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Main Conclusion Cuscuta psorothamnensis and C. veatchii form a complex of allopolyploid species originating 

from independent, successive hybridization events between C. denticulata and C. nevadensis. 

 

Abstract  

Genus Cuscuta L. (Convolvulaceae) exhibits cases of hybridization and allopolyploidy. Section Denticulatae, 

subg. Grammica, includes four species: the allopolyploids, C. veatchii and C. psorothamnensis (2n = 60), which 

originated from two independent reticulation events between the diploids, C. denticulata and C. nevadensis (2n = 

30). The allopolyploids are morphologically similar, but are differing in their geographical distribution and host 

specificity. While cytogenetic data have been reported for C. veatchii, this study aims to provide a comparative 

analysis with C. psorothamnensis. To characterize the chromosomal complement of C. psorothamnensis and 

compare it with C. veatchii, we used CMA/DAPI banding, FISH, and GISH. The karyotypes of both species 

displayed similarity in chromosome number, size, and symmetry, and interphase nucleus organization. Both 

species exhibited a pair of 5S and 35S rDNA sites adjacent on the same chromosome. The number of 5S rDNA 

sites in C. psorothamnensis is variable, with some individuals displaying four, five, and six sites. Our results show: 

1) the chromosomal pair carrying adjacent 5S and 35S rDNA in C. denticulata is retained in the polyploids; 2) 

the loss of C. nevadensis rDNA sites occurred in both tetraploids; 3) C. psorothamnensis and C. veatchii are 

allopolyploids part of a species complex, originated from successive independent hybridization events between 

C. denticulata and C. nevadensis; and 4) C. psorothamnensis is probably more recent in origin than C. veatchii 

based on the degree of diploidization. This cytogenetic comparison allows us to understand the processes involved 

in the emergence of new polyploid species by hybridization. 
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Introduction 

Ancestral hybridization is a major evolutionary force, playing a prominent role in the speciation 

mechanisms of angiosperms (e.g., Stebbins 1958; Vriesendorp and Bakker, 2005; Stull et al. 2023). Reticulation 

may establish reproductive barriers and contribute to the emergence of characteristics that favor evolutionary 

success (Soltis and Soltis, 2009, Goulet et al. 2017). Many hybrids exhibit accelerated growth and robust 

reproductive rate, which provide an advantage to colonizing new habitats, and increase their likelihood of 

successful establishment (Goulet et al. 2017, Carvalho-Madrigal and Sanín, 2024). Allopolyploids are a common 

outcome of hybridization and may arise through the fusion of two unreduced gametes (Goulet et al. 2017). 

Subsequent to hybridization, discernible phenotypic changes may become apparent, characterized by intermediate 

morphological traits between the parental species (Albuquerque-Lima et al. 2024). In parallel, at the genomic 

level, processes such as genome homogenization or concerted evolution may occur, leading to the deletion of 

excess genetic copies or the fixation of genes with adaptive significance (Goulet et al. 2017; Borowska-

Zuchowska et al. 2022). Hybridization events can also generate genetic flow between the parental populations, 

because, if the hybrid is fertile, it can backcross with one or both parents, resulting in introgression. This process 

can further contribute to the adaptive success of hybrids, reinforcing characteristics such as accelerated growth 

and robust reproductive rate, explaining their capacity for successful colonization of new environments (Goulet 

et al. 2017; Carvalho-Madrigal and Sanín, 2024). 

Hybridization events lead to genomic changes that may involve the expansion of different classes of 

transposable elements, followed by loss of genome sequences. Some types of post-hybridization genomic changes 

are more commonly observed in natural hybrids, such as the loss of rDNA sites through the dosage compensation 

mechanism that can occur through unequal crossover, which causes the ribosomal cistron of one of the parents to 

be gradually eliminated (Anamthawat-Jonsoon 2001; Volkov et al. 2017; Li et al. 2021). The chromosomal-level 

detection of such losses can be accomplished through the application of fluorescence in situ hybridization (FISH) 

and genomic in situ hybridization (GISH) techniques (Jiang, 2019). GISH aids in identifying distinct chromosomal 

sets inherited from each parent involved in the hybrid origin of a species, thereby contributing to research on 

changes in ploidy levels and potential rearrangements (Silva and Souza 2013; Makonen and Ali, 2023).  

Cuscuta (dodders) comprises ca. 200 parasitic species with subcosmopolitan distribution (Yuncker 1932; 

Costea et al. 2015a) and great ecological (Press and Phoenix 2005) as well as economic significance (Lanini and 

Kogan 2005; Costea and Tardif 2006). The genus shows a remarkable cytogenetic variation, harboring both 

holocentric or monocentric chromosomes, karyotypes that vary from symmetrical to bimodal, as well as huge 

variations in the genome size (García and Castroviejo 2003; García et al. 2019; Ibiapino et al. 2022). This wide 

spectrum of cytogenetic traits within Cuscuta contributes to its adaptability and evolutionary success in diverse 

environments. 

Cuscuta is currently classified into four subgenera (García et al. 2014; Costea et al. 2015a), with subg. 

Grammica comprising ca. 75% of the species diversity (Stefanović et al. 2007). In addition to diploids with 2n = 

30, subg. Grammica has polyploids, mostly with 2n = 60, as well as the highest chromosome counts in the genus, 

for example 2n = 90 in C. vandevenderi Costea & Stefanović and 2n = 150 in C. sandwichiana Choisy (García et 

al. 2019; Ibiapino et al. 2022). Accompanying this high variation in chromosome numbers, at least 14 cases of 

independent interspecific hybridization events have been reported in subg. Grammica (Stefanović and Costea 

2009; Costea and Stefanović 2010; Costea et al. 2015b; García et al. 2014). 

Sect. Denticulatae Yunck. of subg. Grammica (Lour.) Peter includes four desert-growing species: C. 

denticulata Engelm., C. nevadensis I.M. Johnst. and C. psorothamnensis Stefanović, M.A. García & Costea 

distributed in Western U.S.A., and C. veatchii Brandegee found in central Baja California, Mexico (García et al. 

2018). This clade is well defined morphologically by the spherically enlarged radicular end of the embryo 

(Yuncker 1932; Costea et al. 2005), which was suggested to be an adaptation to vivipary and seed germination in 

the desert (Costea et al. 2005; Olszewski et al. 2020). Cuscuta denticulata and C. nevadensis are diploid species 

with a chromosome count of 2n = 30, whereas C. psorothamnensis and C. veatchii are allopolyploids exhibiting 

a chromosome count of 2n = 60 (García et al. 2018). Prior molecular phylogenetic studies of this group (Stefanović 

and Costea 2008; García et al. 2018) had revealed two cases of strongly supported topological incongruences 

between plastid- and nuclear-derived phylogenetic trees. These incongruences correspond to the two allopolyploid 

species, strongly suggesting their hybrid origin from the diploid progenitors. Cuscuta veatchii and C. 

psorothamnensis are similar morphologically, differing mainly in their geographical distribution and host 

specificity (García et al. 2018). 
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Previous cytogenetic and molecular analyses of C. veatchii revealed that none or very few nrITS 

polymorphisms were present, indicating a complete homogenization by concerted evolution to the rDNA type of 

C. nevadensis (García et al. 2018; Ibiapino et al. 2019). However, the cytogenetic profile of C. psorothamnensis 

has remained unexplored. Given that this group of species is an ideal model for studying speciation through 

recurrent reticulation accompanied by allopolyploidy, we continue the previous investigations with the following 

objectives: 1) to conduct a thorough cytogenetic characterization of C. psorothamnensis; 2) to compare the 

cytogenetic profile of this species with the existing characterization of C. veatchii to assess their cytogenetic 

similarity; and 3) to provide a comprehensive discussion on hybrid speciation within section Denticulatae. We 

anticipate that the two hybrid species, C. psorothamnensis and C. veatchii, share a substantial degree of 

cytogenetic similarity, while potentially displaying nuanced differences attributable to their likely separate origins 

and different ages. This study contributes to the broader understanding of hybridization-driven speciation and 

sheds light on the intricate evolutionary dynamics of dodders. 

 

Materials and Methods 

 

Sampling and material analyzed 

Seeds of C. psorothamnensis were collected from natural populations in Southern California where the 

species is endemic (Table 1). After scarification with concentrated sulfuric acid for 20–30 s, seeds were rinsed 

several times with distilled water, and placed on wet filter paper in Petri dishes to germinate. 

 

Slide preparation, CMA/DAPI banding, FISH and GISH 

Slide preparation was performed using the young shoot tips of seedlings. The material was pretreated 

with 8-hydroxyquinoline for 24 h at 10 °C, fixed in 3:1 (v/v) ethanol: acetic acid for 2–24h at room temperature, 

and stored at -20 °C. Subsequently, the material was washed in distilled water, digested in the enzyme Pectinex 

(Novozimes), and squashed in 60% acetic acid. Double CMA/DAPI staining was performed as described in 

Ibiapino et al. (2022). The images were captured with a COHU CCD camera attached to a Leica DMLB 

fluorescence microscope equipped with Leica QFISH software. After image capture, slides were destained for 30 

min in Carnoy and 1h in absolute ethanol and stored at -20°C. The destained slides were subjected to FISH 

according to the protocol detailed by Pedrosa et al. (2002). Two rDNA probes were used. For the 5S rDNA, the 

four pre-labelled oligos - PLOPs described by Warminal et al. (2018) were ordered from Macrogen end-labelled 

with Cy3. For the 35S, the pTa71 from wheat (25-28S, 5.8S, and 18S rDNA; Gerlach and Bedbrook, 1979) was 

labeled by nick translation with Alexa-dUTP (Thermo Scientific). 

For GISH, extractions of genomic DNA from C. denticulata and C. nevadensis were done according to 

the protocol of Doyle and Doyle (1987). The probes were labeled by nick translation with Cy3-dUTP (C. 

denticulata) or Alexa-dUTP (C. nevadensis). The two probes were used at the same time in the hybridization 

mixture following the same protocol described for fluorescent in situ hybridization (FISH). FISH and GISH 

pictures were obtained as previously described. The selected metaphases were used for chromosome measurement 

made in Adobe PhotoShop software version 22.3.0. 

 

Results 

All four C. psorothamnensis accessions analyzed exhibited 2n = 60 chromosomes. The cells selected to 

be presented in this work had its chromosomes measured and then the values found were averaged. Within these 

karyotypes, the chromosome size varied by a factor of 2.65, ranging from the smallest (1.44 µm) to the largest 

pair (3.83 µm), resulting in a total haploid chromosome length of 71.78 µm. The karyotypes displayed a consistent 

pattern across individuals, with two distinct sets, each consisting of 30 chromosomes. One set consisted of smaller 

chromosomes with CMA+/DAPI- bands in the pericentromeric regions, while the other set comprised larger 

chromosomes with CMA0/DAPI+ bands in the pericentromeric region (Fig. 1a, d, and g). The interphase nuclei 

showed dispersed chromatin with well-defined chromocenters scattered throughout the nucleus (Supplementary 

Fig. 1g, h and i). 

Fluorescent in situ hybridization (FISH) revealed two strongly labeled pairs of 5S rDNA sites and two 

pairs of 35S rDNA sites in all four accessions, and, in one chromosome pair, 5S and 35S rDNA were adjacent and 

colocalized with a secondary constriction (Fig. 1b). Some cells, particularly from accessions SS-16-12 and SS-
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16-13 (Table 1), exhibited one or two additional sites of 5S rDNA, although these extra sites were weakly labeled 

(Fig. 1e and h). All 35S rDNA sites colocalized with CMA+ bands (Fig. 1b, e, and h). 

Genomic in situ hybridization (GISH) revealed 30 chromosomes labeled with genomic DNA from C. 

denticulata and 30 chromosomes labeled with genomic DNA from C. nevadensis. Chromosomes stained with 

genomic DNA from C. denticulata exhibited staining mainly in pericentromeric regions, while chromosomes 

stained with genomic DNA from C. nevadensis exhibited a disperse staining in some chromosomes. Both probes 

showed stronger labeling in the pericentromeric regions of the chromosomes. Specifically, the pair of 

chromosomes with adjacent 5S and 35S rDNA was labeled with C. denticulata genomic DNA, while all other 

rDNA sites were labeled by C. nevadensis genomic DNA. 
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Table 1. Chromosomal number and number of rDNA sites of C. psorothamnensis. Vouchers are deposited at the herbaria of the University of Toronto Mississauga (TRTE) 

and Wilfrid Laurier University (WLU), Ontario, Canada. 

 

Species voucher Locality 2n 5S + 35S 

(total 

number) 

5S + 35S 

(adjacent 

sites only) 

C. psorothamnensis Stefanović, M.A. García & Costea      

Stefanović SS-16-11 California; Imperial Co., Hwy 98, E of 

Imperial Hwy, Ocotillo, 32° 43'29"N 115° 

59'07"W, 2016 

60 6 + 4 2 

Stefanović SS-16-12 California; San Diego Co., Hwy S2, mi 53, 

6 mi N of Ocotillo, 32° 47'52"N 116° 

06'43"W, 2016 

60 4 or 5 and 

6 in some 

cells + 4 

2 

Stefanović SS-16-13 California; San Diego Co., Hwy S2, mi 50, 

Carrizo Badlands Overlook, 32°49'43"N 

116°10'06"W, 2016 

60 4 or 5 and 

6 in some 

cells + 4 

2 

Stefanović SS-16-14 California; San Diego Co., Hwy S2, mi 47, 

Mountain Palms Rd., 32°51'55"N 

116°12'34"W, 2016 

60 6 + 4 2 
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Discussion 

 

Cytogenetic similarity between C. psorothamnensis and C. veatchii 

This study revealed a high degree of cytogenetic similarity between the two allopolyploid hybrid species, 

C. psorothamnensis and C. veatchii, both exhibiting a chromosome count of 2n = 60. Both species presented two 

distinct chromosome sets, each resembling one of the parental species. Consistent with previous findings for C. 

veatchii (Ibiapino et al. 2019), C. psorothamnensis possessed three pairs of 5S rDNA sites and two pairs of 35S 

rDNA sites, accompanied by interphase nuclei exhibiting diffuse chromatin and well-defined chromocenters. 

However, C. psorothamnensis displayed a higher variation in the number of 5S rDNA sites within the same 

accession, with individuals showing four, five, or six sites. The number of 5S rDNA sites is most likely six because 

the other pair of sites exhibited a weak signal, which may make it difficult to visualize in all cells. 

GISH results further underscored the similarity between the two hybrids. Both species demonstrated two 

distinct chromosome sets: 30 chromosomes hybridizing with genomic DNA from C. denticulata and another 30 

chromosomes labeled with C. nevadensis genomic DNA. No recombinant chromosome was detected, as observed 

in other allopolyploids, such as from the genus Tragopogon (Chester et al. 2012). The maintenance of the pair 

with adjacent 5S and 35S rDNA sites from C. denticulata in hybrid karyotypes was evident, but there was a 

notable loss of rDNA sites from C. nevadensis. These data align with previous molecular findings (García et al. 

2018), indicating the concerted evolution toward C. nevadensis in C. veatchii but not in C. psorothamnensis, 

suggesting a more recent independent hybridization event for the latter. The presence of additional 5S rDNA in 

C. psorothamnensis, not eliminated from C. nevadensis, as observed in C. veatchii, also argues for its younger 

origin. 

Another compelling piece of evidence supporting the younger origin of C. psorothamnensis when 

compared to C. veatchii was demonstrated through GISH. The GISH technique, primarily employed to 

differentiate chromosomes or subgenomes from progenitors in hybrid species, becomes particularly informative 

when the hybrid is at a more advanced age (Silva and Souza 2013; Ranzam et al. 2017). Genomic probes more 

strongly labbeled heterochromatic regions of chromosomes. Over time, hybrids can accumulate sequence changes 

in their genomes or undergo homogenization processes, make emerge some difficult to identify the different 

subgenomes in their karyotype. When it occur, the use of blocking DNA becomes essential to separate the 

chromosomal sets effectively (Makonen and Ali 2023). In the case of C. veatchii, blocking DNA was essential to 

obtain a clear-cut result (Ibiapino et al. 2019). In contrast, in C. psorothamnensis, a hybrid of more recent origin, 

using the probes simultaneously yielded clear results, facilitating the distinction of the two chromosome sets. 

Hybrids often manifest intermediate characteristics between parental species at both chromosomal and 

vegetative and reproductive characters levels (e.g., Liu et al. 2009; McKain et al. 2012; Goulet et al. 2017). 

Cuscuta psorothamnensis exemplified this trend by displaying two distinct chromosome sets, one featuring 

smaller chromosomes with CMA+/DAPI- bands in pericentromeric regions, reminiscent of those reported in C. 

denticulata, while the other set presents larger chromosomes, exhibited DAPI+/CMA0 bands in the 

pericentromeric region as observed in C. nevadensis (Ibiapino et al. 2019; Fig. 2). The interphase nuclei of C. 

psorothamnensis also showed intermediate characteristics. In C. denticulata, nuclei are characterized by a more 

uniform chromatin distribution with small, well-distributed chromocenters, while in C. nevadensis, they are larger 

and well-defined (Ibiapino et al. 2019). The hybrid nuclei presented dispersed chromatin and well-defined 

chromocenters, indicating a blending of parental traits. The haploid karyotype length in C. psorothamnensis was 

measured at 71.78 µm, not so different from that reported in C. veachii with 75.20 µm. It representing a 15% 

reduction compared to the expected total karyotype length based on both parental species (C. denticulata with 

35.74 µm and C. nevadensis with 49.39 µm; Ibiapino et al. 2019). The genome size in C. veachii is 1C = 2.85 

Gbp (McNeal et al. 2007), considering the haploid karyotype length, the genome size of C. psorothamnensis 

would be around 1C = 2.72 Gbp.  

Hybridization may trigger genome expansions through transposable element (TE) amplification, often 

due to epigenetic failures like TE methylation (Romero-Soriano et al. 2019; García et al. 2023). Following the 

initial genome size increase, hybrids typically undergo a subsequent reduction influenced by age, involving the 

loss of DNA sequences through dosage compensation mechanisms (Kang et al. 2019). In allopolyploid species, 
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a trend toward subgenome dominance emerges, favoring the expression of one parental genome due to extensive 

duplication post-allopolyploidy. The diploidization process requires the loss of duplicate copies, a phenomenon 

further accentuated by dosage compensation mechanisms (Kang et al. 2019; Li et al. 2021). The dosage 

compensation mechanism possibly contributed to the observed reduction in the total length of the haploid 

karyotype and elimination of excess rDNA copies in C. psorothamnensis. Nevertheless, the number of 5S rDNA 

sites in C. psorothamnensis is unexpected. Both parents possess a chromosomal pair with adjacent 5S and 35S 

rDNA and these are the only sites present in C. denticulata, while C. nevadensis has three pairs of 5S rDNA 

sites and five pairs of 35S rDNA, with two chromosomal pairs having adjacent sites (Fig. 2). Our study reveals a 

discernible reduction in rDNA sites in C. psorothamnensis, as observed in C. veatchii (Ibiapino et al. 2019). 

Typically, rDNA sites are more conserved in artificial hybrids than in natural hybrids (Lee et al. 2011; Volkov 

et al. 2017). But the presence of two chromosome pairs with only 5S rDNA sites, instead of the expected one 

that could be inherited from C. nevadensis, indicate additional change in rDNA distribution after allopolyploidy 

and not only elimination, as observed in Paphiopedilum (Orchidaceae; Lan and Albert 2011) for example. 

 

Cuscuta veatchii vs. C. psorothamnensis, the same or different species? 

A comprehensive morphometric study of the four species within this section, analyzing over 30 traits 

(García et al. 2018), highlighted the distinct morphological differences between the two diploid parents, C. 

denticulata and C. nevadensis, while the two hybrids, C. veatchii and C. psorothamnensis, were morphologically 

indistinguishable. Despite their similar morphology and shared parental origin, the retention of both nrDNA types 

suggests that C. psorothamnensis likely resulted from a more recent independent hybridization event, where 

ribosomal array homogenization remained incomplete (García et al. 2018). The two hybrids exhibit distinct host 

preferences not only from each other but also from the parent species. Cuscuta veatchii is restricted in central Baja 

California, Mexico, parasitizing Pachycormus discolor (Benth.) Coville (Anacardiaceae), while C. 

psorothamnensis is limited to Anza-Borrego Desert State Park, CA, USA, and grows on Psorothamnus schottii 

(Thor.) Barneby (Fabaceae) (García et al. 2018). The host specificity of the hybrids contrasts sharply with the 

broader and partially overlapping host ranges observed in the sympatric parental species, C. denticulata and C. 

nevadensis (García et al. 2018), suggesting a significant role for host specialization in the cladogenesis of the two 

hybrid species. Thus, although C. veatchii and C. psorothamnensis do not meet the morphological criterion for 

recognition as distinct species, their separate evolutionary histories, ecological differentiation on different hosts, 

along with their disjunct geographical distributions, strongly indicate that they are two separate species. This is 

further supported by our cytogenetic results as discussed above. 

Cuscuta species exhibit varying degrees of host specificity, ranging from "generalists" to "specialists", 

with the latter being less common (Gaertner 1950, Costea and Stefanović 2009; Costea et al. 2020). Mechanisms 

underlying host preference in Cuscuta are unknown, but they likely control the capacity of the seedlings to detect 

hosts during foraging (e.g., Benvenuti et al. 2005; Runyon et al. 2006), as well as modulate the signaling with the 

host during haustoria initiation, penetration, and establishment of the vascular bridge (Jhu and Sinha 2022). 

Genomic changes after the hybridization may affect possible mechanisms linked to factors that affect downstream 

gene transcription, changes of hormone status and haustorium formation (Jhu and Sinha 2022). Host specificity 

and host range also vary widely among parasitic plants (Parker and Riches 1993; Heide-Jørgesen 2008), with host-

race formation and host-shifting serving as significant evolutionary drivers in parasitic plants (e.g., Norton and 

Carpenter 1998; Thorogood et al. 2008; Schneider et al. 2012). The species of Cuscuta sect. Denticulatae provides 

a unique opportunity to study the evolution of different host specificity scenarios alongside reticulate evolution 

and polyploidy. Deeper investigations into the molecular foundation of host preference, continued monitoring of 

the hybrid populations, and the integration of advanced genomic approaches could unveil novel aspects of host-

parasite evolution in Cuscuta and parasitic plants more broadly. 
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Fig 1 Metaphases from different accessions of C. psorothamnensis (a-c SS-16-11 accession and d-i SS-16-13 

accession) stained with CMA (yellow) and DAPI (blue) in a, d and g, FISH using 5S (red) and 35S (green) rDNA 

probes in b, e and h and GISH, using the genomic DNA of the parental C. denticulata (red) and C. nevadensis 

(green) as a probe in c, f and i. It is possible to observe different chromosome sets in C. psorothamnensis, some 

chromosomes have CMA+/DAPI- bands in the pericentromeric regions (inserts in a, d and g). The majority of 

cells from accession SS-16-11 presented four 5S rDNA sites, while accession SS-16-13 presented cells with five 

or six 5S rDNA sites. The asterisks in c, f and i highlight the chromosomal pair with adjacent 5S and 35S rDNA 

on the same chromosome that were inherited from C. denticulata, while all other sites were inherited from C. 

nevadensis and are highlighted with arrowheads. Bar in i represents 10µm 
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Fig 2 Schematic representation summarizing data previously reported by Ibiapino et al. (2019) combined with the 

data obtained in the present work. The highlighted yellow and blue shades shows the morphological difference 

between the chromosomes of C. denticulata (with a DAPI- band forming a gap) and C. nevadensis (with a DAPI+ 

band and no gap). Both hybrids with 2n = 60 and two chromosomal sets of different morphology. Only 

chromosomes containing 5S and 35S rDNA sites were represented in haploid number. The red color represents 

the 5S rDNA sites, while the green color represents the 35S rDNA sites. A chromosome pair inherited from C. 

denticulata where the 5S and 35S rDNA are adjacent. Those with more rDNA sites inherited from C. nevadensis 
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Fig 3 Map showing the geographical position of the accessions analyzed in this work. The shaded areas refer to 

the regions of occurrence of each of the hosts of the hybrid species, according to Global Biodiversity Information 

Facility (GBIF – https://www.gbif.org/). The white area refers to Psorothamnus schottii and the light gray area to 

Pachycormus discolor. Populations of C. denticulata and C. nevadensis overlap in their distribution, which would 

make hybridization events between these two species possible. Cuscuta veatchii and C. psorothamnensis present 

distinct ecological characteristics such as host preference and have a different geographic distribution 
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Fig S1 Metaphases from different accessions of C. psorothamnensis (a-c SS-16-12 accession and d-i SS-16-14 

accession) stained with CMA (yellow) and DAPI (blue) in a and d, FISH using 5S (red) and 35S (green) rDNA 

probes in b and e and GISH, using the genomic DNA of the parental C. denticulata (red) and C. nevadensis (green) 

as a probe in c and f. It is possible to observe different chromosome sets in C. psorothamnensis, some 

chromosomes have DAPI-/CMA+ bands in the pericentromeric regions (inserts in a and d). In g-i show interphase 

nuclei of C. psorothamnensis stained with DAPI (g), CMA (h) and the overlap (i) showing dispersed chromatin 

with the presence of small, well-defined chromocenters. The asterisks in c and f highlight the chromosomal pair 

with adjacent 5S and 35S rDNA on the same chromosome that were inherited from C. denticulata, while all other 

sites were inherited from C. nevadensis and are highlighted with arrowheads. All cells are in the same scale and 

the bar in i represents 10µm 
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