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Lecture 1

Introduction to Multi-level

Models

Course web site

http://www.biostat.jhsph.edu/~fdominic/teaching/bio656/ml.html
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Statistical Background on MLMs

Main Ideas

Accounting for Within-Cluster Associations

Marginal & Conditional Models

A Simple Example

Key MLM components
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The Main Idea…
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• Biological, psychological and social processes that

influence health occur at many levels:

– Cell

– Organ

– Person

– Family

– Neighborhood

– City

– Society

• An analysis of risk factors should consider:

– Each of these levels

– Their interactions

Multi-level Models – Main Idea

Health

Outcome
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Example: Alcohol Abuse

1. Cell:       Neurochemistry

2. Organ:       Ability to metabolize ethanol

3. Person:      Genetic susceptibility to addiction

4. Family:       Alcohol abuse in the home

5. Neighborhood: Availability of bars

6. Society:    Regulations; organizations;

   social norms

Level:
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Example: Alcohol Abuse;

  Interactions between

Levels

5 Availability of bars and

6 State laws about drunk driving

4 Alcohol abuse in the family  and

2 Person’s ability to metabolize ethanol

3 Genetic predisposition to addiction and

4 Household environment

6 State regulations about intoxication and

3 Job requirements

Level:
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Notation:
Population

Neighborhood:

      i=1,…,Is

State:  s=1,…,S

Family:  j=1,…,Jsi

Person:  k=1,…,Ksij

Outcome: Ysijk

Predictors: Xsijk

Person: sijk

( y1223 , x1223 )
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Notation (cont.)
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Multi-level Models: Idea

Predictor Variables

Alcohol

Abuse

Response

      Person’s 

      Income

      Family  

      Income

 Percent poverty 

in neighborhood

   State support 

     of the poor

Level:

1.

2.

3.

4.
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A Rose is a Rose is a…

• Multi-level model

• Random effects model

• Mixed model

• Random coefficient model

• Hierarchical model

Many names for similar models, analyses, and goals.
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Digression on Statistical Models

• A statistical model is an approximation to reality

• There is not a “correct” model;

– ( forget the holy grail )

• A model is a tool for asking a scientific question;

– ( screw-driver vs. sludge-hammer )

• A useful model combines the data with prior

information to address the question of interest.

• Many models are better than one.
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Generalized Linear Models (GLMs)

 g( μ ) = 0 + 1*X1 + … + p*Xp

Log Relative

Risk

Log Odds Ratio

Change in

avg(Y) per unit

change in X

Coef Interp

Poissonlog( μ )Count/Times

to events

Log-

linear

Binomial log
Binary

(disease)
Logistic

Gaussianμ
Continuous

(ounces)
Linear

Distributiong( μ )ResponseModel

 ( μ  = E(Y|X) = mean )

 μ

(1-μ)
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Since:  E(y|Age+1,Gender) = 0 + 1(Age+1) + 2Gender

And:  E(y|Age    ,Gender)  = 0 + 1Age       + 2Gender

   E(y)  =              1

Generalized Linear Models (GLMs)

 g( μ ) = 0 + 1*X1 + … + p*Xp

Gaussian – Linear: E(y) = 0 + 1Age + 2Gender

Example: Age & Gender

1 = Change in Average Response per 1 unit increase in Age,

       Comparing people of the SAME GENDER.

WHY?
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Generalized Linear Models (GLMs)

 g( μ ) = 0 + 1*X1 + … + p*Xp

Binary – Logistic:     log{odds(Y)} = 0 + 1Age + 2Gender

Example: Age & Gender

1 = log-OR of “+ Response” for a 1 unit increase in Age,

       Comparing people of the SAME GENDER.

WHY?

Since:  log{odds(y|Age+1,Gender)} = 0 + 1(Age+1) + 2Gender

And:  log{odds(y|Age    ,Gender)} = 0 + 1Age       + 2Gender

    log-Odds  =              1

log-OR     =              1
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Generalized Linear Models (GLMs)

 g( μ ) = 0 + 1*X1 + … + p*Xp

Counts – Log-linear:    log{E(Y)} = 0 + 1Age + 2Gender

Example: Age & Gender

1 = log-RR for a 1 unit increase in Age,

       Comparing people of the SAME GENDER.

WHY?

Self-Check: Verify Tonight
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D. Responses are independent

B. All the key covariates are included in the model

“Quiz”: Most Important Assumptions of

Regression Analysis?

A. Data follow normal distribution

B. All the key covariates are included in the model

C. Xs are fixed and known

D. Responses are independent
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Non-independent responses
(Within-Cluster Correlation)

• Fact: two responses from the same family

tend to be more like one another than two

observations from different families

• Fact: two observations from the same

neighborhood tend to be more like one

another than two observations from different

neighborhoods

• Why?
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Why?  (Family Wealth Example)

GOD

Grandparents

Parents

You

Great-Grandparents

Great-Grandparents

You

Parents

Grandparents
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Key Components of Multi-level Models

• Specification of predictor variables from multiple

levels (Fixed Effects)

– Variables to include

– Key interactions

• Specification of correlation among responses

from same clusters (Random Effects)

• Choices must be driven by scientific

understanding, the research question and

empirical evidence.

20

Correlated Data…

(within-cluster associations)
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Multi-level analyses

• Multi-level analyses of social/behavioral
phenomena: an important idea

• Multi-level models involve predictors from
multi-levels and their interactions

• They must account for associations among
observations within clusters (levels) to make
efficient and valid inferences.
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Regression with Correlated Data

Must take account of correlation to:

• Obtain valid inferences
– standard errors

– confidence intervals

• Make efficient inferences
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Logistic Regression Example:

Cross-over trial

• Response: 1-normal; 0- alcohol dependence

• Predictors: period (x1); treatment group (x2)

• Two observations per person (cluster)

• Parameter of interest: log odds ratio of

dependence: treatment vs placebo

Mean Model:    log{odds(AD)} = 0 + 1Period + 2Trt
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Results:  estimate, (standard error)

Model

0.56

(0.38)

-0.27

(0.38)

0.66

(0.32)

Ordinary Logistic

Regression

0.57

(0.23)

   Treatment

-0.30

(0.23)

     Period

0.67

(0.29)

    Intercept

Account for

correlation
Variable

Similar Estimates,

WRONG Standard Errors (& Inferences) for OLR

( 0 )

( 2 )

( 1 )
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Simulated Data: Non-Clustered

Cluster Number (Neighborhood)
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Simulated Data: Clustered

Cluster Number (Neighborhood)
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Within-Cluster Correlation

• Correlation of two observations from
same cluster =

• Non-Clustered = (9.8-9.8) / 9.8 = 0

• Clustered = (9.8-3.2) / 9.8 = 0.67

Tot Var - Var Within

    Tot Var
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Models for Clustered Data

• Models are tools for inference

• Choice of model determined by scientific question

• Scientific Target for inference?

– Marginal mean:

• Average response across the population

– Conditional mean:

• Given other responses in the cluster(s)

• Given unobserved random effects

• We will deal mainly with conditional models

(but we’ll mention some important differences)
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Marginal vs Conditional Models…

30

Marginal Models

• Focus is on the “mean model”: E(Y|X)

• Group comparisons are of main interest, i.e.

neighborhoods with high alcohol use vs.

neighborhoods with low alcohol use

• Within-cluster associations are accounted for

to correct standard errors, but are not of main

interest.
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Marginal Model Interpretations

• log{ odds(AlcDep) } = 0 + 1Period + 2pl

                                = 0.67 + (-0.30)Period + (0.57)pl

TRT Effect: (placebo vs. trt)

OR = exp( 0.57 ) = 1.77,    95% CI (1.12, 2.80)

Risk of Alcohol Dependence is almost twice as high

on placebo, regardless of, (adjusting for), time period

Since:  log{odds(AlcDep|Period, pl)} = 0 + 1Period + 2

And:  log{odds(AlcDep|Period, trt)}  = 0 + 1Period

    log-Odds       =              2

   OR           =       exp( 2 )

WHY?
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Random Effects Models

• Conditional on unobserved latent
variables or “random effects”

– Alcohol use within a family is related
because family members share an
unobserved “family effect”: common genes,
diets, family culture and other unmeasured
factors

– Repeated observations within a
neighborhood are correlated because
neighbors share: common traditions,
access to services, stress levels,…
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Random Effects Model Interpretations

Since:  log{odds(AlcDepi|Period, pl, bi) )} = 0 + 1Period + 2 + bi

And:  log{odds(AlcDep|Period, trt, bi) )}  = 0 + 1Period       + bi

      log-Odds       =              2

   OR           =       exp( 2 )

WHY?

• In order to make comparisons we must keep the

subject-specific latent effect (bi) the same.

• In a Cross-Over trial we have outcome data for each

subject on both placebo & treatment

• In other study designs we may not.
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Marginal vs. Random Effects Models

• For linear models, regression coefficients in
random effects models and marginal models are
identical:

average of linear function = linear function of average

• For non-linear models, (logistic, log-linear,…)
coefficients have different meanings/values, and
address different questions

- Marginal models -> population-average
parameters

- Random effects models -> cluster-specific
parameters
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Marginal -vs- Random Intercept Models;
Cross-over Example

5.0

(2.3)

3.56

(0.81)

0.0Log OR

(assoc.)

1.8

(0.93)

-1.0

(0.84)

2.2

(1.0)

Random-Effect

Logistic

Regression

Model

0.56

(0.38)

-0.27

(0.38)

0.66

(0.32)

Ordinary

Logistic

Regression

0.57

(0.23)

Treatment

-0.30

(0.23)

Period

0.67

(0.29)

Intercept

Marginal (GEE)

Logistic

Regression

Variable
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Comparison of Marginal and Random

Effect Logistic Regressions

• Regression coefficients in the random effects
model are roughly 3.3 times as large

– Marginal:  population odds (prevalence
with/prevalence without) of  AlcDep is exp(.57) = 1.8
greater for placebo than on active drug;

population-average parameter

– Random Effects: a person’s odds of AlcDep is
exp(1.8)= 6.0 times greater on placebo than on
active drug;

cluster-specific, here person-specific, parameter

Which model is better? They ask different questions.
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Refresher: Forests & Trees

Multi-Level Models:

– Explanatory variables from multiple levels

• i.e. person, family, n’bhd, state, …

• Interactions

– Take account of correlation among

responses from same clusters:

• i.e. observations on the same person, family,…

• Marginal:  GEE, MMM

• Conditional:  RE, GLMM Remainder of the
course will focus on
these.
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Key Points

• “Multi-level” Models:

– Have covariates from many levels and their interactions

– Acknowledge correlation among observations from

within a level (cluster)

• Random effect MLMs condition on unobserved “latent

variables” to account for the correlation

• Assumptions about the latent variables determine the

nature of the within cluster correlations

• Information can be borrowed across clusters (levels) to

improve individual estimates
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Examples of two-level data

• Studies of health services: assessment of quality of care are
often obtained from patients that are clustered within hospitals.
Patients are level 1 data and hospitals are level 2 data.

• In developmental toxicity studies: pregnant mice (dams) are
assigned to increased doses of a chemical and examined for
evidence of malformations (a binary response). Data collected in
developmental toxicity studies are clustered. Observations on
the fetuses (level 1 units) nested within dams/litters (level 2
data)

• The “level” signifies the position of a unit of observation within
the hierarchy
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Examples of three-level data

• Observations might be obtained in

patients nested within clinics, that in

turn, are nested within different regions

of the country.

• Observations are obtained on children

(level 1) nested within classrooms (level

2), nested within schools (level 3).


