Characterisation and zoonotic risk of tick viruses in public datasets

Yuting Lin^{1,2} and David J Pascall*1

- 1. MRC Biostatistics Unit, University of Cambridge, Cambridge
- 2. Royal Veterinary College, University of London, London

*Corresponding author: david.pascall@mrc-bsu.cam.ac.uk

Abstract

Tick-borne viruses remain a substantial zoonotic risk worldwide, so knowledge of the diversity of tick viruses has potential health consequences. Despite their importance, large amounts of sequences in public datasets from tick meta-genomic and -transcriptomic projects remain unannotated, sequence data that could contain undocumented viruses. Through data mining and bioinformatic analyses of more than 37,800 public meta-genomic and -transcriptomic datasets, we found 83 unannotated contigs exhibiting high identity with known tick viruses. These putative viral contigs were classified into three RNA viral families (Alphatetraviridae, Orthomyxoviridae, Chuviridae) and one DNA viral family (Asfaviridae). After manual checking of quality and dissimilarity toward other sequences in the dataset, these 83 contigs were reduced to five putative novel Alphatetra-like viral contigs, four putative novel Orthomyxo-like viral contigs, and one Chu-like viral contig which clustered with known tick-borne viruses, forming a separate clade within the viral families. We further attempted to assess which previously known tick viruses likely represent zoonotic risks and thus deserve further investigation. We ranked the human infection potential of 136 known tick-borne viruses using a genome composition-based machine learning model. We found five high-risk tick-borne viruses (Langat virus, Lonestar tick chuvirus 1, Grotenhout virus, Taggert virus, and Johnston Atoll virus) that have not been known to infect human and two viral families (Nairoviridae and Phenuiviridae) that contain a large proportion of potential zoonotic tick-borne viruses. This adds to the knowledge of tick virus diversity and highlights the importance of surveillance of newly emerging tick-borne diseases.

Importance

Ticks are important hosts of pathogens. Despite this, numerous tick-borne viruses are still unknown or poorly characterised. To overcome this, we re-examined currently known tick-borne viruses and identified putative novel viruses associated with ticks in public datasets. Using genome-based machine learning approach, we predicted five high-risk tick-borne viruses that have not yet been reported to cause human infections. Additionally, we highlighted two viral families, *Nairoviridae* and *Phenuiviridae*, which are potential public health threats. Our analysis also revealed 10 putative novel RNA viral contigs clustered with known tick-borne viruses. Our study highlights the importance of monitoring ticks and the viruses they carry in endemic areas to prevent and control zoonotic infectious disease outbreaks. To achieve this, we advocate for a multidisciplinary approach within a One Health and EcoHealth framework that considers the relationship between zoonotic disease outbreaks and their hosts, humans, and the environment.

Introduction

The role of ticks in the transmission of viruses has been known for over 100 years (1) with ticks being second only to mosquitoes as vectors of pathogens to humans and the primary vector of pathogens to livestock, wildlife, and companion animals (2). Nonetheless, new tick viruses are still being

detected (3). Two recent examples are Yezo virus identified in Japan (4) and Songling virus identified in China (5), which have both been associated with acute human febrile disease.

Prior to the advent of molecular biology, tick-borne viruses were identified through microscopy, isolation in culture or serology (6–11). Over the last two decades, meta-genomics and – transcriptomics tools have revolutionised virus discovery. These approaches employ high-throughput sequencing technologies to capture total viral communities in a relatively unbiased manner (12,13) and have facilitated studies of the tick virome that resulted in the discovery and characterisation of hundreds of new tick-borne viruses globally (14–23). While this has led to dramatic increases in the understanding of tick virus communities, being able to evaluate the human infection potential of the discovered viruses would additionally allow the leveraging of this data to provide public health benefits.

Models of zoonotic risk assessment often rely on the existence of zoonotic viruses in the same viral family or evolutionary relatedness to known zoonoses (24). These models rely on phenotypic information commonly unavailable for novel viruses or of insufficient resolution to estimate different levels of zoonotic potential for closely related viruses (25–27). More recent models based on the genomic features of viruses which do not strictly rely on phylogeny or taxonomy avoid this issue. Such models use genomic features that may individually contain weak signals but can be combined and exploited via machine learning algorithms (28–31). These models, built from genomic data alone, have particular strength in evaluating newly discovered viruses that lack other information sources, but are limited by the need for full viral genomes for accurate assessment.

In this study, we aimed to detect novel viruses that may have been overlooked by previous tick meta-genomic and –transcriptomic studies, and assess the zoonotic risk posed by tick virus diversity as it is currently understood. Thus, we searched publicly available tick sequence data for signs of viruses misidentified as tick sequences and evaluated the zoonotic risk of these and other tick viruses to find those which deserve further investigation.

Materials and methods

Datasets. We collected tick virus data from reports published prior to December 2021 and constructed a tick virus dataset that contained 261 tick-borne viruses from 23 viral families (34 genera) and 12 putative tick-borne viruses sampled from tick pools. Tick-borne viruses with unknown tick vectors (N = 13) or sequences unavailable (N = 13) were excluded from analyses. This resulted in 235 viruses in the final tick virus database, of which 3 of them (Amblyomma dissimile mivirus, Nuomin virus, and Granville guaranjavirus) were added later and not included in the database for virus detection. Among the 235 tick-borne viruses, more than 92% of viruses were RNA viruses, while few other viral sequences were identified (2.2% DNA viruses and 5.6% viruses with unknown genome composition). Among the RNA viruses, most sequences were negative-sense (-) single-stranded RNA (ssRNA) viruses (63.0%), followed by positive-sense (+) single-stranded RNA (ssRNA) (20.8%), double-stranded RNA (dsRNA) (8.5%), and unclassified RNA (5.6%) viruses, depending on version 2020 of the International Committee on Taxonomy of Viruses (ICTV) master species list (https://talk.ictvonline.org/files/master-species-lists/). We labelled each virus as being capable of infecting humans or not known to infect humans using published reports as ground truth. In all cases, only viruses detected in humans by either PCR or sequencing were considered to have proven ability to infect humans. See the summary table of currently known tick-borne viruses in Appendix Table 1.

Viral identification and annotation. We used representative genomic sequences of the 232 tickborne viruses as our reference database, with genome segments of segmented viruses concatenated into one. Using the 'blastn_vdb' (corresponding to nucleotide BLAST) executable in the BLAST+ v2.13.0 (32–34), we searched the Sequence Read Archive (SRA), Transcriptome Shotgun Assembly (TSA), and Whole Genome Shotgun (WGS) datasets that derived from ticks and subordinate taxa directly with an expectation cut-off of 0.05. We also performed a 'tBLASTx' search for the TSA database to find distant relationships between nucleotide sequences; SRA and WGS datasets were not suitable for 'tBLASTx' search because it was computationally prohibitive. This resulted in 1328 TSA, 19,990 SRA, and 1861 WGS sequences after removing duplicates. The GenBank accession numbers of the candidate sequences are provided at <u>https://github.com/ytlin2021/TickVirus.git</u>.

Candidate sequences were filtered according to the pipeline modified from Webster et al. (35). The thresholds used in each step can be seen in **Figure 1**. To confirm final RNA candidates, we checked the presence of RNA-dependent RNA polymerase (RdRp), an essential protein encoded in the genomes of all replicating RNA viruses without a DNA stage except deltaviruses, and not present in the genome of the eukaryotic or prokaryotic cell. We adopted a combined analysis approach to predict RdRps by using a general protein function prediction software package InterProScan v5.55-88.0 (36) and a new open bioinformatics toolkit - RdRp-scan - that allowed the detection of divergent viral RdRp sequences (37). Candidate sequences less than 600 nucleotides (nt) in length were discarded. The translated candidate sequences were searched according to the RdRp-scan workflow (37) and were also predicted using the InterProScan search function. The conserved RdRp motifs were annotated manually based on the RdRp motif database in RdRp-scan, and final RNA viral candidates were confirmed. The workflow of detecting viral RdRp sequences and the thresholds used in each step can be seen in **Appendix Figure 1**.

Protein functions of putative novel viral contigs were annotated using InterProScan and 'BLASTx'. Open Reading Frames (ORFs) were predicted using ORF Finder tool in NCBI (38) with a 150 nt length cut-off. InterProScan searched for protein function annotations in its available databases, including the Gene Ontology (39,40) and Pfam (41,42) databases. At the same time, 'BLASTx' were used to search against the non-redundant protein database with an expectation cut-off of 1e-5 following Charon et al. (37).

Phylogenetics. We searched for close and distant relatives of the identified novel viral contigs in viruses (NCBI taxa ID: 10239) non-redundant nucleotide and protein databases by performing 'BLASTn' and 'BLASTx' separately with an expectation cut-off of 0.005. For each contig with BLAST hits, the phylogenetic hierarchy of the best hits (top 10 hits from 'BLASTx') was traversed upward to identify the lowest taxonomic classification displaying a 75% majority taxonomic agreement following Webster et al. (35). If the best hits were unclassified viruses, the upper order was identified, and the protein sequences were aligned in each family under the order to determine the classification. This allowed putative novel viral contigs in the study to be classified into three RNA viral families (*Alphatetraviridae, Orthomyxoviridae, Chuviridae*) and one DNA viral family (*Asfaviridae*). All virus species in the same family, as well as unassigned viruses, were aligned and used to construct phylogenetic trees.

Phylogeny of RNA viruses was inferred on the basis of RNA-dependent RNA polymerase protein sequences. We aligned viral RdRp protein sequences using the ClustalW algorithm (43) embedded in the GUIDANCE2 server v2.02 (44). GUIDANCE2 server removed any sequences with a score of less than 0.6 and columns with a score of less than 0.93, aiming to leave sufficient information in alignments while allowing large taxonomic groups of viruses to be compared.

We performed tree estimation for all trees in BEAST2, averaging over protein models using the OBAMA module (45,46). A lognormal relaxed clock model was applied (56-58), and a Yule tree prior was used (47,48). As convergence repeatedly failed under standard MCMC for the *Chuviridae* and *Orthomyxoviridae* trees, models were fit using BEAST2's Metropolis-coupled MCMC routines with 4 chains and a target cross-chain move acceptance probability of 0.029 for the *Alphatetraviridae* and *Chuviridae* trees, and a fixed heating parameter of 0.3 for the *Orthomyxoviridae* tree (49,50). The Yule process birth rate was given a vague Exponential prior with mean 1000, all other parameters took default prior values. Trees were run for 100,000,000 iterations with 50,000,000 discarded as burn-in, and the posterior then being thinned to 1000 trees. A second run of each tree was used to assess convergence with the R package RWTY (51).

Zoonotic risk analyses. The zoonotic risk (precisely, probability of human infection given biologically relevant exposure) for 136 tick-borne viruses with complete genome sequences were evaluated using the best performing model from Mollentze et al. (31), referred to here as genome composition-based (GCB), which was trained on a range of viral genome features and human similarity features. A representative genome was selected for each virus, giving preference to sequences from NCBI Reference Sequence Database (RefSeq) (www.ncbi.nlm.nih.gov/refseq/) wherever possible. RefSeq sequences that had annotation issues or were not judged to be representative of the naturally circulating virus were replaced with alternative genomes. Following Mollentze et al. (31), the predicted probabilities from the GCB model were used to categorise viruses into four priority categories based on the overlap of confidence intervals (CIs) the value of 0.293 (low: entire 95% CI of predicted probability \leq cut-off; medium: mean prediction \leq cut-off, but CI crosses it; high: mean prediction > cut-off, but CI crosses it; very high: entire CI > cut-off). Since the current GCB model was trained for viruses with complete sequences, 99 tick viruses with only partial genomes available were excluded from the analyses. To characterise the zoonotic potential of the identified novel viral contigs, we did qualitative analyses by evaluating the published complete genomes of known viruses most similar to these incomplete viral sequences as determined by a nucleotide BLAST against GenBank.

Results

Identification of putative novel viruses associated with ticks

We examined contigs that showed nucleotide similarity (< 90% identity) to previously characterised tick virus sequences from an extensive collection of tick meta-genomic and –transcriptomic datasets (23,050 SRA, 3523 TSA, and 11,279 WGS sequences; collected on 3 March 2022). The pipeline of detecting novel tick-associated viral contigs can be found in **Figure 1**. For more information on the tick virus database and tick meta-genomic and –transcriptomic datasets, see Methods.

In total, we identified 83 putative novel viral contigs, including 53 double-stranded DNA viral contigs, 5 positive-sense and 25 negative-sense RNA viral contigs (**Appendix Table 2-4**). The 53 DNA viral contigs belong to the family *Asfaviridae*, with homology to African swine fever virus. These African swine fever virus-like contigs were found in *Ornithodoros porcinus* and *Ornithodoros moubata* ticks (**Appendix Table 4**), and all but two of these contigs derived from a study that had previously reported the integration of African swine fever like elements into the genomes of these soft tick species (52), so they will not be discussed further. The 5 positive-sense RNA viral contigs belong to the family *Alphatetraviridae*. Of the negative-sense RNA viral contigs, 5 belong to the family *Orthomyxoviridae*, and 20 belong to the family *Chuviridae*, including 19 chuviruses believed to be replication defective from tick SRA projects. After filtering duplicate sequences (GenBank IDs:

HACP01027211.1 and HACW01024387.1), we obtained 10 putative RNA viral contigs ranging from 728 bp to 5496 bp (**Table 1**). The putative novel viruses found in this study were named after their host order and related viral family, followed by a number (e.g., Alphatetra-like tick virus 1). All sequences identified in the present study with can be found on GenBank (see accession numbers in **Table 1** and **Appendix Table 2-4**).

Figure 1 The workflow of identification of novel tick-associated viral contigs. Through BLAST search and curation, 53 DNA sequences (identified as African swine fever like elements) and 30 RNA

sequences (putative viruses in the family *Alphatetraviridae*, *Orthomyxoviridae* and *Chuviridae*) from a collection of tick meta-genomic and –transcriptomic datasets (3 March 2022) were identified as putative novel viral contigs. 10 putative RNA viral contigs were further analysed after filtering. TSA = Transcriptome Shotgun Assembly, SRA = Sequence Read Archive, WGS = Whole Genome Shotgun, E-value = Expectation value.

Putative novel viral contig	Tick species	Geographical location	Provisional family	Genome structure	Sequence length (nt)	Closest BLASTx match (% amino acid identity)	GenBank ID
Orthomyxo-like tick virus 1	Rhipicephalus sanguineus	Italy	Orthomyxoviridae	ssRNA(-)	2136	Zambezi tick virus 1 (89)	HACP01027211.1 (HACW01024387.1)
Orthomyxo-like tick virus 2	Rhipicephalus sanguineus	Italy	Orthomyxoviridae	ssRNA(-)	1290	Zambezi tick virus 1 (73)	HACP01022575.1
Orthomyxo-like tick virus 3	Rhipicephalus sanguineus	Italy	Orthomyxoviridae	ssRNA(-)	1290	Zambezi tick virus 1 (88)	HACW01018819.1
Orthomyxo-like tick virus 4	Rhipicephalus haemaphysaloides	China	Orthomyxoviridae	ssRNA(-)	2357	Zambezi tick virus 1 (89)	GIJA01018702.1
Alphatetra-like tick virus 1	Ixodes ricinus	China	Alphatetraviridae	ssRNA(+)	5496	Bulatov virus (44)	GIXL01013119.1
Alphatetra-like tick virus 2	Ixodes persulcatus	USA	Alphatetraviridae	ssRNA(+)	1056	Vovk virus (60)	GBXQ01012426.1
Alphatetra-like tick virus 3	Ornithodoros moubata	Spain	Alphatetraviridae	ssRNA(+)	5452	Bulatov virus (40)	GIXP02005464.1
Alphatetra-like tick virus 4	Ornithodoros moubata	Spain	Alphatetraviridae	ssRNA(+)	3873	Bulatov virus (41)	GFJQ02007921.1
Alphatetra-like tick virus 5	Rhipicephalus microplus	USA	Alphatetraviridae	ssRNA(+)	1488	Hepelivirales sp. (80)	GEMR01004364.1
Chu-like tick virus 1	Ixodes scapularis	USA	Chuviridae	ssRNA(-)	728	Nuomin virus (89)	GGIX01201876.1

Table 1 The putative novel RNA viral contigs found after bioinformatic checking.

(i) Orthomyxoviridae-like contigs

The contigs we found contained homologs of Influenza RdRp subunit PB1, the most conserved of the orthomyxovirus genes (**Appendix Figure 2**). Phylogenetic analysis revealed that the putative novel Orthomyxo-like viral contigs fell into the genus *Quaranjavirus* and formed a separate clade with other tick-borne quaranjaviruses (**Appendix Figure 3**; **Table 1**). Within PB1, the contigs were phylogenetically closely related to Zambezi tick virus 1 (ZaTV-1) – a highly divergent virus identified in Rhipicephalus ticks from Mozambique (53) and shared approximately 77% amino-acids identity (**Appendix Figure 3**; **Table 1**). Quaranjaviruses are enveloped negative-sense single-stranded segmented RNA viruses, generally with multiple segments (54) which have been recorded in argasid and ixodid ticks, other arachnids, insects and vertebrates (55,56). In the present study, we identified 4 putative novel Orthomyxo-like tick viruses from ixodid tick metagenomic projects, 3 of which derived from sequence sampled from *Rhipicephalus sanguineus* in Italy, and one from *Rhipicephalus haemaphysaloides* in China (**Table 1**).

We note that four of the six the viral species that have complete genomes in this clade were either predicted to have very high (N = 1) or high (N = 3) zoonotic potential based on the GCB model (**Table 2**; the GenBank ID can be found in **Appendix Table 5**), with Quaranfil virus (QRFV), one of the viruses rated to have high zoonotic potential, being confirmed to lead to infections in humans (54). Taken together, these results suggest that the novel Orthomyxo-like viral contigs identified in the current study may represent a potential risk of human infection given exposure (which is possible, as *R. haemaphysaloides* is known to parasitise humans).

(ii) Alphatetraviridae-like contigs

Members of the *Alphatetraviridae* are non-enveloped positive-sense single-stranded RNA viruses (57). The identified Alphatetra-like contigs ranged from 1488 nt to 5496 nt, detected via the presence of a putative RdRp 2 motif; some of the longer sequences also encoded putative nucleoside triphosphate hydrolase, viral RNA helicase, and viral methyltransferase three motifs (**Figure 2B**). Viruses in the family *Alphatetraviridae* had been previously believed to infect predominantly moths and butterflies (57), but the recent discovery of several Alphatetra-like viruses in ticks (23,58) implies that this may have been due to sampling biases. Consistent with this, we found the presence of potential Alphatetra-like viruses in four ixodid tick species (*Ixodes ricinus, Ixodes persulcatus, Ornithodoros moubata* and *Rhipicephalus microplus*) sampled in three geographically diverse locations (China, Spain, and USA) (**Table 1**). Phylogenetic analysis suggested that the novel Alphatetra-like tick viruses formed a separate clade, being placed with the tick-borne viruses recently identified in ixodid ticks from Antarctica (Vovk virus and Bulatov virus from the seabird tick, *Ixodes uriae*) (58) and China (Hubei tick hepe-like virus found in *R. microplus* and *Haemaphysalis longicornis*) (23), and Heilongjiang sediment betatetravirus of unknown host, but originally sampled from river sediment in China (59) (**Figure 3B**; **Table 1**).

No members of the *Alphatetraviridae* are known to infect humans, and, unfortunately, only partial genomes were available for the previously identified viruses in the proposed new clade (Bulatov virus, Vovk virus and Heilongjiang sediment betatetravirus), thus they were inappropriate for zoonotic risk analysis based on the GCB model. The closest related viruses with full genomes were all isolated from moths. Of these viruses Nudaurelia capensis beta virus was predicted to have high zoonotic potential; Dendrolimus punctatus virus and Helicoverpa armigera stunt virus were predicted to have medium zoonotic potential (**Table 2**; the GenBank IDs can be found in **Appendix Table 5**). This result illustrates a deficiency of the currently available zoonotic risk assessment tools for viruses discovered through meta-genomic or –transcriptomic methods. Zoonotic risk estimation using genome information generally requires complete viral genomes, but viruses found through these methods are often incomplete or exhibit uncertainty in segment linkage for segmented viruses, which impacts the ability to make fast decisions on virus research and surveillance at the earliest stage of virus discovery. Training existing models on features from partial viral genomes provides a potential avenue for future work to help alleviate this issue.

(iii) Chuviridae-like contigs

We identified 20 Chu-like viral contigs from *Ixodes scapularis* and *Hyalomma asiaticum* sampled in the US and China (**Table 1**; **Appendix Table 3**). Members of the *Chuviridae* are negative-sense single-stranded RNA viruses, which display a wide variety of genome organisations, including unsegmented, bi-segmented, and circular forms (15). Only the contig labelled Chu-like tick virus 1 is consistent with a live virus, as all other contigs showed signs of mutational degradation with many stop codons present in the region with homology to the RdRp. All but one of the contigs exhibiting

evidence of degradation were generated from a laboratory population of *Hy. asiaticum*, maintained under controlled conditions (60). As such, we speculate that they likely result from the presence of an integrated Chu-like virus in the *Hy. asiaticum* genome present in this laboratory population, and, likely, more broadly.

The viral sequence of Chu-like tick virus 1 was 728 nt in length, comprising one putative ORF that encodes a 240-amino acid protein containing the potential RdRp domain, nucleoside triphosphate hydrolase, viral RNA helicase, and viral methyltransferase 3 (Figure 2C). Chu-like tick virus 1 was clustered with other miviruses and was phylogenetically closely related to Suffolk virus, originally sampled in USA (20), with approximately 87% nucleotide identity (Figure C; Table 1). With regards to the human infection potential of Chu-like tick virus 1, it is notable that it showed a RdRp amino-acid identity of around 90% with Nuomin virus which has recently been associated with human febrile illness in China (61). The prediction results also classified Suffolk virus into the high zoonotic potential category (Table 2; the GenBank IDs can be found in Appendix Table 5). These results suggest that Chu-like tick virus 1 may pose a zoonotic risk. This may be especially relevant as the sequence was detected in *I. scapularis*, an important vector of other human pathogens, and so the potential for human exposure is high. However, given the small number of known species in the family Chuviridae when the GCB model was trained (31), caution must be applied, as the model might not be able to accurately predict the zoonotic potential viruses in this family. There would therefore seem to be a definite need for characterising viruses in the family *Chuviridae* in terms of their viability in human cell lines with these results feeding through to future zoonotic modelling efforts.

Putative novel viral contigs	Relative viral species	Current status	Predicted probability	95% Confidence interval	Zoonotic potential
Orthomyxo-like viral contigs	Wellfleet Bay virus	No known human infections	0.368	0.213-0.636	High
	Araguari virus	No known human infections	0.222	0.102-0.372	Medium
	Johnston Atoll quaranjavirus	No known human infections	0.513	0.311-0.802	Very high
	Lake Chad virus	No known human infections	0.184	0.081-0.334	Medium
	Tjuloc virus	No known human infections	0.352	0.141-0.607	High
	Quaranfil quaranjavirus	Human virus (54)	0.561	0.128-0.863	High
Alphatetra-like viral contigs	Nudaurelia capensis beta virus	No known human infections	0.302	0.153-0.497	High
	Dendrolimus punctatus virus	No known human infections	0.234	0.128-0.352	Medium
	Helicoverpa armigera stunt virus	No known human infections	0.243	0.135-0.387	Medium
Chu-like viral contigs	Mivirus suffolkense	No known human infections	0.309	0.151-0.562	High

Table 2 Zoonotic risks of virus species closely related to the putative novel Alphatetra-like viral contigs. Zoonotic risks of sequences in GenBank format were predicted using the GCB model.

Figure 2 Genome structures of novel viral contigs.

Figure 3 Phylogenetic relationship of the novel viral contigs. Maximum clade credibility trees were inferred from the Bayesian posterior sample. Posterior clade probabilities are shown at the nodes, and the scale is given in amino-acid substitutions per site. Putative novel viral contigs found in the present study are shown in red, and previously known tick-borne viruses are shown in blue. GenBank ID can be found at **Appendix Figure 2-4**. Alignments using ClustalW and maximum clade credibility trees are provided in at <u>https://github.com/ytlin2021/TickVirus.git</u>.

Zoonotic ranking of known tick-borne viruses

We used the prediction framework illustrated by Mollentze and colleagues (31) to rank 136 known tick-borne viruses with complete genomes. The viruses here were ranked based on predicted mean probability of zoonotic potential and further converted into four zoonotic potential categories, describing the overlap of confidence intervals (CIs) with the 0.293 cut-off (see Methods). The zoonotic prediction results were given in **Appendix Table 6**. This subset dataset contained representatives from 13 viral families (29 genera) and unassigned viruses, including 21 viruses that were known to infect humans by our criteria.

In total, 5.1% of tick-borne viruses were identified as having very high zoonotic potential (N = 7), 39.7% having high zoonotic potential (N = 54), 44.1% having medium zoonotic potential (N = 60) and 11.0% having low zoonotic potential (N = 15; **Appendix Figure 4**). Among the 22 currently known human-infecting tick-borne viruses, 81.8% were correctly identified as having either very high (N = 2) or high zoonotic potential (N = 16), and the remaining human-associated viruses were classified as medium zoonotic potential (N = 4; **Appendix Figure 4**). Among the tick-borne viruses with unknown human infectivity that were sequenced from nonhuman animal or tick samples, 37.7% were predicted to have either very high (N = 5) or high zoonotic potential (N = 38; **Appendix Figure 4**), including viruses in the family *Chuviridae*, *Nyamiviridae* and *Parvoviridae* that currently do not contain tick-borne viruses known to infect humans. Langat virus, Lonestar tick chuvirus 1, Grotenhout virus, Taggert virus, and Johnston Atoll virus were predicted to have very high zoonotic

risk, although they were not known to infect humans (**Figure 4B**). We therefore recommend these viruses be a high priority for further virological research, in order to assess whether greater surveillance of them in wild tick populations would be warranted.

We noted that the high and very high zoonotic potential categories were dominated by *Nairoviridae* (31.0%) and *Phenuiviridae* (28.6%), consistent with the recent findings of emerging human-infecting tick viruses in these two viral families. For example, among members of the *Nairoviridae* family, two emerging orthonairoviruses called Songling virus and Yezo virus have been recently detected in *Hyalomma* spp. ticks and isolated in patients with the acute febrile disease (4,5). Hospitals in Inner Mongolia and Heilongjiang province, China also reported infections from a novel nairovirus named Beiji nairovirus which mainly circulates in the ixodid ticks *I. crenulatus* and *I. persulcatus* (62). Similarly, among the *Phenuiviridae*, a novel phlebovirus named Tacheng tick virus 2 (TcTV-2) was first sampled from *D. marginatus* ticks in China (15) and later identified in various countries and tick species, primarily circulating in *D. marginatus* and *H. marginatum* ticks (63–65). The risk for human infection from TcTV-2 was not known until 2021 when Dong and colleagues reported on TcTV-2 infection in a patient in China (66). As recently emerged viruses, the geographic ranges of these viruses are poorly understood, and only partial genomes are available. The wide distribution of these tick species suggests that the geographic limits of the emerging tick-borne viruses in the family *Nairoviridae* and *Phenuiviridae* may be larger than presently assumed.

Figure 4 Predicted probability of human infection for tick viruses based on genome compositionbased model. (**A**) Predicted probability of human infection for 136 tick viruses with complete genomes. Colour scale show the assigned zoonotic potential categories. Tick marks along the top edge of the first panel show the location of viruses known to infect humans, while a dashed line shows the cut-off 0.293 that balanced sensitivity and specificity according to Mollentze et al. (31). The top 25 viruses that have no known human infection (contained within the grey box) are illustrated in more detail in (**B**) Viruses that have no known human infection are shown in red. Points show the mean calibrated score, with lines indicating 95% confidence intervals. Figures were drawn in R v4.1.1. Zoonotic ranking results can be found in **Appendix Table 6**. Numeric data underlying this figure can be found at <u>https://github.com/ytlin2021/TickVirus.git</u>.

Discussion

Here we reanalysed existing tick metagenomic and meta-transcriptomic studies in public datasets to identify potential novel tick-borne viruses, using a tick virus database containing all known tickborne viruses with genetic sequence available. We then employed the genome composition-based machine learning model of Mollentze et al. (31) to evaluate the zoonotic risk of all published tick viruses with complete genomes.

Novel virus discovery

The presence of undetected viruses in pre-existing meta-genomic and –transcriptomic data illustrate a valuable underutilised data source. A combination of factors, ranging from studies being focused on specific taxa, limitations of the bioinformatic tools being used and incompleteness of reference datasets used within these tools, result the generation of large amounts of unannotated or incorrectly annotated sequence. This provides an opportunity for small studies such as this one, or much larger studies considering wider ranges of or more extensively studied taxa (e.g. (16,35,67)), reanalysing this historical data to detect new viruses (or, equally, other organisms of interest). As a pedagogical aside, as the resource requirements for these studies are low, the scope of the projects limited, the outputs of general scientific interest, and the skills required of particular value to employers, these studies make excellent short projects for late-stage undergraduate or early-stage postgraduate students on ecology or ecology-adjacent courses.

As with all studies that base viral detection around similarity to known viruses, our ability to detect novel viruses was limited by our reference dataset. Hence, some putative novel tick-borne viruses may have been missed due to the absence of similar viruses for comparison.

Zoonotic risk assessment

The model applied showed promising results in distinguishing the zoonotic potential of closely related viruses within a genus. For instance, Mivirus boleense (15) was ranked as low zoonotic potential, while Mivirus suffolkense (20) was deemed high zoonotic potential. Given the validation of the methodology previously performed, this adds to the evidence suggesting the use of such models in providing targets for further research in a quick and low-cost way. However, caution must be exercised when interpreting the results of the genome composition-based model, as demonstrated in Figure 4B. The predicted probability interval was often large, leading to low confidence in the actual zoonotic risk of these viruses, and some viruses' zoonotic risks were inaccurately estimated. For example, Issyk-kul virus had low predicted probability and associated "medium" risk, although it has been indicated as a likely human pathogen (68). Moreover, the model training did not include any virus in the recently described viral family Chuviridae, reminding that while these tools are powerful, predictions of zoonotic risks from viral families with limited data should be treated with an abundance of caution and greater weight should be given to other clinical or epidemiological sources of evidence. Despite these limitations, good performance was observed in the family Nairoviridae, which included only 13 viruses in the dataset with the model predicting high risks of zoonotic potential for viruses with the group, consistent with recent findings of new and emerging tick-borne viral diseases associated with nairoviruses and orthonairoviruses (4,5,62,69).

A significant proportion of tick-borne viruses with high or very high zoonotic potential were sampled from ixodid ticks, which may reflect sampling bias towards viruses infecting hard ticks (family *lxodidae*) in previous studies or be true representation of differences in intrinsic zoonotic risk between the viral communities of argasid and ixodid ticks. The ecology of argasid and ixodid ticks are different, with ixodid ticks generally having longer blood meals (70). The longer feeding time of ixodid ticks may make them on average more favourable for viral transmission, and thus more likely

to harbour communities of viruses capable of infecting mammals. However, it also means that ixodid ticks are more likely to be detected on a host, and thus more likely to be associated with resulting viral infections (i.e. a virus that might cause a fever of unknown origin if transmitted by an argasid tick may be able to be explicitly linked to a tick bite given the greater detection probability if transmitted by an ixodid tick). A more systematic approach that samples both hard and soft ticks would increase our knowledge of the diversity of tick-borne viruses carried by each type and allow us to assess whether they truly do differ in human infection risk.

As the model was trained on complete genomes (31), it is inappropriate for the use on viruses for which only partial genomes are available. This is a particularly important limitation for viruses found purely through bioinformatic means, where only single contigs or disconnected viral segments may be available. We attempted to assess the zoonotic risk of the putative novel viruses detected in this study by using the genomes of the closest related virus with a complete genome as a proxy. However, while this was unavoidable in this case, it does fall prey to one of the same biases the use of genome-based composition methods was originally intended to avoid, the assumption that zoonotic risk is conserved across the phylogeny. Hence, the zoonotic risks of these viruses ought to be reassessed should full genomes become available.

Conclusion

Despite ticks being important vectors of pathogens, the human infection risks of most tick-borne viruses remain uncertain (71). In this study we have both identified new tick viruses in previously collected data and assessed the zoonotic potential of known tick virus diversity, identifying certain high risk viral families deserving of further study and, potentially, surveillance. Cataloging viruses and assessing their human infection risk, as we have done here, represents only a first step in the risk management of zoonoses. Further research into the ecological processes that underlie the geographical distribution and interspecific transmission of ticks and their viruses is necessary to gain a comprehensive understanding of the ecology of this system. It is this eventual ecological knowledge that may allow us to formulate more effective strategies for managing human exposure to vectors, preventing zoonoses at the source.

Data accessibility statement

All novel viral sequences identified in this study have been submitted to Third Party Annotation Section of the DDBJ/ENA/GenBank databases under the accession numbers TPA: BK062905-BK062914. These sequence records will be held confidential until the data or accession numbers appear in print. Data and scripts used to generate the analyses are provided in at https://github.com/ytlin2021/TickVirus.git.

Competing interests statement

The authors have no conflict of interest to declare.

Author Contributions

Yuting Lin: Project administration (lead); methodology (equal); data curation (lead); investigation (lead); formal analysis (equal); visualisation (lead); writing – original draft (lead); writing – review and editing (equal). David J Pascall: Conceptualization (lead); methodology (equal); formal analysis

(equal); resources (lead); funding acquisition (lead); supervision (lead); writing – review and editing (equal).

Acknowledgements

We thank members of the Medical Research Council (MRC) Biostatistics Unit at the University of Cambridge (MRC BSU) for scientific input. We are grateful for the technical support of core facilities the Cambridge University High Performance Computing Service.

DJP is funded by UKRI (UK Research & Innovation) through the JUNIPER consortium (MR/V038613/1), and through the MRC Biostatistics Unit core award from the MRC (MC UU 00002/11).

References

- 1. Stockman S. 1918. Louping-ill. J Comp Pathol Ther 31:137–193.
- 2. Mansfield KL, Jizhou L, Phipps LP, Johnson N. 2017. Emerging tick-borne viruses in the twenty-first century. Front Cell Infect Microbiol 7:298.
- 3. Liu Z, Li L, Xu W, Yuan Y, Liang X, Zhang L, Wei Z, Sui L, Zhao Y, Cui Y, Yin Q, Li D, Li Q, Hou Z, Wei F, Liu Q, Wang Z. 2022. Extensive diversity of RNA viruses in ticks revealed by metagenomics in northeastern China. PLoS Negl Trop Dis 21;16(12):e0011017.
- 4. Kodama F, Yamaguchi H, Park E, Tatemoto K, Sashika M, Nakao R, Terauchi Y, Mizuma K, Orba Y, Kariwa H, Hagiwara K, Okazaki K, Goto A, Komagome R, Miyoshi M, Ito T, Yamano K, Yoshii K, Funaki C, Ishizuka M, Shigeno A, Itakura Y, Bell-Sakyi L, Edagawa S, Nagasaka A, Sadoka Y, Sawa H, Maeda K, Saijo M, Matsuno K. 2021. A novel nairovirus associated with acute febrile illness in Hokkaido, Japan. Nat Commun 12(1):5539.
- Ma J, Lv XL, Zhang X, Han SZ, Wang ZD, Li L, Sun HT, Ma LX, Cheng ZL, Shoa JW, Chen C, Zhao YH, Sui L, Liu LN, Qian J, Wang W, Liu Q. 2021. Identification of a new orthonairovirus associated with human febrile illness in China. Nat Med 27(3):434–439.
- 6. Cowdry EV. 1925. A group of microorganisms transmitted hereditarily in ticks and apparently unassociated with disease. J Exp Med 41(6):817–830.
- 7. Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP. 1982. Lyme disease—a tick-borne spirochetosis? Science 216(4552):1317–1319.
- Benach JL, Bosler EM, Hanrahan JP, Coleman JL, Habicht GS, Bast TF, Cameron DJ, Ziegler JL, Barbour AG, Burgdorfer W, Edelman R, Kaslow RA. 1983. Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med. 308(13):740–742.
- 9. La Scola B, Raoult D. 1997. Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol 35(11):2715–2727.
- 10. Raoult D, Roux V. 1997. Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev 10(4):694–719.
- 11. Mans BJ, Pienaar R, Latif AA. 2015. A review of *Theileria* diagnostics and epidemiology. Int J Parasitol Parasites Wildl 4(1):104–118.
- 12. Mokili JL, Rohwer F, Dutilh BE. 2012. Metagenomics and future perspectives in virus discovery. Curr Opin Virol 2(1):63–77.
- 13. Tokarz R, Lipkin WI. 2021. Discovery and surveillance of tick-borne pathogens. J Med Entomol 58(4):1525–1535.

- Garrison AR, Alkhovsky SV, Avšič-Županc T, Bente DA, Bergeron É, Burt F, Di Paola N, Ergünay K, Hewson R, Kuhn JH, Mirazimi A, Papa A, Sall AA, Spengler JR, Palacios G, ICTV Report Consortium. 2020. ICTV Virus Taxonomy Profile: *Nairoviridae*. J Gen Virol 101(8):798–799.
- 15. Li CX, Shi M, Tian JH, Lin XD, Kang YJ, Chen LJ, Qin XC, Xu J, Holmes EC, Zhang YZ. 2015. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 4:e05378.
- Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS, Buchmann J, Wang W, Xu J, Holmes EC, Zhang YZ. 2016. Redefining the invertebrate RNA virosphere. Nature 540(7634):539–543.
- 17. Bouquet J, Melgar M, Swei A, Delwart E, Lane RS, Chiu CY. 2017. Metagenomic-based surveillance of pacific coast tick *Dermacentor occidentalis* identifies two novel bunyaviruses and an emerging human ricksettsial pathogen. Sci Rep 7(1):12234.
- Pettersson JHO, Shi M, Bohlin J, Eldholm V, Brynildsrud OB, Paulsen KM, Andreassen, Holmes EC. 2017. Characterizing the virome of *Ixodes ricinus* ticks from northern Europe. Sci Rep 7(1):10870.
- 19. Harvey E, Rose K, Eden JS, Lo N, Abeyasuriya T, Shi M, Doggett SL, Holmes EC. 2019. Extensive diversity of RNA viruses in Australian ticks. J Virol 93(3):e01358-18.
- 20. Tokarz R, Sameroff S, Tagliafierro T, Jain K, Williams SH, Cucura DM, Rochlin I, Monson J, Carpi G, Tufts D, Diuk-Wasser M, Brinkerhoff J, Lipkin WI. 2018. Identification of novel viruses in *Amblyomma americanum*, *Dermacentor variabilis*, and *Ixodes scapularis* ticks. mSphere 3(2):e00614-17.
- 21. Chandra S, Harvey E, Emery D, Holmes EC, Šlapeta J. 2021. Unbiased characterization of the microbiome and virome of questing ticks. Front Microbiol 12;12:627327.
- 22. Shi J, Shen S, Wu H, Zhang Y, Deng F. 2021. Metagenomic profiling of viruses associated with *Rhipicephalus microplus* ticks in Yunnan Province, China. Virol Sin 36(4):623–635.
- 23. Xu L, Guo M, Hu B, Zhou H, Yang W, Hui L, Huang R, Zhan J, Shi W, Wu Y. 2021. Tick virome diversity in Hubei Province, China, and the influence of host ecology. Virus Evol 7(2):veab089.
- 24. Bergner LM, Mollentze N, Orton RJ, Tello C, Broos A, Biek R, Streicker DG. 2021. Characterizing and evaluating the zoonotic potential of novel viruses discovered in vampire bats. Viruses 13(2):252.
- 25. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. 2017. Host and viral traits predict zoonotic spillover from mammals. Nature 546(7660):646–650.
- 26. Pulliam JRC, Dushoff J. 2009. Ability to replicate in the cytoplasm predicts zoonotic transmission of livestock viruses. J Infect Dis 199(4):565–568.
- Grange ZL, Goldstein T, Johnson CK, Anthony S, Gilardi K, Daszak P, Olival KJ, O'Rourke T, Murray S, Olson SH, Togami E, Vidal G, Expert Panel, the PREDICT Consortium, Mazet JAK.
 2021. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc Natl Acad Sci 118(15):e2002324118.
- 28. Bartoszewicz JM, Seidel A, Renard BY. 2021. Interpretable detection of novel human viruses from genome sequencing data. NAR Genomics Bioinforma 3(1):lqab004.
- 29. Babayan SA, Orton RJ, Streicker DG. 2018. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science 362(6414):577–580.
- 30. Zhang Z, Cai Z, Tan Z, Lu C, Jiang T, Zhang G, Peng Y. 2019. Rapid identification of humaninfecting viruses. Transbound Emerg Dis 66(6):2517–2522.
- 31. Mollentze N, Babayan SA, Streicker DG. 2021. Identifying and prioritizing potential humaninfecting viruses from their genome sequences. PLOS Biol 19(9):e3001390.

- 32. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10(1):421.
- 33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215(3):403–10.
- 34. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–402.
- 35. Webster CL, Waldron FM, Robertson S, Crowson D, Ferrari G, Quintana JF, Brouqui JM, Bayne EH, Longdon B, Buck AH, Lazzaro BP, Akorli J, Haddrill PR, Obbard DJ. 2015. The discovery, distribution, and evolution of viruses associated with *Drosophila melanogaster*. PLOS Biol 13(7):e1002210.
- Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240.
- 37. Charon J, Buchmann JP, Sadiq S, Holmes EC. 2022. RdRp-scan: A bioinformatic resource to identify and annotate divergent RNA viruses in metagenomic sequence data. Virus Evol 8(2):veac082.
- 38. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Ostell J, Pruitt KD, Schuler GD, Shumway M, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, Yaschenko E. 2008. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 36:D13–21.
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–30.
- 40. Hennig S, Groth D, Lehrach H. 2003. Automated Gene Ontology annotation for anonymous sequence data. Nucleic Acids Res 31(13):3712–5.
- 41. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD. 2012. The Pfam protein families database. Nucleic Acids Res 40:D290–301.
- 42. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, SCE Tosatto, L Paladin, S Raj, LJ Richardson, RD Finn, A Bateman. 2021. Pfam: The protein families database in 2021. Nucleic Acids Res 49:D412–9.
- 43. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680.
- 44. Sela I, Ashkenazy H, Katoh K, Pupko T. 2015. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res 43(W1):W7–14.
- 45. Bouckaert RR, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH, Xie D, Zhang C Stadler T, Drummond AJ. 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15(4):e1006650.

- 46. Bouckaert RR. 2020. OBAMA: OBAMA for Bayesian amino-acid model averaging. PeerJ 8:e9460
- 47. Yule GV. 1924. A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, P.R.S. Phil Trans R Soc B 213:21-87.
- 48. Edwards AWF. 1970. Estimation of branch points of a branching diffusion process. J Roy Stat Soc B 32:155-174.
- Altekar G, Dwarkadas S, Huelsenbeck J, Ronquist F. 2004. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20(3):407-415.
- 50. Müller NF, Bouckaert RR. 2020. Adaptive Metropolis-coupled MCMC for BEAST 2. PeerJ 8:e9473.
- 51. Warren D, Geneva A, Lanfear R. 2017. RWTY (R We There Yet): An R package for examining convergence of Bayesian phylogenetic analyses. Mol Biol Evol 34(4):1016-1020.
- 52. Forth JH, Forth LF, Lycett S, Bell-Sakyi L, Keil GM, Blome S, Calvigac-Spencer S, Wissgott A, Krause J, Höper D, Kampen H, Beer M. 2020. Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus' evolution. BMC Bio 18(1):136.
- 53. Cholleti H, Hayer J, Mulandane FC, Falk K, Fafetine J, Berg M, Blomström AL. 2018. Viral metagenomics reveals the presence of highly divergent quaranjavirus in *Rhipicephalus* ticks from Mozambique. Infect Ecol Epidemiol 8(1):1478585.
- 54. Mourya DT, Yadav PD, Nyayanit DA, Majumdar TD, Jain S, Sarkale P, Shete A. 2019. Characterization of a strain of quaranfil virus isolated from soft ticks in India. Is quaranfil virus an unrecognized cause of disease in humans and animals? Heliyon 5(3):e01368.
- 55. Bratuleanu BE, Temmam S, Munier S, Chrétien D, Bigot T, van der Werf S, Savuta G, Eloit M. 2022. Detection of Phenuiviridae, Chuviridae members, and a novel quaranjavirus in hard ticks from Danube Delta. Front Vet Sci 9:863814.
- 56. Allison AB, Ballard JR, Tesh RB, Brown JD, Ruder MG, Keel MK, Munk BA, Mickley RM, Gibbs SE, Travassos da Rosa AP, Ellis JC, Ip HS, Shearn-Bochsler VI, Rogers MB, Ghedin E, Holmes EC, Parrish CR, Dwyer C. 2015. Cyclic avian mass mortality in the northeastern United States is associated with a novel orthomyxovirus. J Virol 89(2):1389-403.
- 57. Alphatetraviridae, ViralZone. [cited 2022 Jul 9]. Available from: https://viralzone.expasy.org/129?outline=all_by_species.
- 58. Wille M, Harvey E, Shi M, Gonzalez-Acuña D, Holmes EC, Hurt AC. 2020. Sustained RNA virome diversity in Antarctic penguins and their ticks. ISME J 14(7):1768–82.
- 59. Chen YM, Sadiq S, Tian JH, Chen X, Lin XD, Shen JJ, Chen H, Hoa ZY, Wille M, Zhou ZC, Wu J, Wang HW, Yang WD, Xu QY, Wang W, Goa WH, Holmes EC, Zhang YZ. 2022. RNA viromes from terrestrial sites across China expand environmental viral diversity. Nat Microbio 7:1312-1323.
- 60. Yuan C, Wu J, Peng Y, Li Y, Shen S, Deng F, Hu Z, Zhou J, Wang M, Zou Z. 2020. Transcriptome analysis of the innate immune system of Hyalomma asiaticum. J Invert Path 177;107481.
- Quan L, Wang ZD, Gao Y, Lv X, Han S, Zhang X, Shao JW, Chen C, Li L, Hou SJ, Sui L, Zhao Y, Wang B, Wang W, Song M. 2020. Identification of a new chuvirus associated with febrile illness in China. Research Square <u>https://doi.org/10.21203/rs.3.rs-104938/v1</u> [preprint]
- Wang YC, Wei Z, Lv X, Han S, Wang Z, Fan C, Zhang X, Shao J, Zhao YH, Sui L, Chen C, Liao M, Wang B, Jin N, Li C, Ma J, Hou ZJ, Yang Z, Han Z, Zhang Y, Niu J, Wang W, Wang Y, Liu Q. 2021. A new nairo-like virus associated with human febrile illness in China. Emerg Microbes Infect 10(1):1200–1208.

- 63. Brinkmann A, Dinçer E, Polat C, Hekimoğlu O, Hacıoğlu S, Földes K, Özkul A, Öktem IMA, Nitsche A, Ergünay K. 2018. A metagenomic survey identifies Tamdy orthonairovirus as well as divergent phlebo-, rhabdo-, chu- and flavi-like viruses in Anatolia, Turkey. Ticks Tick-Borne Dis 9(5):1173–1183.
- 64. Temmam S, Chrétien D, Bigot T, Dufour E, Petres S, Desquesnes M, Devillers E, Dumarest M, Yousfi L, Jittapalapong S, Karnchanabanthoeng A, Chaisiri K, Gagnieur L, Cosson JF, Vayssier-Taussat M, Morand S, Moutailler S, Eloit M. 2019. Monitoring silent spillovers before emergence: A pilot study at the tick/human interface in Thailand. Front Microbiol 10;2315.
- 65. Bratuleanu BE, Temmam S, Chrétien D, Regnault B, Pérot P, Bouchier C, Bigot T, Savuţa G, Eloit M. 2022. The virome of *Rhipicephalus*, *Dermacentor* and *Haemaphysalis* ticks from Eastern Romania includes novel viruses with potential relevance for public health. Transbound Emerg Dis 69(3):1387-1403.
- 66. Dong Z, Yang M, Wang Z, Zhao S, Xie S, Yang Y, Lui G, Zhao S, Xie J, Liu Q, Wang Y. 2021. Human Tacheng tick virus 2 infection, China, 2019. Emerg Infect Dis 27(2):594–8.
- 67. Käfer S, Paraskevopoulou S, Zirkel F, Wieseke N, Donath A, Petersen M, Jones TC, Liu S, Zhou X, Middendorf M, unglen S, Misof B, C Drosten. 2019. Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathog 15(12):e1008224.
- L'vov DK, Kostiukov MA, Daniiarov OA, Tukhtaev TM, Sherikov BK. 1984. [Outbreak of arbovirus infection in the Tadzhik SSR due to the Issyk-Kul virus (Issyk-Kul fever)]. Vopr Virusol 29(1):89–92.
- 69. Moming A, Shen S, Fang Y, Zhang J, Zhang Y, Tang S, Li T, Hu Z, Wang H, Zhang Y, Sun S, Wang LF, F Deng. 2021. Evidence of Human Exposure to Tamdy Virus, Northwest China. Emerg Infect Dis 27(12):3166–70.
- 70. Lawrie CH, Uzcátegui NY, Gould EA, Nuttall PA. 2004. Ixodid and Argasid Tick Species and West Nile Virus. Emerg Infect Dis 10(4):653-657.
- 71. Shi J, Hu Z, Deng F, Shen S. 2018. Tick-borne viruses. Virol Sin 33(1):21–43.

Appendices

Appendix Table 1. Summary of currently known tick-borne viruses by December 2021. Information from a wide variety of sources, references in the table.

Virus	Species	Genus	Family	Geno	Accessi	Avail	Huma	First	Tick	Distribution
				me	on	able	n	descri	vectors	
				struc		sequ	infecti	ption		
				ture		ence	on			
African	African	Asfivirus	Asfarviridae	dsDN	NC_04	Com	?	1921	О.	Sub-Saharan
swine fever	swine fever			А	4942	plete		(Mont	erraticus,	Africa, South
virus	virus					geno		gomer	О.	America,
						me		y et al.,	moubata	Southern
								1921)	(Shi et al.,	Europe (Shi
									2018)	et al., 2018)
Canine	Canine	Circovirus	Circoviridae	ssDN	NC_02	Com	?	2012	Haemaphy	Australia,
circovirus	circovirus			A (+/-	0904	plete		(Кароо	salis spp.,	Brazil, China,
)		geno		r et al.,	Rhipicepha	Columbia,
						me		2012)	lus spp.	Croatia,
									(Kapoor et	Germany,
									al., 2012)	Iran, Italy,
										Norway,
										Thailand,
										Turkey, UK,
										USA, Viet
										Nam (Urbani
										et al., 2021)
Avian-like	Tick	Circovirus	Circoviridae	ssDN	NC_03	Com	?	2018	Ι.	USA (Tokarz
circovirus	associated			A (+/-	0199	plete		(Tokar	scapularis	et al., 2018)
	circovirus 1)		geno		z et al.,	(Tokarz et	
						me		2018)	al., 2018)	
Nayun tick	Unclassified	Thetatorqu	Anellovirida	ssDN	KP141	Parti	?	2015	Rhipicepha	China (Xia et
torquevirus		evirus	е	A (+/-	758	al		(Xia et	<i>lus</i> spp.	al., 2015)
)		geno		al.,	(Xia et al.,	
						me		2015)	2015)	
Lone star	Unclassified	Unclassified	Parvovirida	ssDN	KX774	Com	?	2018	Ι.	USA (Tokarz
tick			е	A (+/-	632	plete		(Tokar	scapularis	et al., 2018)
densovirus)		geno		z et al.,	(Tokarz et	
1						me		2018)	al., 2018)	
Colorado	Colorado	Coltivirus	Reoviridae	dsRN	NC_00	Com	Y (Shi	1946	D.	USA (Shi et
tick fever	tick fever			А	4191,	plete	et al.,	(Florio	andersoni,	al., 2018)
virus	coltivirus				NC_00	geno	2018)	et al.,	D.	
					4181,	me		1946)	albipictus,	
					NC_00				D.	
					4182,				arumapert	
					NC_00				us, D.	
					4183,				occidentali	

					NC_00				s, H.	
					4184,				leporispalu	
					NC_00				stris, I.	
					4185,				sculptus, I.	
					NC_00				spinipalpis,	
					4186,				Ot.	
					NC_00				lagophilus	
					4187,				(Shi et al.,	
					NC_00				2018)	
					4188,					
					NC 00					
					_ 4180.					
					NC 00					
					4189					
					NC 00					
					4190					
Evach virus	Evach	Coltivirus	Reoviridae	dsRN	NC 00	Com	2	1976	l ricinus l	France
	coltivirus	contra us	neovindue	Δ	3696	nlata	·	(Rohso	ventalloi	Germany
	contrinus			~	NC 00	gono		(Relise	(Shi ot al	(Shi ot al
					2607	geno		- Kuppo	(JIII Et al.,	(3111 EL al.,
					5097, NC 00	me		r ot al	2018)	2018)
					NC_00			107C)		
					3698,			1976)		
					NC_00					
					3699,					
					NC_00					
					3700,					
					NC_00					
					3701,					
					NC_00					
					3702,					
					NC_00					
					3703,					
					NC_00					
					3704,					
					NC_00					
					3705,					
					NC_00					
					3706,					
					NC_00					
					3707					
Kundal	Kundal	Coltivirus	Reoviridae	dsRN	NC_05	Com	?	2019	Hy.	India (Yadav
virus	coltivirus			А	5248,	plete		(Yadav	antolicum	et al., 2019)
					NC_05	geno		et al.,	(Yadav et	
					5249,	me		2019)	al., 2019)	
					NC_05					
					5247,					

					NC_05					
					5240,					
					NC_05					
					5250,					
					NC 05					
					5239					
					NC 05					
					5242					
					NC 05					
					F24F					
					5245,					
					NC_05					
					5241,					
					NC_05					
					5246,					
					NC_05					
					5243,					
					NC_05					
					5244					
Tarumizu	Tarumizu	Coltivirus	Reoviridae	dsRN	NC_05	Com	?	2017	H. flava	Japan (Fujita
tick virus	coltivirus			А	5255,	plete		(Fujita	(Fujita et	et al., 2017)
					NC_05	geno		et al.,	al., 2017)	
					5254,	me		2017)		
					NC_05					
					5261,					
					NC_05					
					5259,					
					NC_05					
					5262,					
					NC_05					
					_ 5251.					
					NC 05					
					5260					
					NC 05					
					5258					
					NC 05					
					NC_05					
					5252,					
					NC_05					
					5257,					
					NC_05					
					5253,					
					NC_05					
					5256					
Chenuda	Chenuda	Orbivirus	Reoviridae	dsRN	NC_02	Com	?	1978	А.	Egypt,
virus	virus			А	7534,	plete		(Karab	hermanni	Uzbekistan
					NC_02	geno		atsos,	(Shi et al.,	(Shi et al.,
					7535,	me		1978)	2018)	2018)

					NC_02					
					7536,					
					NC_02					
					7537,					
					NC 02					
					_ 7538.					
					NC 02					
					7548.					
					NC 02					
					7549					
					NC 02					
					7550					
					NC 02					
					7551					
					7551, NG 02					
					NC_02					
		o. / · · ·			/552		2	4070	0 11 1	
Chobar	Chobar	Orbivirus	Reoviridae	dsRN	NC_02	Com	?	1978	Ornithodor	Nepal (Shi et
Gorge virus	Gorge virus			A	7553,	plete		(Karab	os spp. (Shi	al., 2018)
					NC_02	geno		atsos,	et al.,	
					7554,	me		1978)	2018)	
					NC_02					
					7555,					
					NC_02					
					7556,					
					NC_02					
					7557,					
					NC_02					
					7558,					
					NC_02					
					7559,					
					NC_02					
					7560,					
					NC_02					
					7561,					
					NC_02					
					7562					
Great Island	Great Island	Orbivirus	Reoviridae	dsRN	NC_01	Com	?	1981	<i>I. uriae</i> (Shi	Canada (Shi
virus	virus			А	4522,	plete		(Nuttal	et al.,	et al., 2018)
					NC_01	geno		l et al.,	2018)	
					4523,	me		1981)		
					NC_01					
					4524,					
					NC 01					
					- 4525,					
					NC 01					
					4526.					
					· - · /					

					NC_01					
					4527,					
					NC_01					
					4528,					
					NC_01					
					4529,					
					NC_01					
					4530,					
					NC_01					
					4531					
Kemerovo	Great Island	Orbivirus	Reoviridae	dsRN	MF939	Com	?	1970	Ι.	Russia,
virus	virus			А	555,	plete		(Libiko	persulcatu	Slovakia (Shi
					MF939	geno		va et	s, I. ricinus	et al., 2018)
					556,	me		al.,	(Shi et al.,	
					MF939			1970)	2018)	
					557.					
					MF939					
					558.					
					MF939					
					559.					
					MF939					
					560					
					500, MEQ3Q					
					EC1					
					501, ME020					
					1017959					
					562, ME020					
					IVIF939					
					563,					
					MF939					
					564,					
					KJ0107					
					87					
Lipovnik	Great Island	Orbivirus	Reoviridae	dsRN	HM543	Parti	?	1964	I. ricinus	Czech
virus	virus			A	475,	al		(Libiko	(Shi et al.,	Republic,
					HM543	geno		va et	2018)	Slovakia (Shi
					476,	me		al.,		et al., 2018)
					HM543			1964)		
					477					
Tribec virus	Great Island	Orbivirus	Reoviridae	dsRN	HQ266	Parti	?	1964	Н.	Belorussia,
	virus			А	581,	al		(Libiko	punctata, I.	Italy,
					HQ266	geno		va et	<i>ricinus</i> (Shi	Slovakia (Shi
					582,	me		al.,	et al.,	et al., 2018)
					HQ266			1964)	2018)	
					583,					
					HQ266					
					584,					

					HQ266					
					585,					
					HQ266					
					586.					
					HO266					
					587					
					но 266					
					F00					
					J00,					
					F00					
					589,					
					HQ266					
					590					
St Croix	St Croix	Orbivirus	Reoviridae	dsRN	NC_00	Com	?	2001	Ι.	Kenya, USA
River virus	River virus			А	6006,	plete		(Attoui	scapularis,	(Alberdi et
					NC_00	geno		et al.,	<i>R.</i>	al., 2012)
					5998,	me		2001)	appendicul	
					NC_00				<i>atus</i> (Shi et	
					5999,				al., 2018)	
					NC_00					
					6000,					
					NC_00					
					6001,					
					NC 00					
					6002					
					NC 00					
					6002.1					
					0005.1					
					, NG 00					
					NC_00					
					6004,					
					NC_00					
					6005,					
					NC_00					
					5997					
Baku virus	Unclassified	Orbivirus	Reoviridae	dsRN	KY023	Parti	?	1978	О.	Caspian Sea,
				А	349,	al		(Karab	maritimus	Uzbekistan
					KY023	geno		atsos,	(Shi et al.,	(Shi et al.,
					350,	me		1978)	2018)	2018)
					KY023					
					351,					
					KY023					
					352,					
					, KY023					
					353					
					KY023					
					354					
					×v022					
					1023					

					355,					
					KY023					
					356,					
					KY023					
					357,					
					КҮ023					
					358					
Matucare	Unclassified	Orbivirus	Reoviridae	dsRN	HQ397	Parti	?	1970	Ot.	
virus				А	640	al		(Justin	megnini	
						geno		, es et	(Palacios	
						me		al.,	et al.,	
								1970)	2011)	
Okhotskiy	Unclassified	Orbivirus	Reoviridae	dsRN	KY023	Parti	?	1878	I. uriae	Northern
virus				A	329.	al		(L'vov	(Pettersso	Sweden.
					KY023	geno		et al.	n et al.	Okhotsk
					330.	me		1878)	2020)	(Pettersson
					кү023	inc		2070)	2020)	et al., 2020)
					331.					22 2, 2020)
					KY023					
					332.					
					ку023					
					333.					
					кү023					
					334.					
					кү023					
					335.					
					кү023					
					336.					
					кү023					
					337.					
					KY023					
					338.					
					KF9816					
					23.					
					, KF9816					
					24.					
					- '' KF9816					
					25					
					, KF9816					
					26.					
					, KF9816					
					27.					
					, KF9816					
					28.					
					, KF9816					
					29					
					,					

					KF9816					
					30,					
					KF9816					
					31,					
					KF9816					
					32,					
					MN83					
					0241,					
					MN83					
					0242,					
					MN83					
					0243,					
					MN83					
					0244,					
					MN83					
					0245					
Wad	Wad	Orbivirus	Reoviridae	dsRN	NC_02	Com	?	1966	Hyalomma	Asia, East
Medani	Medani			А	7533,	plete		(Taylor	spp., R.	Africa,
virus	virus				NC_02	geno		et al.,	sanguineus	Jamaica (Shi
					7539,	me		1966)	(Shi et al.,	et al., 2018)
					NC_02				2018)	
					7540,					
					NC_02					
					7541,					
					NC_02					
					7542,					
					NC_02					
					7543,					
					NC_02					
					7544,					
					NC_02					
					7545,					
					NC_02					
					7546,					
					NC_02					
					7547					
Norway	Unclassified	Unclassified	Partitivirida	dsRN	MF141	Parti	?	2017	I. ricinus	Norway
partiti-like			е	А	076	al		(Petter	(Pettersso	(Pettersson
virus 1						geno		sson et	n et al.,	et al., 2017)
						me		al.,	2017)	
								2017)		
Lonestar	Unclassified	Unclassified	Totiviridae	dsRN	MG647	Parti	?	2018	Ι.	USA (Tokarz
tick				А	775,	al		(Tokar	scapularis	et al., 2018)
totivirus					MZ567	geno		z et al.,	(Tokarz et	
					079	me		2018)	al., 2018)	

Fennes	Unclassified	Unclassified	Unclassified	dsRN	MT025	Parti	2	2020	l. urine	Antarctica
virus	Gillassined	Unclassified	Riboviria	A	166,	al	·	(Wille	(Wille et	(Wille et al
					MT025	geno		et al.,	al., 2020)	2020)
					167,	me		2020)	,	
					MT025					
					168,					
					MT025					
					169,					
					MN83					
					0240					
Shelly	Unclassified	Unclassified	Unclassified	dsRN	MK026	Parti	?	2018	Ι.	Australia
Beach virus			Riboviria	А	600,	al		(Harve	holocyclus	(Harvey et
					MK026	geno		y et al.,	(Harvey et	al., 2018)
					601,	me		2018)	al., 2018)	
					MK026					
					602,					
					MK026					
					603,					
					MK026					
					604,					
					MK026					
					605					
Shelly	Unclassified	Unclassified	Unclassified	dsRN	OL452	Parti	?	2018	Ι.	Australia
headland			Riboviria	А	144,	al		(Harve	holocyclus	(Harvey et
virus					OL452	geno		y et al.,	(Harvey et	al., 2018)
					150,	me		2018)	al., 2018)	
					OL452					
					158,					
					OL452					
					171,					
					OL452					
					185,					
					OL452					
					194,					
					OL452					
					203,					
					OL452					
					214,					
					OL452					
					222,					
					OL452					
					151,					
					OL452					
					172,					
					OL452					
					215,					

OL452			
223,			
OL452			
173,			
OL452			
216,			
OL452			
224,			
OL452			
174,			
OL452			
217,			
OL452			
225,			
OL452			
175,			
OL452			
226,			
OL452			
218,			
OL452			
227,			
OL452			
228,			
OL452			
176,			
OL452			
178,			
OL452			
229,			
OL452			
179,			
OL452			
219,			
OL452			
230,			
OL452			
180,			
01452			
220,			
01452			
231, 01/152			
232			
232, 01452			
181			
101,			

					OL452					
					221,					
					OL452					
					233,					
					OL452					
					182,					
					OL452					
					234,					
					OL452					
					235,					
					MK026					
					577,					
					MK026					
					581,					
					MK026					
					582					
Lonestar	Mivirus	Mivirus	Chuviridae	ssRN	NC_03	Com	?	2018	Am.	USA (Tokarz
tick	amblyomm			A(-)	0204	plete		(Tokar	americanu	et al., 2018)
chuvirus 1	ae					geno		z et al.,	m (Tokarz	
						me		2018)	et al.,	
									2018)	
Bole tick	Mivirus	Mivirus	Chuviridae	ssRN	NC_02	Com	?	2015	Hy.	China,
virus 3	boleense			A(-)	8259	plete		(Li et	Asiaticum,	Turkey (Li et
						geno		al.,	Hy.	al., 2015;
						me		2015)	Aegyptium	Brinkmann
									, R.	et al., 2018;
									turanicus,	Ergunay et
									R. bursa (Li	al., 2020)
									et al.,	
									2015;	
									Brinkmann	
									et al.,	
									2018;	
									Ergunay et	
									al., 2020)	
Changping	Mivirus	Mivirus	Chuviridae	ssRN	NC_02	Com	?	2015	, Dermacent	China,
tick virus 2	changpinge			A(-)	8260	plete		(Li et	or spp., H.	Thailand,
	nse					geno		al.,	parva, R.	Turkey,
						me		2015)	sanguineus	Trinidad,
									- (Li et al.,	Tobago (Li et
									2015;	al., 2015:
									Temmam	Brinkmann
									et al	et al., 2018:
									2019)	Temmam et
									/	al., 2019)
										, _0 10,

Changping	Mivirus	Mivirus	Chuviridae	ssRN	NC_02	Com	?	2015	Dermacent	China (Li et
tick virus 3	dermacento			A(-)	8261	plete		(Li et	or spp. (Li	al., 2015)
	ris					geno		al.,	et al.,	
						me		2015)	2015)	
Genoa virus	Mivirus	Mivirus	Chuviridae	ssRN	OL452	Com	?	2018	Ι.	Australia
	genovaense			A(-)	069	plete		(Harve	holocyclus	(Harvey et
						geno		y et al.,	(Harvey et	al., 2018)
						me		2018)	al., 2018)	
Suffolk	Mivirus	Mivirus	Chuviridae	ssRN	NC_02	Com	?	2018	Ι.	USA (Tokarz
virus	suffolkense			A(-)	8243	plete		(Tokar	scapularis	et al., 2018)
						geno		z et al.,	(Tokarz et	
						me		2018)	al., 2018)	
Wuhan tick	Mivirus	Mivirus	Chuviridae	ssRN	NC_02	Com	?	2015	Н.	Brazil, China,
virus 2	wuhanense			A(-)	8266	plete		(Li et	longicornis	Colombia,
						geno		al.,	, R.	Guadeloupe
						me		2015)	microplus	, Thailand,
									(Gómez et	Trinidad,
									al., 2020;	Tobago
									Xu et al.,	(Gomez et
									2021)	al., 2020; Xu
					==					et al., 2021)
Wuhan	Wuhan	Mivirus	Chuviridae	SSRN	MZ244	Com	?	2015	Н.	China,
mivirus	mivirus			A(-)	267	plete		(Li et	longicornis	Thailand,
						geno		al.,	, R.	Trinidad and
						me		2015)	micropius,	l obago
									к.	(Sameroff et
									sanguineus	al., 2019)
									(Sameroff	
									et di.,	
Tashang	Moreveniru	Moreuguirus	Chunizidaa	cc DN	NC 02	Com	n	2015	2019) A miniatus	China (li at
tiek virue 4	NOISUSVII U	IVIOI SUSVII US	Chuvindue		NC_02	com	ŗ	2015	A. miniutus	
LICK VITUS 4	s argatis			A(-)	8203	piete		(Li et	(LI EL UI.,	dl., 2015)
						geno		dl.,	2015)	
Plackloggod	Nigogrupiru	Nigogrupiru	Chuviridaa	cc DN	ME260	Com	2	2015)	1	USA (Tokora
tick	Nigeciuviiu	Nigecruviru	Chuvindue		790	rioto	ŗ	2016 (Tokar	I.	ot al. 2018)
chuvirus 2	Sixoues	3		A(-)	789	gono			(Tokarz ot	et al., 2016)
						geno		2 01 01.,		
Amblyomm	Unclossified	Mivirus	Chuviridaa	ccDN	M7502	Com	2	2018)	di., 2016) Am	Tripidad and
a dissimila	Unclassified	1011011 05	Chuvindue	∆(_)	300 1	nleto	:	(Samor	dissimile	
a uissiiniid				~(-)	505.1	geno			(Sameroff	(Sameroff of
1111111111						me		al	et al	
						iiie		aı., 2021)	2021)	ai., 2021)
Nuomin	Unclassified	Unclassified	Chuviridae	cc R NI	N/N/00	Parti	v	2021)	2021)	China (Quan
virus*	Ginerassined	Ginerassineu	Chavindue	Δ(_)	9986 1	al	' (Ouan	(Ouan	". nersulcatu	
VII US				~(-)	JJ00.1	al	Judii	Quali		ει αι., 2020)
									s, I.	

						geno	et al.,	et al.,	crenulatus,	
						me	2020)	2020)	Н.	
									conicinna,	
									Н.	
									longicornis	
									(Quan et	
									al., 2020)	
Tacheng	Tacheng	Arlivirus	Lispiviridae	ssRN	NC_03	Com	?	2015	A. miniatus	China (Li et
tick virus 6	arlivirus			A(-)	1270	plete		(Li et	(Li et al.,	al., 2015)
						geno		al.,	2015)	
						me		2015)		
Grotenhout	Grotenhout	Norwavirus	Nairovirida	ssRN	KY700	Com	?	2017	I. ricinus	Belgium
virus	norwavirus		е	A(-)	684,	plete		(Vanm	(Vanmech	(Vanmechel
					KY700	geno		echele	elen et al.,	en et al.,
					683	me		n et	2017)	2017)
								al.,		
								2017)		
Abu	Abu	Orthonairov	Nairovirida	ssRN	KU925	Com	?	1976	А.	Egypt
Hammad	Hammad	irus	е	A(-)	434,	plete		(Darwi	hermanni	(Darwish et
virus	orthonairov				KU925	geno		sh et	(Darwish	al., 1976)
	irus				435,	me		al.,	et al.,	. ,
					КU925			1976)	1976)	
					436			,	,	
Abu Mina	Abu Mina	Orthonairov	Nairovirida	ssRN	KU925	Com	2	1976	A.	Fevnt
virus	orthonairov	irus	ρ	A(-)	437.	nlete	·	(Darwi	strentoneli	(Darwish et
1100	irus		c	,	KU 1925	geno		sh et	a (Darwish	al 1976)
	11 43				438	me		al	et al	ull, 1570)
					430,	inc		1076)	1076)	
					120			1970)	1970)	
Artachat	Artachat	Orthongirou	Mairovirida	cc DN	433 NC 04	Com	С	2014	0	Armonia
Aitasiiat	Artushut	irus	Nullovilluu		NC_04	rista	ŗ	2014	U.	Armenia,
virus	orthonullov	li us	e	A(-)	3440,	piete				
	Irus				NC_04	geno		vskii et	(AI KNOVSKI	
					3442,	me		ai.,	i et al.,	et al., 2014)
					NC_04			2014)	2014)	
					3441					
Avalon	Avalon	Orthonairov	Nairovirida	ssRN	NC_04	Com	?	1976	I. uriae	Canada,
virus	orthonairov	irus	е	A(-)	0460,	plete		(Main	(Pettersso	France,
	irus				NC_04	geno		et al.,	n et al.,	Sweden
					0459,	me		1976)	2020)	(Pettersson
					NC_04					et al., 2020)
					0458					
Burana	Burana	Orthonairov	Nairovirida	ssRN	NC_04	Com	?	2014	Н.	Kyrgyzstan
virus	orthonairov	irus	е	A(-)	3439,	plete		(L'vov	punctate	(L'vov et al.,
	irus				NC_04	geno		et al.,	(L'vov et	2014)
					3438,	me		2014)	al., 2014)	

					NC_04					
					3437					
Chim virus	Chim	Orthonairov	Nairovirida	ssRN	NC_04	Com	?	2014	О.	Uzbekistan
	orthonairov	irus	е	A(-)	3434,	plete		(L'vov	tartakovsk	(L'vov et al.,
	irus				NC_04	geno		et al.,	<i>yi</i> (L'vov et	2014)
					3436,	me		2014)	al., 2014)	
					NC_04					
					3435					
Crimean-	Crimean-	Orthonairov	Nairovirida	ssRN	NC_00	Com	Y	1945	Hy.	Many
Congo	Congo	irus	е	A(-)	5301,	plete	(Garri	(Grash	asiaticum,	countries in
hemorrhagi	hemorrhagi				NC_00	geno	son et	chenk	Hy.	Asia and
c tever virus	c jever				5300, NG 00	me	al.,	ov et	marginatu	Africa; parts
	irus				NC_00		2020)	dl., 1045)	m, ixouiu	
	nus				5502			1945)	rossicus	(e.g. Albania
									(Shi et al	Rulgaria)
									2018: Zhao	(Shi et al
									et al.,	2018)
									2021)	,
Dera Ghazi	Dera Ghazi	Orthonairov	Nairovirida	ssRN	NC_03	Com	?	1970	Hy.	Pakistan
Khan virus	Khan	irus	е	A(-)	4520,	plete		(Begu	dromedarii	(Begum et
	orthonairov				NC_03	geno		m et	(Begum et	al., 1970)
	irus				4510,	me		al.,	al., 1970)	
					NC_03			1970)		
					4521					
Dugbe virus	Dugbe	Orthonairov	Nairovirida	ssRN	NC_00	Com	Y	1973	Am.	Sub-Saharan
	orthonairov	irus	е	A(-)	4159,	plete	(Garri	(David	variegatu	Africa (Shi et
	irus				NC_00	geno	son et	-West	т, В.	al., 2018)
					4158,	me	al.,	et al.,	decoloratu	
					NC_00		2020)	1973)	s, Hy.	
					4157				truncatum,	
									and R.	
									appendicul	
Ectoro Roal	Estora Roal	Orthongirou	Nairovirida	cc PN		Com	2	109E	al., 2018)	Cuba (D
virus	orthonairov	irus	P	Δ(_)	280	nlete	ŗ	1965 (Malko	U. tadaridae	Malkova et
VILUS	irus	11 43	C	A()	200, MH017	geno		va et	(D Malkova	al 1985)
	1145				286.	me		al	et al	ull, 1909)
					MH017			1985)	1985)	
					274			/	/	
Hazara	Hazara	Orthonairov	Nairovirida	ssRN	NC_03	Com	?	1970	Ι.	Japan,
virus	orthonairov	irus	е	A(-)		plete		(Begu	redikorzevi	Pakistan
	irus				NC_03	geno		m et	(Begum et	(Begum et
					8710,	me		al.,	al., 1970)	al., 1970;
								1970)		

					NC_03					Matsumoto
					8711					et al., 2019)
Huangpi	Huangpi	Orthonairov	Nairovirida	ssRN	NC_03	Com	?	2015	H. doenitzi,	China (Shi et
tick virus 1	orthonairov	irus	е	A(-)	1135,	plete		(Li et	Н.	al., 2018)
	irus				NC_03	geno		al.,	longicornis	
					1136,	me		2015)	(Shi et al.,	
					NC_03				2018)	
					1137					
Caspiy virus	Hughes	Orthonairov	Nairovirida	ssRN	КР792	Com	?	2014	Argasidae	Azerbaijan
	orthonairov	irus	е	A(-)	708,	plete		(L'vov	(L'vov et	(L'vov et al.,
	irus				KP792	geno		et al.,	al., 2014)	2014)
					709,	me		2014)		
					KP792					
					710	-				
Farallon	Hughes	Orthonairov	Nairovirida	SSRN	NC_03	Com	?	1967	Ornithodor	USA (Shi et
virus	orthonairov	irus	е	A(-)	4502,	plete		(Radov	<i>us</i> spp. (Shi	al., 2018)
	irus				NC_03	geno		sky et	et al.,	
					4494,	me		al.,	2018)	
					NC_03			1967)		
					4503				_	
Great	Hughes	Orthonairov	Nairovirida	ssRN	KU925	Com	?	1976	0.	Ireland
Saltee virus	orthonairov	irus	е	A(-)	467,	plete		(Keira	maritimus	(Great
	irus				KU925	geno		ns et	(Kuhn et	Saltee
					468,	me		al.,	al., 2016)	Island)
					KU925			1976)		(Kuhn et al.,
	,	o			469		2			2016)
Hugnes	Hugnes		Nairoviriaa	SSRN	KU925	Com	?	1964	0.	
virus	orthonairov	irus	е	A(-)	470,	plete		(Hugh	denmarki	Trinidad,
	irus				KU925	geno		es et	(Shi et al.,	USA,
					471,	me		al.,	2018)	Venezuela
					KU925			1964)		(Shi et al.,
Da a la a		0.11	A1		472	C	2	4000	0	2018)
Raza virus	Hugnes	Orthonairov	Nairoviriaa	SSRN	KU925	Com	?	1968	U.	IVIEXICO
	ortnonairov	irus	е	A(-)	479, KU025	piete		(Cliffor	(Kubp ot	(Kunn et al.,
	irus				KU925	geno		a et	(Kunn et	2016)
					480,	me		al.,	al., 2016)	
					KU925			1968)		
loove kuit	look kul	Orthonaire	Mairovisida	cc DN	481 KE8020	60	2	1072	٨	Kurguratan
іззук-киі	ISSYK-KUI	iruc	ivair ovir iad	SSKIN	KF892U	com	ŗ	19/3	A.	Kyrgyzstan
VITUS	ortnonairov	irus	e	A(-)	55, KE8030	piete			vespertiion	(Atkinson et
	li us				KF892U	geno		et al,		ai., 2015)
					סס, ארפססס	me		19/3)	ai, 1973)	
					KF8920					
					5/					

Kasokero	Kasokero	Orthonairov	Nairovirida	ssRN	NC_03	Com	?	1986	O. faini	Uganda
virus	orthonairov	irus	е	A(-)	6636,	plete		(Kalun	(Amy et al.,	(Walker et
	irus				NC_02	geno		da M	2020)	al., 2015)
					9933,	me		et al.,		
					NC_02			1986)		
					9932					
Keterah	Keterah	Orthonairov	Nairovirida	ssRN	NC_03	Com	?	1976	Argasidae	Malaysia
virus	orthonairov	irus	е	A(-)	4392,	plete		(Varm	(Varma et	(Varma et
	irus				NC_03	geno		a et al.,	al., 1976)	al., 1976)
					4388,	me		1976)		
					NC_03					
					4389					
Kupe virus	Кире	Orthonairov	Nairovirida	ssRN	EU257	Com	?	2009	Am.	Kenya
	orthonairov	irus	е	A(-)	628,	plete		(Crabtr	gemma, R.	(Crabtree et
	irus				EU257	geno		ee et	pulchellus	al., 2009)
					627,	me		al.,	(Crabtree	
					EU257			2009)	et al.,	
					626				2009)	
Meram	Meram	Orthonairov	Nairovirida	ssRN	MN97	Com	?	2020	Hy.	Turkey
virus	orthonairov	irus	е	A(-)	2594,	plete		(Ergun	aegyptium	(Ergunay et
	irus				MN97	geno		ay et	(Ergunay	al., 2020)
					2595,	me		al.,	et al.,	
					MN97			2020)	2020)	
					2596					
Nairobi	Nairobi	Orthonairov	Nairovirida	ssRN	NC_03	Com	Y	1969	Am.	China,
sheep	sheep	irus	е	A(-)	4387,	plete	(Yada	(Dand	variegatu	Kenya, India
disease	disease				NC_03	geno	v et	awate	т, Н.	(Krasteva et
virus	orthonairov				4391,	me	al.,	et al.,	longicornis	al., 2020)
	irus				NC_03		2011)	1969)	, Н.	
					4386				intermedia	
									, R.	
									appendicul	
									atus, R.	
									hemaphys	
									aloides	
									(Krasteva	
									et al.,	
									2020)	
Pacific	Pacific	Orthonairov	Nairovirida	ssRN	KU933	Com	?	2017	D.	USA
coast tick	Coast	irus	е	A(-)	933,	plete		(Bouq	occidentali	(Bouquet et
nairovirus	orthonairov				KU933	geno		uet et	s (Bouquet	al., 2017)
	irus				934,	me		al.,	et al.,	
					KU933			2017)	2017)	
					935					

Durata	Durata	Orthonoire	Mainavinida	DN	KU025		2	1001	0 amblus	Derry (Kuba
Punta	Punta	urtnonairov	Nairoviriaa	SSRN	KU925	Com	ſ	1981	U. ambius	ot al 2016)
virus	irus	nus	e	A(-)	473, KU025	geno		rse et	(Kuilli et	et al., 2010)
VILUS	11 43				474	me		al	al., 2010)	
					кц925	inc		1981)		
					475			1901)		
Bandia virus	Oalvuh	Orthonairov	Nairovirida	ssRN	KU925	Com	?	1967	O. sonrai	Senegal
	orthonairov	irus	e	A(-)	446.	plete	·	(Bres	(Kuhn et	(Kuhn et al
	irus		-		KU925	geno		et al	al., 2016)	2016)
					447.	me		1967)	.,,	/
					, КU925			,		
					448					
Geran virus	Qalyub	Orthonairov	Nairovirida	ssRN	KP792	Com	?	2014	O. asperus	Azerbaijan
	orthonairov	irus	е	A(-)	714,	plete		(L'vov	(Kuhn et	(Kuhn et al.,
	irus				KP792	geno		et al.,	al., 2016)	2016)
					715,	me		2014)		
					КР792					
					716					
Qalyub	Qalyub	Orthonairov	Nairovirida	ssRN	NC_03	Com	?	1952	O. asperus,	Azerbaijan,
virus	orthonairov	irus	е	A(-)	4511,	plete		(Kuhn	О.	Egypt,
	irus				NC_03	geno		et al.,	erraticus	Senegal
					4522,	me		2016)	(Walker et	(Kuhn et al.,
					NC_03				al., 2016;	2016;
					4512				Kuhn et al.,	Walker et
									2016)	al., 2016)
Clo Mor	Sakhalin	Orthonairov	Nairovirida	ssRN	NC_03	Com	?	1976	A. cooleyi,	UK, USA
virus	orthonairov	irus	е	A(-)	4561,	plete		(Main	I. uriae	(Walker et
	irus				NC_03	geno		et al.,	(Walker et	al., 2016)
					4554,	me		1976)	al., 2016)	
					NC_03					
					4562					
Sakhalin	Sakhalin	Orthonairov	Nairovirida	ssRN	KU925	Com	?	1972	I. uriae	Antarctica,
virus	orthonairov	irus	е	A(-)	482,	plete		(L'vov	(Kuhn et	Australia,
	irus				KU925	geno		et al.,	al., 2016)	Russia, USA
					483,	me		1972)		(L'vov et al.,
					KU925					2014; Kuhn
					484					et al., 2016;
										Pettersson
										et al., 2020)
Taggert	Sakhalin	Orthonairov	Nairovirida	ssRN	KU925	Com	?	1985	I. uriae	Antarctica,
virus	orthonairov	irus	е	A(-)	491,	plete		(Doher	(Pettersso	Australia
	irus				KU925	geno		ty et	n et al.,	(Pettersson
					492,	me		al.,	2020; Wille	et al., 2020;
					KU925			1985)	et al.,	Wille et al.,
					493				2020)	2020)
Tillamook virus	Sakhalin orthonairov irus	Orthonairov irus	Nairovirida e	ssRN A(-)	KU925 494, KU925 495, KU925	Com plete geno me	?	1973 (Thom as et al., 1973)	<i>I. uriae</i> (Kuhn et al., 2016)	USA (Kuhn et al., 2016)
-------------------------	-------------------------------------	---------------------	------------------	--------------	---	----------------------------	--------------------------------------	--	--	---
Soldado	Soldado	Orthonairov	Nairovirida	ssRN	496 KU925	Com	?	1973	О.	France,
virus	orthonairov irus	irus	е	A(-)	488, KU925 489, KU925 490	plete geno me		(Jonke rs et al., 1973)	<i>maritimus</i> (Shi et al., 2018)	Great Britain, Indian Ocean, North Wales, Seychelles (Shi et al., 2018)
Tacheng tick virus 1	Tacheng orthonairov irus	Orthonairov irus	Nairovirida e	ssRN A(-)	NC_03 1284, NC_03 1285, NC_03 1286	Com plete geno me	Υ	2015 (Li et al., 2015)	D. marginatu s, D. nuttalli, D. silvarum, Hy. asiaticum (Shi et al., 2018)	China, Kazakhstan (Shi et al., 2018)
Tamdy virus	Tamdy orthonairov irus	Orthonairov irus	Nairovirida e	ssRN A(-)	MN79 2651, MN79 2652, MN79 2653	Com plete geno me	Y (Mom ing et al., 2021)	2014 (L'vov et al., 2014)	Hy. asiaticum (L'vov et al., 1984; Moming et al. 2021)	China, Uzbekistan (Moming et al., 2021)
Tofla virus	Tofla orthonairov irus	Orthonairov irus	Nairovirida e	ssRN A(-)	NC_02 9124, NC_02 9123, NC_02 9122	Com plete geno me	?	2016 (Shima da et al., 2016)	H. flava, H. formsensis (Shimada et al., 2016)	Japan (Shimada et al., 2016)
Tunis virus	Tunis orthonairov irus	Orthonairov irus	Nairovirida e	ssRN A(-)	NC_04 0770, NC_04 0771, NC_04 0772	Com plete geno me	?	1994 (Chast el et al., 1994)	A. hermanni (Chastel et al., 1994)	Tunisia (Chastel et al., 1994)
Vinegar Hill virus	Vinegar Hill orthonairov irus	Orthonairov irus	Nairovirida e	ssRN A(-)	MF176 881, MF176	Com plete	?	2017 (Gauci	A. robertsi (Gauci et al., 2017)	Australia (Gauci et al., 2017)

					882, MF176 883	geno me		et al., 2017)		
Wenzhou tick virus	Wenzhou orthonairov irus	Orthonairov irus	Nairovirida e	ssRN A(-)	NC_03 1291, NC_03 1288, NC_03 1289	Com plete geno me	?	2015 (Li et al., 2015)	<i>H. hystricis</i> (Li et al., 2015)	China (Li et al., 2015)
South Bay virus	South Bay sabavirus	Sabavirus	Nairovirida e	ssRN A(-)	KJ7468 78, KJ7468 77	Com plete geno me	?	2014 (Tokar z et al., 2014)	D. nuttalli, H. concinna, H. longicornis , l. persulcatu s, l. scapularis (Tokarz et al., 2014; Zhao et al., 2021)	China, USA (Tokarz et al., 2014; Zhao et al., 2021)
Midway virus	Midway nyavirus	Nyavirus	Nyamivirid ae	ssRN A(-)	NC_01 2702	Com plete geno me	?	1982 (Takah ashi et al., 1982)	Ornithodor os spp. (Shi et al., 2018)	Central Pacific, Japan (Shi et al., 2018)
Nyamanini virus	Nyamanini nyavirus	Nyavirus	Nyamivirid ae	ssRN A(-)	NC_01 2703	Com plete geno me	?	1966 (Taylor et al., 1966)	A. arborerus, A. walkerae (Shi et al., 2018)	Egypt, India, Nigeria, South Africa, Thailand (Shi et al., 2018)
Sierra Nevada virus	Sierra Nevada nyavirus	Nyavirus	Nyamivirid ae	ssRN A(-)	NC_02 4376	Com plete geno me	?	2014 (Roger s et al., 2014)	O. coriaceus (Rogers et al., 2014)	USA (Rogers et al., 2014)
Johnston Atoll virus	Johnston Atoll quaranjavir us	Quaranjavir us	Orthomyxo viridae	ssRN A(-)	NC_05 2925, NC_05 2926, NC_05 2927, NC_05 2928, NC_05	Com plete geno me	?	2009 (Presti et al., 2009)	<i>O. capensis</i> (Shi et al., 2018)	Australia, Central Pacific, New Zealand and Hawaii (Shi et al., 2018)

Quaranfil virus	Quaranfil quaranjavir us	Quaranjavir us	Orthomyxo viridae	ssRN A(-)	2929, NC_05 2930, NC_05 2931, FJ8616 96, FJ8616 97 NC_03 8817, NC_03 8818, NC_03 8819, NC_03 8819, NC_03 8820, NC_03 8821, NC_03	Com plete geno me	Y (Mour ya et al., 2019)	1966 (Taylor et al., 1966)	A. arboreus (Shi et al., 2018)	Afghanistan, Egypt, Iraq, Kuwait, Nigeria, South Africa, Yemen and Iran (Shi et al., 2018)
Granville quaranjavir us*	Granville quaranjavir us	Quaranjavir us	Orthomyxo viridae	ssRN A(-)	8822 MZ502 307, MZ502 306, MZ502 305, MZ502 304, MZ502	Parti al geno me	?	2021 (Samer off et al., 2021)	Am. dissimile (Sameroff et al., 2021)	Trinidad and Tobago (Sameroff et al., 2021)
Dhori virus	Dhori thogotoviru s	Thogotoviru s	Orthomyxo viridae	ssRN A(-)	308 NC_03 4254, NC_03 4255, NC_03 4256, NC_03 4261, NC_03 4262, NC_03 4262, NC_03 4263	Com plete geno me	Y (Koso y et al., 2015)	1973 (Ander son et al., 1973)	<i>Hyalomma</i> spp. (Shi et al., 2018)	China, Egypt, India, Kyrgyzstan, Russia (Shi et al., 2018)
Jos virus	Thogoto thogotoviru s	Thogotoviru s	Orthomyxo viridae	ssRN A(-)	HM627 170, HM627	Com plete	?	1974 (Lee et	Amblyom ma spp., Rhipicepha	Central Africa Republic,

Thogoto virus	Thogoto thogotoviru s	Thogotoviru s	Orthomyxo viridae	ssRN A(-)	171, HM627 172, HM627 173, HM627 174, HM627 175 NC_00 6495, NC_00 6496, NC_00 6504, NC_00 6506, NC_00	geno me Com plete geno me	Y (Koso y et al., 2015)	al., 1974) 1965 (Haig et al., 1965)	lus spp. (Shi et al., 2018) Am. Variegatu m, Boophilus spp., Hyalomma spp., Rhipicepha lus spp.(Shi	Guinea, Côte d'Ivoire, Nigeria, Senegal (Shi et al., 2018) Central and East Africa, Southern Europe, Southern Portugal (Shi et al., 2018)
Ngari virus	Bunyamwer a orthobunya virus	Orthobunya virus	Peribunyavi ridae	ssRN A(-)	6507, NC_00 6508 KC608 152, KC608 153, KC608 154	Com plete geno me	Y (Gros eth et al., 2012)	1996 (Zeller et al., 1996)	et al., 2018) Am. variegatu m, R. pulchellus (Groseth et al., 2012)	Guinea, Kenya, Mauritania, Senegal, Somalia, Sudan (Groseth et al., 2012;
Matruh virus	Matruh orthobunya virus	Orthobunya virus	Peribunyavi ridae	ssRN A(-)	KP792 693, KP792 692, KP792	Com plete geno me	?	1973 (Baldu cci et al., 1973)	Hy. Marginatu m (Balducci et al.,	Makenov et al., 2021) Italy (Balducci et al., 1973)
Bahig virus	Tete orthobunya virus	Orthobunya virus	Peribunyavi ridae	ssRN A(-)	691 KP792 654, KP792 653, KP792 652	Com plete geno me	?	1973 (Baldu cci et al., 1973)	Hy. Marginatu m (Balducci et al., 1973)	Italy (Balducci et al., 1973)
Bhanja virus	Bhanja bandavirus	Bandavirus	Phenuivirid ae	ssRN A(-)	NC_02 7140, NC_02	Com plete	Y (Mats uno et	1977 (Vesen jak-	H. intermedia , R.	Africa, Asia, Southern Europe, USA

					7141, NC_02 7142	geno me	al. <i>,</i> 2013)	Hirjan et al., 1977)	<i>decoloratu</i> <i>s</i> (Matsuno et al.,	(Shi et al., 2018)
									2013)	
Heartland	Heartland	Bandavirus	Phenuivirid	ssRN	NC_02	Com	Y	2012	Am.	USA
virus	bandavirus		ae	A(-)	4494,	plete	(McM	(McM	americanu	(Mansfield
					NC_02	geno	ullan	ullan	т	et al., 2017)
					4495,	me	et al.,	et al.,	(Mansfield	
					NC_02		2012)	2012)	et al.,	
					4496				2017)	
Hunter	Hunter	Bandavirus	Phenuivirid	ssRN	NC_02	Com	?	2014	Ι.	Australia
Island virus	Island		ae	A(-)	7715,	plete		(Wang	eudyptidis	(Shi et al.
	bandavirus				NC_02	geno		et al.,	(Shi et al.,	2018)
					7716,	me		2014)	2018)	
					NC_02					
					7717					
lone star	Lone star	Bandavirus	Phenuivirid	ssRN	NC 02	Com	?	1969	Am.	USA (Shi e
virus	bandavirus		ae	A(-)	_ 1242.	plete		(Koker	Americanu	, al., 2018)
					NC 02	geno		, not et	<i>m</i> (Shi et	. ,
					1243.	me		al	al., 2018)	
					NC 02	inc		1969)	, 20207	
					1244			2000)		
Severe	Dahie	Bandavirus	Phenuivirid	ssRN	NC 04	Com	V (Vu	2011	Dermacent	Fast ∆sia
fever with	bandavirus	Danaarnas	ne ne	۸(_)	3450	nloto	ot al	(Vu ot	or snn	North
thromhocyt	bunuuvirus		ue	A(-)	3430, NC 04	gono	2011)	(Tu et	U spp.,	Amorica
enenio					2451	geno	2011)	ai.,		America (Monsfield
openia					5451, NC 04	me		2011)	suns spp., i.	
synurome					2452				persuicutu	2haa at al
virus					3452				S, Dhiniaanha	2nao et al.
									кпрісерни	2021)
									lus spp.	
									(Mansfield	
									et al.,	
									2017; Zhao	
									et al.,	
									2021)	
Norway	Norway	Ixovirus	Phenuivirid	ssRN	NC_05	Com	?	2017	I. ricinus	Norway
phlebovirus	ixovirus		ae	A(-)	5433,	plete		(Petter	(Pettersso	(Pettersson
1					NC_05	geno		sson et	n et al.,	et al., 2017)
					5434	me		al.,	2017)	
								2017)		
Blacklegged	Scapularis	Ixovirus	Phenuivirid	ssRN	NC_05	Com	?	2018	Ι.	USA (Tokarz
tick	ixovirus		ae	A(-)	5431,	plete		(Tokar	scapularis	et al., 2018)
phlebovirus					NC_05	geno		z et al.,	(Tokarz et	
3					5432	me		2018)	al., 2018)	
Laurel Lake	Laurel Lake	Laulavirus	Phenuivirid	ssRN	NC_04	Com	?	2018	Ι.	USA (Tokarz

					NC_04	geno		z et al.,	(Tokarz et	
					3680,	me		2018)	al., 2018)	
					NC_04					
					3681					
Dabieshan	Dabieshan	Uukuvirus	Phenuivirid	ssRN	MW72	Com	?	2015	Н.	China (Wang
tick virus	uukuvirus		ae	A(-)	1887,	plete		(Li et	longicornis	et al., 2021;
					MW72	geno		al.,	, I.	Zhao et al.,
					1893	me		2015)	persulcatu	2021)
									s, R.	
									microplus	
									(Wang et	
									al., 2021;	
									Zhao et al.,	
									2021)	
Kaisodi	Kaisodi	Uukuvirus	Phenuivirid	ssRN	NC_04	Com	?	1966	Н.	South India
virus	uukuvirus		ae	A(-)	0492,	plete		(Bhatt	spinigera	(Shi et al.,
					NC_04	geno		et al.,	(Shi et al.,	2018)
					0493,	me		1966)	2018)	
					NC_04					
					0494					
Lihan tick	Lihan	Uukuvirus	Phenuivirid	ssRN	NC 05	Com	?	2015	D. nitens,	Brazil, China,
virus	uukuvirus		ae	A(-)	_ 5423,	plete		(Li et	Hy.	USA,
					NC 05	geno		al.,	marqinatu	Guadeloupe
					_ 5424	me		2015)	т. R.	. Thailand.
								,	, microplus.	Turkev.
									R.	Trinidad.
									sanguineus	Tobago
									_ (Temmam	(Temmam et
									et al	al 2019:
									2019)	Gondard et
									2010)	al 2020)
Silverwater	Silverwater	Uukuvirus	Phenuivirid	ssRN	NC 05	Com	?	1971	H.	Canada, USA
virus	uukuvirus	e una mue	ae	A(-)	5369	nlete	·	(Hoff	lenorisnalu	(Shi et al
VII US	uukuviilus		uc	, ()	NC 05	geno		et al	stris (Shi et	2018)
					5370	me		1971)	al 2018)	2010)
					NC 05	me		1371)	ul., 2010)	
					5371					
Tachong	Tachona	Hukuwirus	Phonuivirid	ccDN	NC 05	Com	v	2015	D	China
tick virus 2	uukuvirus	Oukuviius		Δ(_)	5425	nlete	(Dong	2015 (li ot	D. marainatu	Kazakhstan
	uukuviilus		uc	Α()	NC 05	gono	ot al		c D	Pomonio
					5/26	BCIIU mo	2021)	a, 2015)	s, D.	Tailand
					J420	me	2021)	2013)	R	Turkov (Li ot
									sungumeus	ai., 2015; Prinkmann
									, H.	
									marginatu	et al., 2018;
									m ili ot al	I a ma ma a ma a t
									m (Li et al.,	remmann et

									2015;	al., 2019;
									Brinkmann	Bratuleanu
									et al.,	et al., 2021)
									2018;	
									Bratuleanu	
									et al.,	
									2021)	
Uukuniemi	Uukuniemi	Uukuvirus	Phenuivirid	ssRN	NC_00	Com	?	2013	I. ricinus, I.	Czech
virus	uukuvirus		ae	A(-)	5214,	plete		(Palaci	uriae	Republic,
					NC_00	geno		os et	(Matsuno	Sweden, UK
					5220,	me		al.,	et al.,	(Matsuno et
					NC_00			2013)	2015)	al., 2015)
					5221					
Yongjia tick	Yongjia	Uukuvirus	Phenuivirid	ssRN	NC_05	Com	?	2015	H. hystricis	China (Li et
virus 1	uukuvirus		ae	A(-)	5427,	plete		(Li et	(Li et al.,	al., 2015)
					NC_05	geno		al.,	2015)	
					5428	me		2015)		
Blanchseco	Blanchseco	Alpharicinrh	Rhabdovirid	ssRN	MN02	Com	?	2019	A. ovale	Trinidad and
virus	alpharicinrh	avirus	ae	A(-)	5503	plete		(Samer	(Sameroff	Tobago
	avirus					geno		off et	et al.,	(Sameroff et
						me		al.,	2019)	al., 2019)
								2019)		
Bole tick	Bole	Alpharicinrh	Rhabdovirid	ssRN	NC_03	Com	?	2015	Hy.	China (Li et
virus 2	alpharicinrh	avirus	ae	A(-)	1079	plete		(Li et	Asiaticum	al., 2015)
	avirus					geno		al.,	(Li et al.,	
						me		2015)	2015)	
Wuhan tick	Wuhan	Alpharicinrh	Rhabdovirid	ssRN	NC_03	Com	?	2015	D.	China,
virus 1	alpharicinrh	avirus	ae	A(-)	1304	plete		(Li et	marginatu	Turkey (Xu
	avirus					geno		al.,	s, R.	et al., 2021)
						me		2015)	microplus,	
									<i>R</i> .	
									annulatus,	
									Н.	
									longicornis	
									(Temmam	
									et al.,	
									2019; Xu et	
									al., 2021)	
New Kent	Kent	Ephemerovi	Rhabdovirid	ssRN	MF615	Com	?	2018	Ι.	USA (Tokarz
County	ephemerovi	rus	ae	A(-)	270	plete		(Tokar	scapularis	et al., 2018)
virus	rus					geno		z et al.,	(Tokarz et	
						me		2018)	al., 2018)	
Barur virus	Barur	Ledanteviru	Rhabdovirid	ssRN	NC_03	Com	?	1981	Hy.	India, Kenya,
	ledanteviru	S	ae	A(-)	4535	plete		(Buten	Intermedia	Somalia (Shi
	S					geno		ko et	(Shi et al.,	et al., 2018)
						me			2018)	

								al.,		
								1981)		
Kolente	Kolente	Ledanteviru	Rhabdovirid	ssRN	NC_02	Com	?	2013	Am.	Guinea (Shi
virus	ledanteviru	S	ae	A(-)	5342	plete		(Ghedi	Variegatu	et al., 2018)
	5					geno		n et	<i>m</i> (Shi et	
						me		al.,	al., 2018)	
								2013)		
Yongjia tick	Yongjia	Ledanteviru	Rhabdovirid	ssRN	NC_03	Com	?	2015	H. hystricis	China (Shi et
virus 2	ledanteviru	S	ae	A(-)	1305	plete		(Li et	(Shi et al.,	al., 2018)
	S					geno		al.,	2018)	
						me		2015)		
Connecticut	Connecticut	Sawgrhavir	Rhabdovirid	ssRN	KM205	Com	?	1978	I. dentatus	USA (Shi et
virus	sawgrhavir	us	ae	A(-)	020	plete		(Ritter	(Shi et al.,	al., 2018)
	us					geno		et al.,	2018)	
						me		1978)		
Long Island	Island	Sawgrhavir	Rhabdovirid	ssRN	NC_02	Com	?	2014	Am.	USA (Tokarz
tick	sawgrhavir	us	ae	A(-)	5340	plete		(Tokar	americanu	et al., 2014)
rhabdovirus	us					geno		z et al.,	m (Tokarz	
						me		2014)	et al.,	
									2014)	
New Minto	Minto	Sawgrhavir	Rhabdovirid	ssRN	NC_05	Com	?	1970	Н.	USA (Shi et
virus	sawgrhavir	us	ae	A(-)	5457	plete		(Sathe	leporispalu	al., 2018)
	us					geno		r et al.,	<i>stris</i> (Shi et	
						me		1970)	al., 2018)	
Sawgrass	Sawgrass	Sawgrhavir	Rhabdovirid	ssRN	NC_05	Com	?	1970	D.	USA (Shi et
virus	sawgrhavir	us	ae	A(-)	5461	plete		(Sathe	variabilis,	al., 2018)
	us					geno		r et al.,	Н.	
						me		1970)	leporispalu	
									<i>stris</i> (Shi et	
									al., 2018)	
Isfahan	Isfahan	Vesiculoviru	Rhabdovirid	ssRN	NC_02	Com	?	1977	Hy.	Parts of Asia,
virus	vesiculoviru	S	ae	A(-)	0806	plete		(Tesh	Asiaticum	Turkmenista
	S					geno		et al.,	(Shi et al.,	n (Shi et al.,
						me		1977)	2018)	2018)
Zahedan	Zahedan	Zarhavirus	Rhabdovirid	ssRN	NC_04	Com	?	2015	Hy.	Iran (Shi et
rhabdovirus	zarhavirus		ae	A(-)	0664	plete		(Dilche	Anatolicu	al., 2018)
						geno		r et al.,	<i>m</i> (Shi et	
						me		2015)	al., 2018)	
Beiji	Unclassified	Nairovirus	Nairovirida	ssRN	MW31	Parti	Y	2019	Ι.	China (Wang
nairovirus			е	A(-)	5106,	al	(Wan	(Meng	crenulatus,	et al., 2021)
					MW31	geno	g et	et al.,	Ι.	
					5112	me	al.,	2019)	persulcatu	
							2021)		s (Wang et	
									al., 2021)	
Nayun tick	Unclassified	Nairovirus	Nairovirida	ssRN	MW56	Parti	?	2015	<i>R.</i>	China,
nairovirus			е	A(-)	1151,	al		(Xia et	sanguineus	Romania

					KP141	geno		al.,	(Xia et al.,	(Xia et al.,
					756,	me		2015)	2015;	2015;
					KP141				Bratuleanu	Bratuleanu
					755				et al.,	et al., 2021)
									2021)	
Norway	Unclassified	Nairovirus	Nairovirida	ssRN	MF141	Parti	?	2017	I. ricinus	Northern
nairovirus 1			е	A(-)	045,	al		(Petter	(Pettersso	Europe
					MF141	geno		sson et	n et al.,	(Pettersson
					044	me		al.,	2017)	et al., 2017)
								2017)		
Paramushir	Unclassified	Nairovirus	Nairovirida	ssRN	MH638	Parti	?	1976	I. signatus,	Russia
virus			е	A(-)	289,	al		(L'vov	I. uriae	(Safonova et
					MH124	geno		et al.,	(L'vov et	al., 2015)
					638,	me		1976)	al., 1976)	
					MH124					
					637,					
					MH124					
					636,					
					MH124					
					635,					
					MH124					
					634,					
					KF8016					
					57.					
					KP792					
					719.					
					KP792					
					718.					
					KP792					
					717					
Rondonia	Unclassified	Orthonairov	Nairovirida	ssRN	MN56	Parti	2	2019	Antricola	Brazil
orthonairov	onclassifica	irus	ρ	Δ(_)	0621	al	·	(Bloms	(Blomstro	(Blomstrom
iruc		11 03	C	~ (⁻)	MN56	an		trom	m ot al	ot al 2010
iius					0622	geno		ot al	2010)	et al., 2019)
					NANES	me		2010)	2019)	
					0622			2019)		
					0623,					
					0624,					
					IVIIN56					
					0625,					
					MN56					
					0626,					
					MN56					
					0627,					
					MN56					
					0628,					

Songling virus	Unclassified	Orthonairov irus	Nairovirida e	ssRN A(-)	MN56 0629 MT328 780, MT328 779, MT328	Parti al geno me	Y (Ma et al <i>.,</i> 2021)	2021 (Ma et al., 2021)	H. longicornis (Ma et al., 2021)	China (Ma ei al., 2021)
Yezo virus	Unclassified	Orthonairov irus	Nairovirida e	ssRN A(-)	778 LC6213 60, LC6213 59, LC6213	Parti al geno me	Y (Koda ma et al., 2021)	2021 (Koda ma et al., 2021)	H. megaspino sa (Kodama et al.,	Japan (Kodama e al., 2021)
Zambezi tick virus 1	Unclassified	Quarjavirus	Orthomyxo viridae	ssRN A(-)	58 MH267 793	Parti al geno me	?	2018 (Cholle ti et al., 2018)	2021) <i>Rhipicepha lus</i> (Cholleti et al., 2018)	Mozambiqu e (Cholleti et al., 2018)
Aransas Bay virus	Unclassified	Thogotoviru s	Orthomyxo viridae	ssRN A(-)	KC506 162, KC506 163, KC506 164, KC506 165, KC506 166, KC506 166,	Parti al geno me	?	1979 (Yunke r et al., 1979)	Ornithodor os spp. (Briese et al., 2014)	North America (Briese et al. 2014)
Bourbon virus	Unclassified	Thogotoviru S	Orthomyxo viridae	ssRN A(-)	107 KU708 253, KU708 254, KU708 255, MH880 287, MH880 288, MH880 289, MH880 290, MH880	Com plete geno me	Y (Koso y et al., 2015)	2015 (Kosoy et al., 2015)	Am. Americanu m (Savage et al., 2017)	USA (Kosoy et al., 2015)

					291 <i>,</i> MH880 292					
Oz virus	Unclassified	Thogotoviru s	Orthomyxo viridae	ssRN A(-)	NC_04 0730, NC_04 0731, NC_04 0732, NC_04	Com plete geno me	?	2018 (Ejiri et al., 2018)	Am. testudinari um (Ejiri et al., 2018)	Japan (Ejiri et al., 2018)
Theiland	Undersified	Thosphoview	Orthomus	co DN	0733, NC_04 0734, NC_04 0735	Com	2	2010	D	Tailand
tick thogotoviru	Unclassified	s	viridae	A(-)	5539 <i>,</i> MN09 5540.	plete geno me	ŗ	(Temm am et	к. microplus (Temmam et al	Talland (Temmam et al., 2019)
5					5540, MN09 5541, MN09 5542, MN09 5543, MN09 5544	me		ai., 2019)	2019)	
Upolu virus	Unclassified	Thogotoviru s	Orthomyxo viridae	ssRN A(-)	KC506 156, KC506 157, KC506 158, KC506 159, KC506 160, KC506 161	Com plete geno me	?	1968 (Doher ty et al., 1968)	O. capensis (Briese et al., 2014)	Australia (Briese et al., 2014)
American dog tick phlebovirus	Unclassified	Phlebovirus	Phenuivirid ae	ssRN A(-)	KM048 312, KM048 311	Com plete geno me	?	2014 (Tokar z et al., 2014)	D. variabilis (Tokarz et al., 2014)	USA (Tokarz et al., 2014)
Blacklegged tick	Unclassified	Phlebovirus	Phenuivirid ae	ssRN A(-)	KX184 200,	Com plete	?	2014 (Tokar	l. scapularis	USA(Tokarz et al., 2014)

phlebovirus					KX184	geno		z et al.,	(Tokarz et	
1					201	me		2014)	al., 2014)	
Blacklegged	Unclassified	Phlebovirus	Phenuivirid	ssRN	KM589	Parti	?	2014	Ι.	USA (Tokarz
tick			ae	A(-)	357,	al		(Tokar	scapularis	et al., 2014)
phlebovirus					KM589	geno		z et al.,	(Tokarz et	
2					354	me		2014)	al., 2014)	
Bole tick	Unclassified	Phlebovirus	Phenuivirid	ssRN	MZ244	Parti	?	2015	Hy.	China (Li et
virus 1			ae	A(-)	253,	al		(Li et	Asiaticum	al., 2015)
					MZ244	geno		al.,	(Li et al.,	
					252,	me		2015)	2015)	
					KM817					
					731,					
					MH916					
					622,					
					MH916					
					621,					
					MH916					
					620,					
					MH916					
					619,					
					MH688					
					504,					
					MH836					
					620,					
					MH688					
					505,					
					MH688					
					503,					
					MH688					
					501,					
					MH688					
					578,					
					MH688					
					577,					
					MH688					
					576,					
					MH688					
					575,					
					MH688					
					574,					
					MH688					
					573,					
					MH688					
					572.					
					ол <u>о</u> , Мнехх					
					571					
					U/1					

Brown dog	Unclassified	Phlebovirus	Phenuivirid	ssRN	MZ244	Parti	?	2019	<i>R.</i>	China.
tick			ae	A(-)	261,	al		(Samer	sanguineus	Trinidad and
phlebovirus					MZ244	geno		off et	R.	Tobago
1					260,	me		al.,	microplus	(Sameroff et
					MZ244			2019)	(Sameroff	al., 2019)
					259,				et al.,	
					MZ244				2019)	
					256,					
					MN02					
					5507,					
					MN02					
					5506					
Brown dog	Unclassified	Phlebovirus	Phenuivirid	ssRN	MW56	Parti	?	2019	<i>R.</i>	China,
tick			ae	A(-)	1139,	al		(Samer	microplus,	Trinidad and
phlebovirus					MW56	geno		off et	<i>R.</i>	Tobago
2					1138,	me		al.,	sanguineus	(Sameroff et
					MW56			2019)	(Sameroff	al., 2019)
					1137,				et al.,	
					MW56				2019)	
					1136,					
					MN02					
					5509,					
					MN02					
					5508	.	2	2015		
Changping	Unclassified	Phlebovirus	Phenuivirid	SSRN	MW56	Parti	?	2015	Dermacent	China,
tick virus 1			ae	A(-)	1146,	al		(Li et	or spp. (Li	Romania
					1145	geno		al.,	et al.,	(Matsuno et
					1145,	me		2015)	2015)	al., 2013; Li
					1144					et al., 2015)
					1144, MM/56					
					1143					
					MW56					
					1142.					
					MW56					
					1141.					
					MW56					
					1140,					
					KM817					
					732,					
					KM817					
					665					
Lanjan virus	Unclassified	Phlebovirus	Phenuivirid	ssRN	KM370	Parti	?	1967	D. auratus	Malaysia
			ae	A(-)	974	al		(Tan et	(Shi et al.,	(Shi et al.,
						geno		al.,	2018)	2018)
						me		1967)		

Palma virus	Unclassified	Phlebovirus	Phenuivirid	ssRN	JX9616	Parti	?	1994 (Filipo	H.	Portugal (Shi
			ue	A(-)	30,	di		(Filipe	(Shi et al	et al., 2018)
					29	me		et al.,	(5111 et al., 2018)	
					1X9616	inc		1554)	2010)	
					28					
Rhipicephal	Unclassified	Phlebovirus	Phenuivirid	ssRN	MZ244	Parti	?	2021	R.	China (Shi et
us			ae	A(-)	255,	al		(Shi et	microplus	al., 2021)
associated				.,	MZ244	geno		al.,	(Shi et al.,	
phlebovirus					254,	me		2021)	2021)	
1					MH814					
					976,					
					MH814					
					975					
Tick	Unclassified	Phlebovirus	Phenuivirid	ssRN	MG764	Parti	?	2018	<i>R.</i>	Turkey
phlebovirus			ae	A(-)	522,	al		(Brink	sanguineus	(Brinkmann
Anatolia 1					MG764	geno		mann	(Brinkman	et al., 2018)
					521	me		et al.,	n et al.,	
								2018)	2018)	
Neke	Unclassified	Unclassified	Orthomyxo	ssRN	MN83	Parti	?	2020	I. uriae	Antarctica
harbour			viridae	A(-)	0238	al		(Petter	(Pettersso	(Pettersson
virus						geno		sson et	n et al.,	et al., 2020)
						me		al.,	2020)	
						-		2020)		
Uumaja	Unclassified	Unclassified	Orthomyxo	SSRN	MN83	Parti	?	2020	l. uriae	Northern
virus			viridae	A(-)	0237	al		(Petter	(Pettersso	Sweden
						geno		sson et	n et al.,	(Pettersson
						me		ai., 2020)	2020)	et al., 2020)
Khasan	Unclassified	Unclassified	Peribunyavi	ssRN	KF8920	Parti	?	1978	Н.	Russia (Shi
virus			ridae	A(-)	46,	al		(L'vov	longgicorni	et al., 2018)
					KF8920	geno		et al.,	s (Shi et al.,	
					47,	me		1978)	2018)	
					KF8920					
					48					
American	Unclassified	Unclassified	Rhabdovirid	ssRN	MF962	Parti	?	2018	Ι.	USA (Tokarz
dog tick			ae	A(-)	659,	al		(Tokar	scapularis	et al., 2018)
rhabdovirus					MF962	geno		z et al.,	(Tokarz et	
2					661	me		2018)	al., 2018)	
Blacklegged	Unclassified	Unclassified	Rhabdovirid	ssRN	MF360	Com	?	2018	Ι.	USA (Tokarz
tick			ae	A(-)	790	plete		(Tokar	scapularis	et al., 2018)
rhabdovirus						geno		z et al.,	(Tokarz et	
1	Linele - 10 - 1	Lineles alford	Dhach de de de d		MEDGO	me	2	2018)	ai., 2018) ,	
Dog tick	Unclassified	Unclassified	ĸnabaovirid	SSKN	WIF36U	Parti	£	2018	I.	USA (IOKarz
1			ue	A(-)	191	al		(TOKar	scupularis	et dl., 2018)
T										

						geno		z et al.,	(Tokarz et	
						me		2018)	al., 2018)	
Huangpi	Unclassified	Unclassified	Rhabdovirid	ssRN	NC_03	Com	?	2015	H. doenitzi	China (Li et
tick virus 3			ae	A(-)	1083	plete		(Li et	(Li et al.,	al., 2015)
						geno		al.,	2015)	
						me		2015)		
Nayun tick	Unclassified	Unclassified	Rhabdovirid	ssRN	KP141	Parti	?	2015	Rhipicepha	China (Xia et
rhabdovirus			ae	A(-)	757	al		(Xia et	<i>lus</i> spp.	al., 2015)
						geno		al.,	(Xia et al.,	
						me		2015)	2015)	
Rhipicephal	Unclassified	Unclassified	Rhabdovirid	ssRN	MH814	Parti	?	2021	Н.	China (Shi et
us			ae	A(-)	974	al		(Shi et	longicornis	al., 2021)
associated						geno		al.,	, R.	
rhabdo-like						me		2021)	microplus	
virus									(Shi et al.,	
									2021)	
Tacheng	Unclassified	Unclassified	Rhabdovirid	ssRN	NC_03	Com	?	2015	D.	China (Li et
tick virus 3			ae	A(-)	1268	plete		(Li et	marginatu	al., 2015)
						geno		al.,	s (Li et al.,	
						me		2015)	2015)	
Tacheng	Unclassified	Unclassified	Rhabdovirid	ssRN	NC_03	Com	?	2015	A. miniatus	China (Li et
tick virus 7			ae	A(-)	1272	plete		(Li et	(Li et al.,	al., 2015)
						geno		al.,	2015)	
						me		2015)		
Taishun tick	Unclassified	Unclassified	Rhabdovirid	ssRN	NC_03	Com	?	2015	H. hystricis	China,
virus			ae	A(-)	1273	plete		(Li et	(Li et al.,	Russia (Li et
						geno		al.,	2015)	al., 2015)
						me		2015)		
Deer tick	Unclassified	Unclassified	Unclassified	ssRN	MG880	Parti	?	2014	D. nuttalli,	China, USA
mononegav				A(-)	117,	al		(Tokar	D.	(Tokarz et
irales-like					KM048	geno		z et al.,	silvarum,	al., 2014;
virus					317,	me		2014)	Н.	Zhao et al.,
					KJ7469				concinna, I.	2021)
					03				persulcatu	
									s, I.	
									scapularis	
									(Tokarz et	
									al., 2014;	
									Zhao et al.,	
									2021)	
Bonden	Unclassified	Unclassified	Unclassified	ssRN	MN83	Parti	?	2020	I. uriae	Northern
virus			Bunyavirale	A(-)	0227	al		(Petter	(Pettersso	Sweden
			S			geno		sson et	n et al.,	(Pettersson
						me		al.,	2020)	et al., 2020)
								2020)		

Bronnoya	Unclassified	Unclassified	Unclassified	ssRN	MF141	Parti	?	2017	I. ricinus	Norway
virus			Bunyavirale	A(-)	063,	al		(Petter	(Pettersso	(Pettersson
			S		MF141	geno		sson et	n et al.,	et al., 2017)
					062	me		al.,	2017)	
								2017)		
Ubmeje	Unclassified	Unclassified	Unclassified	ssRN	MN83	Parti	?	2020	I. uriae	Northern
virus			Bunyavirale	A(-)	0232	al		(Petter	(Pettersso	Sweden
			S			geno		sson et	n et al.,	(Pettersson
						me		al.,	2020)	et al., 2020)
								2020)		
Norway	Unclassified	Unclassified	Unclassified	ssRN	MF141	Parti	?	2017	I. ricinus	Norway
mononegav			Mononegav	A(-)	072	al		(Petter	(Pettersso	(Pettersson
irus 1			irales			geno		sson et	n et al.,	et al., 2017)
						me		al.,	2017)	
								2017)		
Tick	Unclassified	Unclassified	Unclassified	ssRN	MZ244	Parti	?	2018	Ι.	China (Yang
mononegav			Mononegav	A(-)	310,	al		(Yang	scapularis,	et al., 2018)
irus			irales		MH835	geno		et al.,	Н.	
					441,	me		2018)	longicornis	
					MH835				(Yang et	
					440,				al., 2018)	
					MH835					
					439,					
					MH835					
					438		-			
Umea virus	Unclassified	Unclassified	Unclassified	ssRN	MN83	Parti	?	2020	l. uriae	Sweden
			Mononegav	A(-)	0236	al		(Petter	(Pettersso	(Pettersson
			irales			geno		sson et	n et al.,	et al., 2020)
						me		al.,	2020)	
Connersiet	Linelane:fied	Linelane:fied	l la ala asifi a d	DN	NAKODO	De at:	2	2020)	A	Australia
Canne point	Unclassified	Unclassified	Dihawinia	SSRIN	IVIKU26	Parti	ſ	2018	Am.	Australia
virus			RIDOVITIU	A(-)	200	di		(Harve	Harvov at	
						geno		y et al.,	(HUIVEY EL	al., 2010)
Fairlight	Unclassified	Unclassified	Unclassified	ccRN	MK026	Parti	2	2018)	ui., 2018) Am	Australia
virus	Unclassified	Unclassified	Riboviria	۵ <i>(</i> _)	565	- al	·	(Hanve	moreliae	(Harvey et
VILUS			NIDOVINU	A(-)	505	geno		vetal	(Harvev et	al 2018)
						me		2018)	al 2018)	ul., 2010)
Manly virus	Unclassified	Unclassified	Unclassified	ssRN	MK026	Parti	2	2018)	ап., 2010) Ат.	Australia
wany was	onclassifica	onclassifica	Rihoviria	A(-)	564	al	•	(Harve	moreliae	(Harvey et
			noovina	, ()	501	geno		v et al.	(Harvev et	al., 2018)
						me		2018)	al., 2018)	31., 2010)
Messner	Unclassified	Unclassified	Unclassified	ssRN	MT025	Parti	?	2020	I. uriae	Antarctica
virus	2	2	Riboviria	A(-)	174	al		(Wille	(Wille et	(Wille et al.
						geno		et al.	al., 2020)	2020)
						me		2020)	, _,_,,	,
								2020)		

North	Unclassified	Unclassified	Unclassified	ssRN	OL452	Parti	?	2018	<i>I.</i>	Australia
Shore virus			Riboviria	A(-)	126	al		(Harve	holocyclus	(Harvey et
						geno		y et al.,	(Harvey et	al., 2018)
						me		2018)	al., 2018)	
Old quarry	Unclassified	Unclassified	Unclassified	ssRN	MK026	Parti	?	2018	Ι.	Australia
swamp			Riboviria	A(-)	595,	al		(Harve	holocyclus	(Harvey et
virus					MK026	geno		y et al.,	(Harvey et	al., 2018)
					596,	me		2018)	al., 2018)	
					MK026					
					597,					
					MK026					
					598,					
					MK026					
					599					
Piguzov	Unclassified	Unclassified	Unclassified	ssRN	MT025	Parti	?	2020	I. uriae	Antarctica
virus			Riboviria	A(-)	176,	al		(Petter	(Pettersso	(Pettersson
					MT025	geno		sson et	n et al.,	et al., 2020)
					177	me		al.,	2020)	
								2020)		
Quarantine	Unclassified	Unclassified	Unclassified	ssRN	MK026	Parti	?	2018	Am.	Australia
Head virus			Riboviria	A(-)	568	al		(Harve	moreliae	(Harvey et
						geno		y et al.,	(Harvey et	al., 2018)
						me		2018)	al., 2018)	
Ronne virus	Unclassified	Unclassified	Unclassified	ssRN	MT025	Parti	?	2020	I. uriae	Antarctica,
			Riboviria	A(-)	165,	al		(Petter	(Pettersso	Northern
					M1025	geno		sson et	n et al.,	Sweden
					164	me		al.,	2020; Wille	(Pettersson
								2020;	et al.,	et al., 2020;
								wille	2020)	wille et al.,
								et al.,		2020)
Tashaaa	Linglage:figd	Lineland;fied	/ /	DN	NC 02	C	h	2020)	0	China
tieluuinus F	Unclassified	Unclassified	Dihawinia	SSRIN	NC_02	Com	ſ	2015	D.	China,
tick virus 5			RIDOVIFIA	A(-)	8264	piete		(Li et	marginatu	Kazaknstan
						geno		dl.,	5 (LI EL UI.,	(LI EL dI.,
Timbillion	Unclossified	Unclossified	Undersified	cc DN	NAKODE	Dorti	r	2015)	2013)	2015) Australia
virus	Uliciassilieu	Uliciassilieu	Pihoviria		590	Parti	ſ	2010 (Hanyo	ı. holocyclus	Australia
VILUS			RIDOVITIU	A(-)	565, MK026	ai		(I laive	/Harvoy at	(11d) Vey et
					590	mo		y et al.,	al 2018)	al., 2018)
Gadgats	Gadaots	Elavivirus	Elaviviridae	ccDN	NC 03	Com	С	1085	ui., 2018)	Antarctica
Gully views	Gullyvirus	riuviviius	, iuvivii iuue	2(τ) 22UN	3772	nleto	:	(C+ C+	(Pettersso	Antarclica,
Guily VILUS	Guiry VII us			A(T)	3723	geno		Georg	n at al	(Dettorscop
						me		o ot al	2020)	
						me		2 2L dl.,	2020]	et al., 2020)
								1992)		

Kadam	Kadam	Flavivirus	Flaviviridae	ssRN	NC_03	Com	?	1970	R. pravus	Saudi
virus	virus			A(+)	3724	plete		(Hend	(Shi et al.,	Arabia,
						geno		erson	2018)	Uganda (Shi
						me		et al., 1970)		et al., 2018)
Alkhumra	Kyasanur	Flavivirus	Flaviviridae	ssRN	AF331	Com	Y	1957	Н.	India, Saudi
hemorrhagi	Forest			A(+)	718	plete	(Grard	(Work	spinigera,	Arabia (Shi
c fever virus	disease					geno	et al.,	et al.,	O. savignyi	et al., 2018)
	virus					me	2007)	1957)	(Shi et al.,	
									2018)	
Langat virus	Langat	Flavivirus	Flaviviridae	ssRN	AF253	Com	?	1956	Ι.	Malaysia
	virus			A(+)	419	plete		(Smith	granulatus	(Shi et al.,
						geno		et al.,	(Shi et al.,	2018)
			_, , , , , ,			me		1956)	2018)	
Louping ill	Louping ill	Flavivirus	Flaviviridae	SSRN	Y0786	Com	Y	1931	I. ricinus	England,
virus	virus			A(+)	3	piete	(David	(Greig	(Shi et al.,	Ireland,
						me	al	et al.,	2018)	Wales (Shi et
						inc	1991)	1551)		al., 2018)
Meaban	Meaban	Flavivirus	Flaviviridae	ssRN	NC 03	Com	?	1985	0.	France (Shi
virus	virus			A(+)	3721	plete		(Chast	maritimus	et al., 2018)
						geno		el et	(Shi et al.,	
						me		al.,	2018)	
								1985)		
Omsk	Omsk	Flavivirus	Flaviviridae	ssRN	AY193	Com	Y	1989	Dermacent	Russia
hemorrhagi	hemorrhagi			A(+)	805	plete	(Grard	(Gaida	or spp., I.	(Grard et al.,
c fever virus	c fever virus					geno	et al.,	movic	persculatu	2007)
						me	2007)	h et	s (Ruzek et	
								al.,	al., 2010)	
Door tick	Dowassan	Elovinirus	Elaviviridaa	cc DN	AE211	Com	2	1989)	,	Now
virus	virus	FIUVIVII US	Flaviviriaae	SSRN Δ(+)	AF311 056	nlete	ŗ	(Telfor	ı. scanularis	Fogland
VII US	Virus			Α(')	050	geno		d et	(Mansfield	North
						me		al.,	et al.,	America
								1997)	2017; Shi	(Mansfield
									et al.,	et al., 2017;
									2018)	Shi et al.,
										2018)
Powassan	Powassan	Flavivirus	Flaviviridae	ssRN	L06436	Com	Y	1959	I. cookei,	North
virus	virus			A(+)		plete	(Tokar	(McLe	Ixodes spp.	America,
						geno	z et	an and	(Tokarz et	Russia
						me	al.,	Donoh	al., 2014)	(Mansfield
							2014)	ue		et al., 2017)
Karchivirus	Pougl Farra	Elovinistic	Elan invisida -		AV963	Co	2	1959) 1076	A	North -f
Karstii VIPUS	noyui rarm	FIUVIVIIUS	riuviviriaae	22/1)	A 1003	nleto	I	(1,000	A. hermanni	Central Asia
	virus			~(+)	002	hiere			nermunni,	Central ASId,

						geno me		et al., 1976)	<i>O.</i> <i>papillipes</i> (Shi et al.,	Uzbek (Shi et al., 2018)
Saumarez Reef virus	Saumarez Reef virus	Flavivirus	Flaviviridae	ssRN A(+)	DQ235 150	Com plete geno	?	1977 (St Georg	2018) I. eudyptidis, O. capensis	Australia (Shi et al., 2018)
Tick-borne	Tick-borne	Flavivirus	Flaviviridae	ssRN	NC 00	me Com	Y (Shi	e et al., 1977) 1931	(Shi et al., 2018) 1. ovatus, 1.	Northern
encephalitis virus	encephalitis virus			A(+)	1672	plete geno me	et al., 2018)	(Schne ider et al., 1931)	persulcatu s, I. ricinus (Shi et al., 2018)	Asia, Northern Europe, Siberia (Sh
Tyuleniy virus	Tyuleniy virus	Flavivirus	Flaviviridae	ssRN A(+)	NC_02 3424	Com plete geno me	?	1971 (L'vov et al., 1971)	<i>I. putus</i> (Shi et al., 2018)	et al., 2018) Tuleniy Island (Shi et al., 2018)
lxodes holocyclus iflavirus	lxodes holocyclus iflavirus	lflavirus	lflaviridae	ssRN A(+)	OL452 115	Parti al geno me	?	2018 (O'Brie n et al., 2018)	I. holocyclus (O'Brien et al., 2018)	Australia (O'Brien et al., 2018)
Blacklegged tick associated ilarvirus	Unclassified	llarvirus	Bromovirid ae	ssRN A(+)	MG647 776, MG647 777	Parti al geno me	?	2018) 2018 (Tokar z et al., 2018)	l. scapularis (Tokarz et al., 2018)	USA (Tokarz et al., 2018)
Trinbago virus	Unclassified	Pestivirus	Flaviviridae	ssRN A(+)	MN02 5505	Parti al geno me	?	2019 (Samer off et al., 2019)	A. ovale, R. microplus, R. sanguineus (Sameroff et al., 2019)	Trinidad, Tobago (Sameroff et al., 2019)
Cattle tick tymovirus- like virus 1	Unclassified	Tymovirus	Tymovirida e	ssRN A(+)	MN02 5504	Parti al geno me	?	2019 (Samer off et al., 2019)	R. microplus (Sameroff et al., 2019)	Trinidad and Tobago (Sameroff et al., 2019)
Lone star tick dicistroviru s	Unclassified	Unclassified	Dicistrovirid ae	ssRN A(+)	KX774 633	Parti al geno me	?	2018 (Tokar z et al., 2018)	l. scapularis (Tokarz et al., 2018)	USA (Tokar: et al., 2018)
Alongshan virus	Unclassified	Unclassified	Flaviviridae	ssRN A(+)	MN64 8770,	Parti al	Y (Wan	2019 (Kuiva	l. persulcatu	China, France,

					MN64 8771, MN64 8772,	geno me	g et al., 2019)	nen et al., 2019)	s, <i>I. ricinus</i> (Kholodilo v et al., 2020)	Finland (Kholodilov et al., 2020)
Jingmen	Unclassified	Unclassified	Flaviviridae	ssRN	MN64 8773 MK721	Com	Y (Jia	2014	Am.	Many
tick virus				A(+)	629, MK721 630, MK721 631,	geno me	et al., 2019)	(Qin et al., 2014)	Javanense, D. nuttalli, Haemaphy salis spp., Ixodes	Asia, America, and Africa (Vandegrift
					MK721 632				spp., Rhipicepha lus spp. (Zhao et al., 2021)	et al., 2020; Zhao et al., 2021)
Norway luteo-like virus 1	Unclassified	Unclassified	Luteovirida e	ssRN A(+)	MF141 065	Parti al geno me	?	2017 (Petter sson et al., 2017)	I. ricinus (Pettersso n et al., 2017)	Norway (Pettersson et al., 2017)
Norway luteo-like virus 2	Unclassified	Unclassified	Luteovirida e	ssRN A(+)	MF141 068	Parti al geno me	?	2017 (Petter sson et al., 2017)	<i>I. ricinus</i> (Pettersso n et al., 2017)	Norway (Pettersson et al., 2017)
Norway luteo-like virus 3	Unclassified	Unclassified	Luteovirida e	ssRN A(+)	MF141 069	Parti al geno me	?	2017) (Petter sson et al., 2017)	<i>I. ricinus</i> (Pettersso n et al., 2017)	Norway (Pettersson et al., 2017)
Norway luteo-like virus 4	Unclassified	Unclassified	Luteovirida e	ssRN A(+)	MF141 070	Parti al geno me	?	2017) 2017 (Petter sson et al., 2017)	<i>I. ricinus</i> (Pettersso n et al., 2017)	Norway (Pettersson et al., 2017)
Lone star tick nodavirus	Unclassified	Unclassified	Nodavirida e	ssRN A(+)	KX774 635, KX774 634	Parti al geno me	?	2018 (Tokar z et al., 2018)	l. scapularis (Tokarz et al., 2018)	USA (Tokarz et al., 2018)
Paradise bay virus	Unclassified	Unclassified	Tombusviri dae	ssRN A(+)	MN83 0247	Parti al geno me	?	2020 (Petter sson et al., 2020)	<i>I. uriae</i> (Pettersso n et al., 2020)	Antarctica (Pettersson et al., 2020)

-

Upmeje	Unclassified	Unclassified	Tombusviri dae	ssRN	MN83	Parti	?	2020 (Petter	l. uriae	Northern
VILUS			uue	A(+)	0240	geno		sson et	n et al	(Pettersson
						me		al	2020)	et al., 2020)
								2020)	,	,
Bagotville	Unclassified	Unclassified	Unclassified	ssRN	MW74	Parti	?	2021	Ι.	Australia
virus			Picornaviral	A(+)	1892	al		(Chand	holocyclus	(Chandra et
			es			geno		ra et	(Chandra	al., 2021)
						me		al.,	et al.,	
								2021)	2021)	
Blacklegged	Unclassified	Unclassified	Unclassified	ssRN	MG647	Parti	?	2018	Ι.	USA (Tokarz
tick			Picornaviral	A(+)	769,	al		(Tokar	scapularis	et al., 2018)
picorna-like			es		MG647	geno		z et al.,	(Tokarz et	
virus 1					774	me		2018)	al., 2018)	
Blacklegged	Unclassified	Unclassified	Unclassified	ssRN	MG647	Parti	?	2018	Ι.	USA (Tokarz
tick			Picornaviral	A(+)	773,	al		(Tokar	scapularis	et al., 2018)
picorna-like			es		MG647	geno		z et al.,	(Tokarz et	
virus 2					772,	me		2018)	al., 2018)	
					MG647					
					771,					
					MG647					
					770					
Wardell	Unclassified	Unclassified	Unclassified	ssRN	MW74	Parti	?	2021	Ι.	Australia
virus			Picornaviral	A(+)	1896,	al		(Chand	holocyclus	(Chandra et
			es		MW74	geno		ra et	(Chandra	al., 2021)
					1895,	me		al.,	et al.,	
					MW74			2021)	2021)	
					1894					
. Woodburn	Unclassified	Unclassified	Unclassified	SSRN	MW 74	Parti	?	2021	I.	Australia
virus			Picornaviral	A(+)	1893	al		(Chand	holocyclus	(Chandra et
			es			geno		ra et	(Chandra	al., 2021)
						me		al.,	et al.,	
Rhuo Eich	Unclassified	Unclassified	Unclassified	cc PN	MKOZE	Darti	2	2021)	2021)	Australia
Point virus	Uliciassilieu	Unclassified	Rihoviria	Δ(±)	570	al	1	2018 (Hanve	i. holocyclus	(Harvey et
i ont virus			Nibovina	~(')	570, MK026	geno		vetal	(Harvey et	al 2018)
					571	me		2018)	al 2018)	al., 2010)
Bole tick	Unclassified	Unclassified	Unclassified	ssRN	M7244	Com	2	2015	D.	China
virus 4	onelassinea	onelassinea	Riboviria	A(+)	286	plete	•	(Shi et	marainatu	Romania.
				. /		geno		al.,	s, D.	Saudi
						me		2015)	reticulatus.	Arabia,
								,	Н.	Thailand,
									asiaticum,	Trinidad,
									Hy.	Tobago
									asiaticum,	_ (Temmam et
									Hy.	al., 2019;
									,	,)

									detritum,	Bratuleanu
									<i>R.</i>	et al., 2021;
									microplus,	Zakham et
									<i>R.</i>	al., 2021)
									sanguineus	
									(Temmam	
									et al.,	
									2019;	
									Bratuleanu	
									et al.,	
									2021;	
									Zakham et	
									al., 2021)	
Bulatov	Unclassified	Unclassified	Unclassified	ssRN	MN83	Parti	?	2020	I. uriae	Antarctica
virus			Riboviria	A(+)	0234,	al		(Petter	(Pettersso	(Pettersson
					MT025	geno		sson et	n et al.,	et al., 2020)
					173	me		al.,	2020)	
								2020;		
								Wille		
								et al.,		
								2020)		
Collins	Unclassified	Unclassified	Unclassified	ssRN	MK026	Parti	?	2018	Ι.	Australia
beach virus			Riboviria	A(+)	585	al		(Harve	holocyclus	(Harvey et
						geno		y et al.,	(Harvey et	al., 2018)
						me		2018)	al., 2018)	
Fairfax	Unclassified	Unclassified	Unclassified	ssRN	MK026	Parti	?	2018	Ι.	Australia
Lookout			Riboviria	A(+)	588,	al		(Harve	holocyclus	(Harvey et
virus					MK026	geno		y et al.,	(Harvey et	al., 2018)
					587,	me		2018)	al., 2018)	
					MK026					
					586					
Gerbovich	Unclassified	Unclassified	Unclassified	ssRN	MN83	Parti	?	2020	I. uriae	Antarctica
virus			Riboviria	A(+)	0239,	al		(Petter	(Pettersso	(Pettersson
					MT025	geno		sson et	n et al.,	et al., 2020;
					175	me		al.,	2020; Wille	Wille et al.,
								2020;	et al.,	2020)
								Wille	2020)	
								et al.,		
								2020)		
Ingleside	Unclassified	Unclassified	Unclassified	ssRN	OL452	Parti	?	2018	Ι.	Australia
virus			Riboviria	A(+)	105	al		(Harve	holocyclus	(Harvey et
						geno		y et al.,	(Harvey et	al., 2018)
						me		2018)	al., 2018)	
Ixodes	Unclassified	Unclassified	Unclassified	ssRN	LC0949	Parti	?	2017	Ι.	USA, Japan
scapularis			Riboviria	A(+)	65,	al		(Nakao	scapularis	(Tokarz et
									(Tokarz et	al., 2018;

associated					MG677	geno		et al.,	al., 2018;	Nakao et al.,
virus 3					814	me		2017)	Nakao et al 2017)	2017)
Jump Rock	Unclassified	Unclassified	Unclassified	ssRN	MK026	Parti	?	2018	ı., 2027)	Australia
virus			Riboviria	A(+)	583	al		(Harve	holocyclus	(Harvey et
						geno		y et al.,	(Harvey et	al., 2018)
						me		2018)	al., 2018)	
Nadgee	Unclassified	Unclassified	Unclassified	ssRN	MK026	Parti	?	2018	Ι.	Australia
virus			Riboviria	A(+)	592	al		(Harve	holocyclus	(Harvey et
						geno		y et al.,	(Harvey et	al., 2018)
						me		2018)	al., 2018)	
Store beach	Unclassified	Unclassified	Unclassified	ssRN	MK026	Parti	?	2018	Am.	Australia
virus			Riboviria	A(+)	567	al		(Harve	moreliae	(Harvey et
						geno		y et al.,	(Harvey et	al., 2018)
						me		2018)	al., 2018)	
Tacheng	Unclassified	Unclassified	Unclassified	ssRN	NC_02	Com	?	2015	D.	China (Shi et
tick virus 8			Riboviria	A(+)	8367	plete		(Shi et	marginatu	al., 2015)
						geno		al.,	s (Shi et al.,	
						me		2015)	2015)	
Vovk virus	Unclassified	Unclassified	Unclassified	ssRN	MN83	Parti	?	2020	I. uriae	Antarctica
			Riboviria	A(+)	0235,	al		(Petter	(Pettersso	(Pettersson
					MT025	geno		sson et	n et al.,	et al., 2020;
					162	me		al.,	2020; Wille	Wille et al.,
								2020;	et al.,	2020)
								Wille	2020)	
								et al.,		
								2020)		
Wangarabe	Unclassified	Unclassified	Unclassified	ssRN	MK026	Parti	?	2018	Ι.	Australia
ll virus			Riboviria	A(+)	593	al		(Harve	holocyclus	(Harvey et
						geno		y et al.,	(Harvey et	al., 2018)
						me		2018)	al., 2018)	
Yambulla	Unclassified	Unclassified	Unclassified	ssRN	MK026	Parti	?	2018	Ι.	Australia
virus			Riboviria	A(+)	594	al		(Harve	holocyclus	(Harvey et
						geno		y et al.,	(Harvey et	al., 2018)
						me		2018)	al., 2018)	
Antioquia	Unclassified	Unclassified	Unclassified	ssRN	MK683	Parti	?	2020	<i>R</i> .	Colombia
tymovirus-			Tymovirales	A(+)	451	al		(Gome	microplus	(Gomez et
like 1						geno		z et al.,	(Gomez et	al., 2020)
_						me		2020)	al., 2020)	
Guarapuav	Unclassified	Unclassified	Unclassified	SSRN	MH155	Parti	ť	2018	R.	Brazil (de
a			lymovirales	A(+)	882	al		(de	micropius	Souza et al.,
tymovirus-						geno		souza	(ue Souza	2018)
пке т						me		et al.,	et al.,	
Amorican	Unclose	Unclose	Unclose	Unko	MEDED	Dort:	2	2018)	2018)	LICA /Takar-
	UTICIASSITIEO	Unclassified	Unclassified	OTIKI	IVIF902	rdili	ŗ	2018 (Tokar	U.	ot al 2019
uog tick				own	000	di		(TOKAľ	vuriabillS	et al., 2018)

associated						geno		z et al.,	(Tokarz et	
virus 1						me		2018)	al., 2018)	
American	Unclassified	Unclassified	Unclassified	Unkn	MF962	Parti	?	2018	D.	USA (Tokarz
dog tick				own	662,	al		(Tokar	variabilis	et al., 2018)
associated					MF962	geno		z et al.,	(Tokarz et	
virus 2					657	me		2018)	al., 2018)	
Finch Creek	Unclassified	Unclassified	Unclassified	Unkn	EU267	Parti	?	2009	I. uriae	Australia
virus				own	169	al		(Major	(Major et	(Major et al.,
						geno		et al.,	al., 2009)	2009)
						me		2009)		
Ganjam	Unclassified	Unclassified	Unclassified	Unkn	KU925	Parti	?	1969	Н.	India (Kuhn
virus				own	466,	al		(Dand	intermedia	et al., 2016)
					KU925	geno		awate	(Kuhn et	
					465,	me		et al.,	al., 2016)	
					KU925			1969)		
					464					
Ixodes	Unclassified	Unclassified	Unclassified	Unkn	LC0949	Parti	?	2014	Ι.	Japan, USA
scapularis				own	64,	al		(Tokar	scapularis	(Tokarz et
associated					KM048	geno		z et al.,	(Tokarz et	al., 2014;
virus 1					318	me		2014)	al., 2014;	Nakao et al.,
									Nakao et	2017)
									al., 2017)	
Ixodes	Unclassified	Unclassified	Unclassified	Unkn	KM048	Parti	?	2014	Ι.	USA (Tokarz
scapularis				own	319	al		(Tokar	scapularis	et al., 2014)
associated						geno		z et al.,	(Tokarz et	
virus 2						me		2014)	al., 2014)	
Ixodes	Unclassified	Unclassified	Unclassified	Unkn	MF962	Parti	?	2018	Ι.	USA (Tokarz
scapularis				own	656	al		(Tokar	scapularis	et al., 2018)
associated						geno		z et al.,	(Tokarz et	
virus 4						me		2018)	al., 2018)	
Ixodes	Unclassified	Unclassified	Unclassified	Unkn	MG256	Parti	?	2018	Ι.	USA (Tokarz
scapularis				own	513	al		(Tokar	scapularis	et al., 2018)
associated						geno		z et al.,	(Tokarz et	
virus 5						me		2018)	al., 2018)	
Ixodes	Unclassified	Unclassified	Unclassified	Unkn	MG256	Parti	?	2018	Ι.	USA (Tokarz
scapularis				own	514	al		(Tokar	scapularis	et al., 2018)
associated						geno		z et al.,	(Tokarz et	
virus 6						me		2018)	al., 2018)	
Lone star	Unclassified	Unclassified	Unclassified	Unkn	MF962	Parti	?	2018	Ι.	USA (Tokarz
tick				own	658	al		(Tokar	scapularis	et al., 2018)
associated						geno		z et al.,	(Tokarz et	
virus 1						me		2018)	al., 2018)	
Sapphire II	Unclassified	Unclassified	Unclassified	Unkn	MK896	Com	?	1972	A. cooleyi	USA (Yunker
virus				own	468,	plete		(Yunke	(Yunker et	et al., 1972)
					MK896	geno		r et al.,	al., 1972)	
					467,	me		1972)		

					MK896					
Tick borne tetravirus- like virus	Unclassified	Unclassified	Unclassified	Unkn own	466 MW33 4982, KM048	Parti al geno	?	2014 (Tokar z et al., 2014)	D. variabilis (Tokarz et	USA (Tokarz et al., 2014)
Zirqa virus	Unclassified	Unclassified	Unclassified	Unkn own	522 KU925 500, KU925 501, KU925 502	Com plete geno me	?	1973 (Varm a et al., 1973)	A. cooleyi, Ornithodor us spp. (Shi et al., 2018)	Abu Dhabi (Shi et al., 2018)
Bovine hepacivirus **	Hepacivirus N	Hepacivirus	Flaviviridae	ssRN A(+)	NC_02 6797	Com plete geno me	?	2015 (Baech lein et al., 2015)	Unknown (Temmam et al., 2019)	Brazil, China, Germany, Ghana, US (Baechlein et al., 2019)
HoBi-like pestivirus* *	Pestivirus H	Pestivirus	Flaviviridae	ssRN A(+)	МК689 376	Parti al geno me	?	2004 (Schirr meier et al., 2004)	Unknown (Temmam et al., 2019)	Argentina, Bangladesh, Brazil, China, Germany, India, Italy, Mexico, Thailand, Turkey, USA (Bauermann et al., 2021)
Erve virus**	Erve orthonairov irus	Orthonairov irus	Nairovirida e	ssRN A(-)	JF9116 97, JF9116 98, JF9116 99	Com plete geno me	?	1989 (Chast el et al., 1989)	Unknown (Dilcher et al., 2012)	Czech Republic, France, Germany, Netherland (Dilcher et al., 2012)
Bovine parvovirus- 2**	Ungulate copiparvovi rus 1	Copiparvovi rus	Parvovirida e	ssDN A(+/-)	KT148 961	Com plete geno me	?	2001 (Alland er et al., 2001)	Unknown (Temmam et al., 2019)	Brazil, China, USA (Ng et al., 2015; Cibulski et al., 2016; Wang et al., 2018)
Nkolbisson virus**	Nkolbisson ledanteviru s	Ledanteviru S	Rhabdovirid ae	ssRN A(-)	NC_03 4539	Com plete geno me	?	2010 (Dache ux et al., 2010)	Unknown (Temmam et al., 2019)	Cameroon (Dacheux et al., 2010)

Spring	Carp	Sprivivirus	Rhabdovirid	ssRN	NC_00	Com	?	1996	Unknown	Austria,
viremia of	sprivivirus		ae	A(-)	2803	plete		(Bjorkl	(Temmam	China, Czech
carp virus**						geno		und et	et al.,	Republic,
						me		al.,	2019)	Denmark,
								1996)		Hungary,
										Iran, Italy,
										Mexico,
										Moldova,
										Poland,
										Serbia,
										South Korea,
										Ukraine, UK,
										USA
										(Marsella et
										al., 2021)
Maraba	Maraba	Vesiculoviru	Rhabdovirid	ssRN	NC_02	Com	?	2010	Unknown	Brazil (Brun
virus**	virus	S	ae	A(-)	5255	plete		(Brun	(Temmam	et al., 2010)
						geno		et al.,	et al.,	
						me		2010)	2019)	
Wellfleet	Unclassified	Quaranjavir	Orthomyxo	ssRN	NC_02	Com	?	2015	Unknown	USA (Allison
Bay virus**		us	viridae	A(-)	5793,	plete		(Alliso	(Temmam	et al., 2015)
					NC_02	geno		n et	et al.,	
					5794,	me		al.,	2019)	
					NC_02			2015)		
					5795,					
					NC_02					
					5796,					
					NC_02					
					5797,					
					NC_02					
					5798,					
					NC_02					
					5799					
Araguari	Unclassified	Thogotoviru	Orthomyxo	ssRN	KX670	Com	?	1969	Unknown	Brazil (Silva
virus**		5	viridae	A(-)	389,	plete		(Silva	tick vectors	et al., 2005)
					KX670	geno		et al.,	(Silva et al.,	
					390,	me		2005)	2005)	
					KX670					
					391,					
					KX670					
					392,					
					KX670					
					393,					
					KX670					
					394,					

-

					KX670					
					395					
Eelpout	Unclassified	Unclassified	Rhabdovirid	ssRN	KR612	Parti	?	2017	Unknown	Sweden
rhabdovirus			ae	A(-)	230	al		(Axen	(Temmam	(Axen et al.,
**						geno		et al.,	et al.,	2017)
						me		2017)	2019)	
Wuhan	Unclassified	Unclassified	Rhabdovirid	ssRN	MG600	Com	?	2018	Unknown	China (Shi et
redfin			ae	A(-)	013	plete		(Shi et	(Temmam	al., 2018)
culter						geno		al.,	et al.,	
dimarhabo						me		2018)	2019)	
dovirus**										
Bat	Unclassified	Nairovirus	Nairovirida				?	2014	Unknown	France
nairovirus/			е	ssRN	KF1702	Parti		(Dache	(Dacheux	(Dacheux et
Ahun				A(-)	24	al		ux et	et al.,	al., 2014)
nairovirus*						geno		al.,	2014)	
*						me		2014)		
Essaouira	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1993	0.	Morocco
virus**				own	availab	availa		(Chast	maritimus	(Chastel et
					le	ble		el et	(Chastel et	al., 1993)
								al.,	al., 1993)	
								1993)		
Huacho	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1967	C. amblus	Peru
virus**				own	availab	availa		(Belag	(Belaganah	(Belaganaha
					le	ble		anahal	alli et al.,	lli et al.,
								li et al.,	2015)	2015)
								2015)	_	
Kala Iris	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1993	0.	Morocco
virus**				own	availab	availa		(Chast	maritimus	(Chastel et
					le	ble		el et	(Chastel et	al., 1993)
								al.,	al., 1993)	
Mana Jaka	Unclossified	Unclossified	Unclose	Linka	Not	Not	n	1993)	A cooloui	
virus**	Unclassified	Unclassified	Unclassified	Unkn	NOL	not	ŗ	1988	A. COULEYI	USA (Calishor of
VILUS				OWIT	ام	avalla		(Calisti	(Calistier et	
					ie	DIE		al et	al., 1988)	al., 1988)
								1988)		
Sixgun city	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	2	1988	A coolevi	LISA
virus**	onelassinea	onelassinea	onclassifica	own	availah	availa	·	(Calish	(Calisher et	(Calisher et
virus				0	le	ble		er et	al., 1988)	al., 1988)
						0.0		alu	uii) 1000)	, 20007
								1988)		
Ellidaev	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1986	I. uriae	Iceland
virus**				own	availab	availa		(Moss	(Moss et	(Elliđaev
				-	le	ble		et al	al., 1986)	island)
								1986)	,,	, (Moss et al.,
										1986)

Foula	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1986	I. uriae	Scotland
virus**				own	availab	availa		(Nuttal	(Nuttall et	(Shetland
					le	ble		l et al.,	al., 1986)	Islands)
								1986)		(Nuttall et
										al., 1986)
Grimsey	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1986	I. uriae	Iceland
virus**				own	availab	availa		(Moss	(Moss et	(Grimsey
					le	ble		et al.,	al., 1986)	island)
								1986)		(Moss et al.,
										1986)
Inner Farne	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1986	I. uriae	England
Island				own	availab	availa		(Nuttal	(Nuttall et	(Nuttall et
virus**					le	ble		l et al.,	al., 1986)	al., 1986)
								1986)		
Mykines	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1978	I. uriae	Denmark
virus**				own	availab	availa		(Main	(Main et	(Faroe
					le	ble		et al.,	al., 1978)	Islands)
								1978)		(Main et al.,
										1978)
Kao Shuan	Unclassified	Unclassified	Unclassified	Unkn	Unavai	Not	?	1989	A. robertsi	Indonesia,
virus**				own	lable	availa		(Mous	(Moussa et	Taiwan
						ble		sa et	al., 1989)	(Moussa et
								al.,		al., 1989)
								1989)		
Pretoria	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1975	А.	South Africa
virus**				own	availab	availa		(Conve	africolumb	(Converse et
					le	ble		rse et	ae	al., 1975)
								al.,	(Converse	
								1975)	et al.,	
									1975)	
Puffin	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1983	О.	Puffin Island
Island				own	availab	availa		(Gould	maritimus	(Gould et al.,
virus**					le	ble		et al.,	(Gould et	1983)
								1983)	al., 1983)	
Seletar	Unclassified	Unclassified	Unclassified	Unkn	Not	Not	?	1961	В.	Malaysia,
virus**				own	availab	availa		(Shi et	microplus	Singapore
					le	ble		al.,	(Shi et al.,	(Shi et al.,
								2018)	2018)	2018)

* Amblyomma dissimile mivirus, Nuomin virus, and Granville quaranjavirus were later added tick-borne viruses which were not included in the original tick virus database.

** Viruses with unknown tick vectors or that sequences unavailable.

Acronyms: Argas (A.); Amblyomma (Am.); Boophilus (B.); Dermacentor (D.); Haemaphysalis (H.); Hyalomma (Hy.); Ixodes (I.); Ornithodoros (O.); Otobius (Ot.); Rhipicephalus (R.).

Appendix Table 2. Putative novel RNV viral contigs identified in this study.

Putative				Genom		Closest	Seque		
novel				e	Sequenc	BLASTn	nce		
viral			Provisional	structu	e length	match (e-	identit		
contig	Genbank ID	Tick species	family	re	(nt)	value 0.005)	y (%)	Notes	Reference
Alphatet ra-like tick virus 1	GIXL01013119 .1	Ixodes ricinus	Alphatetraviri dae	ssRNA(+)	5496	Bulatov virus (MT025173.1)	78	One putative ORF; predicted protein contains homologs of RdRp 2 (PF00978) motif,	Trentalman <i>et al.</i> 2020, 10.1038/s41598-020- 76268-y
								nucleoside triphosphate hydrolase (SSF52540), viral (Superfamily 1) RNA helicase (PF01443) and viral methyltransferase 3 (PF01660) motifs.	
Alphatet	GBXQ0101242	Ixodes	Alphatetraviri	ssRNA(1056	Vovk virus	81	One putative ORF;	Zhang 2014,
ra-like tick virus	6.1	persulcatus	dae	+)		(MN830235. 1)		predicted protein contains homologs of	Unpublished
2 Alphatot		Ornithodoroc	Alphatotraviri	ccBNA/	5452	Bulatov virus	96	RdRp 2 (PF00978) motif.	Oloaga at al 2021
ra-like	GIXPU2005464	mouhata	dae	+)	5452	(MT025173.1	80	predicted protein	10 1371/journal patd 00
tick virus 3	.1	mouburu		.,)		contains homologs of RdRp 2 (PF00978) motif, nucleoside triphosphate	09105
								hydrolase (SSF52540), viral (Superfamily 1) RNA helicase (PF01443) and viral methyltransferase 2 (PF01660) matific	
Alphatet	GEL00200792	Ornithodoros	Alphatetraviri	ccPNA/	3973	Bulatov virus	67		Oleana et al 2017
ra-like	1.1	moubata	dae	+)	5675	(MT025173.1	0,	predicted protein	10.1016/j.ttbdis.2017.0
tick virus)		contains homologs of	5.002
4								RdRp 2 (PF00978) motif,	
								hydrolase (SSF52540)	
								and viral (superfamily 1) RNA helicase (PF01443) motifs.	
Alphatet	GEMR0100436	Rhipicephalus	Alphatetraviri	ssRNA(1488	Hepelivirales	73	One putative ORF;	Munoz et al. 2017,
ra-like	4.1	microplus	dae	+)		sp.		predicted protein	10.1371/journal.pone.0
tick virus 5						(MW722078. 1)		contains homologs of RdRp 2 (PF00978) motif.	172326
Orthomy	HACP0102721	Rhipicephalus	Orthomyxoviri	ssRNA(2136	Zambezi tick	77	One putative ORF;	De Marco et al. 2015,
xo-like	1.1	sanguineus	dae	-)		virus 1		predicted protein	Unpublished
tick virus	(HACW010243					(MH267793.		contains homologs of	
1	87.1)					1)		Influenza RdRp subunit PB1 (PE00602) motif	
Orthomy	HACP0102257	Rhipicephalus	Orthomyxoviri	ssRNA(1290	Zambezi tick	77	One putative ORF;	De Marco et al. 2015,
xo-like	5.1	sanguineus	dae	-)		virus 1		predicted protein	Unpublished
tick virus						(MH267793.		contains homologs of	
2						1)		Influenza RdRp subunit PB1 (PF00602) motif.	
Orthomy	HACW010188	Rhipicephalus	Orthomyxoviri	ssRNA(1290	Zambezi tick	77	One putative ORF;	De Marco et al. 2015,
xo-like	19.1	sanguineus	dae	-)		virus 1		predicted protein	Unpublished
tick virus						(MH267793.		contains homologs of	
3						1)		Influenza RdRp subunit PB1 (PF00602) motif.	
Orthomy	GIJA01018702.	Rhipicephalus	Orthomyxoviri	ssRNA(2357	Zambezi tick	77	One putative ORF;	Wang et al. 2020,
xo-like	1	haemaphysal	dae	-)		virus 1		predicted protein	10.3389/fcimb.2020.00
tick virus		oides				(MH267793.		contains homologs of	093
4						1)			

								Influenza RdRp subunit PB1 (PF00602) motif.	
Chu-like	GGIX01201876	Ixodes	Chuviridae	ssRNA(728	Bole tick virus	87	One putative ORF; Robertson	2016,
tick virus	.1	scapularis		-)		3		predicted protein Unpublished	
1						(MH688550.		contains homologs of	
						1)		Mononegavirales RdRp	
								(PF00946) motif.	

Appendix Table 3. Putative novel RNA viral contigs that represent defective viruses.

		Provisional	Genome	Sequence	Closest BLASTn match	Sequence identity	
SRA project ID	Tick species	family	structure	length (nt)	(e-value 0.005)	(%)	Reference
SRR10549473.54432.1	Hy. asiaticum	Chuviridae	ssRNA(-)	4383	Bole tick virus 3	84	Yuan <i>et al.</i> 2020,
	,				(MH688550.1)		10.1016/j.jip.2020.1 07481
SRR10549473.681872.1	Hy. asiaticum	Chuviridae	ssRNA(-)	4528	Bole tick virus 3 (MH688550.1)	82	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.681877.1	Hy. asiaticum	Chuviridae	ssRNA(-)	4420	Bole tick virus 3 (MH688550.1)	84	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.681878.1	Hy. asiaticum	Chuviridae	ssRNA(-)	4440	Bole tick virus 3 (MH688550.1)	86	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.779074.1	Hy. asiaticum	Chuviridae	ssRNA(-)	5286	Bole tick virus 3 (MH688550.1)	84	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.779079.1	Hy. asiaticum	Chuviridae	ssRNA(-)	5379	Bole tick virus 3 (MH688550.1)	85	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.779081.1	Hy. asiaticum	Chuviridae	ssRNA(-)	5334	Bole tick virus 3 (MH688550.1)	83	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.1447289.1	Hy. asiaticum	Chuviridae	ssRNA(-)	5272	Bole tick virus 3 (MH688550.1)	85	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.1447293.1	Hy. asiaticum	Chuviridae	ssRNA(-)	5001	Bole tick virus 3 (MH688550.1)	87	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.2865317.1	Hy. asiaticum	Chuviridae	ssRNA(-)	5556	Bole tick virus 3 (MH688550.1)	83	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.2865320.1	Hy. asiaticum	Chuviridae	ssRNA(-)	5643	Bole tick virus 3 (MH688550.1)	87	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.4598504.1	Hy. asiaticum	Chuviridae	ssRNA(-)	8170	Bole tick virus 3 (MH688550.1)	88	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.4598510.1	Hy. asiaticum	Chuviridae	ssRNA(-)	8206	Bole tick virus 3 (MH688550.1)	87	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.4598511.1	Hy. asiaticum	Chuviridae	ssRNA(-)	8182	Bole tick virus 3 (MH688550.1)	85	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.7000060.1	Hy. asiaticum	Chuviridae	ssRNA(-)	4986	Bole tick virus 3 (MH688550.1)	84	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.10341027.1	Hy. asiaticum	Chuviridae	ssRNA(-)	2448	Bole tick virus 3 (MH688550.1)	86	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.10526706.1	Hy. asiaticum	Chuviridae	ssRNA(-)	6273	Bole tick virus 3 (MH688550.1)	87	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR10549473.10526708.1	Hy. asiaticum	Chuviridae	ssRNA(-)	6276	Nuomin virus (MW029964.1)	78	Yuan <i>et al</i> . 2020, 10.1016/j.jip.2020.1 07481
SRR17281102.635386.1	I. scapualris	Chuviridae	ssRNA(-)	1390	Suffolk virus (NC_028243.1)	78	University of Minnesota 2021, Unpublished

Appendix Table 4. DNA viral contigs found after bioinformatic checking.

WGS project ID	Tick species	Genome	Sequence	Predicted protein	Reference
was project ib	The species	etrusture	langth		Reference
		structure	(he)		
			(op)		
GIXP02029293.1	Ornithodoros	dsDNA	2232	DdRp subunit 3 (encoded by H359L); ATP-	Oleaga et al. 2021, 10.1371/journal.pntd.0009105
	moubata			dependent RNA helicase (encoded by Q706L); ATP-	
				dependent RNA helicase (encoded by QP509L)	
GIXP02006837.1	Ornithodoros	dsDNA	1450	DdRp subunit 3 (encoded by H359L);	Oleaga et al. 2021, 10.1371/journal.pntd.0009105
	moubata			Uncharacterized protein (encoded by H171R)	
CAJHNL01000000	Ornithodoros	dsDNA	7421	DdRp subunit 2 (encoded by EP1242L); Helicase	Forth et al. 2020, 10.1186/s12915-020-00865-6
2.1	porcinus			(encoded by F1055L)	
CAJHNL01000000	Ornithodoros	dsDNA	6757	Transcription factor SII homolog (encoded by	Forth et al. 2020, 10.1186/s12915-020-00865-6
3.1	porcinus			I243L); pI226R; RPB7 homolog; Uncharacterized	
				protein (encoded by D339L); Uncharacterized	
				protein (encoded by D129L)	
CAJHNL01000000	Ornithodoros	dsDNA	6577	Primase (encoded by C962R)	Forth et al. 2020, 10.1186/s12915-020-00865-6
4.1	porcinus				
CAJHNL01000000	Ornithodoros	dsDNA	3455	TATA-binding protein (encoded by B263R)	Forth <i>et al.</i> 2020, 10.1186/s12915-020-00865-6
5.1	porcinus				
CAIHNI 0100000	Ornithodoros	dsDNA	3089	DdRn subunit 2 (encoded by FP12421)	Forth et al 2020 10 1186/s12915-020-00865-6
6.1	norcinus	usbrint	5005		101111111111111111111111111111111111111
CA ULAU 01000000	Ornithadaraa	deDNIA	1667	DdDx (areaded by C12110)	Forth at al 2020, 10,1196 (s12015,020,00965,6
CAJHNL0100000	Ornitriodoros	USDINA	1557	Dubp (encoded by G1211k)	Forth et al. 2020, 10.1186/512915-020-00865-6
7.1	porcinus	1.5114	620		
CAJHNL0100000	Urnithodoros	dsDNA	629	Ribonucleotide reductase large subunit (encoded	Forth et al. 2020, 10.1186/\$12915-020-00865-6
8.1	porcinus			by F778R); Uncharacterized protein p360 15R	
CAJHNP01000000	Ornithodoros	dsDNA	7383	DdRp subunit 2 (encoded by EP1242L);	Forth et al. 2020, 10.1186/s12915-020-00865-6
2.1	moubata			Ribonucleotide reductase large subunit (encoded	
				by F778R); Helicase (encoded by F1055L)	
CAJHNP01000000	Ornithodoros	dsDNA	670	DdRp subunit 3 (encoded by H359L)	Forth et al. 2020, 10.1186/s12915-020-00865-6
4.1	moubata				
CAJHNP01000000	Ornithodoros	dsDNA	5156	Viral histone-like protein (encoded by A104R);	Forth et al. 2020, 10.1186/s12915-020-00865-6
5.1	moubata			Inhibitor of apoptosis protein (encoded by A224L);	
				Thymidylate kinase (encoded by A240L);	
				Uncharacterized protein (encoded by A151R)	
CAJHNP01000000	Ornithodoros	dsDNA	3634	DdRp subunit 3 (encoded by H359L);	Forth et al. 2020, 10.1186/s12915-020-00865-6
6.1	moubata			Uncharacterized protein CP123L; ATP-dependent	
				RNA helicase (encoded by QP509L); DNA	
				topoisomerase 2 (encoded by P1192R)	
CAJHNP01000000	Ornithodoros	dsDNA	2713	Early transcription factor large subunit (encoded by	Forth et al. 2020, 10.1186/s12915-020-00865-6
7.1	moubata			D1133L); Uncharacterized protein (encoded by	
				H124R); Uncharacterized protein (encoded by	
				H171R)	
CAIHNP01000001	Ornithodoros	dsDNA	1007	Primase (encoded by C962R)	Forth et al. 2020, 10.1186/s12915-020-00865-6
71	mouhata				
	Ornithodoros	dsDNΔ	636	DdRn subunit 2 (encoded by FP12421)	Forth et al. 2020 10 1186/s12915-020-00865-6
10.1	mouhata	USDIA	050		1011112121, 10.1100, 312313 020 00003 0
10.1 CAUUNO0100000	Ornithederes	deDNIA	670	DelDa suburit 2 (areaded by E012(21)).	Forth at al. 2020, 10, 1196 /s12015, 020, 00965, 6
CAJHNQ0100000	Unitinduoros	USDINA	0/9	Durp subunit 2 (encoded by EP1242L);	Forth et al. 2020, 10.1186/512915-020-00865-6
14.1	πουρατα				
				by F778R); Helicase (encoded by F1055L)	
CAJHNQ0100000	Ornithodoros	dsDNA	1193	Helicase (encoded by F1055L)	Forth et al. 2020, 10.1186/s12915-020-00865-6
15.1	moubata				
CAJHNQ0100000	Ornithodoros	dsDNA	1697	DdRp subunit 2 (encoded by EP1242L); Helicase	Forth et al. 2020, 10.1186/s12915-020-00865-6
16.1	moubata			(encoded by F1055L)	
CAJHNR01000000	Ornithodoros	dsDNA	16841	DdRp subunit 2 (encoded by EP1242L);	Forth et al. 2020, 10.1186/s12915-020-00865-6
4.1	moubata			Ribonucleotide reductase large subunit (encoded	
				by F778R); Helicase (encoded by F1055L)	
CAJHNR01000000	Ornithodoros	dsDNA	15286	TATA-binding protein (encoded by B263R)	Forth et al. 2020, 10.1186/s12915-020-00865-6
5.1	moubata				
CAJHNR01000000	Ornithodoros	dsDNA	13138	TATA-binding protein (encoded by B263R)	Forth et al. 2020, 10.1186/s12915-020-00865-6
6.1	moubata				

-

CAJHNR01000001 1.1	Ornithodoros moubata	dsDNA	8352	Helicase (encoded by <i>A859L</i>); Uncharacterized protein p360 15R; Uncharacterized protein 5ELp28;	Forth et al. 2020, 10.1186/s12915-020-00865-6
				IkB-like protein (encoded by A238L)	
CAJHNR01000001	Ornithodoros	dsDNA	7718	Early transcription factor large subunit (encoded by	Forth et al. 2020, 10.1186/s12915-020-00865-6
3.1	moubata			D1133L); DdRp subunit 3 (encoded by H359L);	
				Uncharacterized protein H171R	
CAJHNR01000001	Ornithodoros	dsDNA	7045	TATA-binding protein (encoded by B263R)	Forth et al. 2020, 10.1186/s12915-020-00865-6
4.1	moubata		6270	TATA binding gradein (annual de D2C2D). Fach	5
	Urnithodoros	dsDNA	6370	transcription factor large subunit (anonded by	Forth et al. 2020, 10.1186/\$12915-020-00865-6
5.1	moubata			(12101) Drivers (an add by (2022))	
CA 111NID04000004	Omitthe device		5000	G1340L); Primase (encoded by C962R)	5
CAJHNR01000001	Unitinduoros	USDINA	5606	TATA-binding protein (encoded by 6265K)	Forth et al. 2020, 10.1180/512915-020-00865-6
0.1	Ornithederes		5,000	TATA hinding protoin (analysis by D2C2D)	Forth at al. 2020, 10, 1186 (a12015, 020, 00865, 6
Z 1	Unitinodoros	USDINA	2000	TATA-binding protein (encoded by 6265K)	Forth et al. 2020, 10.1180/512915-020-00865-6
7.1 CALHNR01000001	Ornithodoros	dcDNA	E 4 9 0	DdPn subunit 2 (ansoded by H2501);	Earth at al. 2020, 10, 1196/c12015, 020, 00965, 6
0 1	moubata	USDINA	3465	Uncharacterized protein (encoded by (B1321); DNA	Forth et al. 2020, 10.1180/512515-020-00805-0
0.1	moubutu			tongicomorace II (oncoded by 811038)	
CALHNR0100001	Ornithodoros	dcDNA	5306	Uncharacterized protein p360 15P	Forth et al. 2020, 10, 1186/s12915-020-00865-6
0.1	moubata	USDINA	3390	oncharacterized protein p300 13K	Forth et al. 2020, 10.1180/512515-020-00805-0
9.1 CALHNR01000002	Ornithodoros	dcDNA	E1E2	Histona like protein (ancoded by 4104P); Inhibitar	Earth at al. 2020, 10, 1196/c12015, 020, 00965, 6
CAJHINK01000002	omithodoros	USDINA	5152	of exertacia protein (encoded by A104R); minibitor	Forth et al. 2020, 10.1180/S12915-020-00865-6
0.1	moubata			of apoptosis protein (encoded by A224L);	
				Instance that a set in a set in a set of the	
CA 111NID04000000	Omitthe dense		4020	Del Da antication (an contrata de la	5
CAJHNR0100002	Urnithodoros	dsDNA	4920	Dakp subunit 10 (encoded by CP80K);	Forth et al. 2020, 10.1186/\$12915-020-00865-6
1.1	Ornithederes	deDNA	4152	Drimoso (appended by COC30)	Forth at al. 2020, 10, 1186 (a12015, 020, 00865, 6
2 1	mouhata	USDINA	4152	Primase (encoded by C962K)	Forth et al. 2020, 10.1180/S12915-020-00865-6
5.1 CALHNR01000002	Ornithodoros	dcDNA	2024	DdPn subunit 2 (ansoded by EB1242();	Earth at al. 2020, 10, 1196/c12015, 020, 00965, 6
4.1	moubata	USDINA	5024	Transmombrane protein (oncoded by EP1242L),	Forth et al. 2020, 10.1180/512515-020-00805-0
4.1 CALHNR0100002	Ornithodoros	dcDNA	3330	DdPn subunit 2 (encoded by EP12421)	Forth et al. 2020, 10, 1186/s12915-020-00865-6
5.1	mouhata	UJDINA	5555		10111 Ct al. 2020, 10.1100, 512515 020 00005 0
CAIHNR0100002	Ornithodoros	dsDNA	2712	DdRp subunit 2 (encoded by FP12421)	Forth et al. 2020, 10.1186/s12915-020-00865-6
6.1	moubata				
CAJHNR01000002	Ornithodoros	dsDNA	2653	Putative poly(A) polymerase catalytic subunit	Forth et al. 2020, 10.1186/s12915-020-00865-6
7.1	moubata			(encoded by C475L); Primase (encoded by C962R)	
CAJHNR01000002	Ornithodoros	dsDNA	2475	DdRp subunit 3 (encoded by H359L)	Forth et al. 2020, 10.1186/s12915-020-00865-6
8.1	moubata				
CAJHNR01000002	Ornithodoros	dsDNA	2196	Ribonucleotide reductase large subunit (encoded	Forth et al. 2020, 10.1186/s12915-020-00865-6
9.1	moubata			by <i>F778R</i>)	
CAJHNR01000003	Ornithodoros	dsDNA	2179	Uncharacterized protein (encoded by CP123L);	Forth et al. 2020, 10.1186/s12915-020-00865-6
0.1	moubata			mRNA-capping enzyme (encoded by NP868R)	
CAJHNR01000003	Ornithodoros	dsDNA	1763	Ribonucleotide reductase large subunit (encoded	Forth et al. 2020, 10.1186/s12915-020-00865-6
2.1	moubata			by <i>F778R</i>)	
CAJHNS01000002	Ornithodoros	dsDNA	1078	Helicase (encoded by F1055L)	Forth et al. 2020, 10.1186/s12915-020-00865-6
6.1	moubata				
CAJHNU01000000	Ornithodoros	dsDNA	3380	DdRp subunit 2 (encoded by EP1242L); Helicase	Forth et al. 2020, 10.1186/s12915-020-00865-6
2.1	porcinus			(encoded by F1055L)	
CAJHNU01000000	Ornithodoros	dsDNA	641	Ribonucleotide reductase large subunit (encoded	Forth et al. 2020, 10.1186/s12915-020-00865-6
3.1	porcinus			by <i>F778R</i>)	
CAJHNU01000000	Ornithodoros	dsDNA	1803	TATA-binding protein (encoded by B263R)	Forth et al. 2020, 10.1186/s12915-020-00865-6
4.1	porcinus				
CAJHNU01000000	Ornithodoros	dsDNA	776	Transcription factor S-II-related protein (encoded	Forth et al. 2020, 10.1186/s12915-020-00865-6
9.1	porcinus			by I243L); Late protein (encoded by I226R)	
CAJHNU01000001	Ornithodoros	dsDNA	2551	Primase (encoded by C962R)	Forth et al. 2020, 10.1186/s12915-020-00865-6
1.1	porcinus				
CAJHNU01000001	Ornithodoros	dsDNA	3100	DdRp subunit 2 (encoded by EP1242L)	Forth et al. 2020, 10.1186/s12915-020-00865-6
4.1	porcinus				
CAJHNV01000000	Ornithodoros	dsDNA	4758	DdRp subunit 2 (encoded by EP1242L)	Forth et al. 2020, 10.1186/s12915-020-00865-6
2.1	porcinus				

CAJHNV01000000	Ornithodoros	dsDNA	3378	Transcription factor SII homolog (encoded by	Forth et al. 2020, 10.1186/s12915-020-00865-6
4.1	porcinus			I243L); Late protein (encoded by I226R);	
				Uncharacterized protein (encoded by D79L)	
CAJHNV01000000	Ornithodoros	dsDNA	2605	DdRp subunit 2 (encoded by EP1242L)	Forth et al. 2020, 10.1186/s12915-020-00865-6
5.1	porcinus				
CAJHNV01000000	Ornithodoros	dsDNA	777	Transcription factor SII homolog (encoded by I243L)	Forth et al. 2020, 10.1186/s12915-020-00865-6
7.1	porcinus				
CAJHNW0100000	Ornithodoros	dsDNA	1078	Helicase (encoded by F1055L)	Forth et al. 2020, 10.1186/s12915-020-00865-6
16.1	moubata				
Putative novel viral	Relative viral species	GenBank ID			
------------------------	------------------------	---			
contigs					
Alphatetra-like viral	Nudaurelia capensis	NC_001990.1			
contigs	beta virus				
		NC_005898.1; NC_005899.1			
	Helicoverpa armigera	NC_001981.1; NC_001982.1			
	stunt virus				
Orthomyxo-like viral	Wellfleet Bay virus	NC_025798.1; NC_025797.1; NC_025796.1; NC_025795.1;			
contigs		NC_025794.1; NC_025793.1; NC_025799.1			
	Araguari virus	KX670389.1; KX670390.1; KX670391.1; KX670392.1;			
		KX670393.1; KX670394.1; KX670395.1			
	Johnston Atoll	NC_052931.1; NC_052930.1; NC_052929.1; NC_052928.1;			
	quaranjavirus	NC_052927.1; NC_052926.1; NC_052925.1			
	Lake Chad virus	NC_052682.1; NC_052686.1; NC_052685.1; NC_052684.1;			
		NC_052683.1; NC_052681.1; NC_052680.1			
	Tjuloc virus	JQ928941.1; JQ928942.1; JQ928943.1; JQ928944.1;			
		JQ928945.1; JQ928946.1; MT774252.1			
	Quaranfil	NC_038821.1; NC_038822.1; NC_038820.1; NC_038819.1;			
	quaranjavirus	NC_038818.1; NC_038817.1			
Chu-like viral contigs	Mivirus suffolkense	NC_028243			

Appendix Table 5. GenBank ID of viruses phylogenetically related to the putative novel viral contigs. Zoonotic risks of virus sequences (in GenBank format) were predicted using the GCB model.

Virus name	Predicted probability	Predicted probability	Predicted probability	Rank	Priority
	mean	lower	upper		
Tick-borne	0.777	0.446	0.946	1	Very high
encephalitis virus Omsk hemorrhagic fever virus	0.739	0.443	0.951	2	Very high
Powassan virus	0.695	0.288	0.920	3	High
Isfahan virus	0.677	0.233	0.917	4	High
Isfahan virus	0.677	0.233	0.917	4	High
Uukuniemi virus	0.676	0.262	0.944	5	High
Louping ill virus	0.668	0.288	0.890	6	High
Langat virus	0.667	0.339	0.917	7	Very high
Thogoto virus	0.642	0.266	0.899	8	High
Lonestar tick chuvirus 1	0.619	0.379	0.857	9	Very high
Crimean-Congo hemorrhagic fever virus	0.609	0.249	0.875	10	High
Grotenhout virus	0.601	0.389	0.808	11	Very high
Severe fever with thrombocytopenia syndrome virus	0.596	0.273	0.849	12	High
Kasokero virus	0.580	0.180	0.837	13	High
Colorado tick fever virus	0.562	0.121	0.854	14	High
Quaranfil virus	0.561	0.128	0.863	15	High
Great Island virus	0.550	0.115	0.832	16	High
Dugbe virus	0.540	0.157	0.825	17	High
Johnston Atoll virus	0.513	0.311	0.802	18	Very high
Dabieshan tick virus	0.505	0.289	0.747	19	High
Taggert virus	0.503	0.318	0.802	20	Very high
Blacklegged tick phlebovirus 1	0.490	0.271	0.711	21	High
Deer tick virus	0.486	0.275	0.703	22	High
Tacheng tick virus 2	0.482	0.241	0.774	23	High
Lihan tick virus	0.481	0.264	0.730	24	High
Karshi virus	0.481	0.266	0.954	25	High
Alkhumra hemorrhagic fever virus	0.469	0.234	0.736	26	High
Yongjia tick virus 1	0.441	0.192	0.680	27	High
American dog tick phlebovirus	0.438	0.218	0.659	28	High
Wenzhou tick virus	0.425	0.234	0.710	29	High
Tamdy virus	0.413	0.227	0.642	30	High

Appendix Table 6. Zoonotic ranking of 136 known tick-borne viruses with complete genomes. Zoonotic risks of virus sequences (in GenBank format) were predicted using the GCB model.

Blacklegged rhabdovirus 1	tick	0.411	0.223	0.638	31	High
Tacheng tick virus	s 8	0.404	0.210	0.692	32	High
Jingmen tick virus	5	0.401	0.219	0.663	33	High
South Bay virus		0.395	0.210	0.630	34	High
Ngari virus		0.393	0.214	0.624	35	High
Kaisodi virus		0.392	0.208	0.590	36	High
Kupe virus		0.391	0.160	0.642	37	High
Lone star densovirus 1	tick	0.391	0.221	0.654	38	High
Blacklegged phlebovirus 3	tick	0.371	0.195	0.640	39	High
Pacific coast nairovirus	tick	0.370	0.197	0.656	40	High
Clo Mor virus		0.364	0.149	0.600	41	High
Sakhalin virus		0.345	0.177	0.657	42	High
Tyuleniy virus		0.340	0.160	0.739	43	High
Meram virus		0.335	0.196	0.574	44	High
Jos virus		0.333	0.159	0.579	45	High
Midway virus		0.327	0.163	0.609	46	High
lone star virus		0.326	0.166	0.567	47	High
Norway phlebovi	rus 1	0.323	0.138	0.559	48	High
Tofla virus		0.323	0.198	0.601	49	High
Tacheng tick virus	5 7	0.318	0.175	0.511	50	High
New Minto virus		0.318	0.168	0.526	51	High
Bourbon virus		0.311	0.164	0.497	52	High
Suffolk virus		0.309	0.151	0.562	53	High
Silverwater virus		0.307	0.156	0.537	54	High
Heartland virus		0.305	0.135	0.520	55	High
Dera Ghazi Khan	virus	0.299	0.150	0.493	56	High
Hunter Island viru	ıs	0.299	0.153	0.528	57	High
Great Saltee virus	5	0.299	0.168	0.543	58	High
Bhanja virus		0.298	0.161	0.446	59	High
Blanchseco virus		0.295	0.153	0.500	60	High
Thailand thogotovirus	tick	0.286	0.135	0.436	61	Medium
Wuhan tick virus	1	0.280	0.145	0.461	62	Medium
Gadgets Gully vir	us	0.277	0.152	0.583	63	Medium
Soldado virus		0.277	0.164	0.450	64	Medium
Abu Hammad viru	JS	0.275	0.138	0.471	65	Medium
Kadam virus		0.275	0.134	0.602	66	Medium
Tacheng tick virus	5 1	0.272	0.134	0.514	67	Medium
Zirqa virus		0.269	0.146	0.439	68	Medium
Bole tick virus 2		0.267	0.141	0.466	69	Medium
Qalyub virus		0.264	0.112	0.444	70	Medium

Avalon virus	0.259	0.119	0.449	71	Medium
Genoa virus	0.259	0.131	0.430	72	Medium
Upolu virus	0.258	0.130	0.419	73	Medium
Blacklegged tick chuvirus 2	0.258	0.137	0.453	74	Medium
Long Island tick rhabdovirus	0.257	0.118	0.473	75	Medium
Taishun tick virus	0.256	0.131	0.394	76	Medium
Kemerovo virus	0.255	0.100	0.425	77	Medium
Wuhan tick virus 2	0.253	0.133	0.460	78	Medium
Raza virus	0.250	0.139	0.432	79	Medium
Tillamook virus	0.248	0.118	0.495	80	Medium
New Kent County virus	0.246	0.132	0.359	81	Medium
lssyk-kul virus	0.235	0.105	0.343	82	Medium
Zahedan rhabdovirus	0.234	0.119	0.386	83	Medium
Tacheng tick virus 3	0.232	0.106	0.382	84	Medium
Tunis virus	0.232	0.105	0.369	85	Medium
Tacheng tick virus 5	0.232	0.131	0.359	86	Medium
Sawgrass virus	0.231	0.122	0.403	87	Medium
Changping tick virus 2	0.226	0.111	0.410	88	Medium
Nyamanini virus	0.222	0.123	0.394	89	Medium
Dhori virus	0.222	0.114	0.498	90	Medium
Vinegar Hill virus	0.221	0.118	0.367	91	Medium
Huangpi tick virus 3	0.217	0.106	0.347	92	Medium
Huangpi tick virus 1	0.216	0.102	0.399	93	Medium
Meaban virus	0.216	0.100	0.445	94	Medium
Hazara virus	0.216	0.125	0.419	95	Medium
Punta Salinas virus	0.212	0.102	0.433	96	Medium
Wuhan mivirus	0.212	0.108	0.382	97	Medium
Laurel Lake virus	0.209	0.085	0.324	98	Medium
Canine circovirus	0.208	0.101	0.361	99	Medium
Matruh virus	0.203	0.111	0.311	100	Medium
Connecticut virus	0.201	0.098	0.376	101	Medium
Sapphire II virus	0.197	0.098	0.319	102	Medium
Tacheng tick virus 6	0.197	0.093	0.368	103	Medium
Changping tick virus 3	0.195	0.085	0.331	104	Medium
Saumarez Reef virus	0.194	0.098	0.371	105	Medium
Abu Mina virus	0.193	0.101	0.355	106	Medium
Tarumizu tick virus	0.192	0.104	0.339	107	Medium
Eyach virus	0.192	0.103	0.362	108	Medium
Barur virus	0.191	0.091	0.347	109	Medium
Bahig virus	0.190	0.092	0.324	110	Medium
Sierra Nevada virus	0.186	0.080	0.329	111	Medium

Wad Medani virus	0.186	0.105	0.401	112	Medium
Kundal virus	0.184	0.095	0.312	113	Medium
Chobar Gorge virus	0.178	0.096	0.337	114	Medium
African swine fever	0.175	0.082	0.311	115	Medium
virus	0.475	0.000	0.040	110	5.4 J.
Faralion virus	0.175	0.088	0.312	116	Medium
Oz virus	0 174	0 089	0 283	117	Low
Nairohi sheen disease	0.173	0.091	0.200	118	Medium
virus	0.175	0.091	0.524	110	Wedium
Keterah virus	0.169	0.089	0.314	119	Medium
Estero Real virus	0.167	0.087	0.315	120	Medium
Geran virus	0.165	0.082	0.282	121	Low
Bole tick virus 4	0.164	0.081	0.315	122	Medium
Caspiy virus	0.164	0.081	0.281	123	Low
Burana virus	0.163	0.080	0.279	124	Low
Artashat virus	0.162	0.085	0.278	125	Low
Hughes virus	0.161	0.085	0.267	126	Low
Tacheng tick virus 4	0.158	0.071	0.257	127	Low
St Croix River virus	0.153	0.076	0.264	128	Low
Bandia virus	0.148	0.077	0.245	129	Low
Chenuda virus	0.146	0.079	0.226	130	Low
Kolente virus	0.142	0.072	0.241	131	Low
Yongjia tick virus 2	0.132	0.057	0.219	132	Low
Bole tick virus 3	0.131	0.051	0.231	133	Low
Avian-like circovirus	0.126	0.056	0.216	134	Low
Fennes virus	0.077	0.025	0.157	135	Low

Appendix Figure 1. Workflow of detecting viral RNA-dependent RNA polymerase sequences. (1) ORFs were translated using ORFfinder (cut-off 200 aa). The translated sequences were predicted using the InterProScan-5.55-88.0 (--minsize 600; -goterms). (2) BLASTx using Diamond v2.0.14.152 against both non-redundant protein database and RdRp-scan database (-e 1e-5 --min-orf 600 --very-sensitive). (3) ORFs were translated using ORFfinder (cut-off 200 aa). Redundant sequences were then removed using CD-HIT v4.6.8 at 90% level of identity (-c 0.98 sequence identity threshold). Remaining sequences were scanned using HMMer3 v3.2.1 against RdRp HMM profile database (full sequence e-value 1e-06). HMM-RdRp hits were compared against PDB using Phyre2 server. In total, 31 RdRp-like candidates from SRA and TSA databases were found using RdRp-scan and InterProScan after removing duplicates. (4) RdRp motifs were mapped to candidate sequences using Geneious v2022.1. RdRp-scan database, RdRp HMM profile database, RdRp motifs database, RdRp key word lists were obtained from Charon et al. (77) (https://github.com/JustineCharon/RdRp-scan).

Appendix Figure 2. Phylogenetic relationship of the novel Orthomyxo-like viral contigs. Maximum clade credibility tree was inferred from the Bayesian posterior sample. Putative novel viral contigs found in the present study are shown in red, and previously known tick-borne viruses are shown in blue.

Appendix Figure 3. Phylogenetic relationship of the novel Alphatetra-like viral contigs. Maximum clade credibility tree was inferred from the Bayesian posterior sample. Putative novel viral contigs found in the present study are shown in red, and previously known tick-borne viruses are shown in blue.

Appendix Figure S4. Phylogenetic relationship of the novel Chu-like viral contigs. Maximum clade credibility tree was inferred from the Bayesian posterior sample. Putative novel viral contigs found in the present study are shown in red, and previously known tick-borne viruses are shown in blue.