Supplementary materials

De novo phytosterol synthesis by an animal

Dolma Michellod¹, Tanja Bien², Daniel Birgel³, Marlene Jensen⁵, Manuel Kleiner⁵, Sarah Fearn⁴, Caroline Zeidler¹, Harald R Gruber-Vodicka¹, Nicole Dubilier^{1,6*}, Manuel Liebeke^{1*}

¹ Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany

² Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany

³ Institute for Geology, Center for Earth System Research and Sustainability, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

⁴ Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom

⁵ Department of Plant and Microbial Biology, NC State University, Raleigh, NC 27695, United States

⁶ MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany

*corresponding authors: mliebeke@mpi-bremen.de, ndubilier@mpi-bremen.de

Supplementary Information

Sitosterol is present in the environment of the gutless annelids in concentrations sufficient to sustain the growth of small sterol-auxotrophic invertebrates. Chemical analysis of pore water profiles collected in the vicinity of seagrass meadows, the habitat of many gutless annelids, revealed an irregular distribution of sterols. Some samples, such as those collected near *Posidonia oceanica* seagrass meadows off the island of Elba (Mediterranean), had cholesterol and sitosterol present in the nano- to micro-molar range (Supplementary Figure 3). Samples collected in Belize (Caribbean), in the vicinity of the seagrasses Thalassia testudinum and Syringodium filiforme, were devoid of detectable amounts of sitosterol or cholesterol. Seagrasses, like terrestrial plants, exude organic compounds into the substrate surrounding their roots, the rhizosphere (Sogin et al., 2021; Vives-Peris et al., 2020). The sterol profile of P. oceanica roots was composed of sitosterol (69%), stigmasterol (11%) and campesterol (20%). P. oceanica could thus be the origin of the sitosterol in the porewater, but cannot be the source of cholesterol as it was not present in its tissues. Cholesterol and sitosterol concentrations measured in the porewater environment (ranging from 25 nM to 3 µM) are in the range of reported minimal dietary sterol requirements for small sterol-auxotrophic invertebrates (Carvalho et al., 2010; Lu et al., 1977). Furthermore, the sterols in the porewater could pass through the cuticle of the worm as it is permeable to substances up to 70 kDa (Dubilier et al., 2006).

The isotopic signature of the sterols in the worms exclude an environmental origin. Results from GC-IRMS with single metabolite resolution showed that the sitosterol present in seagrass tissue had δ^{13} C values ranging from -21 ‰ to -15 ‰ (**Figure 1E**). These values are in accordance with bulk measures of isotopic composition for *P. oceanica* which range from -16.4 ‰ to -8.3 ‰ (Cooper & DeNiro, 1989; Jennings et al., 1997; Lepoint et al., 2004; McMillan et al., 1980; Pinnegar & Polunin, 2000; Vizzini et al., 2010), and also match values previously reported for sterols in other seagrasses (Canuel et al., 1997). Sterols from sediment porewater had δ^{13} C values of -30 ‰ to -26 ‰ (**Figure 1E**), which are similar to previously reported ranges (Canuel et al., 1987; Fry et al., 1983; Thayer et al., 1978) and

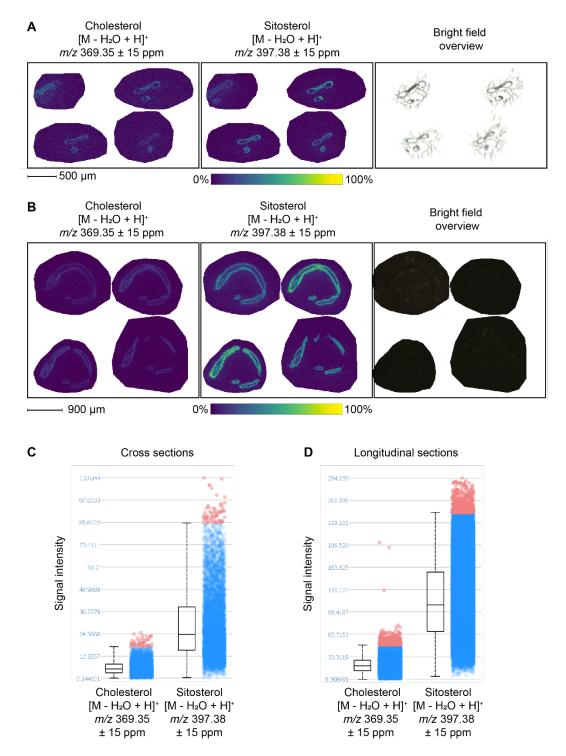
about 10 ‰ lower than the sterols from *P. oceanica*. This difference reflects the mixed sources of the sterols present in the sediment, most of which are likely planktonic in origin.

The total sterol content of gutless annelids is comparable to the content of other worms. Measurements of metabolites in single *Olavius algarvensis* worms with mass spectrometry revealed a total free sterol content of $3.44 \pm 0.04 \mu g$ (n = 12). Assuming an average wet weight per worm of 1 mg, sterols represent 0.34 % wet weight, a value similar to reported percentages for terrestrial and aquatic worms (Ballantine et al., 1978; McLaughlin, 1971a; Voogt, 1973a; Wilber & Bayors, 1947).

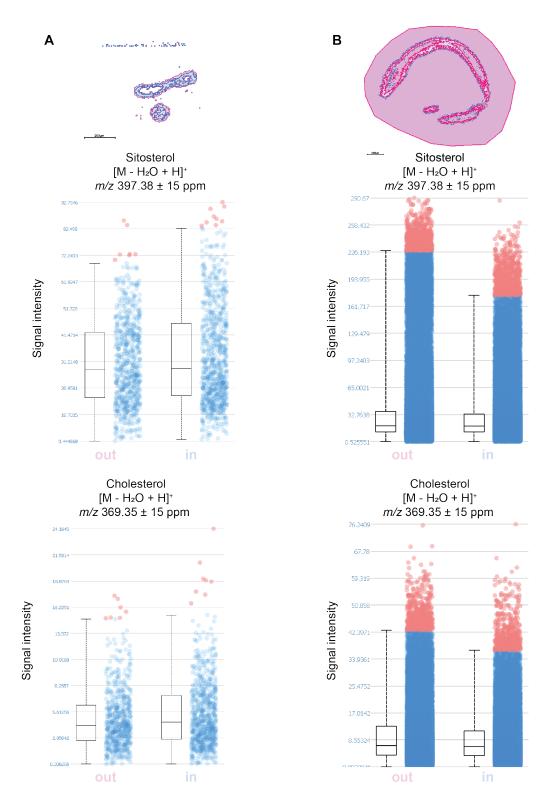
SMTs in rotifers. The rotifer sequences grouped together to form a sister group to unicellular eukaryotes SMT (**Figure 3**). The rotifers were isolated from different environments and had access to different food resources, which suggests that the recovered sequences were not a result of contamination. Sterol auxotrophy has been proposed for rotifers (Wacker & Martin-Creuzburg, 2012) and C₂₄-SMTs might play a different role in these organisms. Animal sterol auxotrophs usually lack the three enzymes responsible for the transformation of squalene into lanosterol: farnesyl-diphosphate farnesyltransferase 1 (FDFT1), squalene monooxygenase (SQE) and lanosterol synthase (LAS) (Shamsuzzama et al., 2020). However, the presence of downstream cholesterol synthesis genes has been reported in sterol auxotrophs. Some of these sterol enzymes retain their catalytic functions and are involved in the conversion of dietary sterols into cholesterol (Meyer et al., 1979; Shamsuzzama et al., 2020), while others now have distinct functions (Oh et al., 2017; Shamsuzzama et al., 2020). The function performed by C₂₄-SMT enzymes in rotifers would benefit from further study.

Supplementary Figures and Tables

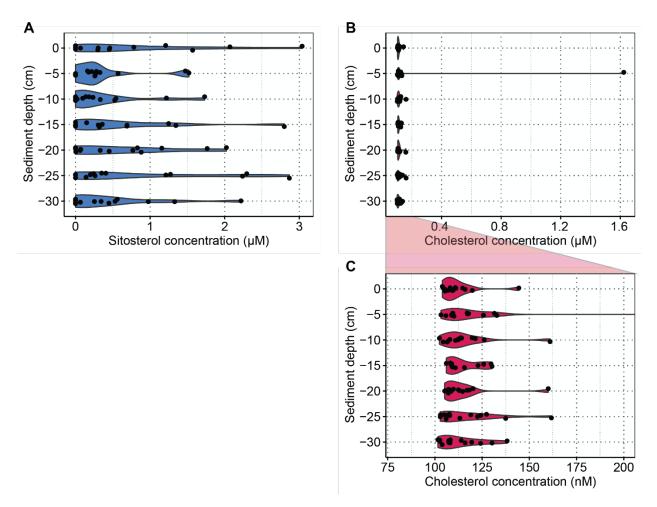
List of Supplementary Figures

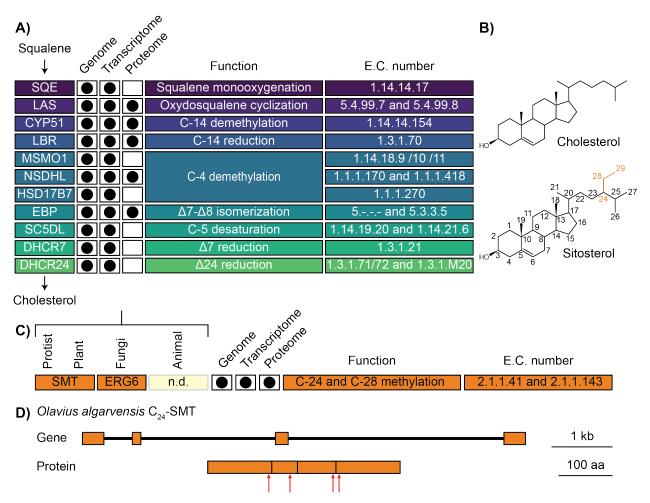

Supplementary Figure 1 Sitosterol and cholesterol are evenly distributed throughout
Olavius algarvensis tissues
Supplementary Figure 2 There is no evidence for a tissue-specific distribution of
cholesterol and sitosterol in Olavius algarvensis8
Supplementary Figure 3 Sediment porewater below a P. oceanica meadow (Elba,
Italy) contained sitosterol and cholesterol
Supplementary Figure 4 Olavius algarvensis encodes and expresses all the enzymes
needed to synthesize sitosterol from an intermediate of the cholesterol synthesis
pathway
Supplementary Figure 5 Olavius algarvensis squalene monooxygenase (ERG1)
sequence clusters with animal sequences
Supplementary Figure 6 Olavius algarvensis lanosterol synthase (ERG7) sequence
clusters with animal sequences
Supplementary Figure 7 Olavius algarvensis sterol delta-14-demethylase (ERG11)
sequences cluster with animal sequences
Supplementary Figure 8 Olavius algarvensis delta(14)-sterol reductase (ERG24)
sequence clusters with animal sequences while the sterol 7-dehydrocholesterol
reductase (DHCR7) cluster with plants and unicellular sequences
Supplementary Figure 9 Olavius algarvensis methylsterol monooxygenase (ERG25)
sequence clusters with animal sequences
Supplementary Figure 10 Olavius algarvensis sterol-4-alpha-carboxylate 3-
dehydrogenase, decarboxylating (ERG26) sequence clusters with animal sequences. 15
Supplementary Figure 11 Olavius algarvensis 3-keto reductase (ERG27) sequence
clusters with animal sequences16
Supplementary Figure 12 Olavius algarvensis sterol C-5 desaturase (ERG3) sequence
clusters with animal sequences16
Supplementary Figure 13 Olavius algarvensis EBP sequence clusters with animal and
fungal sequences16
Supplementary Figure 14 Olavius algarvensis sterol 24-dehydrocholesterol reductase
(DHCR24) sequence clusters with animal sequences
Supplementary Figure 15 Alignment of C24 sterol methyltransferase (SMT) amino acid
sequences
Supplementary Figure 16 The C ₂₄ -SMT of <i>Olavius spp</i> . used zymosterol as a substrate
for the first methylation
Supplementary Figure 17 The C ₂₄ -SMT of Olavius spp. used desmosterol as a
substrate for the first methylation

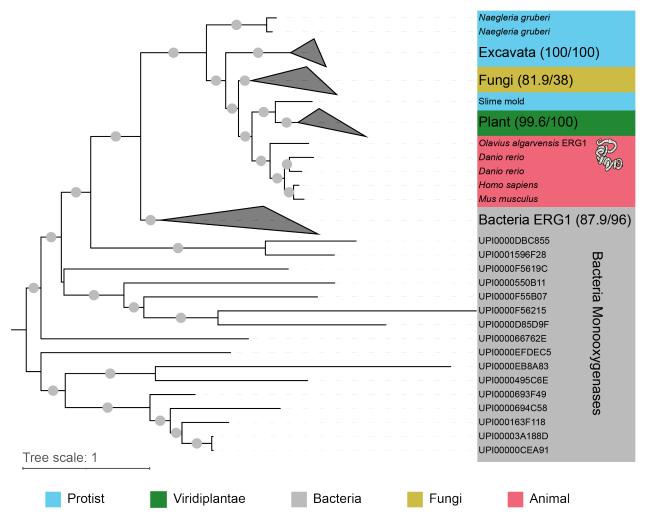
Supplementary Figure 18 C ₂₄ -SMT of <i>Olavius algarvensis</i> uses two intermediates of the chalasteral authority and deemosteral, as substrates for methylation, 21
the cholesterol synthesis, zymosterol and desmosterol, as substrates for methylation. 21
Supplementary Figure 19 The C ₂₄ -SMT of <i>Olavius algarvensis</i> added a methyl group
to the side chain of zymosterol22
Supplementary Figure 20 Potential substrates for the second C1-transfer based on the
results of the first C ₁ -transfer23
Supplementary Figure 21 The C24-SMT of Olavius spp. use 24-methylene-cholesterol
as a substrate for the second methylation reaction24
Supplementary Figure 22 Most sterol methyltransferase (SMT) homologues identified
by BLAST within animal taxa were plant, protist or fungal contaminations, or belonged
to the C ₄ -SMT, an SMT specific to nematodes26


List of Supplementary Tables

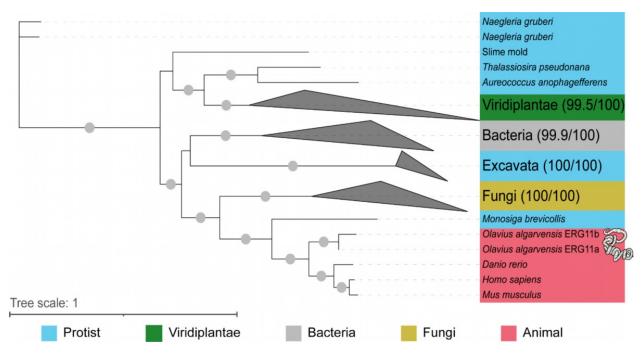
Supplementary Table 1 List of sterols detected by MALDI-2-MSI in Olavius
algarvensis
Supplementary Table 2 List of the enzymes involved in sterol biosynthetic pathway in
eukaryotic model organisms
Supplementary Table 3 Detection of enzymes involved in sterol biosynthesis in the
draft genome of <i>Olavius algarvensis</i> 27
Supplementary Table 4 Detection of enzymes involved in sterol biosynthesis in the
transcriptome of Olavius algarvensis
Supplementary Table 5 Detection of enzymes involved in sterol biosynthesis in the
proteome of Olavius algarvensis
Supplementary Table 6 The sterol profiles of all investigated Olavius and Inanidrilus
species was dominated by sitosterol
Supplementary Table 7 C ₂₄ -SMT homologues were identified in the transcriptomes of
all Olavius and Inandrilus species analyzed in this study
Supplementary Table 8 C24-SMT homologues are widely spread in annelids. They
were found in the transcriptomes of 9 Olavius and Inanidrilus species, in three deep-sea
gutless tubeworm species and 17 gut-bearing annelid species from marine, limnic and
terrestrial environments belonging to six different clades. Methylated sterols (C ₂₈ and
C ₂₉) often account for an important part of the sterol profile of annelids
Supplementary Table 9 C24-SMT homologues are also present in sponges, rotifers
and likely in mollusks
Supplementary Table 10 Solvent gradient for high-resolution LC-MS/MS with a C30
column
Supplementary Table 11 MS settings of the Q Exactive Plus Orbitrap (Thermo Fisher
Scientific) equipped with a HESI probe and a Vanquish Horizon UHPLC System
(Thermo Fisher Scientific)
Supplementary Table 12 List of the enzymes isolated from model organisms used as
query to assess the ability of gutless annelids to synthesize sterols

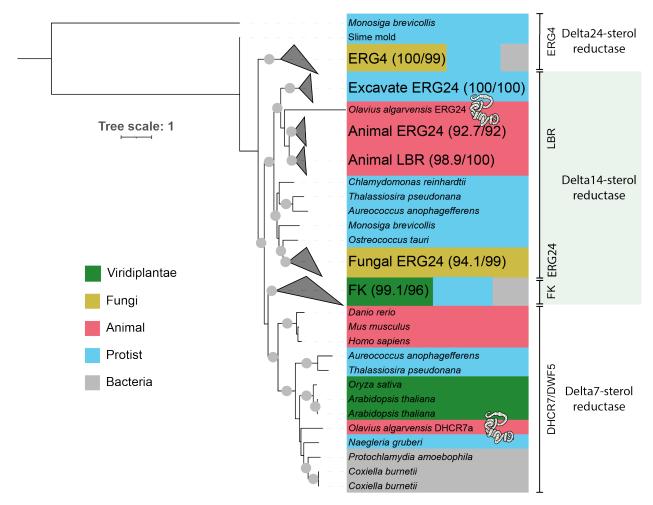

Supplementary Table 13 Details of the sequences, plasmid, and E. coli cells used for	•
the heterologous gene expression experiments	33
Supplementary Table 14 List of the different sterol substrates tested with the animal	
C ₂₄ -SMTs	34
Supplementary Table 15 Solvent gradient for high-resolution LC-MS/MS with C18	
column	34

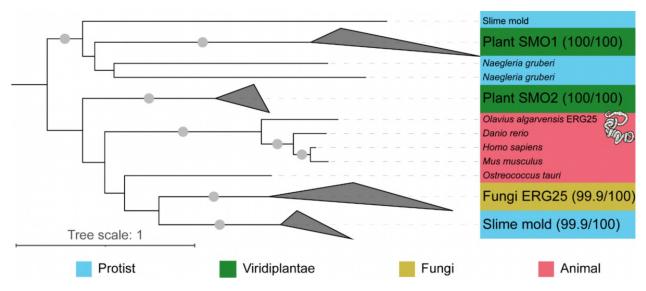

Supplementary Figure 1 | Sitosterol and cholesterol are evenly distributed throughout Olavius algarvensis tissues. Panels show cholesterol ($[M-H2O+H]^+$ at m/z 369.352) and sitosterol ($[M-H2O+H]^+$ at m/z 397.382) distribution in O. algarvensis cross sections (A) and longitudinal sections (B) measured by MALDI-2-MSI. Sitosterol is more abundant than cholesterol in the worm tissues (C and D).

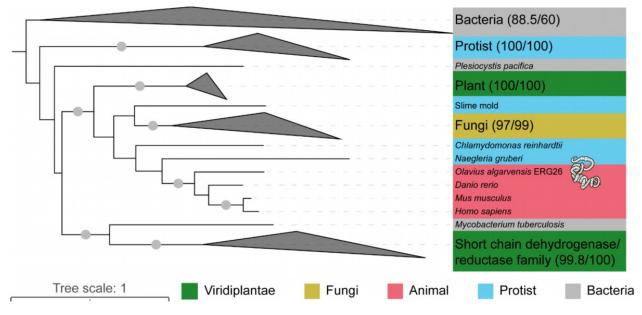

Supplementary Figure 2 | No tissue-specific distribution of cholesterol and sitosterol in *Olavius algarvensis*. Both sterols were uniformly distributed throughout the animals' tissues. Distribution of cholesterol and sitosterol as measured with MALDI-2-MSI. The data was segmented and the signal intensity of both sterols measured to investigate tissue specific sterol distribution in cross sections (**A**) and longitudinal sections (**B**). The colonized tissues (out) do not contain more sterols than the host-only tissues (in). The presence of the symbionts does not influence the sterol distribution in the host tissues.

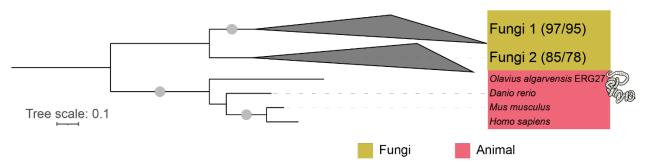

Supplementary Figure 3 | Sediment porewater below a *P. oceanica* meadow (Elba, Italy) contained sitosterol and cholesterol. **A**, Sitosterol (blue) was present at micromolar concentration under the seagrass bed. **B**, Cholesterol (red) was present in nanomolar concentrations under the seagrass bed, with one exception in the low micromolar range. **C**, Magnified view of **B** to show the variation in cholesterol concentrations between 100 to 200 nanomolar.

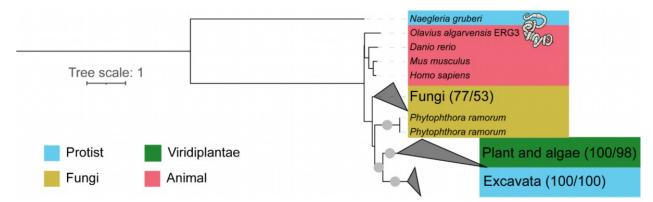

Supplementary Figure 4 | *Olavius algarvensis* encodes and expresses all the enzymes needed to synthesize sitosterol from an intermediate of the cholesterol synthesis pathway. A, All 11 enzymes involved in cholesterol synthesis were encoded and expressed by *O. algarvensis*. B, An ethyl group attached to the sterol side chain differentiates the phytosterol sitosterol from the animal sterol cholesterol. C, *O. algarvensis* encodes and expresses a homolog of C₂₄-SMT, an enzyme not previously found in bilaterial animals and essential to sitosterol synthesis. Dots indicate detection in the genome, transcriptome and proteome of *O. algarvensis*. D, The *O. algarvensis* C₂₄-SMT gene consists of 4 exons forming a 1071 bp open reading frame encoding a 356 amino-acid polypeptide. The four conserved regions of the enzyme are highlighted by red arrows.

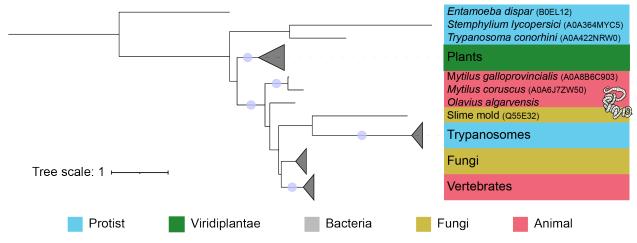

Supplementary Figure 5 | Olavius algarvensis squalene monooxygenase (ERG1) sequence clusters with animal sequences. Maximum likelihood tree of ERG1 amino acid sequences. Bootstrap values ≥90% are shown with a grey circle. The bootstrap value and branch support value are indicated in brackets for collapsed groups. The tree was rooted at midpoint in iTOL.

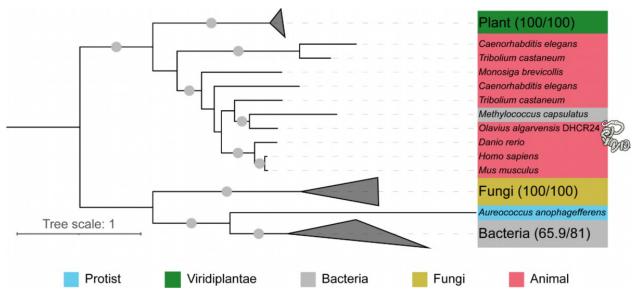

Supplementary Figure 6 | Olavius algarvensis lanosterol synthase (ERG7) sequence clusters with animal sequences. Maximum likelihood tree of ERG7 amino acid sequences, alternative squalene epoxidase (AltSQE) and the bacterial squalene-hopene cyclase (SHC) were used as outgroups. Bootstrap values \geq 90% are shown with a grey circle. The bootstrap value and branch support value are indicated in brackets for collapsed groups. The tree was rooted at midpoint in iTOL.


Supplementary Figure 7 | Olavius algarvensis sterol delta-14-demethylase (ERG11) sequences cluster with animal sequences. Maximum likelihood tree of ERG11 amino acid sequences. Bootstrap values ≥90% are marked with a grey circle. The bootstrap value and branch support value are indicated in brackets for collapsed groups. The tree was rooted at midpoint in iTOL.

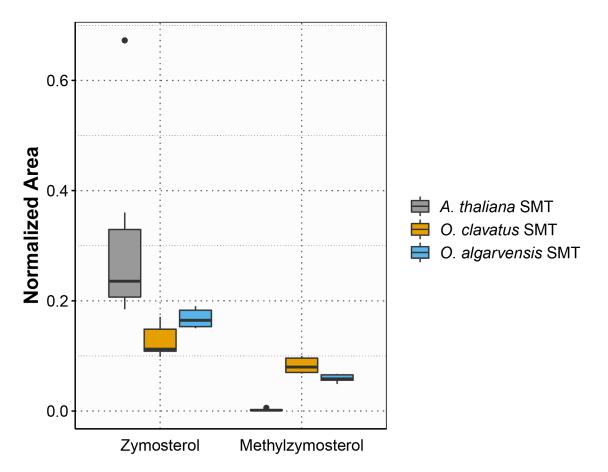

Supplementary Figure 8 | Olavius algarvensis delta14-sterol reductase (ERG24) sequence clusters with animal sequences while the sterol 7-dehydrocholesterol reductase (DHCR7) cluster with plants and unicellular sequences. The placement of *O. algarvensis* DHCR7 might indicate affinity for a substrate different from that of other animals. Maximum likelihood tree of the (ERG4)-(DHCR7/DWF5)-(ERG24/LBR/FK) protein family, here we have an example of enzyme performing different steps in fungi, animals and plant but that are evolutionary related. Bootstrap values ≥90% are marked with a grey circle. The bootstrap value and branch support value are indicated in brackets for collapsed groups. The tree was rooted at midpoint in iTOL.

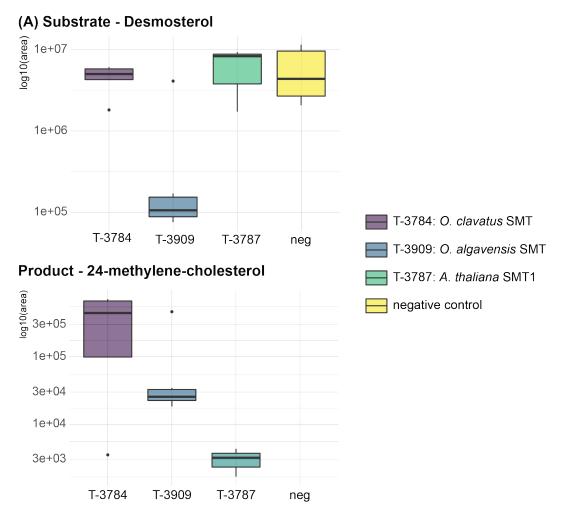

Supplementary Figure 9 | Olavius algarvensis methylsterol monooxygenase sequence clusters with animal sequences. Maximum likelihood tree of methylsterol monooxygenase (SMO1/SMO2-ERG25-MSMO) amino acid sequences. Bootstrap values ≥90% are marked with a grey circle. The bootstrap value and branch support value are indicated in brackets for collapsed groups. The tree was rooted at midpoint in iTOL.


Supplementary Figure 10 | *Olavius algarvensis* sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating sequence clusters with animal sequences. Maximum likelihood tree of sterol-4-alpha-carboxylate 3- dehydrogenase (HSD-NSDHL-ERG26) amino acid sequences. Bootstrap values ≥90% are marked with a grey circle. The bootstrap value and branch support value are indicated in brackets for collapsed groups. The tree was rooted at midpoint in iTOL.

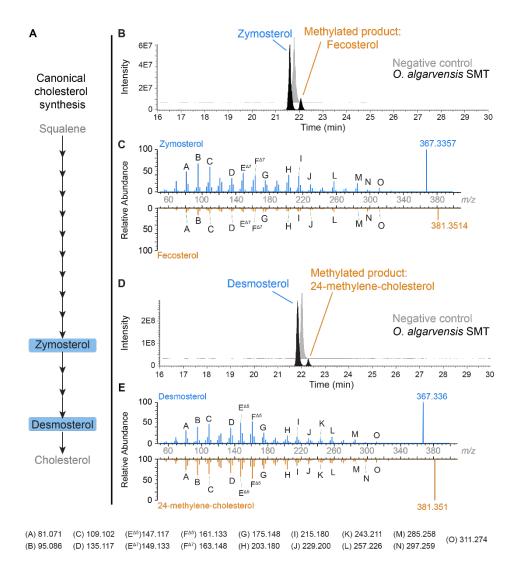

Supplementary Figure 11 | Olavius algarvensis 3-keto reductase (ERG27) sequence clusters with animal sequences. Maximum likelihood tree of ERG27 amino acid sequences. Bootstrap values ≥90% are marked with a grey circle. The bootstrap value and branch support value are indicated in brackets for collapsed groups. The tree was rooted at midpoint in iTOL. The gene performing C-3 keto reduction in plants and protists is still unknown.

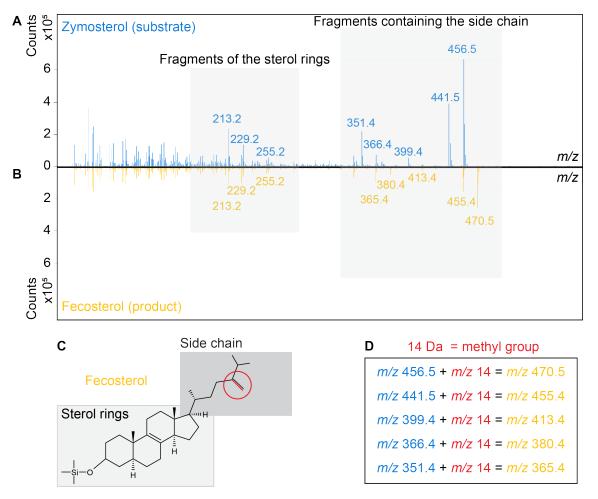
Supplementary Figure 12 | Olavius algarvensis sterol C-5 desaturase (ERG3) sequence clusters with animal sequences. Maximum likelihood tree of ERG3 amino acid sequences. Bootstrap values ≥90% are marked with a grey circle. The bootstrap value and branch support value are indicated in brackets for collapsed groups. The tree was rooted at midpoint in iTOL.

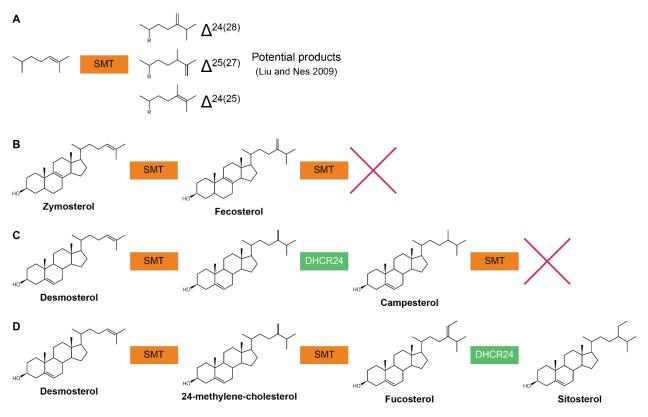

Supplementary Figure 13 | Olavius algarvensis detla7-delta8-sterol isomerase (EBP) sequence clusters with animal and fungal sequences. Maximum likelihood tree of EBP amino acid sequences. Bootstrap values ≥95% are marked with a grey circle. The tree was rooted at midpoint in iTOL.

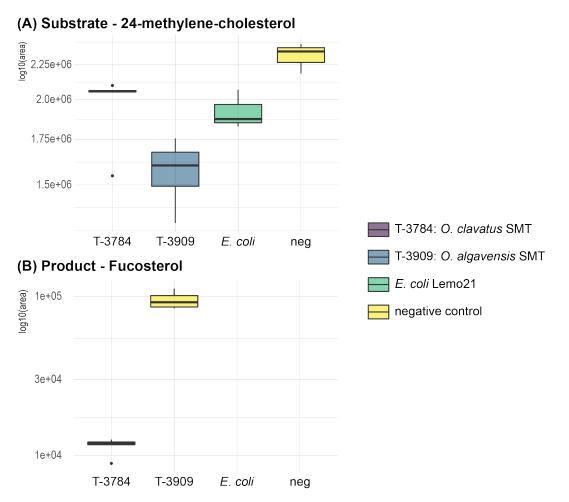

Supplementary Figure 14 | Olavius algarvensis sterol 24-dehydrocholesterol reductase (DHCR24) sequence clusters with animal sequences. Maximum likelihood tree of DHCR24 amino acid sequences. Bootstrap values ≥90% are marked with a grey circle. The bootstrap value and branch support value are indicated in brackets for collapsed groups. The tree was rooted at midpoint in iTOL.

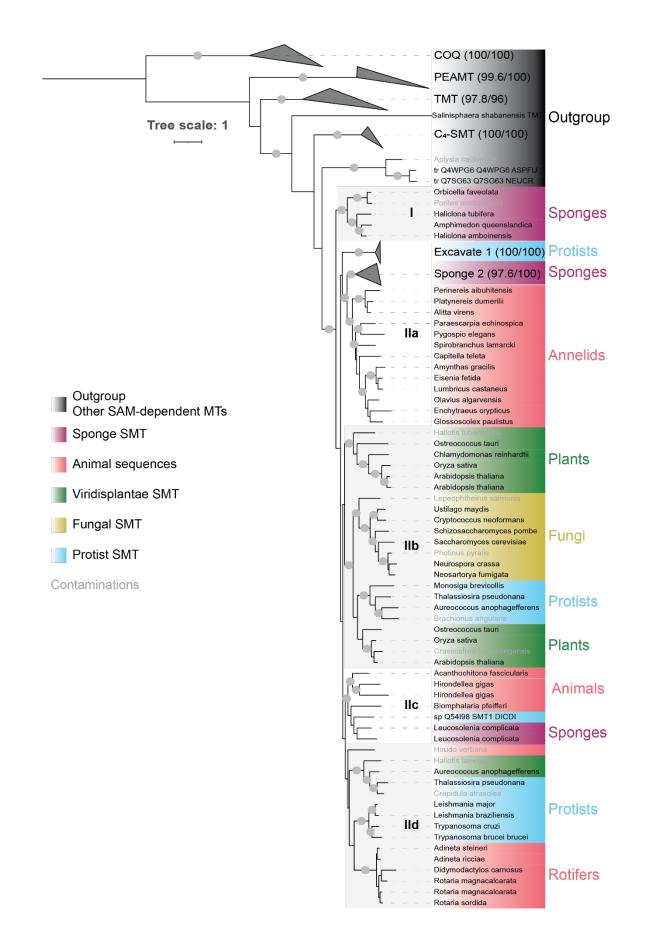
Consensus	1 10 MXISXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 30 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		60 XXXXXXXXXXXXXX RNWDGRTDKDAE	70 XXXXXXXXXXXXXXX 		100 YEXGXXXXEHEX	110 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		130 XXXXXXX
S. cerevisiae ERG	i6							Region I			
P. jirovecii ERG6	MSFELERIDIEK-DRE	FSEIMHGKDAAKEF	GLLSSFRKDKI	EAQKIALDSYF	GFWGDKCTSEKN	DIHQQERFKFYAT	LTRH YYNL V T DF	Region I	R F A K D E S F S Q A L	AR he hyialhag	IREGETV
A. thaliana SMT1		Ν	IDLASNLGGKIDK	5DVL TAVEKYE	QYHVFHGGNEEE	RKANYTD	MVNK YY DLA T SF	Region I	QRWKG ES LRE <mark>S</mark> I	(R he hflalqlg	IQPGQK
G. max SMT1	MQKKKKNRNEVVLC	SAEGTGGCSRLAAM	IDLASNLGGK I DK7	AEVL SAVQKYE	KYHVCYGGQEEE	RKANYTD	MVNK YY DLV T SF	Region I	PRWKG <mark>ES</mark> LRE <mark>S</mark> I	(R he hflplqlg	LKPGQK
O. algarvensis	MNSIEKPSITGI	LRPLHGKAAVEST	DGYLRYFD	5DSPPRDDAAD	ADDSDAEAVERR	R KNAL A	VTNAYYDLATDF	Region I	VLKPE ES REH <mark>S</mark> F	A K H E Y F L GMK L G	LKAGDT
T. brucei	MS AGS	RGPLSLLIARERDA	NGVNGDVN	ATAGRLRDRYD	G K G A S A S E R R	QDAT S	L T N E Y Y D II V T D F	Region I	PRYMNETFYESL	AR ye yflayhaq	FKPTDTV
A. queenslandica		MA 5 5 5 V I	N - V S H L S S I	SAPAVVNHYT	GFFDKKTEVKER	E KNATD	MVTS FY E LVT DF	YEYGYGECFHFF	P V Y D S O S F K E S L	IE YE KELAKALN	VQ PG ST
A. thaliana SMT2	MDSLTLFFTGALVAVG	YWFLCVLGPAERKO	GKRAVDLSGGS	SAEKVQDNYK	QYWSFFRRPKEI	ETAEKVPD	FVDTFYNLVTDI	Region I	P S I P G <mark>K S</mark> HK D <mark>A</mark> TI	RL HE EMAVDLIQ	VKPGQK
Consensus	140 150 LDXGCGXGGPXXXXXX	160 xxxxxxx G xxxxx Y	170 xxxxxxxxxxxx	180 XXXXXXXXXXB	190 20 xxx M xxxxxx F	0 210 DXXYXIEATXHXX	220 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	230	240 2 ХХХХХХХХХХВХХ	50 260 XXXXXXXXX	
S. cerevisiae ERG		T GCN V I GL NN ND Y C		SDQMDFVKGD		Region III	KLEGV <mark>Y</mark> S <mark>EIYK</mark> V	Region IV	VMTDKYDENNPE	RKAYELELGD	GIPKMFH
P. jirovecii ERG6	L DVGCGVGGPACQII SVF Region II	TGAN IVGLNNND Y	QRAKYYSEKKG	SDKLKFIKGD	EMQMP - EPENSE	Region III	'S L E G V Y S E I Y R V		VMLNK Y DEN D PE	QQUVYGUEIGD	SIPKISK
A. thaliana SMT1	LDVGCGLGGPLREIARF	SNSV TGLNNNE Y C	TRGKELNRLAG	DKTCNEVKAD	EMKMP - EPENSE	Region III	DAYGCYKEIYRV	Region IV	CMTDAEDPDNAE	QKIKGEIEIGD	GLPDIRL
G. max SMT1	Region II	STS TGLNNNE Y	TRGKELNRIAG	DKTCNFVKAD	EMKMP - EPDNSE	Region III	DAYGC Y K EI FRV	Region IV	CMTD SEDPQNPE	QKIKA IEIGD	GLPDIRL
O. algarvensis	LDIGCGIGGPARHIASI Region II	SEANNIGEN INDY	SRARILTEKAK	DHLCSFVKAD	YNHMP-YGEGHE	Region III	'S L C S V Y S E V F R V	Region IV	IMTDTYNPTDPY	KKLKADILE gd	GLPDLAS
T. brucei	LDVGCGIGGPARNMVRF Region II	T SCNVMGVNNNE Y C	NRARQHDSRYG	SGKINYTKTD	ECNMC-EGDNEE	Region III	5 K V K C Y S E V F R A	Region IV	CLTDLYDPANEE	QRVRHGLELIGD	GLPELDT
A. queenslandica	LDIGCGIGGPGRITARC Region II	TGTT TGLN I SDY	KRAKALTEKAG	QTKCIYEKGD	ECKMTQEQDNSE		DPLLVYKEVARV		VMTDKYKPGDPV	EKKHENLIGN	GLPDLRT
A. thaliana SMT2	L DVGCGVGGPMRATASH	ISRANVVG IT I NEYO	WNRAR LHNKKAG	DALCEVVCGN	ELQMP - EDDNSE		KLEEVYAEIYRV	Region IV	VTTEKEKAEDDE	VEVIQGIERIGD	ALPGLRA
Consensus	270 280 xxxxxxxxxxxxx	290 xxxxxxxxxxxxxx	300 310 (xx pw xxx l xxxx)	320	330 xxxxxxxxxxxx	340 xxxxxxxxxxxx	350	360 370 XXX A XX L XXX G X	380 X X J E X E X X R G R Q	390 SDSVVWQHNNME	400
S. cerevisiae ERG	VDVARKALKNCGFENL	S E D L A D N D C	DEI PWY YP L TGEWI	(Y-VQNLANLA	TFFRTSYLGRQF	TTAMVTVMEKLG	APEGSKEVTAA	ENAAVGLVAGGK	SKLFTPMM		
P. jirovecii ERG6	IGEAEAALIKVGFE	ISEELSTKNS	PL PWY YY L DGDLF	RK-VRSFRDFI	SIARMTTIGKWL	ISSFIGLMEFIGL	LPKGSKKVNDI	LVAADSLVKAGK	KE IFTP MQ		
A. thaliana SMT1	TTKCLEALKQAGFEVIV	/EKDLAKDS	PV PWY LP L DKNHI	S – L S S F R – – –	LTAVGRFI	TKNMVKILEYIRL	APQGSQRVSNFL	EQAAEGEVDGGR	RE IFTP MY		
G. max SMT1	TAKCLEALKQAGFEVIV	/ E K D L A V D S	5 P L P W Y L P L D K S H I	5 - L S S F R	LTAVGRLF	ΤΚΝΜ ΨΚΝ<mark>Ε</mark>ΕΥΨ GL	APKGSLRVQDF	EKA A EG E VEG G K	RE IFTP MY		
O. algarvensis	VPQVL TAARQA G F E N VE	SRDRAL EPG	-VPWYTVLQARW	ГLSDIK	ITPFGRWA	THLMLAVEETVRE	APRGSVKVHRT	CKGADALAAAGA	E GI IFSP MY		
T. brucei	MRQVVAAVKAAKGFVVEE	SFDMAERFESGEP	SV PWY EP L QGSY	TS-LSGLR	ATPAGRWL	TSVTCRLEEAVRL	APAGTCKATEI	E E G A VN E VK G G E	L G I F T P S F		
A. queenslandica	EQVILDENREAGLE	SVDYSLQG	DL PWY TY L VGKS	CFSMQSFR	ISWLGRMM	THYLVSGLEMARL	VPFGASKTHSVL	LTA ADG LVAS GK	LKIFTPMLRGRQ	5DSVVWQHNNME	APQGL
A. thaliana SMT2	YVD I AE TAKK V G FE L VK	EKDLASPF	PAE PWW /TRLK		MGRLAYWR	NH I VVQ I 📕 S AVG	APKGTVDVHEM	FKTADYLTRGGE	TG <mark>IFSP</mark> MH		


Supplementary Figure 15 | Alignment of C-24 sterol methyltransferase (C₂₄-SMT) amino acid sequences. Sequences from: fungi, Saccharomyces cerevisiae (P25087) and Pneumocystis (Q96WX4); plants: Arabidopsis thaliana SMT1 (Q9LM02) and SMT2 (Q39227) and Glycine max SMT1 (Q43445); gutless annelid: Olavius algarvensis (this study); excavate: Trypanosoma brucei (Q4FKJ2); and sponge: Amphimedon queenslandica (A0A1X7ULF8). The sequences were aligned using ClustalW (Geneious). Purple labels indicate sterol (II) and AdoMet (I, III and IV) binding regions.


Supplementary Figure 16 | The C₂₄-SMT of *Olavius* spp. used zymosterol as a substrate for the first methylation. Arabidopsis thaliana C₂₄-SMT did not methylate zymosterol. The heterologously expressed C₂₄-SMT enzymes from both *O. algarvensis* and *O. clavatus* were able to methylate zymosterol to methylzymosterol. The peak of the substrate (zymosterol) and of the product (methylzymosterol) were integrated at the end of the enzymatic assay, in which *E. coli* expressed C₂₄-SMT from each taxon (n = 5 in each case) was incubated with zymosterol as substrate. The abundance was normalized with an internal standard.


Supplementary Figure 17 | The C₂₄-SMT of *Olavius* spp. used desmosterol as a substrate for the first methylation step. *Arabidopsis thaliana* C₂₄-SMT was not able to methylate desmosterol. The heterologously expressed C₂₄-SMT enzymes from both *O. algarvensis* and *O. clavatus* were able to methylate desmosterol to produce 24-methylene-cholesterol. The abundance of the substrate (desmosterol) and the product (24-methylene-cholesterol) were measured at the end of the enzymatic assay, in which *E. coli* expressed C₂₄-SMT from each taxon (n = 5 in each case) was incubated with desmosterol as substrate.


Supplementary Figure 18 | C_{24} -SMT of *Olavius algarvensis* uses two intermediates of the cholesterol synthesis, zymosterol and desmosterol, as substrates for methylation. A, Zymosterol and desmosterol are intermediates of the classical animal cholesterol synthesis. They are produced in the second half of the cholesterol synthesis pathway. B and D, O. algarvensis C₂₄-SMT, after overexpression in *E. coli*, added a methyl group to the side chain of zymosterol and desmosterol. LC-MS chromatograms of the enzymatic assay performed with zymosterol and desmosterol as substrates. C and E, The substrates and methylated products were identified by MS/MS.


Supplementary Figure 19 | The C₂₄-SMT of *Olavius algarvensis* added a methyl group to the side chain of zymosterol. A, B, Representative mass spectra of zymosterol (A) and the compound identified as fecosterol (24-methylene-zymosterol) (B). C, Structure of fecosterol, with the methyl group highlighted in red. D, In the comparison of the mass spectra of zymosterol and fecosterol, the fragments containing the side chain were shifted by 14 Da, a difference that represents the addition of a methyl group. No mass shift was observed in the sterol ring fragments. These results indicate that a methyl group was added to the zymosterol side chain.

Supplementary Figure 20 | Potential substrates for the second C₁-transfer based on the results of the first C₁-transfer. A, C₂₄-SMT can produce different products. *O. algarvensis* C₂₄-SMT mainly produced methylene ($\Delta^{24(28)}$) products. B, *O. algarvensis* C₂₄-SMT methylates zymosterol to produce fecosterol. Fecosterol was not methylated further by *O. algarvensis* C₂₄-SMT. C and D, *O. algarvensis* C₂₄-SMT added a methyl group to demosterol to produce 24-methylene-cholesterol. C, The methylene group is then likely reduced by sterol C24-reductase (DHCR24), producing campesterol. Campesterol was identified as a potential candidate for the second methylation step but *O. algarvensis* C₂₄-SMT could not use it as a substrate. D, The product of desmosterol methylation could also be used directly as a substrate for the second methylation. *O. algarvensis* C₂₄-SMT added a methyl group to 24-methylene-cholesterol. DHCR24, which is expressed based on its presence in *O. algarvensis* transcriptomes, could then remove the $\Delta^{24(28)}$ double bond and transform fucosterol into sitosterol.

Supplementary Figure 21 | The C₂₄-SMT of *Olavius* spp. use 24-methylene-cholesterol as a substrate for the second methylation reaction. The enzymes from both *O. algarvensis* and *O. clavatus* used 24-methylene-cholesterol as substrate and produced fucosterol. The abundance of the substrate (24-methylene-cholesterol) and the product (fucosterol) were integrated at the endpoint of the enzymatic assay, in which *E. coli* expressed C₂₄-SMT from each taxon (n = 5 in each case) was incubated with 24-methylene-cholesterol as substrate.

Supplementary Figure 22 | Most C-24 sterol methyltransferase (C_{24} -SMT) homologues identified by BLAST within mollusks, chordata and nematode phyla were plant, protist or fungal contaminations, or belonged to the C₄-SMT, an SMT specific to nematodes. Maximum likelihood amino acid tree of SMTs, with other SAM-dependent methyltransferases used as outgroups. Bootstrap values \geq 90% are marked with a grey circle. The bootstrap value and branch support value are indicated in brackets for collapsed groups. Animal sequences identified as contamination are labelled in grey. The tree was rooted at midpoint in iTOL. Ubiquinone biosynthesis O-methyltransferase (COQ), phosphoethanolamine N-methyltransferase (PEAMT), tocopherol O-methyltransferase (TMT), C-4 sterol methyltransferase (C₄-SMT).

Sterol	Sum formula	Molecular weight M (calc)	[M-H₂O+H] ⁺ (calc)	[M-H₂O+H]⁺ (exp)	Mass error (ppm)
cholesterol	C ₂₇ H ₄₆ O	386.355	369.352	369.345	19
sitosterol	C ₂₉ H ₅₀ O	414.386	397.383	397.376	18
stigmasterol	C ₂₉ H ₄₈ O	412.371	395.368	395.364	10

Supplementary Table 1 | List of sterols detected by MALDI-2-MSI in Olavius algarvensis.

Supplementary Table 2 | List of the enzymes involved in sterol biosynthetic pathway in eukaryotic model organisms.

Enzymatic reaction	E.C number	Animal	Plant	Fungi
Squalene monooxygenation	1.14.14.17	SQE	SQE	ERG1
Oxydosqualene cyclization	5.4.99.7 and 5.4.99.8	LAS	CAS	ERG7
C-14 demethylation	1.14.14.154	CYP51	CYP51G1	ERG11
C-14 reduction	1.3.1.70	LBR	FK	ERG24
	1.14.18.9 /10 /11	MSMO1	SMO	ERG25
C-4 demethylation	1.1.1.170 and 1.1.1.418	NSDHL	3β-HSD	ERG26
	1.1.1.270	HSD17B7	?	ERG27
Δ 7- Δ 8 isomerization	5 and 5.3.3.5	EBP	HYD1	ERG2
C-5 desaturation	1.14.19.20 and 1.14.21.6	SC5DL	DWF7	ERG3
Δ7 reduction	1.3.1.21	DHCR7	DWF5	n.d.
Δ24 reduction	1.3.1.71/72 and 1.3.1.M20	DHCR24	DIM	ERG4
C-22 desaturation	1.14.19.41	n.d.	CYP710A	ERG5
C-24 and C-28 methylation	2.1.1.41 and 2.1.1.143	n.d.	SMT	ERG6
Cyclopropylsterol isomerization	5.5.1.9	n.d.	CPI	n.d.

Enzyme	Target	Contig	Status	Reasons	Matches	Mismatch	ID	Coverage	Score	# of exons
SQE	4410_host_Oalg_flye-2.8	contig_6471	incomplete	missing stopcodon + missmatch	515	3	99.4	100	0.988	9
LAS	4410_host_Oalg_flye-2.8	contig_13849	auto	-	756	0	100	100	1	20
CYP51	4410_host_Oalg_flye-2.8	contig_37932	incomplete	mismatches	504	2	99.6	100	0.992	11
CYP51	4410_host_Oalg_flye-2.8	contig_37932	incomplete	mismatches	319	2	99.4	100	0.988	6
LBR	4410_host_Oalg_flye-2.8	contig_20025	partial 1-21 (#1/2)	-	21	0	100	3.6	0.036	1
LBR	4410_host_Oalg_flye-2.8	contig_42201	partial 22- 583 (#2/2)	-	555	7	98.8	100	0.94	10
MSMO1	4410_host_Oalg_flye-2.8	contig_24678	incomplete	gap to querystart (7- 306)	300	0	NA	NA	0.98	6
NSDHL	4410_host_Oalg_flye-2.8	contig_27038	auto	-	346	0	100	100	1	7
HSD17B7	4410_host_Oalg_flye-2.8	contig_21098	partial 1-27 (#1/2)	-	27	0	NA	NA	0.079	1
HSD17B7	4410_host_Oalg_flye-2.8	contig_21097	partial 18- 343 (#2/2)	mismatches + missing stopcodon	312	4	98.7	100	0.898	9
EBP	4410_host_Oalg_flye-2.8	contig_10005	auto	-	230	0	100	100	1	3
SC5DL	4410_host_Oalg_flye-2.8	contig_6195	incomplete	missing stopcodon	282	0	100	100	1	3
DHCR7	4410_host_Oalg_flye-2.8	Contig_8717	incomplete	missing stopcodon + missmatch	482	1	99.8	100	0.996	3
DHCR24	4410_host_Oalg_flye-2.8	scaffold_4022	incomplete	missing stopcodon + missmatch	501	2	99.6	100	0.992	8
SMT	4410_host_Oalg_flye-2.8	contig_41985	incomplete	missing stopcodon	165	0	100	100	1	4

Supplementary Table 3 | Detection of enzymes involved in sterol biosynthesis in the draft genome of *Olavius algarvensis*.

Enzyme_ID	Contig	Querry	ID (%)	length	evalue	bitscore	assembly
ERG7	TRINITY_DN47299_c3_g1_i19	sp Q8BLN5 ERG7_MOUSE	61.165	721	0	894	Oalg5ASA
ERG6	TRINITY_DN46293_c3_g7_i1	sp Q9LM02 SMT1_ARATH	49.158	297	8.50E-100	297	OalgA5SA
ERG11	TRINITY_DN47328_c5_g2_i2	sp Q1JPY5 CYP51_DANRE	69.892	465	0	672	OalgA5SA
ERG1	TRINITY_DN49356_c3_g8_i1	sp Q14534 ERG1_HUMAN	59.346	428	0	530	OalgA5SA
ERG26	TRINITY_DN40078_c3_g2_i1	sp Q3ZBE9 NSDHL_BOVIN	60.117	341	1.02E-155	434	OalgB8SA
ERG27	TRINITY_DN48078_c2_g1_i1	sp Q62904 DHB7_RAT	50	268	2.16E-83	251	OalgA5SA
ERG24	TRINITY_DN29949_c0_g1_i1	sp Q14739 LBR_HUMAN	49.745	392	6.70E-137	397	OalgB8SA
ERG25	TRINITY_DN35202_c6_g4_i2	sp Q5ZLL6 MSMO1_CHICK	64.789	284	6.74E-133	375	OalgA8SA
partial_ERG3	TRINITY_DN35917_c0_g1_i2	sp 075845 SC5D_HUMAN	63.592	206	6.76E-101	301	OalgB5SA
ERG2	TRINITY_DN18361_c0_g1_i2	sp P70245 EBP_MOUSE	45.249	221	3.50E-72	216	verC3
DHCR7a	TRINITY_DN28908_c0_g1_i1	sp Q9LDU6 ST7R_ARATH	48.921	417	7.72E-137	394	4731
	DHCR	24_4731_Verc3_consensus					
partial_DHCR24	TRINITY_DN23155_c0_g1_i1	sp Q5BQE6 DHC24_RAT	63.725	408	0	574	4731
partial_DHCR24	TRINITY_DN35798_c0_g2_i2	sp Q5BQE6 DHC24_RAT	63.006	346	5.28E-175	488	verC3

Supplementary Table 4 | Detection of enzymes involved in sterol biosynthesis in the transcriptome of *Olavius algarvensis*.

Supplementary Table 5 | Detection of enzymes involved in sterol biosynthesis in the proteome of *Olavius algarvensis*. FDR = False discovery rate, #PSMs = number of peptide spectral matches, #PUPs = number of protein unique peptides.

Protein acession	Description	Found in proteome (filtered for 5% FDR)	Found in # of samples (out of 25)	q- value	#PSMs	#of PUP
ERG1_Host_330784_c8_seq1_40	squalene monooxygenase homologue	No	-	-	-	-
ERG2_Host_282622_c0_seq2_5	sterol C-8 isomerase homologue	Yes	4	0.008	4	0
ERG6_Host_316125_c3_seq1_6	sterol methyltransferase homologue	Yes	25	0	70	4
ERG7_Host_333294_c4_seq2_44	lanosterol synthase homologue	Yes	3	0	4	2
ERG11a_Host_334930_c0_seq4_30	sterol C-14 demethylase homologue	Yes	25	0	50	1
ERG11b_Host_334930_c0_seq1_24	sterol C-14 demethylase homologue	Yes	12	0	16	0
ERG24_Host_331074_c0_seq1_34	sterol C-14 reductase homologue	Yes	25	0	123	5
ERG25_Host_335885_c4_seq2_8	methylsterol monooxygenase homologue	No	-	-	-	-
ERG26a_Host_330893_c3_seq7_9	Sterol-4-alpha-carboxylate 3-dehydrogenase	Yes	17	0	25	1
ERG27_Host_329156_c0_seq5_38	3-keto reductase homologue	No	-	-	-	-
ERG3_Host_326988_c0_seq1_35	sterol C-5 desaturase homologue	No	-	-	-	-
DHCR24_4731_Verc3_concensus	sterol C-24 reductase homologue	No	-	-	-	-
DHCR7a_4731_TRINITY_DN28908_c0_g1_i1	sterol C-7 reductase homologue	No	-	-	-	-

Supplementary Table 6 The sterol profiles of all investigated Olavius and Inanidrilus species was dominated	
by sitosterol.	

Species	Sampling location	Main sterol	other sterols	C ₂₄ -SMT
Olavius algarvensis	Sant'Andrea (Elba, Italy)	sitosterol	cholestrol	yes
Olavius ilvae	Sant'Andrea (Elba, Italy)	sitosterol	cholestrol	yes
Olavius algarvensis	Magaluf (Mallorca, Spain)	sitosterol	cholestrol	yes
Olavius longissimus	Carrie bow Cay (Belize)	sitosterol	cholestrol	yes
Olavius tantulus	Twin Cayes (Belize)	sitosterol	cholestrol	yes
Inanidrilus mojicae	Twin Cayes (Belize)	sitosterol	cholestrol	unknown
Inanidrilus leukodermatus	Carrie bow Cay (Belize)	sitosterol	cholestrol	yes
Olavius sp.	Okinawa (Japan)	sitosterol	cholestrol	yes

Supplementary Table 7 | C_{24} -SMT homologues were identified in the transcriptomes of all *Olavius* and *Inandrilus* species analyzed in this study

Species	Collection site	C ₂₄ -SMT	Target_ID	Туре
Inanidrilus leukodermatus	Harrington Sound (Bermuda)	yes	TRINITY_DN9622	transcript
Inanidrilus sp. FANTCC3	Curlew Cay (Belize)	yes	TRINITY_DN8118	transcript
Inanidrilus sp. NYSP	Carrie Bow Caye (Belize)	yes	TRINITY_DN8686	transcript
Inanidrilus sp. ULE	Curlew Cay (Belize)	yes	TRINITY_DN41110	transcript
Olavius clavatus	Lizard Island (Australia)	yes	g641.t1	gene
Olavius finitimus	Twin Cayes (Belize)	yes	TRINITY_DN10503	transcript
Olavius ilvae	Sant'Andrea (Elba, Italy)	yes TRINITY DN18930	transcript	
		yes		622transcript118transcript686transcript1110transcriptgenegene0503transcript3930transcript834transcript
Olavius imperfectus	Twin Cayes (Belize)	yes	TRINITY_DN8834	transcript
Olavius tantalus	Twin Cayes (Belize)	yes	TRINITY_DN12053	transcript

Supplementary Table 8 | C_{24} -SMT homologues are widely spread in annelids. They were found in the transcriptomes of 9 *Olavius* and *Inanidrilus* species, in three deep-sea gutless tubeworm species and 17 gut-bearing annelid species from marine, limnic and terrestrial environments belonging to six different clades. Methylated sterols (C_{28} and C_{29}) often account for an important part of the sterol profile of annelids. References: 1 (Voogt, 1973b), 2 (Voogt, 1973c), 3 (Marsh et al., 1990), 4 (McLaughlin, 1971b), 5 (Petersen & Holmstrup, 2000), 6 (Hasan et al., 2012), 7 (Zipser et al., 1998), 8 (Naya & Kotake, 1967), 9 (Cerbulis & Wight Taylor, 1969), 10 (Albro et al., 1993), 11 (Mita et al., 2006), 12 (Guan et al., 2021), 13 (Kobayashi et al., 1973), 14 (Phleger et al., 2005), 15 (Rieley et al., 1996). \rightarrow See attached excel file

Supplementary Table 9 | C_{24} -SMT homologues are also present in sponges, rotifers and likely in mollusks. \rightarrow See attached excel file Supplementary Table 10 | Solvent gradient for high-resolution LC-MS/MS with a C30 column used to identify sterols.

%В	Time (min)
0	-2 (pre-run equilibration)
0	2
16	5.5
45	9
52	12
58	14
66	16
70	18
75	22
97	25
97	32.5
15	33
0	34.4
0	36

Buffer A (60/40 ACN/H₂O, 10 mM ammonium formate, 0.1% FA) and Buffer B (90/10 IPA/ACN, 10 mM ammonium formate, 0.1% FA) were used at a flow rate of 350 μ l min⁻¹

Supplementary Table 11 | MS settings of the Q Exactive Plus Orbitrap (Thermo Fisher Scientific) equipped with a HESI probe and a Vanquish Horizon UHPLC System (Thermo Fisher Scientific).

MS ¹	C30 settings	C18 settings
Resolution	70,000	70,000
AGC target	5e5	3e6
Max IT [ms]	65	200
Scan range [m/z]	150–1500	100–1000
MS ²	DDA	DIA
Resolution	35,000	35,000
AGC target	1e6	2e5
Max IT [ms]	75	auto
Loop count	8	1
Dynamic exclusion [sec.]	30	NA
Isolation windows (pos.) [Da]	1	0.4
Isolation windows (neg.) [Da]	1	NA
NCE	30	30

Supplementary Table 12 | List of the enzymes isolated from model organisms used as query to assess the ability of gutless annelids to synthesize sterols.

Enzyme_name	animal	plant	fungi	
SQE/ERG1	Q14534	Q9SM02	Q92206	
LAS/CAS/ERG7	P48449	P38605	P38604	
CYP51/ERG11	Q16850	Q9SAA9	P10614	
LBR/FK/ERG24	O76062 Q14739	P32462	Q9LDR4	
MSMO1/SMO/ERG25	Q15800	Q8L7W5 Q1EC69 Q9ZW22 Q8VWZ8 F4JLZ6	O59933	
NSDHL/3β-HSD/ERG26	Q15738	A9X4U2 Q67ZE1 Q9FX01	P53199	
HSD17B7/?/ERG27	P56937	-	Q12452	
EBP/HYD1/ERG2	Q15125	O48962	P32352	
SC5DL/DWF7/ERG3	O75845	Q39208 Q9M883	P32353	
DHCR7/DWF5/-	Q9UBM7	Q9LDU6	-	
DHCR24/DIM/ERG4	Q15392	Q39085	P25340	
-/CYP710A/ERG5	-	O64697 O64698 Q9ZV28 Q9ZV29	P54781	
-/SMT/ERG6	-	Q9LM02 Q39227 P250 Q94JS4		
-/CPI/-	-	Q9M643	-	

Supplementary Table 13 | Details of the sequences, plasmid, and *E. coli* cells used for the heterologous gene expression experiments.

Gene Name	Sequence	Length	Restriction Sites to Keep	Cloning Vector	Comment	Expression host	ID
AraTh_Q9LM02	MDLASNLGGKIDKSDVLTAVEKYEQYHVF HGGNEEERKANYTDMVNKYYDLATSFYE YGWGESFHFAQRWKGESLRESIKRHEHF LALQLGIPGQKVLDVGCGIGGPLREIARFS NSVVTGLNNNEYQITRGKELNRLAGVDKT CNFVKADFMMPFPENSFDAVYAIEATCHA PDAYGCYKEIYRVLKPGQCFAAYEWCMT DAFDPDNAEHQKIGEIEIGDGLPDIRLTTKC LEALKQAGFEVIWEKDLAKDSPVPWYLPL DKNHFSLSSFRLTAVGRFTKNMVKILEYIR LAPQGSQRVSNFLEQAAEGDGGRREIFT PMYFFLARKPE	1023 bp	Nhel/Xhol	pET- 28a(+) with restriction sites Nhel/Xhol	His- Tag at the N- terminal side only	<i>E. coli</i> C41(DE3)pL ysS	T-3784
OclaLIZ1_g641.t1	MTSVEKPSITEILRPLQAKSPSSVESTADG YLRYFEREQQSKDDKVDEEDLDAEATDR RRQDAVTVTNAYYDLATDFYEYGWGDFH FAVLKPEESREHSFAKHEYFLAMKLGLKA GDTVLDIGCGIGGPARHIASLSEANVIGMN INDYQLSRARILTEKAKLDHLCSFVKADYN HMPYGDGHFDVYAIEATCHSPTLLSVYSE VFRVLKPGGMFAVYEWIMTDKYNPTDPY HKKLKADILEGDGLPDIVTAPQAVVAARQA GFEVLESRDRALEPGLPWNVLQARWTLS DIKITPLGRWATHVMLAVLETVHLAPRGAV KVHRTLCKGADALAAAGVEGIFSPMYLLV LRKPRD	1089 bp	Nhel/Xhol	pET- 28a(+) with restriction sites Nhel/Xhol	His- Tag at the N- terminal side only	<i>E. col</i> i Lemo21(DE3)	T-3787
OalgB8SA	MNSIEKPSITGILRPLHGKAAVESTADGYL RYFDSDSPPRDDAADADDSDAEAVERRR KNALAVTNAYYDLATDFYEYGWGEAFHFA VLKPEESREHSFAKHEYFLGMKLGLKAGD TVLDIGCGIGGPARHIASLSEANVIGLNIND YQLSRARILTEKAKLDHLCSFVKADYNHMP YGEGHFDKVYAIEATCHSPSLCSVYSEVF RVLKPGGLFALYEWIMTDTYNPTDPYHKK LKADILEGDGLPDLASVPQVLTAARQAGF EVVESRDRALEPGVPWYTVLQARWTLSDI KITPFGRWATHLMLAVLETVRLAPRGSVK VHRTLCKGADALAAAGAEGIFSPMYLLVL RKPSK		Nhel/Xhol	pET- 28a(+) with restriction sites Nhel/Xhol	His- Tag at the N- terminal side only	<i>E. col</i> i Lemo21(DE3)	T-3909

Supplementary Table 14 | List of the different sterol substrates tested with the animal C_{24} -SMTs. Olavius algarvensis C_{24} -SMT (Oalg_SMT), Olavius clavatus C_{24} -SMT (Oclav_SMT) and Arabidopsis thaliana C_{24} -SMT (Atha_SMT1). Green shading indicates that the substrate can be used by the enzyme tested. Orange shading indicates that no methylated product was detected at the end of the incubation between the set of enzyme and the substrate tested.

Enzyme		Rationale for testing the		
	Oalg_SMT	Oclav_SMT	Atha_SMT1	substrate
Lathosterol				Cholesterol intermediate
7- dehydrocholsterol				Cholesterol intermediate
Desmosterol	1 st methylation	1 st methylation		Cholesterol intermediate
Cholesterol				Cholesterol intermediate
Zymosterol	1 st methylation	1 st methylation		Substrate of fungal C ₂₄ -SMT and cholesterol intermadiate
Fecosterol				(Ganapathy et al., 2008)
Eburicol				Pneumocystis carninii, substrate for 2 nd methylation
Lanosterol				Substrate of fungal C ₂₄ -SMT
Cycloartenol			1 st methylation	Substrate of the first methylation in plants
Campesterol				Potential intermediate of <i>O. algarvensis</i> sitosterol biosynthesis
24-methylene- cholesterol	2 nd methylation	2 nd methylation		Potential intermediate of <i>O. algarvensis</i> sitosterol biosynthesis

Supplementary Table 15 | Solvent gradient for high-resolution LC-MS/MS with C18 column.

%В	Time (min)
50	-10 (pre-run equilibration)
50	3
87.5	9
90	15
100	21
100	30
50	32

Solvent A (MiliQ, 0.1% FA) and Solvent B (90:10 ACN:MiliQ, 0.1% FA) were used at a flow rate of 200 µl min⁻¹.

References

- Albro, P. W., Corbett, J. T., & Schroeder, J. L. (1993). Endogenous lipids of the earthworm *Lumbricus terrestris*. *Biochemistry and Cell Biology*, *71*(3–4), 220–221. https://doi.org/10.1139/o93-033
- Ballantine, J. A., Lavis, A., Roberts, J. C., Morris, R. J., Elsworth, J. F., & Cragg, G. M. L. (1978). Marine sterols—VII. The sterol compositions of oceanic and coastal marine annelida species. *Comparative Biochemistry and Physiology Part B: Comparative Biochemistry*, *61*(1), 43–47. https://doi.org/10.1016/0305-0491(78)90211-0
- Canuel, E. A., Freeman, K. H., & Wakeham, S. G. (1997). Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. *Limnology and Oceanography*, 42(7), 1570–1583. https://doi.org/10.4319/lo.1997.42.7.1570
- Carvalho, M., Schwudke, D., Sampaio, J. L., Palm, W., Riezman, I., Dey, G., Gupta, G. D., Mayor, S., Riezman, H., Shevchenko, A., Kurzchalia, T. V., & Eaton, S. (2010). Survival strategies of a sterol auxotroph. *Development*, *137*(21), 3675–3685. https://doi.org/10.1242/dev.044560
- Cerbulis, J., & Wight Taylor, M. (1969). Neutral lipid and fatty acid composition of earthworms (*Lumbricus terrestris*). *Lipids*, *4*(5), 363–368. https://doi.org/10.1007/BF02531007
- Cooper, L., & DeNiro, M. (1989). Stable carbon isotope variability in the seagrass *Posidonia* oceanica: Evidence for light intensity effects. *Marine Ecology Progress Series*, 50, 225– 229. https://doi.org/10.3354/meps050225
- Dauby, P. (1989). The stable carbon isotope ratios in benthic food webs of the gulf of Calvi, Corsica. *Continental Shelf Research*, *9*(2), 181–195. https://doi.org/10.1016/0278-4343(89)90091-5
- Dubilier, N., Blazejak, A., & Rühland, C. (2006). Symbioses between Bacteria and Gutless Marine Oligochaetes. In J. Overmann (Ed.), *Molecular Basis of Symbiosis* (pp. 251– 275). Springer. https://doi.org/10.1007/3-540-28221-1_12
- Fry, B., Scalan, R. S., & Parker, P. L. (1983). 13C/12C ratios in marine food webs of the Torres Strait, Queensland. *Marine and Freshwater Research*, 34(5), 707–715. https://doi.org/10.1071/mf9830707
- Ganapathy, K., Jones, C. W., Stephens, C. M., Vatsyayan, R., Marshall, J. A., & Nes, W. D. (2008). Molecular probing of the *Saccharomyces cerevisiae* sterol 24-C methyltransferase reveals multiple amino acid residues involved with C2-transfer activity. *Biochimica et Biophysica Acta (BBA) Molecular and Cell Biology of Lipids*, 1781(6), 344–351. https://doi.org/10.1016/j.bbalip.2008.04.015
- Guan, H., Birgel, D., Feng, D., Peckmann, J., Liu, L., Liu, L., & Tao, J. (2021). Lipids and their δ13C values reveal carbon assimilation and cycling in the methane-seep tubeworm *Paraescarpia echinospica* from the South China Sea. *Deep Sea Research Part I: Oceanographic Research Papers*, *174*, 103556. https://doi.org/10.1016/j.dsr.2021.103556
- Hasan, F., Khar, R. K., Ahmad, F. J., Ahmad, S., Ali, M., Iqbal, Z., & Reza, M. H. (2012). Development and Validation of a Stability-Indicating Method for Determination of Free

Sterols in the Asian Medicinal Leech *Hirudo manillensis*. *Journal of Chromatographic Science*, *50*(8), 673–679. https://doi.org/10.1093/chromsci/bms076

- Jennings, S., Reñones, O., Morales-Nin, B., Polunin, N., Moranta, J., & Coll, J. (1997). Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: Implications for the study of trophic pathways. *Marine Ecology Progress Series*, 146, 109–116. https://doi.org/10.3354/meps146109
- Kobayashi, M., Nishizawa, M., Todo, K., & Mitsuhashi, H. (1973). Marine Sterols. I. Sterols of Annelida, *Pseudopotamilla occelata* MOORE. *Chemical & Pharmaceutical Bulletin*, 21(2), 323–328. https://doi.org/10.1248/cpb.21.323
- Lepoint, G., Dauby, P., & Gobert, S. (2004). Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystems. *Marine Pollution Bulletin*, *49*(11), 887–891. https://doi.org/10.1016/j.marpolbul.2004.07.005
- Lu, N. C., Newton, C., & Stokstad, E. L. R. (1977). The Requirement of Sterol and Various Sterol Precursors in Free-Living Nematodes. *Nematologica*, *23*(1), 57–61. https://doi.org/10.1163/187529277X00228
- Marsh, A. G., Harvey, H. R., Grémare, A., & Tenore, K. R. (1990). Dietary effects on oocyte yolk-composition in *Capitella sp.* I (Annelida: Polychaeta): Fatty acids and sterols. *Marine Biology*, *106*(3), 369–374. https://doi.org/10.1007/BF01344314
- McLaughlin, J. (1971a). Biochemical studies on Eisenia foetida (savigny, 1826), the brandling worm—I. Tissue lipids and sterols. *Comparative Biochemistry and Physiology Part B: Comparative Biochemistry*, 38(1), 147–163. https://doi.org/10.1016/0305-0491(71)90294-X
- McLaughlin, J. (1971b). Biochemical studies on Eisenia foetida (savigny, 1826), the brandling worm—I. Tissue lipids and sterols. *Comparative Biochemistry and Physiology Part B: Comparative Biochemistry*, 38(1), 147–163. https://doi.org/10.1016/0305-0491(71)90294-X
- McMillan, C., Parker, P. L., & Fry, B. (1980). 13C12C ratios in seagrasses. *Aquatic Botany*, 9, 237–249. https://doi.org/10.1016/0304-3770(80)90025-X
- Meyer, H., Provasoli, L., & Meyer, F. (1979). Lipid biosynthesis in the marine flatworm *Convoluta roscoffensis* and its algal symbiont *Platymonas convoluta. Biochimica Et Biophysica Acta*, 573(3), 464–480. https://doi.org/10.1016/0005-2760(79)90221-2
- Mita, M., Deguchi, M., & Sasayama, Y. (2006). Lipid composition of the trophosome in the beard worm, Oligobrachia mashikoi (Pogonophora). Journal of the Marine Biological Association of the United Kingdom, 86(2), 283–286. https://doi.org/10.1017/S0025315406013130
- Naya, Y., & Kotake, M. (1967). [Study of free fatty acids, free sterols, sterolester and glyceride in the earthworm (*Lumbricus spencer*)]. *Bulletin of the Chemical Society of Japan*, 40(4), 880–884.
- Oh, K. H., Haney, J. J., Wang, X., Chuang, C.-F., Richmond, J. E., & Kim, H. (2017). ERG-28 controls BK channel trafficking in the ER to regulate synaptic function and alcohol response in *C. elegans. ELife*, *6*, e24733. https://doi.org/10.7554/eLife.24733
- Petersen, S. O., & Holmstrup, M. (2000). Temperature effects on lipid composition of the earthworms *Lumbricus rubellus* and *Eisenia nordenskioeldi*. *Soil Biology and Biochemistry*, *32*(11), 1787–1791. https://doi.org/10.1016/S0038-0717(00)00059-6

- Phleger, C. F., Nelson, M. M., Groce, A. K., Cary, S. C., Coyne, K. J., & Nichols, P. D. (2005). Lipid composition of deep-sea hydrothermal vent tubeworm *Riftia pachyptila*, crabs *Munidopsis subsquamosa* and *Bythograea thermydron*, mussels *Bathymodiolus sp.* And limpets *Lepetodrilus spp. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, *141*(2), 196–210. https://doi.org/10.1016/j.cbpc.2005.03.001
- Pinnegar, J. K., & Polunin, N. V. C. (2000). Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes. *Oecologia*, 122(3), 399–409. https://doi.org/10.1007/s004420050046
- Rieley, G., Dover, C. L. V., Hedrick, D. B., White, D. C., & Eglinton, G. (1996). Lipid characteristics of hydrothermal vent organisms from 9°N, East Pacific Rise. *Oceanographic Literature Review*, 2(43), 133–134.
- Shamsuzzama, Lebedev, R., Trabelcy, B., Langier Goncalves, I., Gerchman, Y., & Sapir, A. (2020). Metabolic Reconfiguration in **C. elegans** Suggests a Pathway for Widespread Sterol Auxotrophy in the Animal Kingdom. *Current Biology*, *30*(15), 3031-3038.e7. https://doi.org/10.1016/j.cub.2020.05.070
- Sogin, E. M., Michellod, D., Gruber-Vodicka, H., Bourceau, P., Geier, B., Meier, D. V., Seidel, M., Ahmerkamp, S., Schorn, S., D'Angelo, G., Procaccini, G., Dubilier, N., & Liebeke, M. (2021). Sugars dominate the seagrass rhizosphere. *BioRxiv*, 797522. https://doi.org/10.1101/797522
- Thayer, G. W., Parker, P. L., LaCroix, M. W., & Fry, B. (1978). The stable carbon isotope ratio of some components of an eelgrass, *Zostera marina*, bed. *Oecologia*, *35*(1), 1–12. https://doi.org/10.1007/BF00345537
- Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2020). Root exudates: From plant to rhizosphere and beyond. *Plant Cell Reports*, *39*(1), 3–17. https://doi.org/10.1007/s00299-019-02447-5
- Vizzini, S., Tomasello, A., Maida, G. D., Pirrotta, M., Mazzola, A., & Calvo, S. (2010). Effect of explosive shallow hydrothermal vents on δ13C and growth performance in the seagrass *Posidonia oceanica. Journal of Ecology*, *98*(6), 1284–1291. https://doi.org/10.1111/j.1365-2745.2010.01730.x
- Voogt, P. A. (1973a). Biosynthesis and Composition of Sterols in Annelida. Ii. Investigations On Some Oligochaetes. *Netherlands Journal of Zoology*, 24(4), 469–478. https://doi.org/10.1163/002829674X00200
- Voogt, P. A. (1973b). Biosynthesis and Composition of Sterols in Annelida. Ii. Investigations On Some Oligochaetes. *Netherlands Journal of Zoology*, 24(4), 469–478. https://doi.org/10.1163/002829674X00200
- Voogt, P. A. (1973c). Biosynthesis and Composition of Sterols in Annelida—I. Investigations On Some Polychaetes. *Netherlands Journal of Zoology*, 24(1), 22–31. https://doi.org/10.1163/002829674X00138
- Wacker, A., & Martin-Creuzburg, D. (2012). Biochemical nutrient requirements of the rotifer Brachionus calyciflorus: Co-limitation by sterols and amino acids. Functional Ecology, 26(5), 1135–1143. https://doi.org/10.1111/j.1365-2435.2012.02047.x
- Wilber, C. G., & Bayors, W. M. (1947). A comparative study of the lipids in some marine annelids. *The Biological Bulletin*, *93*(2), 99–101. https://doi.org/10.2307/1538280

Zipser, B., Bradford, J. J., & Hollingsworth, R. I. (1998). Cholesterol and its derivatives, are the principal steroids isolated from the leech species *Hirudo medicinalis*. *Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology,* 120(2), 269–282. https://doi.org/10.1016/S0742-8413(98)10005-1