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Abstract 17 
Ascetosporeans are parasitic protists of invertebrates. As only two species of Mikrocytida, an 18 
ascetosporean subgroup, have ever been sequenced deeply and analyzed using cells isolated from 19 
infected organisms, it was shown that their mitochondria are functionally reduced and the organellar 20 
genome is lacking. However, molecular studies on other ascetosporeans have not been conducted, and 21 
whether reduced mitochondria is common in ascetosporeans remains unclear. In the present study, we 22 
established two cultures of Paradinida, another ascetosporean subgroup, and reconstructed their 23 
mitochondrial genomes. As they were compared with their RNA-seq data, massive A-to-I and C-to-U 24 
types of RNA editing were detected. Many editing sites are shared between two paradinids, but strain-25 
unique sites also exist. As the mitochondrial genes are involved in the electron transfer system, their 26 
mitochondria are not functionally reduced, unlike that in Mikrocytida. Furthermore, we detected 27 
adenosine deaminase acting on RNA (ADAR), which is a key enzyme of A-to-I substitution, in 28 
paradinids as well as several other protists. Immunostaining showed that this ADAR is specifically 29 
localized in the mitochondria of paradinids, suggesting that A-to-I substitution in paradinid 30 
mitochondria is mediated by ADAR. These findings elucidated the functional diversity and 31 
evolutionary process of ascetosporean mitochondria as well as ADAR. 32 
 33 
  34 
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Introduction 35 
Ascetosporea (ascetosporeans) is a class of Endomyxa, Rhizaria, and all its species are 36 

parasites of invertebrates. Their cell cultures do not exist, and the life cycle of ascetosporeans is still 37 
unclear1,2. As some of their members cause serious damage to aquacultures, they are also important 38 
research targets in fishery sciences3-5. While five major groups are recognized in Ascetosporea, only 39 
two species of Mikrocytida have ever been sequenced deeply and analyzed using cells isolated from 40 
infected oysters and crabs6, 7. Pioneering studies showed that their mitochondria are functionally 41 
reduced to mitochondrion-related-organelles (MRO), and their organellar genomes are lacking. 42 
However, in-depth studies on other ascetosporeans have not been conducted yet, and whether MRO 43 
is common in ascetosporeans as a whole remains unclear. 44 

RNA editing is an essential cellular function, resulting in RNA modification. Several types 45 
of RNA editing have been reported, and they play an important role in the alteration of functional 46 
proteins and non-coding RNA8. Adenosine-to-inosine (A-to-I) substitution is likely the most studied 47 
form of RNA editing. This type of RNA editing is mediated by adenosine deaminase acting on RNA 48 
(ADAR) in the metazoan nucleus, and ADAR mutations are associated with several diseases in 49 
humans, including prostate cancer and amyotrophic lateral sclerosis9-11. The absence of ADAR in the 50 
genomes of fungi and early branching opisthokonts suggests that ADAR evolved from adenosine 51 
deaminase acting on tRNA (ADAT), which is conserved in all eukaryotes derived from the metazoan 52 
ancestor, and then diversified into several subfamilies acquiring several functional motifs and 53 
domains in the metazoan evolution12. Although ADAR was exceptionally reported from 54 
Symbiodinium spp.13, its origin and evolution are poorly understood. A-to-I type of RNA editing has 55 
been reported from the mitochondria of several protists, such as diplonemids,14, 15 and 56 
dinoflagellates16; however, their mediating mechanisms were not understood.  57 

In the present study, we established clonal cultures of Paradinida, which is another subgroup 58 
of Ascetosporea, and their mitochondrial genomes were sequenced. By analyzing them with their 59 
RNA-seq data, it was revealed that massive RNA editing occur in their mitochondria and they have 60 
ADAR targeting into mitochondria. As the mitochondrial function of Paradinida was predicted not to 61 
be reduced, there is diversity about mitochondrial structure and function in Ascetosporea. Further, 62 
mitochondrial targeting ADAR, which has never been expected, also illuminated the origin and 63 
functional diversity of RNA editing medicated by ADAR. 64 

 65 
Materials and Methods 66 
Sample acquisition and culturing 67 

Initial water samples were collected from Tokyo and Suruga Bay (Table S1). A small aliquot 68 
of each sample was added to Hemi medium17 with a 5-µl/ml antibiotic cocktail (P4083, Merck, 69 
Darmstadt, Germany) and incubated under dark conditions at 19–20 °C. From the incubated samples, 70 
cultures of FC901 and SRM-001 were established by isolating a single cell using a glass 71 
micropipette, and the cultures were axenically maintained by inoculation in Hemi medium without 72 
antibiotics at 19–20 °C under dark conditions every two weeks. The absence of contaminating 73 
bacterial cells in the culture (i.e., axenic culture) was confirmed by careful microscopic observation 74 
and PCR using the extracted total DNA with universal bacterial primer set, i.e., 27f18 and 1492r19. 75 
Microscopy 76 

Living cells of Paradinida spp. FC901 and SRM-001 were observed under a BX43 77 
microscope (Olympus, Tokyo, Japan) equipped with a digital 4K camera, FLOYD-4K (Wraymer, 78 
Osaka, Japan). For scanning electron microscopy, the axenic cells that grew on a glass slide were 79 
fixed with 2.5% glutaraldehyde in the cultivation medium at 4 °C. The fixed cells were washed with 80 
0.22-µm-filtered artificial seawater (FASW; 3.5% Rei-Sea Marine II; Iwaki Co. Ltd., Tokyo, Japan) 81 
and then postfixed with 2.0% osmium tetroxide dissolved in FASW for 2 h. The postfixed cells were 82 
dehydrated using a graded ethanol series, dried with a JCPD-5 critical point drying device (JEOL, 83 
Akishima, Japan), then coated with osmium using an OPC-80 osmium coater (Filgen, Nagoya, 84 
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Japan). The specimens were imaged using a field-emission scanning electron microscope (Quanta 85 
450 FEG; Thermo Fisher, Waltham, MA) operating at 5 kV. 86 
Sequencing analyses 87 

Approximately 200 ml of mid-exponential phase cell cultures of Paradinida spp. FC901 and 88 
SRM-001 were centrifuged at 2,400 × g for 5 min. The cell pellets were frozen and sent to the 89 
sequencing company (Azenta, Tokyo, Japan), and the library reconstruction and sequencing analyses 90 
were conducted using default settings. The details of the analyses and the sequence outputs are 91 
summarized in Table S2. 92 

The raw fastq data of DNA-seq were divided into 100 subsets using SeqKit20, and three 93 
subsets of each strain were subjected to the contig assembly using SPAdes 3.1321 with default 94 
settings. From each assembly data, a single possible mitochondrial genomic fragment was detected 95 
by BLASTN using the mitochondrial genome sequence of Ophirina amphinema (GenBank accession 96 
number: LC369600.1) as the query sequence. The detected sequences were identical among three 97 
subset analyses of each strain, while the starting position of each sequence differed. By comparing 98 
these sequences, a circular mitochondrial genome of FC901 and SRM-001 was reconstructed. The 99 
same assembly analyses were also conducted using the RNA-seq data. The obtained mitochondrial 100 
sequences, which were reconstructed from RNA-seq data, were subjected to annotation using 101 
MFannot (https://megasun.bch.umontreal.ca/apps/mfannot/) and compared with those assembled 102 
from DNA-seq data using Mesquite 3.1022. 103 

For analyzing the transcriptome data, three RNA-seq datasets of Paradinida sp. FC901 were 104 
combined into a single dataset. The fastq data of each strain were subjected to contig assembly using 105 
SPAdes 3.1321 with the ‘--rna’ option. From the reconstructed contigs, their ADAR and ADAT 106 
sequences were searched by TBLASTN using the ADAR sequence of Symbiodinium 107 
microadriaticum (OLQ07757; E-value cut-off was set to 10−10). We also searched publicly available 108 
sequencing data (Table S3) for ADAR and ADAT sequences of other protists using the same 109 
approach. The detected sequences (e.g., ADAR and ADAT of Phaeodactylum tricornutum) were also 110 
used as the query in further searches for identifying more ADARs and ADATs. The obtained 111 
sequences were aligned with those of the metazoan ADARs and ADATs and then subjected to 112 
automated alignment using MAFFT v 7.471 with the ‘L-INS-’ option23,24. The aligned sequences 113 
were masked for the phylogenetic analysis using trimAl v1.4 with the ‘strict’ option25. This initial 114 
dataset contained all the detected sequences, including the partial short and highly divergent 115 
sequences, and only 94 positions were included in the phylogenetic analysis. The tree topology and 116 
branch lengths were inferred using the maximum likelihood (ML) methods using IQ-TREE 2.2.026 117 
with the LG+F+I+G4 model. The robustness of the ML phylogenetic tree was evaluated using a non-118 
parametric ML bootstrap analysis with the LG+F+I+G4 model (100 replicates). We also conducted 119 
Bayesian phylogenetic analysis with the CAT + GTR model using PhyloBayes MPI v. 1.8a27,28. The 120 
analysis included two Markov chain Monte Carlo runs of 100,000 cycles with a ‘burn-in’ of 25,000 121 
cycles. The consensus tree with branch lengths and Bayesian posterior probabilities were calculated 122 
from the remaining trees. Based on these findings, we revised the main dataset, excluding 14 partial 123 
and divergent ADAR sequences from an initial alignment. The main dataset was prepared using the 124 
same method used for the initial dataset and comprised 209 positions. The same methods were used 125 
to infer the phylogenetic tree and statistical support. Of the newly detected ADAR sequences, 12 126 
sequences were retained in the main dataset and were subjected to motif identification by HMMER 127 
3.3 (http://hmmer.org) along with the ADAR of Paradinida sp. FC901 against the Pfam database29. 128 

The 18S rRNA gene sequences of Paradinida sp. FC901 and SRM-001 were determined 129 
using the DNA that was extracted with Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) 130 
from 20 ml of culture. The primers used were Euk1A30 and EukB31. The sequences were added to the 131 
alignment that was created based on the method proposed by Ward et al.32 and aligned using MAFFT 132 
v 7.471 with the default settings. The ML tree with the non-parametric bootstrap analyses of 1,000 133 
replicates and the Bayesian tree were reconstructed using the same methods described earlier33. 134 
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Western blot analysis 135 
Approximately 200 ml of mid-exponential phase cell culture of Paradinida sp. FC901 was 136 

centrifuged at 2,400 × g for 5 min. The cell pellet was frozen and sent to Genostuff Co. Ltd. (Tokyo, 137 
Japan), where the following experiments were conducted. 138 

The frozen cell pellet was homogenized in RIPA buffer (Fujifilm, Osaka, Japan) containing 139 
1/100 (v/v) in a final volume of Protease Inhibitor Cocktail (Merck) for 30 min at 4 °C. After 140 
centrifugation at 18,000 × g for 5 min at 4 °C; the aqueous phase was recovered and utilized as the 141 
initial protein assay. The volume of the extracted proteins was measured using a BCA Protein Assay 142 
Kit (Thermo Scientific). The proteins (30 µg) were mixed with sample buffer (Thermo Scientific) 143 
and Sample Reducing Agent (Thermo Scientific) and then separated by 5% to 20% gradient 144 
polyacrylamide gel electrophoresis. The separated proteins were transferred onto a PVDF membrane 145 
(ATTO, Tokyo, Japan) and blocked for 1 h at room temperature with 0.1% TBST buffer containing 146 
5% skimmed milk powder. The blotted membrane was incubated overnight at 4 °C with a polyclonal 147 
anti-ADAR antibody HPA051519 (Merck) diluted 1:500 with 0.1% TBST containing 5% BSA at 148 
final concentration. The membrane was washed four times in 0.1% TBST buffer and incubated for 1 149 
h at room temperature with anti-rabbit IgG conjugated to HRP-linked antibody #7074 (Cell 150 
Signaling Technology, Danvers, MA) diluted 1:5,000 with 0.05% TBST containing 5% skimmed 151 
milk. After the membrane was rewashed four times in 0.05% TBST buffer, the bound antibodies 152 
were visualized using Immobilon (Merck) and recorded on C-DiGit (LI-COR, Lincoln, NE). 153 
Fluorescence assay 154 

The cells of Paradinida spp. FC901 and SRM-001 were fixed with 4% paraformaldehyde in 155 
cultivation medium, centrifuged at 2,400 × g for 5 min, and then embedded in 1% agarose in FASW. 156 
The cells in the agarose gel were washed with FASW, dehydrated in a graded series of ethanol (30%, 157 
50%, 70%, 90%, and 100%), and embedded in Technovit 8100 resin (Mitsui Chemicals, Tokyo, 158 
Japan) at 4 °C. Semi-thin sections (approximately 1-μm-thick) were cut using a glass knife mounted 159 
on an Ultracut S ultra-microtome (Danaher, Washington DC) and collected on a glass slide. The cell 160 
sections were treated with 2% block ace (KAC Ltd., Kyoto, Japan) in 1× PBS for 20 min at room 161 
temperature and then incubated with the anti-ADAR antibody HPA051519 (Merck) diluted 1:200 162 
with PBS for 12 h at 37 °C. After incubation, the sections were incubated again with CF565-163 
conjugated goat anti-rabbit IgG secondary antibody (1:200 dilution in PBS; Nacalai Tesque, Kyoto, 164 
Japan) for 2 h at room temperature and then stained with 1 μM Mito View Green solution (Biotium, 165 
Fremont, CA) and 4′,6-diamidino-2-phenylindole (DAPI) for 30 and 5 min, respectively. The 166 
sections were observed using a BX-51 light and fluorescence microscope (Olympus) with UV (Ex, 167 
330–385 nm; Em, > 400 nm), FITC (Ex, 470–495 nm; Em, 510–550 nm), and CY3 (Ex, 530–570 168 
nm; Em, 573–648 nm) filter sets for DAPI, antibodies, and Mito View Green, respectively. 169 

The living cells of Paradinida sp. FC901, as a representative paradinid, were stained with 1 170 
μM Mito View Green solution (Biotium) and DAPI on a glass slide for 30 min and 5 min, 171 
respectively, and observed using a BX-51 light and fluorescence microscope with UV and FITC filter 172 
sets. 173 
 174 
Results and Discussion 175 
Paradinid culture, mitochondrial genome, and RNA editing 176 

Two ascetosporean amoebae, namely, Paradinida sp. FC901 and Paradinida sp. SRM-001 177 
(Fig. 1, Fig. S1, S2), were established as clonal and axenic cultures. They phylogenetically belong to 178 
Paradinida (paradinids), Ascetosporea, Rhizaria, in the 18S rRNA gene tree (Fig. 1). All species 179 
belonging to Ascetosporea are known to be parasitic organisms; thus, Paradinida sp. FC901 and 180 
SRM-001 may also exhibit parasitism in natural environments, as do other ascetosporean species. 181 
However, any specific details, including their host organism(s), remain unknown. As Paradinida spp. 182 
FC901 and SRM-001 are the first ascetosporean cultures, and they are maintained axenically; 183 
substantial progress has been achieved in the process of obtaining data from ascetosporean parasites. 184 
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By analyzing DNA-sequencing (seq) data, circular mitochondrial genomes were successfully 185 
reconstructed, and their lengths were 23,048 and 20,099 bp in FC901 and SRM-001, respectively 186 
(Fig. 2A). However, the coding regions in their genomes are finely fragmented by many unexpected 187 
stop codons, suggesting that they are either pseudogenes or involved in RNA editing. Hence, to 188 
confirm these possibilities, RNA-seq on both paradinids was conducted, and the obtained data were 189 
compared with DNA-seq data. The results of sequence comparison showed many adenosines and 190 
cytidines were switched to guanosines and uridines in RNA-seq data, respectively (Fig. 2B). As A-191 
to-I substitution is the most common type of RNA editing and inosine is recognized as guanosine in 192 
reverse transcription, we considered that the paradinids also possess A-to-I substitutions in addition 193 
to C-to-U substitution in their mitochondria. Interestingly, many substitution sites are shared between 194 
FC901 and SRM-001, indicating that many of the editing sites existed previously in their common 195 
ancestor. Nonetheless, several strain-unique editing sites also existed (Fig. 2B), indicating that the 196 
acquisition of additional editing sites still progresses or progressed until just recently. All genes 197 
except trnH and orf179 have editing sites, while the rate of editing varies among the genes (Fig. 2B). 198 
A-to-I substitution is more abundant than C-to-U substitution in all genes and the gene with the 199 
highest rate is atp9 of SRM-001 (7.89%). The rate in all coding regions is 2.08% in FC901 and 200 
2.37% in SRM-001 (see Supplementary Information; Table S4), which are values comparable to 201 
those of other protists possessing organellar RNA editing34-37, but much lower than the highest rate 202 
(12.7%) of a diplonemid Namystynia karyoxenos38. As any conserved and/or pattern sequences 203 
around the editing sites could not be detected, it is entirely unclear how those sites are specifically 204 
recognized for editing. 205 

The gene repertory in the mitochondrial genome of the two paradinids is very similar, but 206 
nad6 was only detected from SRM-001 (Fig. 2A, C). As only four species of tRNA (i.e., trnH, trnY, 207 
trnW, and trnM) are encoded on their mitochondrial genomes, we considered that other tRNA species 208 
were encoded on their nuclear genomes and transported into the mitochondria, as reported in other 209 
protistse.g., 39-42. The number of protein-coding genes is 13 in FC901 and 14 in SRM-001, and all of 210 
them have been reported from the mitochondrial genomes of other rhizarians sequenced previously 211 
(Fig. 2C); these genes are all functionally involved in the electron transport chain. Notably, because 212 
the genes coding for proteins seen in complex I, III, IV, and V were detected, we believe that the 213 
mitochondria of paradinids have a normal function to synthesize ATPs, and they are not functionally 214 
reduced to MROs, which is not consistent with that of Mikrocytida6,7. The function of ascetosporean 215 
mitochondria, including MRO, may be different, lineage by lineage, by the level of adaptation to the 216 
parasitic lifestyle. 217 
Detection of ADAR in paradinids and possible origin in LECA 218 

A-to-I and C-to-U substitution types of RNA editing are found in not only protein-coding 219 
genes but also structural genes of paradinids. These types of RNA editing are also reported from 220 
diplonemids38, but the editing in the transfer RNAs is unique in paradinids. Since paradinids and 221 
diplonemids are phylogenetically distant from each other, their RNA editing was likely established 222 
independently. The mechanisms involved in RNA editing of diplonemids have not yet been 223 
elucidated, and the roles of key enzymes, i.e., ADAR for A-to-I substitution and APOBEC for C-to-U 224 
substitution, are not understood. By contrast, we successfully detected ADAR sequences from 225 
paradinids using TBLASTX (E-value cut-off was set to 10−10) with a Symbiodinium ADAR sequence 226 
(OLQ07757) as the query. APOBEC was not found in the paradinids investigated in this study. 227 
Furthermore, as we searched for ADAR sequences from the publicly available sequencing data 228 
(Table S3), 28 possible ADAR sequences from 24 protist species in total were detected. Since 14 out 229 
of the 28 sequences were partial and/or highly divergent, their assignment as ADAR is not yet 230 
conclusive. By contrast, the other 14 sequences from 13 protists, including two paradinids, form a 231 
clade with moderate statistical support, while the sister relationship between protistan ADARs and 232 
the metazoan ADARs is not well supported (Fig. 3). In addition to this phylogeny, ADAT can be 233 
found in 7 of 11 protist species that possess ADAR (Table S3). Although the double-strand RNA 234 
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binding motif, a key motif of metazoan ADARs, is absent from protistan ADARs (Fig. S3), they can 235 
be distinguished from ADAT, and it is reasonable to consider that protistan ADARs belong to the 236 
ADAR family. As the protists possessing ADAR belong to phylogenetically divergent lineages, 237 
ADAR likely evolved much earlier in the history of eukaryotes than previously thought and may 238 
have originated in the LECA. The secondary loss of ADAR possibly occurred independently at the 239 
base of fungi, as fungi do not have ADAR43. 240 
Subcellular localization of paradinid ADAR and its role in mediating mitochondrial RNA editing 241 

It may be reasonable to consider that paradinid ADAR is involved in mitochondrial RNA 242 
editing; however, the specific ADAR in mitochondrion has not been reported to date. All of the 243 
ADAR for which subcellular localization was studied belong to metazoans, and they are all localized 244 
in the nucleus except for a single isoform found in the cytosol. The structures stained by anti-human-245 
ADAR antibody HPA051519 clearly overlap with the mitochondria stained by MitoView (Fig. 4A-F) 246 
in two paradinids; western blotting analysis was used to study its specificity for the extracted 247 
proteins of FC901 (Fig. S4). The structures stained by MitoView are also consistent with the 248 
distribution pattern of the mitochondria stained by MitoTracker (Fig. S5). These findings are very 249 
consistent with the fact that A-to-I substitutions occur in the mitochondria of paradinids; hence, we 250 
consider these ADARs probably contribute to RNA editing in their mitochondria. 251 

The subcellular localization and function of other protistan ADARs remain unclear. Of the 252 
protists possessing ADAR, only dinoflagellates, diplonemids, and paradinids possess A-to-I 253 
substitution in their mitochondrial genes14-16. Although the mitochondrial genome of the other 254 
protists that was shown to have ADAR in this study has already been reported44-46, the possible 255 
existence of A-to-I substitution in their mitochondria was neither detected nor suggested. Their 256 
ADARs might contribute to the editing of non-coding RNA in their mitochondria; however, it may 257 
be more reasonable to consider that their ADARs function in the nucleus, as do the metazoan 258 
ADARs. Ancestral paradinids’ ADAR may also have been localized in the nucleus and then 259 
underwent changes to function in the mitochondrion. As we could not detect ADAR from the nucleus 260 
of paradinids, the original function of ADAR in paradinids’ nucleus may have not been crucial. 261 

 262 
Collateralization of life for diversification (COLD) hypothesis explains the advantage of complex 263 
mitochondrial RNA editing 264 

The RNA editing in paradinids’ mitochondria is very complex with respect to the number of 265 
editing sites. More than 2% of the total coding region is involved in the editing process. If the 266 
mitochondrial genomes only encode proteins that do not require RNA editing, the underlying 267 
processes and molecular machineries for RNA editing are unnecessary. Paradinids rather seem to 268 
have survival constraints in possessing RNA editing; paradinids must keep their organellar editing 269 
function to have operational proteins in their mitochondria. This complex characteristic from which 270 
adaptive advantages cannot be explained may have been established due to constructive neutral 271 
evolution (CNE). CNE posits that complexity can increase for a long period, even if the complexity 272 
itself is neutral or slightly negative for the survival of each organism47, 48. However, here, we found 273 
and proposed a possible indirect advantage to possess organellar RNA editing. 274 

While organellar RNA editing may be just extra steps for usual gene expression, the protists 275 
possessing it (e.g., diplonemids and paradinids) are distributed with high lineage diversity in oceans 276 
32,49. In other words, they succeeded in diversifying, and we can, thus, hypothesize that organellar 277 
RNA editing may have partially contributed to their diversification. Mutations in any kind of genome 278 
always occur with a certain probability. If a lethal mutation occurs in the mitochondrial genome, the 279 
individual carrying such a mutation cannot survive. However, if the organism has RNA editing 280 
activity in the mitochondria and can mitigate the effects of such lethal mutations by RNA editing, 281 
then such mutations may not be lethal. In the case of paradinids, some mutations, which are lethal 282 
and involved in the substitution of adenosines or cytidines from other nucleotides, can be masked by 283 
RNA editing activity. Although that organism must keep the RNA editing function for survival, the 284 
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lethal mutation in the mitochondrial genome is less of a constraint factor for the survival and 285 
diversification of that organism and its descendants. However, as the constraint on the mutation gets 286 
relaxed in the organismal lineage, the complexity (i.e., the number of editing sites) continues to 287 
increase, and it is impossible to return to the original non-complex state. Until the day when the 288 
complexity reaches a limitation, RNA editing can mask some of the lethal mutations in the 289 
mitochondrial genome and help organismal diversification. However, when the complexity reaches a 290 
plateau and the RNA molecules cannot be modified by the existing mechanisms, the organisms 291 
cannot survive any longer. In other words, the organisms possessing the organellar RNA editing may 292 
have some advantage for diversification instead of stocking the potential risk for future extinction 293 
(Fig. 5). Here, we propose this evolutionary scenario as the COLD hypothesis. The COLD 294 
hypothesis is based on CNE but differs from CNE as an adaptive indirect advantage is found in a 295 
limited time. Although the corrective function of RNA editing was also indicated in the previous 296 
studies e.g., 37, the link between its function and organismal diversification has not been discussed. In 297 
the long history of this planet, the diversification and extinction of various organisms have occurred 298 
continuously, and some of these events might be explained by the COLD hypothesis. 299 
 300 
Data availability 301 
Mitochondrial genomes for Paradinida spp. FC901 and SRM-001 are available under GenBank 302 
accession numbers LC733240 and LC733241, respectively. The raw sequencing data for genome 303 
reconstruction and confirmation of RNA editing is available under GenBank BioProject accession 304 
number PRJDB14367. Their 18S rRNA gene sequences are available under GenBank accession 305 
numbers LC730879 (FC901) and LC730880 (SRM-001). The ADAR sequences that were newly 306 
detected and analyzed in this study as well as the datasets, can be found in online repositories, Dryad 307 
https://doi.org/10.5061/dryad.mcvdnck4z. 308 
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Figure legends 447 
Figure 1. Phylogenetic tree of endomyxean 18S rRNA gene sequences with light microscopic 448 
images of Paradinida spp. FC901 and SRM-001. Only maximum likelihood (ML) bootstrap values > 449 
50% are shown. The branches supported by > 0.95 of Bayesian posterior probability are shown in 450 
bold lines. 451 
 452 
Figure 2. Summary of mitochondrial genome of FC901 and SRM-001 A. The mitochondrial genome 453 
map of Paradinida spp. FC901 and SRM-001. Protein-coding regions are shown in pale blue. 454 
Transfer RNA genes and other structural RNA genes (i.e., rns and rnl) are shown in green and gray, 455 
respectively. B. Summary of the RNA editing found in the mitochondria of FC901 and SRM-001. 456 
The left bars indicate the editing rate of each gene detected on the mitochondrial genome of FC901 457 
and SRM-001. Blue, orange, gray, and yellow bars indicate the rate of A-to-I substitution in FC901 458 
and SRM001 and the rate of C-to-U substitution in FC901 and SRM-001, respectively. Right-side 459 
bars indicate the length of each gene, and the editing sites are indicated by red (A-to-I substitution) 460 
or green (C-to-U substitution) vertical lines. The editing sites shared by FC901 and SRM-001 are 461 
indicated by the single connecting lines. C. Venn diagram summarizing the protein-coding genes on 462 
the mitochondrial genomes of related rhizarians. Only nad6 is absent on the mitochondrial genome 463 
of FC901 but exists on that of SRM-001. 464 
 465 
Figure 3. Phylogenetic tree of eukaryotic adenosine deaminase acting on RNA (ADAR) rooted with 466 
eukaryotic adenosine deaminase acting on tRNA (ADAT). 467 
The maximum likelihood (ML) trees inferred from ADAR–ADAT alignments are shown. ADAT 468 
sequences (and branches) are brown. Metazoan ADAR is blue, and protistan ADAR is light green. 469 
Only ML bootstrap values/Bayesian posterior probabilities equal to or > 50%/0.90 are shown. 470 
 471 
Figure 4. Subcellular localization of paradinid’s ADAR. A-F: FC901, G-L: SRM-001. Cell sections 472 
are stained by DAPI (A, G), anti-ADAR antibody (B, H) and Mito View (C, I). Differential 473 
interference contrast image of cell sections (F, L). D. Merged view of Fig. 4A–C. E. Merged view of 474 
Fig. 4A–C and F. J. Merged view of Fig. 4G–I. K. Merged view of Fig. 4G–I and L. Bars = 10 µm. 475 
 476 
Figure 5. Schematic summary of the COLD hypothesis. LECA, last eukaryotic common ancestor; 477 
LCAE last common ancestor of endomyxeans; LCAP, last common ancestor of paradinids. White 478 
circles indicate the occurrence of a lethal mutation in the mitochondrial genome. 479 
 480 
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