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The tissue module (TM) was defined as an architectural area containing recurrent cellular 
communities executing specific biological functions at different tissue sites. However, the 
computational identification of TMs poses challenges owing to their various length scales, 
convoluted biological processes, not well-defined molecular features, and irregular spatial 
patterns. Here, we present a hypothesis-free graph Fourier transform model, SpaGFT, to 
characterize TMs. For the first time, SpaGFT transforms complex gene expression patterns 
into simple, but informative signals, leading to the accurate identification of spatially 
variable genes (SVGs) at a fast computational speed. Based on clustering the transformed 
signals of the SVGs, SpaGFT provides a novel computational framework for TM 
characterization. Three case studies were used to illustrate TM identities, the biological 
processes of convoluted TMs in the lymph node, and conserved TMs across multiple 
samples constituting the complex organ. The superior accuracy, scalability, and 
interpretability of SpaGFT indicate that it is a novel and powerful tool for the investigation 
of TMs to gain new insights into a variety of biological questions. 
 
A tissue module (TM) is a critical concept for investigating molecular tissue biology based on 
molecule compositions and functions in either homogenous or heterogeneous tissues. However, 
there is no rigorous computational formulation for TM identification because of the following: (i) 
TMs exhibit a wide range of length scales, and the repository of TM spatial patterns is unknown; 
and (ii) the molecular features of a TM and the relevant feature crosstalk of convoluted TMs are 
not well-defined1. Among the to-be-discovered molecular features, a group of spatially variable 
genes (SVGs) can be used to represent and define TMs if they share recurrent and similar spatial 
expression patterns within one or across multiple datasets. Particularly, the prediction of SVGs 
can be fully enabled using spatially-resolved transcriptomics (e.g., 10X Genomics Visium and 
Slide-seqV22), which simultaneously measures gene expression and spatial locations of spots 
within healthy or pathogenic tissues3. Existing SVG prediction methods are mainly hypothesis-
driven and developed based on statistical frameworks (e.g., SpatialDE) or graph neural networks 
(e.g., SpaGCN)1,4. Although these methods exhibit good SVG detection performance, are 
equipped with rigorous statistical evaluation, and provide valuable biological insights, they exhibit 
two main limitations: (i) these methods can effectively identify certain well-defined patterns (e.g., 
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radial hotspot, curve belt, or gradient streak), but they exhibit a lesser detection performance for 
irregular patterns, such as the T cell zone, B cell zone, or germinal center (GC) in the lymph node1; 
and (ii) although existing tools exhibit a competitive SVG identification accuracy with sacrificing 
scalability (e.g., SpatialDE and SPARK work well for Visium data), the accuracy decreases if a 
tool significantly improves the efficiency (e.g., SPARK-X)5 of datasets with a large number of 
spots/cells6,7. 
 
To solve these challenges, we proposed a hypothesis-free graph Fourier transform framework 
(GFT), named SpaGFT, for SVG and TM identification from spatial transcriptomics data. Our 
framework transforms obscure spatial gene expression patterns from the spatial domain to simple, 
informative, and quantifiable frequency signals in the Fourier domain. First, by taking advantage 
of Fourier domain signals, SVGs can be identified quickly and accurately without relying on the 
spatial pattern hypothesis. To demonstrate the superior performance and efficiency of the 
SpaGFT, 31 public datasets were used to compare the performance of SpaGFT to those of other 
state-of-the-art tools. Furthermore, SVGs with similar Fourier domain signal patterns can also be 
grouped into clusters, which are defined as TMs in our framework. We used three cases to explain 
the major applications and biological insights of the identified TMs from the gene-centric 
perspective. In the first case, we proposed a TM ID card to define TMs by showing the following: 
(i) the signature Fourier domain signal patterns; (ii) the corresponding SVGs with similar spatial 
patterns; (iii) the enriched biological functions of these TM-associated SVGs; and (iv) the relevant 
cell type annotations. In the second case, SpaGFT showed its capability of identifying short-length 
scale TMs and revealing convoluted biological processes among distinct TMs in human lymph 
nodes. Lastly, we used seven mouse samples from two anatomical views to (i) demonstrate the 
contribution of tissue motifs to understanding the 3D structures of the mouse brain from a 2D 
perspective; and (ii) conclude that conserved and connected TMs shared by multiple samples 
compose the basic functional units of complex organs. Overall, the results revealed that SpaGFT 
can accurately identify SVGs at a fast computational speed, and for the first time, provide a 
computational formulation and strong biological interpretation for TM identification from a gene-
centric perspective. 
 
Results 
SpaGFT is a graph Fourier transform framework for SVG identification and TM 
characterization. SpaGFT generates a novel representation of gene expression and the 
corresponding spot graph topology in a Fourier space (Fig. 1a), which enables TM identification 
and enhances SVG prediction and interpretation. This transform does not rely on predefined 
spatial pattern8 assumptions, which ensures its generalizability in identifying both well-defined 
and irregular SVG patterns across various datasets (Fig. 1b). Particularly, the core algorithm of 
SpaGFT projects spatial transcriptomics data on an orthogonal basis, known as Fourier modes 
(FM), which is represented in the increasing order of its frequency, with FM1 having the lowest 
frequency (Supplementary Fig. 1a). A low-frequency FM contributes to a slow signal variation, 
which results in a more recognizable spatial pattern (Supplementary Fig. 1b). To project a 
specific gene, each FM exhibits a signal intensity associated with the spot graph topology and 
retains the diverse orthogonal basis of the oscillation patterns. The signal intensity can be used 
to identify SVGs effectively and efficiently in SpaGFT using the rule: a gene with a high intensity 
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of low-frequency FM signals compared to high-frequency FM signals is typically an SVG, whereas 
a gene with a low intensity of low-frequency FM signals indicates random expression patterns 
(Supplementary Fig. 1c). To determine TMs using SpaGFT, the low-frequency SVG FM signals 
are selected as features to identify SVG clusters using Louvain clustering (Fig. 1c). Spatial 
regions (a group of spots) with high SVG expression patterns are considered as one TM. Multiple 
downstream analyses and interpretations can be given to elucidate a TM, including Uniform 
Manifold Approximation and Projection (UMAP) visualizations, TM-specific SVG functional 
enrichment, low SVG expression enhancement, sub-TM identification, short length-scaled TM 
identification (e.g., the GC of lymph nodes at ~55 μm diameter spots), and tissue motif9 (basic 
compartment of a specific tissue) identification across multiple samples. Notably, due to SpaGFT 
transforming SVG spatial expressions into FM signals, signal processing approaches can be used 
for complementary applications. For example, due to the dropout issue10, some SVGs may have 
retained a low expression in a given TM, and SpaGFT offers an additional function the SVG 
enhancement (Fig. 1d and Methods): a low-pass filter enhances low-frequency FM signals and 
denoises high-frequency FM signals to form enhanced FM signals. The new signal will then 
recover the SVG spatial expression with an enhanced magnitude via inverse graph Fourier 
transform (iGFT). 
 

 
 
Fig.1 | Overview and validation of SpaGFT. a. SpaGFT considers a gene-spot expression count 
matrix (𝑚 × 𝑛) and spatial locations as inputs. The spatial expression of three genes, ENC1, 
MOBP, and GPS1, are shown as examples. A KNN graph is generated by calculating the 
Euclidean distance among spots based on spatial locations between any two spots. Spot location 
is used to construct the spot graph using the KNN method, where K is half of the square root of 
𝑛. By combining gene expressions and spot KNN graph, the graph signal 𝒇! of gene 𝑔 can be 

SVGs Fourier signals of SVGs Tissue module

Selection Louvain

UMAP visualizations
TM-specific SVG functional enrichment 
Low gene expression enhancement

Sub-TM identification
Short length-scaled TM identification
Tissue motif in multiple-samples

ENC1 (SVG) 
expression

Spatial location 

Spot KNN graph

KNN

Gene 
expression

G
en

es
 (m

)

Spots (n)

Graph Fourier Transform

FM1

FM2

FM3

FM4

FMn

...

: FM signal : Graph signal : Fourier mode

SVGs

Non-SVGs

10

7

4

1

Low freq. High freq.

D
ec

om
po

se
D

ec
om

po
se

ENC1 MOBP GPS1

...

Expression

Low freq. High freq.

0.12

0.00

0.08

0.04

p-value<1e-35

Inflection

ENC1 (SVG) 

GPS1 (non-SVG) 

MOBP (SVG) 
expression

GPS1 (non-SVG) 
expression

S
ig

na
l

in
te

ns
ity MOBP (SVG) 

GFTscore = 

1 3 …… n2

a b

S
ig

na
l

in
te

ns
ity

S
ig

na
l

in
te

ns
ity

G
FT

sc
or

e 
S

ig
na

l

c d
iGFTLow-pass filterGFT

Enhanced 
expression

Enhanced 
FM signalFM signalOriginal 

expression

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.10.519929doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.10.519929
http://creativecommons.org/licenses/by-nc-nd/4.0/


projected to a series of FM 𝑈 and transformed into a frequency signal 𝑓(! using a graph Fourier 
transform. b. The spatial expression of three genes, including two known SVGs (MOBP and ENC1) 
and one non-SVG (GPS1), are shown as examples. All genes can be decomposed into multiple 
FMs (a series of periodic signals with gradually faded patterns) and corresponding frequency 
signals. The FMs in the Fourier space can be separated into low-frequency (red) and high-
frequency (blue) domains. For each gene, a GFTscore was designed to quantitatively measure 
the frequency signal intensity in the low-frequency domain. The threshold (inflection point) of the 
GFTscore was determined using the Kneedle algorithm, and the significance of a GFTscore (p-
value) was determined using a non-parametric test. A gene is defined as an SVG (red dots) if its 
GFTscore is greater than the inflection point and its false discovery rate (FDR) adjusted p-value 
is less than 0.05. Additionally, for sample 151673, we observed an SVG with a significantly higher 
intensity of low-frequency FM signals than high-frequency FM signals (box plot in the right-bottom 
corner, with a p-value<1e-35 by Wilcoxon rank-sum test). c. Workflow of TM identification in 
SpaGFT. d. The low SVG expression signal can be enhanced by a low-pass filter and iGFT using 
low-frequency FM signals.  
 
SpaGFT accurately identifies SVGs in human and mouse brains. In this study, we collected 
31 spatial transcriptome datasets from human and mouse brains from public domains, and the 
samples were sequenced using scales from two different spatial technologies (i.e., Visium 
measures ~55 μm diameter per spot and Slide-seqV2 measures ~10 μm diameter per spot 
[Supplementary Table 1]). Grid-search tests were conducted under a wide range of parameter 
combinations in all the benchmarking tools using three high-quality brain datasets. As no golden-
standard SVG database is available, we collected 849 SVG candidates from the brain regions of 
mice and humans from five studies11-15 and selected 458 genes as curated benchmarking SVGs 
based on cross-validation with the In Situ Hybridization (ISH) database of Allen Brain Atlas 
(Supplementary Tables 2 and 3, Methods). The SVG prediction performance was evaluated 
using six reference-based metrics, and the results revealed that SpaGFT outperformed the other 
five tools on the three datasets in terms of the Jaccard score and the other five metrics (Fig. 2a, 
Supplementary Fig. 2a, and Supplementary Table 4). It is essential to note that the 
computational speed of SpaGFT was two-fold faster than that of SPARK-X and hundreds-fold 
faster than those of the other four tools on the two Visium datasets. Although SpaGFT exhibited 
a slower performance than SPARK-X on the Slideseq-2 dataset, it exhibited a remarkably 
enhanced SVG prediction performance compared to SPARK-X (Supplementary Table 5). Based 
on the above grid-search result, we considered the parameter combination with the highest 
median Jaccard scores across the three datasets as the default parameter in SpaGFT. 
Subsequently, the performance of SpaGFT on an additional 28 independent datasets was 
compared to those of the other five tools (all using their default parameters) to test its applicability 
and robustness. The results revealed that it achieved the best performance among the 
investigated tools on all six metrics (Fig. 2b, Supplementary Table 6). In addition, the SVG 
prediction performance without the above curated benchmarking SVGs was evaluated using 
Moran's I and Geary's C statistics (two reference-free evaluation metrics, Methods), and the 
results revealed that the overall performance of SpaGFT was lower than that of MERINGUE 
(second best) because Moran's I was implemented in MERINGUE's model for SVG prediction 
(Supplementary Fig. 2b).  
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Two classical markers in the hippocampus and cortical region in Fig. 2c show SpaGFT’s ability 
to identify SVGs that are detectable by other tools16,17, and Fig.2d shows its ability to identify 
unique SVGs (Supplementary Table 7), which were validated using the ISH database 
(Supplementary Fig. 3) and reported by previous studies18-21. For example, the Calb2 gene 
encoding calretinin was employed as one of the traditionally used markers to categorize 
interneurons18. Hcrt was associated with controlling sleepiness19. Gal has been implicated in 
many behavioral processes, including anxiety, and thus represents a potential target for novel 
strategies aimed the pharmacological treatment of depression and anxiety disorders20. In addition, 
Asb4 was associated with obesity21. Furthermore, to demonstrate and visualize the strength of 
the FM signals for distinguishing SVGs and non-SVG patterns, we projected the top 50 low-
frequency FM signals on a two-dimensional UMAP space and compared them to those of a UMAP 
that utilizes the top 50 principal components (Methods). The results revealed that SVGs identified 
by SpaGFT were distinguishably separated from non-SVGs on the FM-based UMAP with a linear 
boundary, whereas SVGs were irregularly distributed on the principal components analysis 
(PCA)-based gene UMAP (Fig. 2e). This indicates that the FM signal is a better low-dimensional 
representation for characterizing SVG patterns, which lays a solid foundation for TM identification 
and interpretation.  
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Fig.2 | SVG identification performance comparison. a. The SVG prediction evaluation of 
SpaGFT was compared to those of the five benchmarking tools in terms of the Jaccard similarity 
score. To evaluate the robustness of the tool, a grid-search method was used on all tools and 
three datasets (HE-coronal, 151673, and Puck-200115-08) under different parameter 
combinations. The running time (seconds with log-transformation) of each tool is represented as 
the line graph. In addition, the median of five additional matrices (i.e., F1 score, precision, recall, 
Tversky index, and odds ratio of Fisher's exact test) on all parameter combinations for each tool 
is also shown as heatmaps. b. We selected the parameter combination showing the highest 
median Jaccard scores among all three benchmark datasets as the default parameter in SpaGFT. 
Using such parameter selection, the SVG prediction performance of SpaGFT on additional 28 
independent datasets was compared to those of the five benchmark tools using their own default 
parameters. The black line in each box indicates the median Jaccard score of all the 28 datasets. 
c. Two SVGs in the mouse brain coronal plane (proved by Allen Brain Atlas) that can be 
simultaneously identified within the top 100 SVGs by SpaGFT, SpaGCN, SPARK-X, MERINGUE, 
and SpatialDE. The spatial map results from SpaGFT are shown with a brighter color, which 
represents higher expressions. d. Spatial map visualization and Allen Brain Atlas ISH data of 
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eight SVGs that are uniquely identified by SpaGFT, showing distinct patterns in the spatial domain. 
Red circles in the ISH data indicate the expression region of the mouse brain. e. Comparison of 
the UMAPs obtained using the top 50 principal components (PCs) (left) and the top 50 FMs (right) 
of the Mouse Visium data (HE-coronal, 2702 spots). The principal component analysis (PCA) 
dimensions were generated directly from the gene-spot expression matrix using PCA analysis in 
Scanpy. Red dots indicate the 1,456 SVGs identified by SpaGFT using default settings, whereas 
the grey color suggests non-SVGs. 
 
SpaGFT characterizes TM in the mouse brain based on the gene-centric perspective. We 
believe a rigorous computational formulation for TM identification is non-travail, and a clear TM 
definition should be multi-angled and involve multi-omics. From a spatial transcriptomics 
perspective, we characterize a specific TM using an ID card, including a spatial expression map, 
TM digital map, transformed FM signals, associated SVG list, and underlying biological pathways. 
We applied SpaGFT to identify TMs by determining SVG clusters, which share similar signal 
patterns in the FM space. Taking the HE-coronal data as an example, seven SVG clusters were 
identified from a total of 1,456 SVGs, which corresponded to seven TMs (TM 1–7) (Fig. 3a). 
Particularly, we revealed the ID card for each identified TM (Fig. 3b and Supplementary Figs. 
4-9). The top four SVGs (e.g., Ctxn1, Ngef, Hpcal4, and Tspan7) were selected to support the 
spatial expression pattern of TM 1. The enrichment of ontologies, pathways, and transcriptional 
factors was also performed for TM-associated SVGs to elucidate the underlying biological process 
of the TM16,22,23. Using this identified TM pattern, SpaGFT enhanced the expression signal of the 
SVGs using a signal processing method followed by a low-pass filter and iGFT (Fig. 1d). For 
example, JunB is a validated SVG in the cornu ammonis field 1 (CA1) region (Supplementary 
Fig. 10a) with a regulatory role on memory24. However, the rank of the JunB GFT score was 214th 
among 275 SVGs in TM 1, indicating that the strength of the SVG signal in the spatial domain 
was lower than that of the other SVGs (Supplementary Table 8). Moreover, JunB could be 
enhanced by SpaGFT to obtain a more distinguishable pattern, and the granularity of the 
enhanced gene expression signals also increased (figure looks sharper) when the number of 
selected low-frequency FMs was used (Fig. 3c). Next, we observed that TMs remain sub-patterns. 
For example, TM 3 could be further clustered into four sub-TM patterns (Fig. 3d), which 
corresponded to preferred regions in the hippocampus, hypothalamus, cortical subplate, and 
thalamus. Similar sub-structures were also identified in the other six TMs and were associated 
with corresponding brain structures (Supplementary Figs. 10 and 11). 
 
We further investigated the cell composition of the TMs and corresponding sub-TMs. Based on 
the deconvolution result of 59 mouse brain cell types from the cell2location framework 
(Supplementary Table 9)25, we observed that TM 1, TM 2, TM 5, and their sub-TMs were 
composed of similar cell compositions (shown in the red rectangular box), including major 
neuronal cells, and supported the anatomical structures of the mouse cerebral cortex. This cellular 
composition could also be validated by TM-associated SVGs. For example, Gad1 (TM 1-
associated SVG), Vip (TM 2-associated SVG), and Snap25 (TM 5-associated SVG) are classic 
markers of GABAergic neurons14. In addition, C1ql3 (TM 1-associated SVGs), Slc17a7 (TM 2-
associated SVGs), and Arf5 (TM 5-associated SVGs)12,14 are known markers of glutamatergic 
neurons26. Similarly, TM 3, TM 4, and the corresponding sub-TMs were enriched with major 
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inhibitory neurons (Fig. 3e). Calb2 (TM 3-associated SVG) and Pvalb (TM 4-associated SVG) are 
documented markers of inhibitory neurons14. TM 6 and TM 7 mainly contained cell types from the 
white matter and thalamus region (Fig. 3f and Supplementary Fig. 12). For example, Mog (TM 
6-associated SVG) and Tcf7l2 (TM 7-associated SVG) are the markers of oligodendrocyte and 
thalamocortical neurons 14,27. Interestingly, although the sub-TM 4 of TM 6 was classified as a TM 
6-alike category, the tissue module pseudo-expression and cell-type distribution supported that it 
belonged to the caudoputamen region (CP), which was a distinct region from the other sub-TMs, 
including sub-TM 1, sub-TM 2, and sub-TM 3 (Fig. 3g). For example, Meis2-positive inhibitory 
neurons enriched in the CP were also enriched in this region25, and the CP regional marker 
Adora2a was also the TM-associated SVGs (sub-TM 4 of TM 6, i.e., TM 6_4)28. By investigating 
the TM-associated SVGs, their enriched biological functions, and cell type compositions, a TM 
can be defined and characterized from both the genetic perspective (i.e., how to define SVGs and 
functions in a specific region) and cellular perspective (i.e., what is the cell type composition in a 
specific region). In conclusion, these results demonstrated the ability of SpaGFT to identify, 
characterize, and interpret TMs based on SVGs, and it is complementary to the current state-of-
the-art deconvolution tool for further TM interpretation10.  
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Fig.3 | TM identification in mouse brain. a. All 1,456 SVGs identified in the Mouse Visium data 
(HE-coronal) were grouped into seven clusters, which represent seven TMs (TM 1–7), and it is 
shown in a UMAP space, which is shown in Fig.1g with all genes located in the left-bottom corner 
(red: SVGs, grey: non-SVGs). b. An ID card is created to display fundamental information of each 
TM. Here, we use TM 1 as an example. The spatial map shows the pseudo-expression of TM1 
with 275 SVGs, where brighter color indicates higher pseudo-expressions. The TM map is a 
binarized pseudo-expression map with an expression cutoff of 85 percentile. The low-frequency 
FM signals of TM 1 is displayed below. The spatial maps of the top four SVGs ranked by their 
GFTscore from high to low are shown on the right. Functional enrichment tests of the 275 SVGs 
are performed on three databases (i.e., GO Biological Process 2021, BioPlanet 2019, and ChEA 
2016) via Enrichr R package to provide insights on the functional and regulation information 
enriched in TM 1. c. SpaGFT can enhance the low SVG expression signal of JunB (an SVG in 
TM1) using an inverse graph Fourier transform (iGFT) for low-frequency FM signals. The spatial 
maps of JunB using original expression and enhanced expression are shown. d. Four sub-TMs 
were identified in TM 3 by re-clustering SVGs in TM 3. Each sub-TM possesses a group of unique 
SVGs, which exhibits varying spatial expression patterns. The number in the parenthesis 
indicates gene numbers in each sub-TM. e. The heatmap visualizes the TM-cell type matrix, 
where a row represents a sub-TM and a column represents a specific cell type. An element in this 
matrix represents the Pearson correlation coefficient between the proportion of a cell type and 
the pseudo-expression of a sub-TM across all the spots. A red color block in the heatmap 
indicates a high association between the corresponding cell type and sub-TM. f and g. The figures 
showcase cell type composition and distribution of TM 7 sub-TM 2 and TM 6 sub-TM 4, 
respectively.  
 
SpaGFT identifies short-length scale TMs and the crosstalk among convoluted TMs in a 
human lymph node sample. Lymph node belongs to the secondary lymphoid organ, containing 
T cell zones, B follicles, and a GC (a short length-scale TM under a ~55 μm resolution)25. We 
applied SpaGFT to lymph node Visium data29 to investigate the organization of the three functional 
regions and their convoluted crosstalk at the molecular level. SpaGFT identified 1,490 SVGs, 
leading to nine TMs (Fig. 4a and Supplementary Table 10). The cell proportion of 34 cell types 
in this Visium data were predicted using cell2location (Supplementary Table 11). Each TM (and 
sub-TMs) was correlated with a set of cell types based on cell proportions (Fig. 4b). Particularly, 
TM 6 was highly correlated with six GC signature cell types defined by cell2location, including T 
follicular helper cells (T_CD4_TfH_GC), follicular dendritic cells (FDC), pre-GC B cells 
(B_GC_prePB), cycling B cells (B_cycling), dark zone B cells (B_GC-DZ), and light zone B cells 
(B_GC-LZ). TM 7 was highly correlated with eight T cell related cell types, and TM 8 was highly 
correlated with five B cell related cell types. Altogether, 143 SVGs were associated with TM 6, 
including PCNA, CDK1, and CDC20, which were marker genes of cell proliferation in the GC 
enriched in the cell cycle pathway30,31 (Fig. 4c). In addition, TM 7 exhibited a higher proportion of 
the seven T cell types and 132 SVGs, including several T cell zone markers relevant to T cell 
survival, such as CD3E, IL7R, CCR7, and CCL1932. The pathway analysis result showed that the 
132 SVGs were enriched in the T cell activation and differentiation pathway (Supplementary Fig. 
13). Additionally, a B cell-enriched niche was identified in TM 8, where several B cell markers 
(e.g., CD19, CD79B, and CR2) and relevant pathways (e.g., antigen processing and presentation) 
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were identified (Fig. 4c)33. Therefore, we defined TMs 6, 7, and 8 as GC, T cell zone, and B follicle, 
respectively. We visualized the three TM locations and found that they were spatially close to 
each other, indicating potential convoluted functions among these three TM regions (Fig. 4d).   
 
To further reveal the crosstalk among these three regions, we projected spots (assigned to all 
three regions) to the Barycentric coordinate (the equilateral triangle in Fig. 4e and 
Supplementart Table 12) to display the distribution differences of cell type components and the 
abundance of spots in the three TMs and adjacent regions between the GC and T cell zone or B 
follicles. There were 174 spots assigned to the interactive region between the GC and B follicle, 
and the region was indicated by the local spatial map (Fig. 4f). Furthermore, the B follicle-
associated SVG, CXCL13, supports one of the major lymph node functions for B cell maturation 
and antibody production 34,35. The 66 spots aligned from the interactive region between the GC 
and T cell zone also showed another convoluted collaboration (Fig. 4g). This could be supported 
by the T cell zone-associated SVG, ICOS, which was one of the signature follicular helper T cell 
genes for GC formation and high-affinity antibody development36-38. Overall, we reasoned that 
SpaGFT could be used to identify short length-scale TMs and interpret the crosstalk among 
convoluted TMs to support complex biological processes39,40.  Future studies will address if 
SpaGFT can be used to discern functionally specific TMs associated with effective immune 
responses (such as in the case of vaccination) and/or pathology (such as in the case of cancer 
metastasis to the lymph node)41 . 
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Fig.4 | Case study of a human lymph node to demonstrate short-length scale TM 
identification. a. UMAP visualization of nine SVG clusters in the Human lymph nodes data 
identified by SpaGFT using default parameters. b. The heatmap visualizes the transposed TM-
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cell type matrix defined at Fig. 3e. According to the transposed TM-cell type matrix, TM 6, TM 7, 
and TM 8 correspond to the GC, T cell zone, and B follicle, respectively. c. The figure 
demonstrates the pseudo-expression and binary TM of GC, T cell zone, B follicle, and 
corresponding signature genes. d. By combining all three TMs on the graph, different colors 
correspond to spots in each TM, and the spots overlapped in the three TMs, and non-assigned 
spots were colored grey. e. The barycentric coordinate plot shows cell-type components and the 
abundance of spots in interactive and functional regions. If the spot is closer to the vertical of the 
equilateral triangle, the cell type composition of the spot tends to be signature cell types of the 
functional region (Methods). The spots were colored by functional region and interactive region 
categories. f. The spot distribution of spots from a local spatial map of the interactive region 
between GC and B follicle. g. The spot distribution of spots from a local spatial map of the 
interactive region between GC and T cell zone. 
 
SpaGFT reveals the 3D structures of the cerebrum, hypothalamus, and white matter in 
terms of tissue motifs in the mouse brain. Tissue motif is a newly computational concept for 
investigating the tissue organization and collaboration of fundamental structures9. In our study, 
we extended the definition of a tissue motif to include a conserved tissue structure across multiple 
samples of a complex organ (e.g., mouse brain), and hypothesized that the conserved TMs, 
defined as a group of TMs representing the fundamental structure of the same organ, should have 
similar SVG components regardless of sampling strategies or sources. Seven mouse brain 
samples were collected from the Visium website and one independent study29,42, including two 
anatomical planes (i.e., sagittal and coronal planes). The four samples in the sagittal plane were 
obtained from frozen fresh samples. Regarding the three samples from the coronal plane, HE-
coronal and GSM5519054 were frozen fresh samples from different sources and sampling 
locations, and IF-FFPE was preserved in formalin and paraffin (Fig. 5a and Supplementary 
Table 1). Using the default parameter settings, SpaGFT identified 67 TMs among the seven 
samples (Supplementary Table 13). The 67 TMs were grouped into 14 clusters using the 
Louvain algorithm based on their associated SVGs (Methods). If two TMs contain similar 
components of TM-associated SVGs, they are typically grouped into the same cluster and 
represent the same fundamental structure, even if they were from different anatomical views.   
 
As a result, we focused on the three colored TM clusters (TM clusters 1, 2, and 3 in Fig. 5b), each 
of which contained conserved TMs from at least six samples (Supplementary Table 14). First, 
we investigated the cell components of each TM using cell2location, and the results showed that 
TM clusters 1, 2, and 3 were highly correlated with excitatory neurons, inhibitory neurons, and 
non-neuronal cells, respectively (Fig. 5c). For example, TM cluster 3 was enriched with 
oligodendrocytes and was also in agreement with the white matter anatomical structure from the 
Allen Brain Atlas16,26 (Fig. 5d). TM clusters 1 and 2 were highly correlated with the partial 
cerebrum and hypothalamus regions, respectively (Supplementary Fig. 14). Particularly, 
regarding TM cluster 3, Mbp and Mobp (white matter signature genes) were simultaneously 
captured by all seven conversed TMs15, while the two genes were not conserved TM-associated 
SVGs of the cerebrum and the hypothalamus regions. We concluded that conserved TMs forming 
one TM cluster typically contained conserved cell types and reflected the organ structure in the 
3D view (Fig. 5d). 
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We then defined TM clusters 2 and 3 as tissue motif 1 and all three TM clusters as tissue motif 2. 
Based on the spot label assigned by the TM clusters (Fig. 5e and Supplementary Table 15), we 
found that tissue motif 1 co-occurred and was conserved in all seven samples, which was not 
affected by sample status and sampling strategies. The overlapped spots between TM clusters 2 
and 3 indicated the convolution of elements in tissue motif 1, reflecting a potential collaboration 
between the hypothalamus region and white matter43. Compared with tissue motif 1, tissue motif 
2 was a complex conserved structure in the mouse brain that was repeated in six samples rather 
than seven samples. Furthermore, TM cluster 1 (enriched with excitatory neurons) showed a 
strong association with TM cluster 2 (enriched with inhibitory neurons), indicating the neuronal 
circuit activity of inhibitory and excitatory neurons in the hypothalamus region44,45. In addition, TM 
cluster 3 displayed possible collaborations with either TM cluster 1 or 2, indicating potential 
connectivity among the partial cerebrum, hypothalamus region, and white matter43,46. Notably, the 
two identified tissue motifs could be observed from two anatomical views, which strengthened the 
claim that tissue motifs contributed to understanding the 3D structures of the cerebrum, 
hypothalamus, and white matter. Based on multiple anatomical views of mouse brain samples, 
our results demonstrated that SpaGFT provided a novel gene-centric perspective for investigating 
conserved TMs among multiple samples and their convolution, and helped to discover insights 
into the 3D functional structures in a complex organ. 
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Fig.5 | Case study for tissue motifs in mouse brain based on TM clustering. a. The figure 
demonstrates seven sample sources, including sagittal (Sagittal Anterior 1, Sagittal Anterior 2, 
Sagittal posterior 1, Sagittal posterior 2) and coronal planes (HE-coronal, GSM5519054-coronal, 
and IF-FFPE-coronal). b. The pipeline of TM cluster (Methods) identification. UMAP showcases 
the results of clustering 67 TMs identified by seven samples. c. Three heatmaps show the 
binarized TM-cell type matrix, indicating consistent cell types shared within three TM clusters, 
where a red-color block means cell type existence in the corresponding TM and a white-color 
block means non-existence. d. Interpretation of TMs from multiple samples with similar SVG 
components. Seven samples are used to demonstrate the commonality of SVG-similar TMs in 
multiple samples. Heatmap color indicates the log-odds ratio of the Fisher exact test. The p-value 
(Benjamini–Hochberg adjusted) and the number of shared SVGs between the two samples are 
shown on the heatmap. White matter anatomical structure is derived from Allen Brain Altas, and 
was indicated by the purple color. e. The figure demonstrates two conserved tissue motifs shared 
by multiple samples. The spatial map indicates spot localization where a spot is colored according 
to TM clusters assignment (brown for TM cluster 1; purple for TM cluster 2; and blue TM cluster 
3). The tissue motif below each spatial map demonstrates the colocalization of TM clusters. A 
node represents one specific TM cluster, and the value of the node means the number of spots 
in the corresponding sample of a TM cluster. An edge will be added if there are existing 
overlapped spots between the two nodes. The weight of an edge is the number of overlapped 
spots between the two nodes. The green edge denotes the edge with the largest weight in one 
tissue motif. 
 
Discussion 
We present SpaGFT as a fast and accurate SVG identifier and a novel computational formulation 
for TM characterization using spatial transcriptome data. For the first time, SpaGFT introduced a 
graph Fourier transform ideology to transform complex spatial gene expression signals into 
informative FM signals from a gene-centric perspective. The benchmarking results of 31 spatial 
transcriptome data revealed that SpaGFT achieved superior SVG detection performances 
compared to existing tools, indicating that the FM signals can effectively capture gene expression 
signals spatially and distinguish SVGs from non-SVGs. In addition, TMs defined by SVG clusters 
in SpaGFT were confirmed to maintain diverse TM-associated biological processes, and we 
demonstrated that SpaGFT can effectively complement the cell/spot-centric tool (e.g., 
cell2location) for investigating molecular tissue biology. Moreover, three case studies provided 
biological insights from the TM ID card and demonstrated the capability of identifying short length-
scale TMs, convoluted TM collaborations, and fundamental elements constituting the complex 
organ in the 3D structure. Furthermore, the tissue motif concept was originally proposed using 
high-resolution spatial proteomic data at the cellular level9, defined as basic structural units (a 
small region containing simple cell types), and played an important role in propagating biological 
signals (e.g., molecular diffusion or cellular movement) to support organ functions. We extended 
this concept to spatial transcriptomics data and demonstrated that TMs conserved in multiple 
samples could form tissue motifs that allowed us to study convoluted collaborations among TMs 
and the 3D structure of functional regions (i.e., white matter and hypothalamus region in the 
mouse brain) from multiple anatomical views. 
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Overall, SpaGFT is a computational framework geared towards the accurate identification and 
characterization of a TM, which may significantly enhance our understanding of molecular tissue 
biology. However, there is still room for improving prediction performance and understanding the 
TM mechanism. First, although the SpaGFT computation speed is very competitive, it can be 
further improved by reducing the computational complexity from 𝑂(𝑛") to 𝑂(𝑛 × 𝑙𝑜𝑔(𝑛)) using 
fast Fourier transform algorithms47,48. Second, the alteration of the spot graph and TM topology 
represents a potential challenge in identifying TMs across spatial samples from different tissues 
or experiments, which results in diverse FM signal spaces and renders the FM signals 
incomparable. This is similar to the “batch effect” issue in multiple single-cell RNA sequencing 
(scRNA-seq) integration analyses49.  
 
SpaGFT bridges the gap left by existing SVG prediction methods and provides a method for 
investigating molecular tissue biology from the gene-centric perspective. In the future, we expect 
that SpaGFT could potentially be used for spatial multi-omics data harmonization and integration 
by discovering conserved spatial FM signal patterns of metabolic, proteomic, morphogenetic, and 
epigenetics in nature in both healthy and pathological state. Meanwhile, there is an increasing 
need for building connections between spatial spots using multi-omics at the single-cell level1. 
Based on the SpaGFT framework, it is feasible to decompose the graph signals to match the 
spots with single cells using the graph Fourier transform to align spatial TMs with single cells. 
Such an alignment can provide further insight into understanding the underlying gene regulatory 
networks in TMs and facilitate the identification of cell-cell communications using the spatial 
information within a TM or between TMs.  
 
References 
1 Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue 
biology. Nature Biotechnology, doi:10.1038/s41587-021-01182-1 (2022). 
2 Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with 
Slide-seqV2. Nature Biotechnology 39, 313-319, doi:10.1038/s41587-020-0739-1 (2021). 
3 Method of the Year 2020: spatially resolved transcriptomics. Nature Methods 18, 1-1, 
doi:10.1038/s41592-020-01042-x (2021). 
4 Ma, Q. & Xu, D. Deep learning shapes single-cell data analysis. Nature Reviews Molecular 
Cell Biology, doi:10.1038/s41580-022-00466-x (2022). 
5 Zhu, J., Sun, S. & Zhou, X. SPARK-X: non-parametric modeling enables scalable and 
robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome 
Biology 22, 184, doi:10.1186/s13059-021-02404-0 (2021). 
6 Liao, J., Lu, X., Shao, X., Zhu, L. & Fan, X. Uncovering an Organ’s Molecular Architecture 
at Single-Cell Resolution by Spatially Resolved Transcriptomics. Trends in Biotechnology, 
doi:10.1016/j.tibtech.2020.05.006 (2020). 
7 Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nature 
Methods 18, 997-1012, doi:10.1038/s41592-021-01203-6 (2021). 
8 Ricaud, B., Borgnat, P., Tremblay, N., Gonçalves, P. & Vandergheynst, P. Fourier could 
be a data scientist: From graph Fourier transform to signal processing on graphs. Comptes 
Rendus Physique 20, 474-488, doi:https://doi.org/10.1016/j.crhy.2019.08.003 (2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.10.519929doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.10.519929
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 Bhate, S. S., Barlow, G. L., Schürch, C. M. & Nolan, G. P. Tissue schematics map the 
specialization of immune tissue motifs and their appropriation by tumors. Cell Systems 13, 109-
130.e106, doi:https://doi.org/10.1016/j.cels.2021.09.012 (2022). 
10 Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for 
transcript distribution prediction and cell type deconvolution. Nature Methods, 
doi:10.1038/s41592-022-01480-9 (2022). 
11 Ortiz, C. et al. Molecular atlas of the adult mouse brain. Sci Adv 6, eabb3446, 
doi:10.1126/sciadv.abb3446 (2020). 
12 Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse 
cortex. Nature 573, 61-68, doi:10.1038/s41586-019-1506-7 (2019). 
13 Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. 
Nature 563, 72-78, doi:10.1038/s41586-018-0654-5 (2018). 
14 Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. 
Nature Neuroscience 19, 335-346, doi:10.1038/nn.4216 (2016). 
15 Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human 
dorsolateral prefrontal cortex. Nature Neuroscience 24, 425-436, doi:10.1038/s41593-020-
00787-0 (2021). 
16 Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 
445, 168-176, doi:10.1038/nature05453 (2007). 
17 Gouwens, N. W. et al. Classification of electrophysiological and morphological neuron 
types in the mouse visual cortex. Nature Neuroscience 22, 1182-1195, doi:10.1038/s41593-019-
0417-0 (2019). 
18 Camillo, D., Levelt, C. N. & Heimel, J. A. Lack of functional specialization of neurons in 
the mouse primary visual cortex that have expressed calretinin. Front Neuroanat 8, 89-89, 
doi:10.3389/fnana.2014.00089 (2014). 
19 McGregor, R., Wu, M.-F., Barber, G., Ramanathan, L. & Siegel, J. M. Highly Specific Role 
of Hypocretin (Orexin) Neurons: Differential Activation as a Function of Diurnal Phase, Operant 
Reinforcement versus Operant Avoidance and Light Level. The Journal of Neuroscience 31, 
15455, doi:10.1523/JNEUROSCI.4017-11.2011 (2011). 
20 Barrera, G. et al. One for all or one for one: does co-transmission unify the concept of a 
brain galanin “system” or clarify any consistent role in anxiety? Neuropeptides 39, 289-292, 
doi:https://doi.org/10.1016/j.npep.2004.12.008 (2005). 
21 Vagena, E. et al. ASB4 modulates central melanocortinergic neurons and calcitonin 
signaling to control satiety and glucose homeostasis. Science Signaling 15, eabj8204, 
doi:doi:10.1126/scisignal.abj8204 (2022). 
22 Sunkin, S. M. et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the 
central nervous system. Nucleic acids research 41, D996-D1008, doi:10.1093/nar/gks1042 
(2013). 
23 Desai, D. & Pethe, P. Polycomb repressive complex 1: Regulators of neurogenesis from 
embryonic to adult stage. J Cell Physiol 235, 4031-4045, doi:10.1002/jcp.29299 (2020). 
24 Strekalova, T. et al. Memory retrieval after contextual fear conditioning induces c-Fos and 
JunB expression in CA1 hippocampus. Genes, Brain and Behavior 2, 3-10 (2003). 
25 Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial 
transcriptomics. Nature Biotechnology, doi:10.1038/s41587-021-01139-4 (2022). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.10.519929doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.10.519929
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 Erö, C., Gewaltig, M.-O., Keller, D. & Markram, H. A Cell Atlas for the Mouse Brain. 
Frontiers in Neuroinformatics 12, doi:10.3389/fninf.2018.00084 (2018). 
27 Bakken, T. E. et al. Single-cell and single-nucleus RNA-seq uncovers shared and distinct 
axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. eLife 10, 
e64875, doi:10.7554/eLife.64875 (2021). 
28 Ichise, M. et al. Leucine-Rich Repeats and Transmembrane Domain 2 Controls Protein 
Sorting in the Striatal Projection System and Its Deficiency Causes Disturbances in Motor 
Responses and Monoamine Dynamics. Frontiers in molecular neuroscience 15, 856315-856315, 
doi:10.3389/fnmol.2022.856315 (2022). 
29 Genomics, X. Spatial Gene Expression Datasets, 
<https://www.10xgenomics.com/resources/datasets/> (2020). 
30 Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proceedings 
of the National Academy of Sciences of the United States of America 100, 2639-2644, 
doi:10.1073/pnas.0437996100 (2003). 
31 Holmes, A. B. et al. Single-cell analysis of germinal-center B cells informs on lymphoma 
cell of origin and outcome. J Exp Med 217, doi:10.1084/jem.20200483 (2020). 
32 Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive 
T cells. Nature Immunology 8, 1255-1265, doi:10.1038/ni1513 (2007). 
33 Medaglia, C. et al. Spatial reconstruction of immune niches by combining photoactivatable 
reporters and scRNA-seq. Science 358, 1622-1626, doi:10.1126/science.aao4277 (2017). 
34 Qi, H., Egen, J. G., Huang, A. Y. C. & Germain, R. N. Extrafollicular Activation of Lymph 
Node B Cells by Antigen-Bearing Dendritic Cells. Science 312, 1672-1676, 
doi:doi:10.1126/science.1125703 (2006). 
35 Havenar-Daughton, C. et al. CXCL13 is a plasma biomarker of germinal center activity. 
Proceedings of the National Academy of Sciences 113, 2702-2707, 
doi:doi:10.1073/pnas.1520112113 (2016). 
36 Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 41, 
529-542, doi:10.1016/j.immuni.2014.10.004 (2014). 
37 Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-
controlled T–B cell interactions underlie germinal centre formation. Nature 455, 764-769, 
doi:10.1038/nature07345 (2008). 
38 Vinuesa, C. G., Linterman, M. A., Yu, D. & MacLennan, I. C. M. Follicular Helper T Cells. 
Annual Review of Immunology 34, 335-368, doi:10.1146/annurev-immunol-041015-055605 
(2016). 
39 Fillatreau, S. & Gray, D. T cell accumulation in B cell follicles is regulated by dendritic cells 
and is independent of B cell activation. The Journal of experimental medicine 197, 195-206, 
doi:10.1084/jem.20021750 (2003). 
40 Pae, J., Jacobsen, J. T. & Victora, G. D. Imaging the different timescales of germinal 
center selection. Immunol Rev 306, 234-243, doi:10.1111/imr.13039 (2022). 
41 Reticker-Flynn, N. E. et al. Lymph node colonization induces tumor-immune tolerance to 
promote distant metastasis. Cell 185, 1924-1942.e1923, doi:10.1016/j.cell.2022.04.019 (2022). 
42 Buzzi, R. M. et al. Spatial transcriptome analysis defines heme as a hemopexin-targetable 
inflammatoxin in the brain. Free Radic Biol Med 179, 277-287, 
doi:10.1016/j.freeradbiomed.2021.11.011 (2022). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.10.519929doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.10.519929
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 Lemaire, J.-J. et al. White matter connectivity of human hypothalamus. Brain Research 
1371, 43-64, doi:https://doi.org/10.1016/j.brainres.2010.11.072 (2011). 
44 Belousov, A. B., O'Hara, B. F. & Denisova, J. V. Acetylcholine becomes the major 
excitatory neurotransmitter in the hypothalamus in vitro in the absence of glutamate excitation. J 
Neurosci 21, 2015-2027, doi:10.1523/jneurosci.21-06-02015.2001 (2001). 
45 Mickelsen, L. E. et al. Single-cell transcriptomic analysis of the lateral hypothalamic area 
reveals molecularly distinct populations of inhibitory and excitatory neurons. Nature Neuroscience 
22, 642-656, doi:10.1038/s41593-019-0349-8 (2019). 
46 Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M. & Grafton, S. T. Conserved 
and variable architecture of human white matter connectivity. NeuroImage 54, 1262-1279, 
doi:https://doi.org/10.1016/j.neuroimage.2010.09.006 (2011). 
47 Le Magoarou, L., Gribonval, R. & Tremblay, N. Approximate fast graph fourier transforms 
via multilayer sparse approximations. IEEE transactions on Signal and Information Processing 
over Networks 4, 407-420 (2017). 
48 Lu, K.-S. & Ortega, A. Fast graph Fourier transforms based on graph symmetry and 
bipartition. IEEE Transactions on Signal Processing 67, 4855-4869 (2019). 
49 Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome 
Biology 21, 31, doi:10.1186/s13059-020-1926-6 (2020). 
 
Online Methods 
We introduce Spatial Graph Fourier Transform (SpaGFT) to identify SVGs and characterize TMs 
based on spatial transcriptomics data. The core concept of SpaGFT is to transform spatial gene 
expressions into a kind of frequency signals in Fourier space. The main framework of SpaGFT 
includes three major steps: graph signal transform, SVG identification, and TM characterization.  
 
Graph signal transform 
K-nearest neighbor (KNN) Graph construction. Given a gene expression matrix containing 𝑛 
spots, including their spatial coordinates and 𝑚  genes, SpaGFT calculates the Euclidean 
distances between each pair of spots based on spatial coordinates first. In the following, an 
undirected graph 𝐺 = (𝑉, 𝐸)  will be constructed, where 𝑉 = {𝑣#,  𝑣", … ,  𝑣$}  is the node set 
corresponding to 𝑛 spots; 𝐸 is the edge set while there exists an edge 𝑒%& between 𝑣% and 𝑣& in 𝐸 
if and only if 𝑣% is the KNN of 𝑣& or 𝑣& 	is the KNN of 𝑣% based on Euclidean distance, where 𝑖, 𝑗 =
1, 2, … , 𝑛; and 𝑖 ≠ 𝑗. Note that, all the notations of matrices and vectors are bolded, and all the 
vectors are treated as column vectors in the following description. An adjacent binary matrix 𝑨 =
B𝑎%&D with rows and columns as	𝑛 spots is defined as: 

 
𝑎%& = E

1, 𝑒%& ∈ 𝐸
0,									else.

 (1) 

A diagonal matrix 𝑫 = 𝑑𝑖𝑎𝑔(𝑑#, 𝑑", … , 𝑑$), where 𝑑%   = ∑ 𝑎%&$
&'# represents the degree of 𝑣%. 

 
Fourier mode calculation. Using matrices 𝑨 and 𝑫, a Laplacian matrix 𝑳 can be obtained by  

 𝑳 = 𝑫 − 𝑨. (2) 

The Laplacian matrix 𝑳 can be decomposed using spectral decomposition 
 𝑳 = 𝑼𝚲𝑼𝐓 (3) 
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𝜦 = 𝒅𝒊𝒂𝒈(𝜆#, 𝜆", … , 𝜆$),  
𝑼 = (𝝁#, 𝝁", … , 𝝁$), 

where the diagonal elements of 𝜦  are the eigenvalues of 𝑳  with 𝜆# ≤ 𝜆" ≤ ⋯ ≤ 𝜆$,  and the 
columns of 𝑼	are the unit eigenvector of 𝑳. 𝝁) is the 𝑘th Fourier mode (FM),	𝝁) ∈ ℝ$, 𝑘 = 1, 2, … , 𝑛, 
and the set {𝝁#, 𝝁", … , 𝝁)} is an orthogonal basis for the linear space (Supplementary Figs. 1a 
and 1b). For 𝝁) = B𝜇)# , 𝜇)", … , 𝜇)$D, where 𝜇)%  indicates the value of the 𝑘 th FM on node 𝑣% , the 
smoothness of 𝝁) reflects the total variation of the 𝑘th FM in all mutual adjacent spots, which can 
be formulated as 

 1
2
` ` 𝑎%&B𝜇)% − 𝜇)

&D
"

*!∈,

.
*"∈,

 (4) 

The form can be derived by matrix multiplication as 

 1
2
` ` 𝑎%&B𝜇)% − 𝜇)

&D
"

*!∈,*"∈,

=
1
2
[` 𝑑%B𝜇)% D

"

*"∈,

− 2 ` ` 𝑎%&𝜇)%
*!∈,*"∈,

𝜇)
& + ` 𝑑&B𝜇)

&D
"

*!∈,

]

= ` 𝑑%B𝜇)% D
"

*"∈,

− ` ` 𝑎%&𝜇)%

*!∈,*"∈,

𝜇)
&

= 𝝁)-𝑫𝝁) − 𝝁)-𝑨𝝁)
= 𝝁)-𝑳𝝁)
= 𝜆)

 (5) 

where 𝝁)-  is the transpose of 𝝁) . According to the definition of smoothness, if an eigenvector 
corresponds to a small eigenvalue, it indicates the variation of FM values on adjacent nodes is 
low. The increasing trend of eigenvalues	corresponds to an increasing trend of oscillations of 
eigenvectors; hence, the eigenvalues and eigenvectors of 𝑳 are used as frequencies and FMs in 
our SpaGFT, respectively. Intuitively, a small eigenvalue corresponds to a low-frequency FM, 
while a large eigenvalue corresponds to a high-frequency FM.  
 
Graph Fourier transform. The graph signal of a gene 𝑔 is defined as 𝒇! = B𝑓!#, 𝑓!", … , 𝑓!$D ∈ ℝ$, 
which is a 𝑛-dimensional vector and represents the gene expression values across 𝑛 spots. The 
graph signal 𝒇! is transformed to a frequency signal 𝒇f! by 

 𝒇f! = 𝑼𝒇!, 	𝒇f! = B𝑓(!#, 𝑓(!", … , 𝑓(!$D. (6) 

In such a way, 𝑓(!)  is the projection of 𝒇! on FM 𝝁) , representing the contribution of FM 𝝁)  to 
graph signal 𝒇!,	𝑘 = 1, 2, … , 𝑛.This Fourier transform harmonizes gene expression and its spatial 
distribution to represent gene 𝑔	in the frequency domain. The details of SVG identification using 
𝒇f! can be found below. 
 
SVG identification 
We designed a GFTscore to quantitatively measure the randomness of gene expressions 
distributed in the spatial domain, defined as 

 

𝐺𝐹𝑇𝑠𝑐𝑜𝑟𝑒B𝑓!D = `2."/#
$

)'#

𝑓m!) , (7) 
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where 𝜆) is the pre-calculated eigenvalue of 𝑳, and the normalized frequency signal 𝑓m!) is defined 
as: 

 
𝑓m!) =

|𝑓(!)|
∑ |𝑓(!%|$
%'#

. (8) 

 
The gene with a high GFTscore tends to be a non-random distributed gene in the spatial domain, 
and vice versa. Therefore, all 𝑚 genes are decreasingly ranked based on their GFTscore from 
high to low and denote these GFTscore values as 𝑦# ≥ 𝑦" ≥ ⋯ ≥ 𝑦0. In order to determine the 
cutoff 𝑦1  to distinguish SVG and non-SVGs based on GFTscore, we applied the Kneedle 
algorithm50 to search for the inflection point of a GFTscore curve described below. The GFTscore 
𝑦2  of gene 𝑔2  is converted by 𝑦3$ = 𝑚𝑎𝑥{𝑦#, 𝑦", … , 𝑦0} − 𝑦2 , 𝑡 = 1,2, … ,𝑚 , where 𝑦3$  is the 
converted value of 𝑦2. Each point (𝑥3$ = 𝑡, 𝑦3$), where 𝑥3$ is the rank number of 𝑦3$, is processed 
by a smoothing spline to preserve the curve shape and obtain B𝑥4$ , 𝑦4$D, 𝑡 = 1,2, … ,𝑚. Denote 
coordinate set 𝒟4 = vB𝑥4$ , 𝑦4$Dw𝑡 = 1,2, … ,𝑚x  and can be normalized to corrdinate set 𝒟$  as 
follows: 

 𝒟$ = vB𝑥$$ , 𝑦$$Dw𝑡 = 1, 2, … ,𝑚x	

𝑥$$ = y𝑥4$ −𝑚𝑖𝑛(𝑥4)z B𝑚𝑎𝑥(𝑥4) − 𝑚𝑖𝑛(𝑥4)D{ 	

𝑦$$ = y𝑦4$ −𝑚𝑖𝑛(𝑦4)z B𝑚𝑎𝑥(𝑦4) − 𝑚𝑖𝑛(𝑦4)D{ , 

(9) 

where 𝑚𝑖𝑛(𝑥4) and 𝑚𝑎𝑥(𝑥4) are the minimum and maximum in v𝑥4% , 𝑥4& , … , 𝑥4'x, respectively. 
Analogously, 	𝑚𝑖𝑛(𝑦4)  and 𝑚𝑎𝑥(𝑦4)  are the minimum and maximum in v𝑦4% , 𝑦4& , … , 𝑦4'x , 
respectively. In addition, let 𝒟5 represents the set of differences between the 𝑥- and 𝑦-values, 
and one has: 

 𝒟5 = vB𝑥5$ , 𝑦5$Dw𝑥5$ = 𝑥$$ , 𝑦5$ = 𝑦$$ − 𝑥$$ , 𝑡 = 1, 2, … ,𝑚x. (10) 

In the following, the question of determining the cutoff 𝑦1		can be converted to the determination 
of the inflection point 𝑦1	 if it satisfies 	𝑦5()% < 𝑦5( , 𝑦5(*% < 𝑦5( , and 𝑦5+ < 𝑇1, ℎ = 𝑧, 𝑧 + 1,… ,𝑚 , 
where 

 
𝑇1 = 𝑦5( − 𝑆

𝑠$$ − 𝑠$%
𝑡 − 1

. (11) 

In equation (11), 𝑆 is a coefficient that can be used to determine the level of aggression for the 
inflection point.  

A non-parametrical test is used for testing the difference between median values of low-frequency 
signals and high-frequency signals. Especially, the null hypothesis is that the median of low-
frequency signals of a SVG is equal to or lower than the median of high-frequency elements. The 
alternative hypothesis is that the median of low-frequency signals of a SVG is higher than the 
median of high-frequency signals. The p-value of each gene is calculated based on Wilcoxon 
one-sided rank-sum test and then adjusted using the false discovery rate (FDR) method. 
Eventually, a gene with GFTscore higher than 𝑦1  and adjusted p-value less than 0.05 is 
considered as an SVG.  

Visualization of frequency signal of SVGs in low-dimensional latent spaces 
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The novel SVG presentation 𝒇f! is a simple and distinguishable one-dimensional vector. It can be 
visualized in two-dimensional space. First, frequency signals were computed by SpaGFT based 
on optimized parameters. Second, the top 2√𝑛 low-frequency signals were selected and then 
followed by 𝐿1	normalization method to normalize selected low-frequency signals. 

TM identification and characterization  
SVGs with similar patterns also have similar low-frequency signals in the frequency domain, which 
provides the fundamental basis of clustering. Louvain clustering method was applied to group 
SVGs based on the top 2√𝑛 low-frequency signals in the frequency domain. For a total number 
of 𝑝 SVGs donated as 𝑔#, 𝑔", … , 𝑔6 in a SVG cluster, a pseudo-expression value 𝑃𝑠𝑒𝑢𝑑𝑜% for spot 
𝑖 can be calculated as 

 

𝑃𝑠𝑒𝑢𝑑𝑜% =`𝑙𝑜𝑔B1 + 𝑓!,
% D

6

7'#

, (12) 

where	𝑖 = 1, 2, … , 𝑛.	 The pseudo-expression value was further transformed into a binary value by 
 

𝐵𝑖𝑛𝑎𝑟𝑦% = E1, if	𝑃𝑠𝑒𝑢𝑑𝑜% > 𝑐𝑢𝑡𝑜𝑓𝑓,
0, otherwise,

 (13) 

where the 𝑐𝑢𝑡𝑜𝑓𝑓 is a given number of percentiles of the pseudo-expression across all spots. We 
define those spots with binary-expression as 1 as a TM, and the corresponding SVGs are TM-
associated SVGs. The pseudo-expression and binary-expression profiles can be visualized in a 
spatial map and TM map, respectively. The low-frequency signals of TM are calculated using 
Pseudo-expression values by SpaGFT. 
 
SVG signal enhancement 
A SVG of a specific TM may suffer from low expression or dropout issues. To solve this problem, 
SpaGFT implemented the low-pass filter to enhance the SVG expressions. For a SVG with a 
measured expression value 𝒇! ∈ ℝ$, we define 𝒇�! ∈ ℝ$ as the expected expression value of this 
SVG, and 𝒇! = 𝒇�! + 𝝐!, where 𝝐! ∈ ℝ$ represents noises. SpaGFT estimates an approximated 
𝒇!⋆  to 𝒇�! in the following way, resisting the noise 𝝐!. The approximation has two requirements (i) 
the enhanced signal (estimated gene expression) should be similar to the measured signals, and 
(ii) keep low variation within estimated gene expression to prevent inducing new noises. Therefore, 
the following optimization problem is proposed to find an optimal solution 𝒇!⋆  for 𝒇�! 

 
𝒇!⋆ = 𝑎𝑟𝑔𝑚𝑖n𝒇[||𝒇 − 𝒇!||" + 𝑐

1
2
` ` 𝑎%&

𝒗!∈,𝒗"∈,

(𝑓𝑖 − 𝑓𝑗)
2
]	

= 𝑎𝑟𝑔𝑚𝑖n𝒇[||𝒇 − 𝒇!||" + 𝑐𝒇-𝑳𝒇] 
(14) 

 
where ‖∙‖ is the 𝐿2-norm, 𝒇 = (𝑓#, 𝑓", … , 𝑓$) ∈ ℝ$  is the variable in solution space, and 𝑖, 𝑗 =
1, 2, … , 𝑛. 𝑐 is a coefficient to determine the importance of variation of the estimated signals, and 
𝑐 > 0. According to the convex optimization, the optimal solution 𝒇!⋆ 	can be formulated as:  
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 2B𝒇!⋆ − 𝒇!D + 2𝑐𝑳𝒇!⋆ = 0
⟹ (𝑰 + 𝑐𝑳)𝒇!⋆ = 𝒇!
⟹ (𝑼𝑼- + 𝑐𝑼𝜦𝑼-)𝒇!⋆ = 𝒇!
⟹𝑼(𝑰 + 𝑐𝜦)𝑼-𝒇!⋆ = 𝒇!
⟹ 𝒇!⋆ = 𝑼(𝑰 + 𝑐𝜦).#𝑼-𝒇! = 𝑼(𝑰 + 𝑐𝜦).#𝒇f!

 (15) 

where 𝜦 = 𝑑𝑖𝑎𝑔(𝜆#, 𝜆", … , 𝜆$), and 𝑰 is an identity matrix. (𝑰 + 𝑐𝜦).# is the low-pass filter and 
(𝑰 + 𝑐𝜦).#𝒇f!  is the enhanced frequency signal. 𝒇!⋆ = 𝑼(𝑰 + 𝑐𝜦).#𝒇f!  represents the enhanced 
SVG expression by inverse graph Fourier transform.  
 
Benchmarking data setup 
Dataset description. Thirty-two spatial transcriptome datasets were collected from the public 
domain, including 30 10X Visium datasets (18 human brain data, 11 mouse brain data, and one 
human lymph node data) and two Slide-seq V2 datasets (mouse brain). More details can be found 
in Supplementary Table 1. Three datasets were selected as the training sets for grid-search 
parameter optimization in SpaGFT, including two highest read-depth datasets in Visium (HE-
coronal) and Slide-seq V2 (Puck-200115-08), one signature dataset in Maynard's study15. The 
rest of the 28 datasets (excluding lymph node) were used as independent test datasets. 
 
Data preprocessing. For all the 32 datasets, we adopt the same preprocessing steps based on 
scanpy51 and squidpy52 (version 1.2.1), including filtering genes that have expression values in 
less than ten spots, normalizing the raw count matrix by counts per million reads method, and 
implementing log-transformation to the normalized count matrix. No specific preprocessing step 
was performed on the spatial location data. 
 
Benchmarking SVG collection. We collected SVG candidates from five publications11-15, with data 
from either human or mouse brain subregions. (i) A total number of 130 layer signature genes 
were collected from Maynard's study15. These genes are potential multiple-layer markers 
validated in the human dorsolateral prefrontal cortex region. (ii) A total number of 397 cell-type-
specific (CTS) genes in the adult mouse cortex were collected from the Tasic's study (2016 
version)14. The authors performed scRNA-seq on the dissected target region, and identified 49 
cell types, and constructed a cellular taxonomy of the primary visual cortex in the adult mouse.  
(iii) A total number of 182 CTS genes in mouse neocortex were collected from the Tasic's study13. 
Altogether, 133 cell types were identified from multiple cortical areas at single-cell resolution. (iv) 
A total number of 260 signature genes across different major regions of the adult mouse brain 
were collected from the Ortiz's study11. The authors' utilized spatial transcriptomics data to 
systematically profile subregions and delivered the subregional genes using consecutive coronal 
tissue sections. (v) A total of 86 signature genes in the cortical region shared by humans and mice 
were collected from the Hodge's study12. Collectively, a total number of 849 genes were obtained, 
among which 153 genes were documented by multiple papers. More details, such as gene names, 
targeted regions, and sources, can be found in Supplementary Table 2. 
 
Next, the above 849 genes were manually validated on the in-situ hybridization (ISH) database 
deployed on the Allen Brain Atlas (https://mouse.brain-map.org/). The ISH database provided ISH 
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mouse brain data across 12 anatomical structures (i.e., Isocortex, Olfactory area, Hippocampal 
formation, Cortical subplate, Striatum, Pallidum, Thalamus, Hypothalamus, Midbrain, Pons, 
Medulla, and Cerebellum). We filtered the 849 genes as follows: (i) If a gene is showcased in 
multiple anatomical plane experiments (i.e., coronal plane and sagittal plane), it will be counted 
multiple times with different expressions in the corresponding experiments. Such that, 1,327 
genes were archived (Supplementary Table 3). (ii) All 1,327 genes were first filtered by low gene 
expressions (cutoff is 1.0), and the FindVariableFeatures function ("vst" method) in the Seurat 
(v4.0.5) was used for identifying highly variable genes across twelve anatomical structures. 
Eventually, 458 genes were kept and considered as curated benchmarking SVGs.  
 
SpaGFT implementation and grid search of parameter optimization 
Herein, partial FMs were used, including low-frequency FMs, which reflect smooth spatial patterns, 
and high-frequency FMs, which can measure noises. And such a scheme reduced running time 
significantly. We set 𝐾 = √𝑛	/2 as the default parameter for constructing the KNN graphs in 
SpaGFT. The number of selected low-frequency signals was set to be √𝑛/2,  and the high-
frequency FMs were set to be 3√𝑛. These elements with low values in the frequency domain were 
filtered out in the rank_gene_smooth function. SVGs were determined by genes with high 
GFTscore via the KneeLocator function (curve=’convex', direction=’deceasing', and S=5) in the 
kneed package (version 0.7.0) and FDR (cutoff is less than 0.05). To obtain the optimized 
parameters of SpaGFT, we set a grid-search test for six parameters, including ratio_neighbors (1, 
2) for KNN selection, normalize_lap (TRUE or FALSE) for Laplacian matrix normalization, 
filter_peaks (TRUE or FALSE) for noise low-frequency signal filtering, ratio_low_freq (0.5, 1, 1.5, 
2) for the number of low-frequency signals, ratio_high_freq (1, 2, 3) for the number of high-
frequency signals, and S (3, 5, 10) for the inflection point coefficient, resulting in 288 parameter 
combinations. Detailed implementation and tutorial can be found on SpaGFT GitHub: 
https://github.com/OSU-BMBL/SpaGFT. 
 
Parameter setting of other tools 
(i) SpatialDE (version 1.1.3) is a method for identifying and describing SVGs based on Gaussian 
process regression used in geostatistics. SpatialDE consists of four steps, establishing SpatialDE 
model, predicting statistical significance, selecting the model, and expressing histology 
automatically. We selected two key parameters, design_formula (‘0’ and ‘1’) in the 
NaiveDE.regress_out function and kernel_space ("{'SE':[5.,25.,50.],'const':0}", 
"{'SE':[6.,16.,36.],'const':0}", "{'SE':[7.,47.,57.],'const':0}", "{'SE':[4.,34.,64.],'const':0}", 
"{'PER':[5.,25.,50.],'const':0}", "{'PER':[6.,16.,36.],'const':0}", "{'PER':[7.,47.,57.],'const':0}", 
"{'PER':[4.,34.,64.],'const':0}",and "{'linear':0,'const':0}") in the SpatialDE.run function for 
parameter tunning, resulting in 18 parameter combinations. 
 
(ii) SPARK (version 1.1.1) is a statistical method for spatial count data analysis through 
generalized linear spatial models. Relying on statistical hypothesis testing, SPARX identifies 
SVGs via predefined kernels. First, raw count and spatial coordinates of spots were used to create 
the SPARK object via filtering low-quality spots (controlled by min_total_counts) or genes 
(controlled by percentage). Then the object was followed by fitting the count-based spatial model 
to estimate the parameters via spark.vc function, which is affected by the number of iterations 
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(fit.maxiter) and models (fit.model). Lastly, ran spark.test function to test multiple kernel matrices 
and obtain the results. We selected four key parameters, percentage (0.05, 0.1, 0.15), 
min_total_counts (10, 100, 500) in CreateSPARKObject function, fit.maxiter (300, 500, 700), and 
fit.model ( “poisson”, “gaussian”) in spark.vc function for parameter tunning, resulting in 54 
parameter combinations.  
 
(iii) SPARK-X (version 1.1.1) is a non-parametric method that tests whether the expression level 
of the gene  
displays any spatial expression pattern via a general class of covariance tests. We selected three 
key parameters, percentage (0.05, 0.1, 0.15), min_total_counts (10, 100, 500) in the 
CreateSPARKObject function, and option (“single”, “mixture”) in the sparkx function for parameter 
tunning, resulting in 18 parameter combinations.  
 
(iv) SpaGCN (version 1.2.0) is a graph convolutional network approach that integrates gene 
expression, spatial location, and histology in spatial transcriptomics data analysis. SpaGCN 
consisted of four steps, integrating data into a chart, setting graph convolutional layer, detecting 
spatial domains by clustering, and identifying SVGs in spatial domains. We selected two 
parameters, the value of ratio (1/3, 1/2, 2/3, and 5/6) in the find_neighbor_cluster  function and 
res (0.8, 0.9, 1.0, 1.1, and 1.2) in the SpaGCN.train function for parameter tunning, resulting in 
20 parameter combinations.  
 
(v) MERINGUE (version 1.0) is a computational framework based on spatial autocorrelation and 
cross-correlation analysis. It composes of three major steps to identify SVGs. Firstly, Voronoi 
tessellation was utilized to partition the graph to reflect the length scale of cellular density. 
Secondly, the adjacency matrix is defined using geodesic distance and the partitioned graph. 
Finally, gene-wise autocorrelation (e.g., Moran's I) is conducted, and a permutation test is 
performed for significance calculation.  We selected min.read (100, 500, 1000), min.lib.size (100, 
500, 1000) in the cleanCounts function and filterDist (1.5, 2.5, 3.5, 7.5, 12.5, 15.5) in the 
getSpatialNeighbors function for parameter tunning, resulting in 54 parameter combinations . 
 
Metrics used in benchmarking experiments 
Denote 𝑃 = {𝑝#, 𝑝", … , 𝑝6},  where 𝑝  is the total number of SVGs predicted by a tool in the 
performance comparison. The set of 458 curated benchmarking SVGs denoted as  𝑅 =
{𝑟#, 𝑟", … , 𝑟2}, where 𝑡 = 458. In addition, 𝐶 is the complete collection of all genes in a dataset. In 
addition, some notions are necessary to understand the following metrics, including, 𝑇𝑃 = |𝑃 ∩ 𝑅|, 
𝐹𝑃 = |𝑃 − 𝑃 ∩ 𝑅|, 𝑇𝑁 = |(𝐶 − 𝑃) ∩ (𝐶 − 𝑅)|  and 𝐹𝑁 = |𝑅 − 𝑃 ∩ 𝑅|,  where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁 
represent true positive, false positive, true negative, and false negative, respectively. The 
following metrics were used to test the performances of various methods. All scores were 
calculated using customed scripts unless specifically mentioned. 
 
(i) Jaccard index, also named the Jaccard similarity coefficient, is used to compare the similarity 
and difference between limited sample sets. Define the Jaccard index between sets 𝑃 and 𝑅 as: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
|𝑃 ∩ 𝑅|
|𝑃 ∪ 𝑅|

, 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 ∈ [0,1] 
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A larger 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 index indicates a higher similarity between the two sets. 
 
(ii) Odds ratio of Fisher exact test is a statistical significance test used in the analysis of 
contingency tables, whose definition is: 

𝑜𝑑𝑑𝑠	𝑟𝑎𝑡𝑖𝑜 =
𝑇𝑃 𝐹𝑃⁄
𝑇𝑁 𝐹𝑁⁄ =

𝑇𝑃 ∙ 𝐹𝑁
𝑇𝑁 ∙ 𝐹𝑁

 

A higher 𝑜𝑑𝑑𝑠	𝑟𝑎𝑡𝑖𝑜 indicates a better prediction performance. Function newGeneOverlap and 
testGeneOverlap from R package GeneOverlap (Version 1.26.0) were used for the score 
calculation. 
 
(iii) Precision (also called positive predictive value) is the fraction of relevant instances among the 
retrieved instances, which is defined as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∈ [0,1] 

A higher precision indicates that an algorithm returns more relevant results than irrelevant ones.  
 
(iv) Recall (also known as sensitivity) is the fraction of relevant instances that were retrieved, 
which is defined as: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝑟𝑒𝑐𝑎𝑙𝑙 ∈ [0,1] 

A higher recall indicates that an algorithm returns most of the relevant results (whether irrelevant 
ones are also returned).  
 
(v) 𝐹1 score is a measure of a test's accuracy in statistical analysis of binary classification. It is 
calculated from the precision and recall of the test, defined as: 

𝐹1 = 2
𝑝𝑟𝑒𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

, 𝐹1 ∈ [0,1] 

A higher 𝐹1 score indicates a better prediction performance of the algorithm.  
 
(vi) Tversky index is an asymmetric similarity measure on sets that compares a variant to a 
prototype, defined as 

𝑇𝑣𝑒𝑟𝑠𝑘𝑦 =
𝑇𝑃

𝑇𝑃 + 0.5𝐹𝑁 + 0.5𝐹𝑃
, 𝑇𝑣𝑒𝑟𝑠𝑘𝑦 ∈ [0,1] 

A higher 𝑇𝑣𝑒𝑟𝑠𝑘𝑦 signifies the better prediction performance of the algorithm. The tversky.index 
function from R package tcR (Version 2.3.2) was used for calculating the Tversky index. 
 
(vii) Moran's Index used statistics to quantify the degree of spatial autocorrelation, defined as 

𝐼 =
𝑛
𝑊
∑ ∑ [𝑤%&B𝑓!% − 𝑓!£D&% B𝑓!

& − 𝑓!£D]

∑ B𝑓!% − 𝑓!£D
"

%
, 𝐼 ∈ [−1, 1] 

where 𝑓! = B𝑓!#, 𝑓!", … , 𝑓!$D represents the gene expression values on 𝑛 spots for gene 𝑔. 𝑤%& is 
the spatial weight between spots 𝑖 and 𝑗 calculated using the 2D spatial coordinates of the spots 
and 𝑊 = ∑ ∑ 𝑤%&&% . For each spot, we find the top 𝐾 nearest neighbors according to Euclidean 
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distances where 𝐾 = 6 and 𝑤%& = 1 if spot 𝑗 is one of the nearest neighbors of spot 𝑖	while 𝑤%& =
0	otherwise. A Moran's Index close to 1 indicates a clear spatial pattern, a value close to 0 
indicates random spatial expressions, and a value close to –1 indicates a negative correlation 
between two adjacent spots. We applied the moran.test function from the spdep R package to 
generate the score. 
 
(viii) Geary's C is a metric measuring spatial autocorrelation, defined as 

𝐶 =
𝑛
2𝑊

∙
∑ ∑ [𝑤%&B𝑓!% − 𝑓!

&D]"&%

∑ B𝑓!% − 𝑓!£ D
"

%
, 𝐶 ∈ [0, 2] 

where a small 𝐶 indicates strong spatial autocorrelation, and all notations used here are the same 
as the notations when defining Moran's Index. Generally, to convert it to range -1 to 1, the 
following formula is adopted 

𝐶⋆ = 1 − 𝐶 
Here, the meaning of the value 𝐶⋆	 is similar to Moran's Index mentioned above. We used 
geary.test function from R package spdep to generate the score 𝐶, and then obtained 𝐶⋆ using a 
customized script. 
 
Analysis on HE-coronal sample 
SVG prediction. The spot number of mouse brain (HE coronal sample) is 2,702, so the first 50 
low-frequency signals were used for UMAP dimension reduction and visualization. To 
demonstrate the advantage of low-frequency signals in terms of SVG representation, PCA was 
also used for producing low-dimension representation. The transposed and normalized 
expression matrix was decomposed via using the sc.tl.pca function from the scanpy package 
(version 1.9.1). The top 50 principal components (PC) were used for UMAP dimension reduction 
and visualization. The function sc.tl.umap was applied to further conduct dimension reduction for 
the top 104 low-frequency signals and the top 50 PCs in two-dimensional latent space, 
respectively.  
 
TM and TM-associated SVG identification. We applied SpaGFT on the HE-coronal mouse data 
(Figs. 2b-2e) to identify TMs and sub-TMs using default parameters.  The Louvain clustering 
algorithm (neighbors = 15 and resolution = 1) was applied on the top 104 low-frequency signals 
of SVGs ( 104 = 2√𝑛, 𝑛 = 2702  spots), followed by the pseudo-expression calculation. To 
demonstrate the biological functions of identified TMs, pathway enrichment analysis was 
conducted using the Enrichr package53,54 based on the hypergeometric test for SVGs within 
individual TMs. Three databases were selected, (i) ChEA (2016 version) for transcription factor 
enrichment analysis, (ii) BioPlanet (2019 version) for functional pathway enrichment analysis, and 
(iii) GO Biological Process (2021 version). To further investigate sub-TMs, the SVGs in one TM 
were re-clustered via Louvain clustering with resolution=0.5, leading to the calculation of the 
pseudo-expression and binary-expression for sub-TMs. 
 
Low-expression gene signal enhancement. Specifically, in HE-coronal mouse brain data analysis, 
we selected the 260 (= 5√𝑛, 𝑛 = 2702), 780 (= 15√𝑛, 𝑛 = 2702), and 1,300 (= 25√𝑛, 𝑛 = 2702) 
low-frequency signals in the frequency domain and performed the inverse graph Fourier transform 
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with 𝑐 = 0.0001 to smooth spatial patterns. 
 
Cell2location deconvolution for generating TM-cell type matrix. To generate the TM-cell type 
matrix, defined in Fig. 3e, we first followed the online tutorial of cell2location 
(https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html) and 
calculated the cell proportion of each of the 59 cell types for the HE-coronal data across all spots 
(Supplementary Table 9). Then, pseudo-expression values across all spots for one sub-TM were 
computed using the method from the TM identification and characterization section. Then, an 
element of the TM-cell type matrix was calculated by computing the Pearson correlation 
coefficient between the proportion of a cell type and the pseudo-expression of a sub-TM across 
all the spots. Lastly, the TM-cell type matrix was obtained by calculating all elements as described 
above, with rows representing TMs and coloumns representing cell types. 
 
Analysis of the lymph node sample 
TM identification and interpretation. SVGs were identified on the human lymph node data (Visium) 
with default setting of SpaGFT, and TMs and TM-associated SVGs were determined as described 
above. Binary TMs were determined using 0.85 percentile as cutoff. To demonstrate the relations 
between cell composition and TMs, cell2location25 was implemented to deconvolute spot and 
resolve fine-grained cell types in spatial transcriptomic data. Cell2location was used to generate 
the spot-cell type proportion matrix as described above, resulting in cell proportion of 34 cell types 
(Supplementary Table 11). A TM-cell type matrix was calculated using 34 lymph node cell types 
via the same method as previously described (the Method section of Cell2location deconvolution 
for generating TM-cell type matrix). Then, the TM-cell type matrix was generated and visualized 
on a heatmap, and three major TMs in the lymph node were annotated, i.e., the T cell zone, GC, 
and B follicle.   
 
Visualization of GC, T cell zone, and B follicles in the Barycentric coordinate system. Spot-cell 
proportion matrix was used to select and merge signature cell types of GC, T cell zone, and B 
follicles for generating a merged spot-cell type proportion matrix (an N-by-3 matrix, N is equal to 
the number of spots). For GC, B_Cycling, B_GC_DZ, B_GC_LZ, B_GC_prePB, FDC, and 
T_CD4_TfH_GC were selected as signature cell types. For T cell zone, T_CD4, T_CD4_TfH, 
T_TfR, T_Treg, T_CD4_naive, and T_CD8_naive were selected as signature cell types. For B 
follicle, B_mem, B_naive, and B_preGC were regarded as signature cell types. The merged spot-
cell type proportion matrix was calculated by summing up the proportion of signature cell types 
for GC, T cell zone, and B follicle, respectively. Finally, GC, T-cell zone, and B follicle assigned 
spots (spot assignment in Supplementary Table 12) were selected from the merged spot-cell 
type proportion matrix for visualization. The subset spots from the merged matrix were projected 
on an equilateral triangle via Barycentric coordinate project methods9. The projected spots were 
colored by TM assignment results. 
 
Identification of TM clusters among seven samples. The SVGs and TMs of HE-coronal had 
been identified from previous Methods section (Analysis on HE-coronal sample), and the SVGs 
and TMs of othe other six samples (SA1, SA2, SP1, SP2, GSM5519054, and IF-FFPE) were 
identified using SpaGFT with the default parameters. Then, SVGs identified from the seven 
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samples were concatenated into an SVG-TM matrix (with 3,690 SVGs and 67 TMs), where values 
in the matrix were marked as 1 (existence) and 0 (not existence). The SVG-TM matrix was fit into 
PCA for dimension reduction and Louvain algorithm for TM clustering, resulting in 14 TM clusters. 
Among those 14 TM clusters, three TM clusters contains conserved TMs from at least six samples. 
To investigate the cell type composition of three TM clusters, 59 mouse brain cell types were used 
for generating seven TM-cell type matrices as previously described (the Method section of 
Cell2location deconvolution for generating TM-cell type matrix). the cell type-TM matrix was 
binarized using a cutoff of 0.1, with the correlation larger than 0.1 as a colored element (Fig. 5c),. 
To obtain the overlapping SVGs across identified TMs, Fisher's exact test was performed, and 
the p-values were adjusted using the Benjamini-Hochberg method. The overlapped SVGs 
between any two modules were calculated, and the odds ratio and adjusted p-values were shown 
on the heatmap (Fig. 5d). 
 
Computational environment and running time 
All experiments were performed on our lab server set up at the Ohio Supercomputing Center. The 
server has a 2.6GHz AMD EPYC 7H12 processor, 64 cores, and 1 TB RAM. We tested the 
computing time of SpaGFT and other tools on three datasets, (i) HE-coronal mouse brain datasets 
with 2,702 spots. (ii) the 151673 Visium human brain datasets with 3,639 spots, and (iii) the Puck-
200115-08 slide-seq v2 datasets with 53,208 spots. For the first dataset, SpaGFT, SPARK, 
SPARK-X, MERINGUE, SpatialDE, and SpaGCN used 25 seconds, 6 hours, 52 seconds, 3 hours, 
1.5 hours, and 17 minutes. For the second dataset, SpaGFT, SPARK, SPARK-X, MERINGUE, 
SpatialDE, and SpaGCN spent 21 seconds, 6 hours, 50 seconds, 3 hours, 72 minutes, and 25 
minutes. For the third dataset, only SpaGFT (15 minutes) and SPARK-X (56 seconds) 
successfully completed the SVG identification, while the rest of the tools spent over 48 hours or 
failed.  
 
Data Availability 
The 11 datasets from 10x Visium (ten mouse brain datasets and one human lymph node 
sample)29 can be accessed from https://www.10xgenomics.com/products/spatial-gene-
expression. GSM5519054_Visium_MouseBrain dataset is available from the GEO database with 
an accession number GSM551905442. Regarding the human brain dataset15, twelve samples can 
be accessed via endpoint “jhpce#HumanPilot10x” on Globus data transfer platform at 
http://research.libd.org/globus/. The other six human brain datasets (2-3-
AD_Visium_HumanBrain, 2-8-AD_Visium_HumanBrain, T4857-AD_Visium_HumanBrain, 2-
5_Visium_HumanBrain, 18-64_Visium_HumanBrain, and 1-1_Visium_HumanBrain) are 
available in a BioRxiv study55. The two Slide-seq V2 datasets2 are available as accession number 
SCP815 in the Single Cell Portal via the link https://singlecell.broadinstitute.org/single_cell. 
 
Code Availability 
SpaGFT is a python package for modeling and analyzing spatial transcriptomics data. The 
SpaGFT source code and the analysis scripts for generating results and figures in this paper are 
available at https://github.com/OSU-BMBL/SpaGFT. 
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Supplementary Tables 
Supplementary Table 1 | Data information. The table includes information on 32 spatial 
transcriptome datasets from the public domain. The first column shows the data ID in the original 
paper or data source; the second column shows the use of the data (i.e., for grid-search 
optimization, independent test, or case study); the third column shows the sequencing platform; 
the fourth to the sixth columns show the sample information, including species, conditions, and 
tissue sources; the rest of the columns shows the statistical information of each data, including 
the number of spots, the number of genes, the number of total reads, the mean read per spot, the 
standard deviation of the number of reads per spot, the mean number of genes per spot, and the 
standard deviation of genes per spots. 
 
Supplementary Table 2 | 849 SVG candidates collected from the public domain. The table 
collects 849 unique cell-type- or layer-specific markers from five different kinds of literature. The 
first column records the mouse gene symbol. The second column records the paper source. The 
third column records the experiment object in each gene, where "M," "H," and "M&H" represent 
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mouse, human, and both. The fourth column records the human gene symbol. The fifth column 
records the original source in the paper for each gene, either figures or supplementary files.  
 
Supplementary Table 3 | 458 curated benchmarking SVGs validated by the Allen Brain 
Atlas. The first six columns correspond to general information on gene identifiers, including gene 
symbol (mouse), gene symbol (human), UniqueID, probe name, plane, and the experiment ID in 
the ISH database. The ISH intensity on 12 brain regions was recorded from column G to Column 
R, respectively, including Isocortex, Olfactory area (OLF), Hippocampal formation (HPF), Cortical 
subplate (CTXsp), Striatum (STR), Pallidum (PAL), Thalamus (TH), Hypothalamus (HY), Midbrain 
(MB), Pons (P), Medulla (MY), and Cerebellum (CB). All the records were downloaded from the 
ISH database. Column S records the mean ISH intensity of 12 mouse brain regions. Column T 
records variance calculated based on the FindVariableFeatures function in the Seurat package. 
Column U records whether the gene is considered as a curated benchmarking SVG in this paper. 
 
Supplementary Table 4 | Grid-search of parameter combination for SVG prediction. The 
table records the details of the performance comparison in terms of the grid-search of parameter 
optimization. The first four columns correspond to sample ID, tested software, sequence 
technology, and parameter combinations. The rest of the columns records eight evaluation 
matrices, including the Jaccard index, Tversky index, the odds ratio of Fisher's exact test, 
precision, recall, F1 score, Moran's I, and Geary's C. If an element in this table is "NA," the 
software shows an error or ran out of time (running time was greater than 48 hours) during testing. 
 
Supplementary Table 5 | Running time of SpaGFT and other tools on the three grid-search 
test data. The table records the running time and memory cost of SpaGFT, SPARK, SPARK-X, 
MERINGUE, SpatialDE, and SpaGCN on the HE-coronal, 151673, and Puck-200115-08 datasets. 
All tools and experiments were carried out in the same computing environment introduced in 
Methods. Columns A and B show tool names and sample names; Column C and D records the 
running time with the unit as second (S) and log10(S), respectively. Column E is memory cost with 
the unit as a megabyte. For any experiments spent over 24 hours, we labeled them as "NA". 
 
Supplementary Table 6 | SVG prediction performance on 28 independent test datasets 
using default parameters. The table records the details of the performance comparison in terms 
of the independent test. The first column indicates the dataset ID, corresponding to the Dataset 
ID in Supplementary Table 1. The second column shows eight evaluation matrices, including the 
Jaccard index, Tversky index, the odds ratio of Fisher's exact test, precision, recall, F1 score, 
Moran's I, and Geary's C. The other columns are the software. If an element in this table is "NA," 
the software shows an error or runs out of time (running time was greater than 48 hours) during 
testing. 
 
Supplementary Table 7 | Summary of top 100 genes identified by SpaGFT, and the fix 
benchmarking tools. The table records the unique and consistent SVGs of the top 100 SVGs 
identified by six tools for mouse brain data (HE-coronal). The first column is the gene name. 
Columns B, C, D, E, F, and G are software names. The values in Columns B to G indicate whether 
the gene is identified by this tool.  If the value is equal to 1, it means the gene is the output of the 
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top 100 SVGs in this software, and vice versa. Column H is the sum of values from Columns B to 
G, indicating the consistency of identified genes (the higher value, the higher consistency). When 
the value in Column H is "1," it means that this gene is uniquely identified by this one of the tools 
from Columns B to G. 
 
Supplementary Table 8 | SVG results in the HE coronal data. The table records all SVGs 
predicted from SpaGFT on the HE-coronal data. Column A is the SVG name; Column B is the 
number of spots having this SVG expressed; Column C is the corresponding GFTscore; Column 
D is the ranking of GFTscore. Columns E and F are the p-value and q-value of SVG, respectively; 
Columns H and I are the TM labels and sub-TM labels, respectively. SVGs are arranged based 
on the SVG_rank from high to low. 
 
Supplementary Table 9 | Deconvolution results for HE-coronal sample. The table shows the 
proportions of 59 cell types calculated by cell2location. The first column is the spot ID of the 
mouse sample. The rest of the columns are the cell proportions in 59 cell types, respectively. 
 
Supplementary Table 10 | SVG results in the lymph node data. The table records all SVGs 
predicted from SpaGFT on the lymph node data. Column A is the SVG name; Column B is the 
number of spots having this SVG expressed; Column C is the corresponding GFTscore; Column 
D is the ranking of GFTscore. Columns E and F are the p-value and q-value of SVG, respectively; 
Columns H and I are the TM labels and sub-TM labels, respectively. SVGs are arranged in the 
decreasing order of the SVG_rank score. 
 
Supplementary Table 11 | Cell2location cell deconvolution results for Human lymph node. 
The table shows the proportions of 34 cell types calculated by cell2location. The first column is 
the spot ID of the human lymph node sample. The rest of the columns are the cell proportions in 
34 cell types, respectively.  
 
Supplementary Table 12 | TM assignment to each spot from lymph node data in terms of 
GC, T cell zone, and B follicle. The table demonstrates GC, T cell zone, B follicle, and their 
interactive region assignment label. The first column is the spot ID. The second column is the 
assignment label, where “0” is no assignment; “T.zone” is the spot assigned as T cell zone; 
“B.follicle” is the spot assigned as B follicle; “GC” is the spot assigned as germinal center; “T.zone-
B.follicle” is the spot assigned as the interactive region between T cell zone and B follicle; “GC-
T.zone” is the spot assigned as the interactive region between GC and T cell zone; “GC-B.follicle” 
is the spot assigned as the interactive region between GC and B follicle; “GC-T.zone-B.follicle” is 
the spot assigned as interactive region among GC, T zone, and B follicle. 
 
Supplementary Table 13 | SVG results in the seven mouse brain data. The table records all 
SVGs predicted from SpaGFT in the seven mouse brain data. Column A is the SVG name; 
Column B is the number of spots having this SVG expressed; Column C is the corresponding 
GFTscore; Column D is the ranking of GFTscore. Columns E and F are the p-value and q-value 
of SVG, respectively; Columns H is the TM labels; Column I indicates the sample names.  
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Supplementary Table 14 | TM-associated SVG and TM assignment to each spot from seven 
samples in terms of TM cluster 1, TM cluster 2, and TM cluster 3. The table shows 3690 SVG, 
TMs, and two labels for TMs. The first row is the clustering results of the Louvain algorithm. The 
second row is the TM clusters label assignment, including TM cluster 1, TM cluster 2, and TM 
cluster 3. The rest rows are SVGs (3690 SVGs). Columns indicate samples and their TMs. 
 
Supplementary Table 15 | The overlapped SVGs across seven mouse brain samples in 
terms of TM cluster 1, TM cluster 2, and TM cluster 3. The table records overlapped SVGs 
among TMs in tissue motif 1 and tissue motif 2. Column A indicates TM cluster label and 
overlapped names. Column B indicates tissue motif ID. The other columns indicate sample ID. 
The value from column C to column I represents the number of spots. If an element in this table 
is "NA," the no overlapping spot between two TM clusters. 
 
Supplementary Figures 
Supplementary Fig. 1 | FM identification and visualization. a, Workflow of FM identification. 
Spot graph is constructed by KNN, where 𝐾 is equal to the number of spot 𝑛. The degree and 
adjacency matrix are generated, then the Laplacian matrix can be calculated by subtracting the 
degree matrix and adjacency matrix. Through decomposing the Laplacian matrix, eigenvalue and 
eigenvector are obtained, where eigenvectors are the FMs. b, Visualizations of FM patterns in 
the different frequency domains of the Visium 151673 dataset, where LFM means low-frequency 
FM and HFM means high-frequency FM. c, Impact of the number of FMs in identifying SVGs. 
Different numbers of FMs were selected, i.e., 0.5√𝑛, √𝑛, 2√𝑛, 3√𝑛, 4√𝑛, 5√𝑛, 8√𝑛, and 10√𝑛. 
Under each selection, the top 1,000 genes with high GFTscore are kept for pair-wise comparison, 
where the number in the heatmap block indicates the number of overlapped genes. The results 
showed high consistency of SVG results even if we selected different numbers of FMs, which 
demonstrates the robustness of SpaGFT. 
 
Supplementary Fig. 2 | Comparison of evaluation matrices (Morans' I and Gearys'C). a, 
Moran's I and Geary's C score on the grid-search testing for the HE-coronal sample. The boxplot 
indicates the Moran's I and Geary's C score distribution for six tools' grid-search results, 
respectively. The Black line in the box indicates the median value. b, Moran's I and Geary's C 
score on 28 independent datasets using optimized parameters of SpaGFT and default parameters 
in the five benchmarking tools. The black line in the box indicates the median value. 
 
Supplementary Fig. 3 | ISH evidence of four SVGs uniquely identified by SpaGFT. The ISH 
database webpage shows four major information, including experiment information (top left), ISH 
high-resolution image (right), 3D expression (middle left), and ISH intensity of 12 mouse brain 
regions (bottom). In addition, we used a dashed line to circle out ISH high-intensity regions on 
ISH high-resolution image. a, The screenshot of gene Calb2, which is in the coronal plane, shows 
a highly consistent expression pattern of HE-coronal spatial data. b, The screenshot of gene Hcrt. 
Due to the lack of coronal plane data, we use sagittal instead of the coronal plane. Interestingly, 
the ISH intensity is not high in the 12 regions on the barplot (bottom), but we can clearly observe 
enriched intensity in the hypothalamus region. c-h, The screenshot of gene Gda, Zfhx3, Gal, 
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Cacnb3, Asb4, and Mpped1, which is also in the coronal plane, shows a highly consistent 
expression pattern of HE-coronal spatial data, respectively. 
 
Supplementary Fig. 4 | The ID card of TM 2 for the HE-coronal data. TM 2 includes 256 SVGs, 
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM 
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five 
functional enrichment results in three databases using Enrichr. 
 
Supplementary Fig. 5 | The ID card of TM 3 for the HE-coronal data. TM 3 includes 251 SVGs, 
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM 
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five 
functional enrichment results in three databases using Enrichr. 
 
Supplementary Fig. 6 | The ID card of TM 4 for the HE-coronal data.  TM 4 includes 227 SVGs, 
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM 
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five 
functional enrichment results in three databases using Enrichr. 
 
Supplementary Fig. 7 | The ID card of TM 5 for the HE-coronal data.  TM 5 includes 192 SVGs, 
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM 
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five 
functional enrichment results in three databases using Enrichr. 
 
Supplementary Fig. 8 | The ID card of TM 6 for the HE-coronal data. TM 6 includes 159 SVGs, 
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM 
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five 
functional enrichment results in three databases using Enrichr. 
 
Supplementary Fig. 9 | The ID card of TM 7 for the HE-coronal data. TM 7 includes 96 SVGs, 
and all components on the ID card are the same as TM 1 in Fig. 1c, including a spatial map, a TM 
map, the frequency signal histogram, the spatial map of the top four SVGs, and the top five 
functional enrichment results in three databases using Enrichr. 
 
Supplementary Fig. 10 | Brain region atlas. The figure shows the mouse brain's six structures 
obtained from Allen Brain Atlas, including Field CA1 (a), Hippocampal region (b), Hypothalamus 
(c), Cortical subplate (d), Thalamus (e), and Fiber tracts (f). The purple color highlights the 
corresponding brain regions. 
 
Supplementary Fig. 11 | The sub-TMs of TM 1–7 in the HE-coronal data. The figure shows 
the sub-TMs (in TMs 1, 2, 4, 5, 6, and 7) by reclustering SVGs in each TM (from left to right and 
top to bottom), similar to Fig. 3e. Each sub-TM has a group of unique SVGs, showing different 
spatial expression patterns among each other. 
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Supplementary Fig. 12 | Cell type distribution of other TMs. The figures show TMs 1-7 and 
TM6 Sub-TM 4 cell type component and distribution generated from cell2location. The left box 
represents TM pseudo-expression and its binary form. The right box represents cell-type 
compositions. 
 
Supplementary Fig. 13 | Pathway and other gene signatures enriched within GC, T cell zone, 
and B follicle region. The figure shows pseudo-expression TM, binary TM, TM enriched 
functional pathway (left), TM associated SVG (upright), and TM correlated cell types (downright) 
for GC, T cell zone, and B follicle. 
 
Supplementary Fig. 14 | The intact heatmap of TM intersections across three TM clusters. 
The heatmap shows gene overlapping of 22 TMs derived from three TM clusters. The color 
indicates the log-odds ratio of the Fisher exact test. p-value (Benjamini-Hochberg adjusted) 
between two samples is showcased on the heatmap. Three anatomical structures (cerebrum, 
hypothalamus, and white matter) were derived from Allen Brain Altas, and targeted regions are 
indicated by the purple color. 
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