SUPPLEMENTARY MATERIAL FOR:

Assessing risk for butterflies in the context of climate change, demographic uncertainty, and heterogenous data sources

Matthew L. Forister¹, Eliza M. Grames¹, Christopher A. Halsch¹, Kevin J. Burls²,

Cas F. Carroll¹, Katherine L. Bell¹, Joshua P. Jahner³, Taylor Bradford¹, Jing Zhang⁴,

Qian Cong⁵, Nick V. Grishin^{4,6}, Jeffrey Glassberg^{7,8}, Arthur M Shapiro⁹, Thomas V. Riecke¹⁰

Contents included here:

- Table S1 -- resources used for subspecies years of last occurrence.
- Table S2 -- results from models predicting risk among group A species.
- Table S3 -- taxonomic key for differences between NABA and Pelham lists.
- Figure S1 -- examples of iNaturalist-based kernel density plots.
- Figure S2 -- examples of land use and climate departure maps.
- Figure S3 -- overview of variable transformations.
- Figure S4 -- projected occupancy vs geometric population growth rates.
- Figure S5 -- correlation matrix for primary variables.
- Figure S6 S8 -- risk values for all species not shown in Figure 3.

Other supplementary materials:

https://elizagrames.shinyapps.io/butterflyRisk/

Interactive tool for exploring the impact of different weighting schemes (among contributing variables) on the risk index; also available are species-specific plots and maps similar to main Figures 4 - 6, as well as a subspecific table (like Table 1 in the main text) that can be filtered by state or taxonomic family.

Table S1. Sources and references searched for years of subspecies last occurrence.

BugGuide. 2022. "BugGuide.net." 2022. https://bugguide.net/node/view/15740.

- Cary, S. J., and M. E. Toliver. 2022. "Butterflies of New Mexico: Introduction." Pajarito Environmental Education Center. 2022. https://peecnature.org/butterflies-of-new-mexico/.
- Davenport, Kenneth E. 2004. "The Yosemite Butterflies." The Taxonomic Report of the International Lepidoptera Survey 5 (1): 1–73.
- Davenport, K. E. 2007. "The Yosemite Butterflies, 2nd Edition." The Taxonomic Report of the International Lepidoptera Survey 5 (1): 1–81.
- Davenport, K. E., R. E. Stanford, and R. L. Langston. 2007. "Flight Periods of California Butterflies for 'Resident Species,' Subspecies, and Most Strays to the State." The International Lepidoptera Survey Newsletter 8 (1): 1–66.
- Davenport, K. 2018. "Butterflies of Southern California in 2018: Updating Emmel and Emmel's 1973 Butterflies of Southern California." Lepidoptera of North America 15: 1–175.
- Davenport, Ken. 2020. "Butterflies of the Sierra Nevada." Lepidoptera of North America 16: 1–270.
- Flickr. 2022. "Flickr." 2022. https://flickr.com/.
- Hammond, P. C., and D. V. McCorkle. 2017. Taxonomy, Ecology, and Evolutionary Theory of the Genus Colias (Lepidoptera: Pieridae: Coliadinae). The Franklin Press, Corvallis, Oregon.
- iNaturalist. 2022. "iNaturalist." 2022. https://www.inaturalist.org/home.
- LaBar, Caitlin. 2022. "Northwest Butterflies." 2022. http://northwestbutterflies.blogspot.com/.
- SCAN. 2021a. "Hesperiidae Records for United States."
- ------. 2021b. "Lycaenidae Records for United States." Symbiota Collections of Arthropods Network.
- . 2021c. "Nymphalidae Records for United States." Symbiota Collections of Arthropods Network.
- ------. 2021d. "Papilionidae Records for United States." Symbiota Collections of Arthropods Network.
- ------. 2021e. "Pieridae Records for United States." Symbiota Collections of Arthropods Network.
- _____. 2021f. "Riodinidae Records for United States." Symbiota Collections of Arthropods Network.
- Scott, J.A., N.G. Kondla. 2014. "Systematics and Life History Studies of Rocky Mountains Butterflies." Papilio (n.s.) 22: 1–78.
- Stout, T. 2021. Personal communication with Kevin Burls, Xerces Society. 9 Dec 2021

Table S2. Coefficients and other results from a Bayesian linear model predicting the composite risk index among A group species using seven predictor variables including climate, land use and natural history. Values shown in the table below are the standardized beta coefficients, upper and lower 95% credible intervals (CI), and probabilities of effect (the fraction of the posterior probability distributions above or below zero, depending on the sign of the coefficient). The variance explained (as the square of the correlation between observed and predicted values) for the whole model was 0.092.

Variable	Probability	Coefficient	Lower 95% CI	Upper 95% CI
Geographic range	0.81	0.0098	-0.012	0.032
Development	0.51	-0.00016	-0.014	0.014
Climate departure	0.54	-0.0014	-0.029	0.026
Precipitation	0.86	-0.012	-0.035	0.010
Voltinism	0.57	0.0015	-0.015	0.018
Wingspan	0.99	-0.020	-0.033	-0.0072
Host breadth	0.65	0.0029	-0.012	0.017

Table S3. Taxonomic key for differences between the North American Butterfly Association names (NABA, 2018, Checklist of North American Butterflies Occurring North of Mexico, Edition 2.4) and names used in Pelham (Pelham, 2022, A Catalogue of the Butterflies of the United States and Canada). Species names flagged with an asterisk in Figure 3 and Figures S6 - S8 are shown here in the NABA columns, with the corresponding names in the Pelham columns.

NABA checklist	Pelham 2022	NABA checklist	Pelham 2022
Achalarus casica	Thorybes casica	Nymphalis vaualbum	Nymphalis l-album
Adelpha bredowii	Adelpha californica	Oarisma edwardsii	Copaeodes edwardsii
Agraulis vanillae	Dione incarnata	Oeneis taygete	Oeneis bore taygete
Amblyscirtes elissa	Amblyscirtes arizonae	Papilio canadensis	Pterourus canadensis
Atrytonopsis edwardsii	Atrytonopsis edwardsi	Papilio cresphontes	Heraclides cresphontes
Autochton cellus	Telegonus cellus	Papilio eurymedon	Pterourus eurymedon
Boloria montinus	Boloria chariclea	Papilio glaucus	Pterourus canadensis
Boloria napaea	Boloria alaskensis	Papilio multicaudata	Pterourus multicaudata
Brephidium exile	Brephidium exilis	Papilio rutulus	Pterourus rutulus
Carterocephalus palaemon	Carterocephalus skada	Phaeostrymon alcestis	Satyrium alcestis
Chioides catillus	Chioides albofasciatus	Pholisora mejicana	Pholisora mejicanus
Chiomara asychis	Chiomara georgina	Phyciodes campestris	Phyciodes pulchella
Colias cesonia	Zerene cesonia	Phyciodes selenis	Phyciodes cocyta selenis
Colias eurydice	Zerene eurydice	Phyciodes texana	Anthanassa texana
Copaeodes aurantiacus	Copaeodes aurantiaca	Phyciodes vesta	Phyciodes graphica
Copaeodes minimus	Copaeodes minima	Pieris napi	Pieris oleracea
Dymasia dymas	Microtia dymas	Piruna cingo	Piruna aea
Emesis ares	Apodemia ares	Plebejus acmon	Icaricia acmon
Emesis zela	Apodemia zela	Plebejus emigdionis	Plebulina emigdionis
Erebia theano	Erebia pawloskii	Plebejus icarioides	Icaricia icarioides
Eurema boisduvaliana	Abaeis boisduvaliana	Plebejus lupini	Icaricia lupini
Eurema dina	Pyrisitia dina	Plebejus neurona	Icaricia neurona
Eurema lisa	Pyrisitia lisa	Plebejus saepiolus	Icaricia saepiolus
Eurema mexicana	Abaeis mexicana	Plebejus shasta	Icaricia shasta
Eurema nicippe	Abaeis nicippe	Poanes hobomok	Lon hobomok
Eurema nise	Pyrisitia nise	Poanes melane	Lon melane
Eurema proterpia	Pyrisitia proterpia	Poanes taxiles	Lon taxiles
Everes amyntula	Cupido amyntula	Pontia beckerii	Pontieuchloia beckerii
Everes comyntas	Cupido comyntas	Pontia sisymbrii	Sisymbria sisymbrii
Ganyra howarthii	Ganyra howarthi	Pyrgus albescens	Burnsius albescens
Hemiargus isola	Echinargus isola	Pyrgus communis	Burnsius communis
Junonia genoveva	Junonia neildi	Pyrgus oileus	Burnsius oileus (Lin

Lycaeides idas	Plebejus idas	Pyrgus philetas	Burnsius philetas
Lycaeides melissa	Plebejus melissa	Pyrrhopyge araxes	Apyrrothrix araxes
Lycaena arota	Tharsalea arota	Satyrodes eurydice	Lethe eurydice
Lycaena dione	Tharsalea dione	Speyeria adiaste	Argynnis adiaste
Lycaena editha	Tharsalea editha	Speyeria aphrodite	Argynnis aphrodite
Lycaena gorgon	Tharsalea gorgon	Speyeria atlantis	Argynnis atlantis
Lycaena helloides	Tharsalea helloides	Speyeria callippe	Argynnis callippe
Lycaena hermes	Tharsalea hermes	Speyeria coronis	Argynnis coronis
Lycaena heteronea	Tharsalea heteronea	Speyeria cybele	Argynnis cybele
Lycaena hyllus	Tharsalea hyllus	Speyeria edwardsii	Argynnis edwardsii
Lycaena mariposa	Tharsalea mariposa	Speyeria egleis	Argynnis egleis
Lycaena nivalis	Tharsalea nivalis	Speyeria hydaspe	Argynnis hydaspe
Lycaena rubidus	Tharsalea rubidus	Speyeria idalia	Argynnis idalia
Lycaena xanthoides	Tharsalea xanthoides	Speyeria mormonia	Argynnis mormonia
Megisto rubricata	Cissia rubricata	Speyeria nokomis	Argynnis nokomis
Neominois ridingsii	Oeneis ridingsii	Speyeria zerene	Argynnis zerene
Neophasia terlootii	Neophasia terlooii	Texola elada	Microtia elada
Nymphalis milberti	Aglais milberti	Thorybes mexicanus	Thorybes nevada

Figure S1. Examples of kernel density estimation based on iNaturalist records for two pairs of congeneric species (colors indicates relative density of observations). Among these four species, the first (*Vanessa virginiensis*, panel a) has been reported in iNaturalist records over a small area relative to the expectation for areal extent based on expert range size; thus, *V. virginiensis* has a large risk circle associated with iNaturalist records in Figure 3. The other species have smaller risk circles (in Figures S6 – S8) for the iNaturalist variable because they have been reported in Naturalist over spatial extents that were close to expected or greater than expected based on the size of their expert ranges (see Materials and Methods in main text for details on analyses).

Figure S2. Examples of expert range outlines for two species: *Hesperia nevada* in panels (a) and (b), and *Lycaena xanthoides* in panels (c) and (d). In the top two panels, the range is colored by exposure to developed and agricultural lands; in the bottom two panels, the range is colored by multivariate departure from baseline climate conditions. *Lycaena xanthoides*, for example, has a smaller range concentrated in developed parts of California (c), which gives it a higher risk (relative to *H. nevada*) with respect to exposure to land use: this is summarized with a larger risk circle for development in Figure 3. In contrast, the two species have comparable range-wide exposure to climate change (and similar risk circles for that variable in Figure 3).

Figure S3. Illustration of the process (going from left to right) by which variables were transformed from raw scales into variables bounded between zero and 1, in which higher values correspond to greater risk. For example, NABA values (top row) are probability of population persistence (in 50-year simulations), and are inverted so that lower probabilities of persistence are closer to 1; in contrast, development values (5th row) are not inverted because higher values naturally correspond to higher risk (but development values are logged because of high skew). An arrow indicates a transformation not applied to a given variable. Colors here match colors in Figure 3 and Figures S6 – S8.

Figure S4. Relationship between two variables derived from the NABA community model, in which detection information is shared among species. Points are individual species, with 85% highest density intervals for both axes. The y axis is the projected 50 year occupancy across populations for each species (also referred to in the main text as the probability of population persistence); the x axis is the geometric population growth rate. The latter (growth rate) influences the former (occupancy) in simulations, therefore a positive relationship between these variables is expected (and observed), but we present it here as an illustration of the variation in the two aspects of our model. Marginal histograms show the distribution of among-species variation for values along both axes.

Figure S5. Pearson correlation coefficients among all variables shown in main risk plots (Figure 1 and Figures S6 - S8). Underlying circles and colors are shown for ease of visualizing relative magnitude of values.

Figure S6. The second set of species (51 - 100 for both A and B groups) ranked by risk index values. See Figure 3 for the first set (species 1 - 50), and also see the Figure 3 legend for a full description of the features of the plot shown here.

Figure S7. The third set of species (101 - 150 for both A and B groups) ranked by risk index values. See Figure 3 legend for a description of all features of the plot.

Figure S8. The fourth set of species (101 - 151 for the A group, and 151 - 212 for the B group) ranked by risk index values. See Figure 3 legend for a description of all features of the plot, and note here that the last species in the B group (200 - 212) are shown in the lower left of the plot.