoliakursariiuleiretinocarpaZygia mediana

112 1485trait value

length=8.296

phylosig(inga.tree_rooted, ncomps, test = TRUE)

##
## Phylogenetic signal K : 0.404715
## P-value (based on 1000 randomizations) : 0.273

No significant phylogentic signal in the number of compounds shared.

For internal nodes we estimated ncompounds using ancestral state reconcstruction.
csv"),names_to_use <- row.names(read.csv(here("./results/ancestral_sampsBycompounds//

Ancestral_State_V1_all_compounds.
row.names = 1))

fit <- fastAnc(inga.tree_rooted, ncomps, vars = TRUE, CI = TRUE)

anc_state_ncomps <- as.numeric(c(as.numeric(fit$ace), as.numeric(ncomps)))
anc_state_ncomps <- setNames(anc_state_ncomps, names_to_use)

plot(anc_state_ncomps, col = grepl("Node", names_to_use) + 1)
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We
then used these estimates to determine the number of compounds at each internal node in the null model.

3.2 Determine the number of compounds shared between each species and its parent node.

To determine how many compounds were shared between a given species and a parent node we used ancestral
state reconstruction to generate ancestral state (present/absent) of each compound at each internal node.
From this ancestral SamplesByCompound maxtrix we determined the number of compounds shared between
a species (phylogenetic tip) and its parent node.

The following code was used to generate a Node x compound matrix with present absence matrix estimated
via ancestral state reconstruction. Note this code takes a long time to run, so I’ve saved the output in:
./results/
# library(parallel) library(doParallel) library(RMySQL) comp_rates <-
# data.frame() sampsByCompounds_pres_abs[1:10,1:10] com_comps <-
# sampsByCompounds_pres_abs[,colSums(sampsByCompounds_pres_abs)>1] #5578
# compounds dim(com_comps) com_comps <- data.frame(com_comps) names(com_comps) <-
# gsub('X','',names(com_comps)) com_comps[1:10,1:10] comps_list <-
# names(com_comps) all_comps <- colnames(sampsByCompounds_pres_abs) #comps_fail
# <- c('13','24') #comps_list <- comps_list[!comps_list %in% comps_fail] mydb =
# dbConnect(MySQL(), user= '',password = '!',dbname =
# 'inga_2015_06_01',host='mysql.chpc.utah.edu') select <- paste('SELECT * FROM
# `Ancestral_State_V1`') processed <- as.data.frame(dbGetQuery(mydb,select))
# ancestral_sampsbycomps <- as.data.frame(t(processed[,2:197]))
# names(ancestral_sampsbycomps) <- ancestral_sampsbycomps['compound',]
# ancestral_sampsbycomps <- ancestral_sampsbycomps[-1,] n_internal_nodes <-
# length(which(grepl('Node',row.names(ancestral_sampsbycomps))))
# length(comps_list) comps_list <- comps_list[!comps_list %in%
# as.character(processed$compound)] length(comps_list) #for all compounds in comp
# list do ancestral state reconstruction and upload to db #note this list
# excludes compounds that fail (appears to be ones where they are only present
# twice and in all cases they appear to not be sister species in the phylogeny
# but separated) cores <- detectCores() cl <- parallel::makeCluster(24,
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# setup_strategy = 'sequential') clusterEvalQ(cl,{ library(RMySQL) mydb =
# dbConnect(MySQL(), user= '',password = '!',dbname =
# 'inga_2015_06_01',host='mysql.chpc.utah.edu') NULL }) registerDoParallel(cl) #
# foreach(i = 1:length(comps_list) ,
# .packages=(c('phytools','caper')),.errorhandling = 'pass',.verbose = F) %dopar%
# { #if(i %% 100 == 0){print(paste('working on compound ', i, ' out of ',
# length(comps_list)))} ind_comp <- com_comps[,which(names(com_comps) ==
# comps_list[i])] ind_comp <-
# setNames(ind_comp,rownames(sampsByCompounds_pres_abs))
# obj<-contMap(inga.tree_rooted,ind_comp,plot=F) plot(obj) try({ mtrees <-
# make.simmap(inga.tree_rooted,ind_comp,nsim=100,model = 'ER',message = F)
# comp_rates_ind <- data.frame(compound = comps_list[i],npres = sum(ind_comp),
# tot_trans = colMeans(summary(mtrees)$count)[1], trans_0_to_1 =
# colMeans(summary(mtrees)$count)[2], trans_1_to_0 =
# colMeans(summary(mtrees)$count)[3]) lambda_phyl <-
# phylosig(inga.tree_rooted,ind_comp,test=TRUE,method = 'lambda')
# comp_rates_ind$phyl_sig_lambda <- lambda_phyl$lambda
# comp_rates_ind$phyl_sig_lambda_pval <- lambda_phyl$P BlomK_phyl <-
# phylosig(inga.tree_rooted,ind_comp,test=TRUE) comp_rates_ind$phyl_sig_K <-
# BlomK_phyl$K comp_rates_ind$phyl_sig_K_pval <- BlomK_phyl$P ind_comp_df <-
# as.data.frame(ind_comp) ind_comp_df$species <- row.names(ind_comp_df) D_phyl <-
# phylo.d(ind_comp_df, inga.tree_rooted,names.col = species,binvar = ind_comp,
# permut = 1000) comp_rates_ind$phyl_sig_D <- D_phyl$DEstimate
# comp_rates_ind$phyl_sig_D_pval_rand <- D_phyl$Pval0
# comp_rates_ind$phyl_sig_D_pval_brown <- D_phyl$Pval1
# dbWriteTable(mydb,'Ancestral_State_comp_rates',comp_rates_ind,
# field.types=names(comp_rates_ind),row.names=F,overwrite=F, append=T) pd <-
# summary(mtrees) anc_state <- data.frame(anc_state =
# as.numeric(c(round(pd$ace[,2],0),ind_comp))) row.names(anc_state)=
# c(row.names(pd$ace),row.names(sampsByCompounds_pres_abs)) names(anc_state) =
# comps_list[i] #return(anc_state) anc_state_1 <- cbind(data.frame(compound =
# as.numeric(names(anc_state))),t(anc_state)) names(anc_state_1)[2:98] <-
# paste('Node_',names(anc_state_1)[2:98],sep='')
# dbWriteTable(mydb,'Ancestral_State_V1',anc_state_1,
# field.types=names(anc_state_1),row.names=F,overwrite=F, append=T) },silent = T)
# } #now go back and update the list to deterimine qhich compounsd are missing
# mydb = dbConnect(MySQL(), user= '',password = '!',dbname =
# 'inga_2015_06_01',host='mysql.chpc.utah.edu') select <- paste('SELECT * FROM
# `Ancestral_State_V1`') processed <- as.data.frame(dbGetQuery(mydb,select))
# ancestral_sampsbycomps <- as.data.frame(t(processed[,2:197]))
# names(ancestral_sampsbycomps) <- ancestral_sampsbycomps['compound',]
# ancestral_sampsbycomps <- ancestral_sampsbycomps[-1,] n_internal_nodes <-
# length(which(grepl('Node',row.names(ancestral_sampsbycomps))))
# length(comps_list) missing_comps <- all_comps[!all_comps %in%
# as.character(processed$compound)] for (i in 1:length(missing_comps)){ ind_comp
# <- sampsByCompounds_pres_abs[,which(colnames(sampsByCompounds_pres_abs) ==
# missing_comps[i])] ind_comp <-
# setNames(ind_comp,rownames(sampsByCompounds_pres_abs))
# #obj<-contMap(inga.tree_rooted,ind_comp,plot=F) #plot(obj) anc_state <-
# data.frame(anc_state = as.numeric(c(rep(0,n_internal_nodes),ind_comp)))
# row.names(anc_state)= c(row.names(pd$ace),row.names(sampsByCompounds_pres_abs))
# names(anc_state) = missing_comps[i] #return(anc_state) anc_state_1 <-
# cbind(data.frame(compound = as.numeric(names(anc_state))),t(anc_state))
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csv'))

csv"),

# names(anc_state_1)[2:98] <- paste('Node_',names(anc_state_1)[2:98],sep='')
# dbWriteTable(mydb,'Ancestral_State_V1',anc_state_1,
# field.types=names(anc_state_1),row.names=F,overwrite=F, append=T)}

# finally combine all of these into a single data.frame that should contain all
# compounds

# mydb = dbConnect(MySQL(), user= '*****',password = '***',dbname =
# 'inga_2015_06_01',host='mysql.chpc.utah.edu') select <- paste('SELECT * FROM
# `Ancestral_State_V1`') processed <- as.data.frame(dbGetQuery(mydb,select))
# ancestral_sampsbycomps <- as.data.frame(t(processed[,2:197]))
# names(ancestral_sampsbycomps) <- ancestral_sampsbycomps['compound',]
# ancestral_sampsbycomps <- ancestral_sampsbycomps[-1,] ancestral_sampsbycomps <-
# ancestral_sampsbycomps[,order(as.numeric(colnames(ancestral_sampsbycomps)))]
# dim(ancestral_sampsbycomps)
# write.csv(ancestral_sampsbycomps,here('./results/ancestral_sampsBycompounds//
Ancestral_State_V1_all_compounds.

ancestral_sampsbycomps <- read.csv(here("./results/ancestral_sampsBycompounds//
Ancestral_State_V1_all_compounds.

row.names = 1)
names(ancestral_sampsbycomps) <- gsub("X", "", names(ancestral_sampsbycomps))

ancestral_sampsbycomps[1:10, 1:10]

## 2 3 5 6 7 8 9 11 12 13
## Node_99 0 0 0 0 0 0 0 0 0 0
## Node_100 0 0 0 0 0 0 0 0 0 0
## Node_101 0 0 0 0 0 0 0 0 0 0
## Node_102 0 0 0 0 0 0 0 0 0 0
## Node_103 0 0 0 0 0 0 0 0 0 0

Finally, from the above estimates we generated a data.frame in which we calculated the following for each
parent and child in the phylogeny: a) ncomps_ancestral: estimated number of compounds in parent node b)
ncomps_shared: number of compounds shared between the parent and child node c) ncomps_lost: number
of compounds lost (ncomps_ancestral - ncomps_shared)

ncomps_expected_vs_reconstructed_recent_nodes <- data.frame(node = 
row.names(ancestral_sampsbycomps)[grepl("Node",

,row.names(ancestral_sampsbycomps))], expected = 
as.numeric(anc_state_ncomps[grepl("Node",
row.names(ancestral_sampsbycomps))]), reconstructed = 
as.numeric(rowSums(ancestral_sampsbycomps > 0)[grepl("Node", 
row.names(ancestral_sampsbycomps))]))

ncomps_expected_vs_reconstructed <- ncomps_expected_vs_reconstructed_recent_nodes[,
2:3]

row.names(ncomps_expected_vs_reconstructed) <- ncomps_expected_vs_reconstructed_recent_nodes$node

tree <- inga.tree_rooted
total_nodes <- length(tree$tip.label) + Nnode(tree)
cur_node <- 1 + length(tree$tip.label)
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nodes_to_do <- data.frame()
for (node in 99:195) {

next_nodes <- Descendants(tree, node, "children")
if (length(next_nodes) > 0) {

nodes_to_do <- rbind(nodes_to_do, data.frame(parent = node, child = next_nodes))
}

}

recent_nodes <- nodes_to_do[nodes_to_do$child < 99, ]
recent_nodes$child_names <- tree$tip.label[recent_nodes$child]
recent_nodes$parent_names <- paste("Node_", recent_nodes$parent, sep = "")

recent_nodes_1 <- merge(recent_nodes, ncomps_expected_vs_reconstructed, by.x = "parent_names",
by.y = 0)

# recent_nodes_1$child_names[which(recent_nodes_1$child_names ==
# 'leiocalycina.aff')] <- 'leiocalycina.af'
# recent_nodes_1$child_names[which(recent_nodes_1$child_names == 'tomentosa')] <-
# 'omentosa'

transitions <- data.frame()
for (row in 1:nrow(recent_nodes_1)) {

comp_pool <- ancestral_sampsbycomps[c(recent_nodes_1$parent_names[row], recent_nodes_1
$child_names[row]),

]
ncomps_ancestral <- recent_nodes_1$expected[row]
ncomps_shared <- sum(colSums(comp_pool) == 2)
ncomps_new <- sum(as.numeric(comp_pool[2, ]) == 1 & as.numeric(comp_pool[1, ]) ==

0)
transitions <- rbind(transitions, data.frame(parent = recent_nodes_1$parent_names[row],

child = recent_nodes_1$child_names[row], ncomps_ancestral = ncomps_ancestral,
ncomps_shared = ncomps_shared, ncomps_new = ncomps_new, ncomps_lost = ncomps_ancestral -

ncomps_shared))
}

transitions$ncomps_child <- transitions$ncomps_shared + transitions$ncomps_new
transitions$per_shared_child <- transitions$ncomps_shared/transitions$ncomps_child

4.0 Putting this all together into our complete null model

Below is the code we used to generate 98 iterations of the above null model. Each iteration was seeded with
a different randomly generated chemical profile.

Null models used in this paper are saved in ./results/null_model/1_SampsByComps_Null_Model

*note this takes a long time so the below code is hashed out, but it is how all null models were generated.
# nodes_to_do <- data.frame() for(node in 99:195){ next_nodes <-
# Descendants(tree,node,'children') if(length(next_nodes) >0) {nodes_to_do <-
# rbind(nodes_to_do,data.frame(parent = node,child = next_nodes))} }
# nodes_to_do$child_names <- nodes_to_do$child
# nodes_to_do$child_names[nodes_to_do$child < 99] <-
# tree$tip.label[nodes_to_do$child[nodes_to_do$child < 99]]
# nodes_to_do$child_names[nodes_to_do$child > 99] <-
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# paste('Node_',nodes_to_do$child[nodes_to_do$child > 99],sep='')
# nodes_to_do$parent_names <- paste('Node_',nodes_to_do$parent,sep='')
# comp_frequency <- colSums(sampsByCompounds>0) cl <- parallel::makeCluster(40,
# setup_strategy = 'sequential') registerDoParallel(cl) foreach(i =
# 1:nrow(sampsByCompounds_rand),.packages = c('ape','phangorn','here')) %dopar% {
# #random_seed <- sample(1:nrow(sampsByCompounds_rand),1) starting_node <-
# sampsByCompounds_rand[i,] sampsByCompounds_Evolved <- data.frame()
# sampsByCompounds_Evolved <-rbind(sampsByCompounds_Evolved,starting_node)
# sampsByCompounds_Evolved$node_label <- 'Node_99' sampsByCompounds_Evolved <-
# sampsByCompounds_Evolved[,c(ncol(sampsByCompounds_Evolved),2:ncol(sampsByCompounds_Evolved)-1)]
# names(sampsByCompounds_Evolved) <- c('node_label',names(sampsByCompounds))
# sampsByCompounds_Evolved[,1:10] for(n in 1:nrow(nodes_to_do)){ child =
# as.character(nodes_to_do$child_name[n]) parent =
# as.character(nodes_to_do$parent_names[n]) evolved_abund_vect <-
# inherit_comps(child = child,parent = parent,starting_node = starting_node)
# evolved_abund_vect <- sample_new_comps(parent = parent,child =
# child,evolved_abund_vect = evolved_abund_vect) sampsByCompounds_Evolved <-
# rbind(sampsByCompounds_Evolved,c(child,evolved_abund_vect)) }
# write.csv(sampsByCompounds_Evolved,here(paste('./results/null_model/1_SampsByComps_Null_Model/Evolved_Random_no_cutoff_',i,'.csv',sep='')),row.names
# = F) }
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