U.S. Department of Interior Bureau of Land Management Washington, D.C.

Clopyralid Ecological Risk Assessment Final

March 2014

Clopyralid Ecological Risk Assessment Final

U.S. Department of the Interior Bureau of Land Management Washington, D.C.

March 2014

EXECUTIVE SUMMARY

The United States Department of the Interior (USDOI) Bureau of Land Management (BLM) administers about 247.9 million acres in 17 western states in the continental United States (U.S.) and Alaska. One of the BLM's highest priorities is to promote ecosystem health, and one of the greatest obstacles to achieving this goal is the rapid expansion of invasive plants (including noxious weeds and other plants not native to an area) across public lands. These invasive plants can dominate and often cause permanent damage to natural plant communities. If not eradicated or controlled, invasive plants will jeopardize the health of public lands and the activities that occur on them. Herbicides are one method employed by the BLM to control these plants.

In 2007, the BLM published the *Vegetation Treatments Using Herbicides on Bureau of Land Management Lands in 17 Western States Programmatic Environmental Impact Statement* (17-States PEIS). The Record of Decision (ROD) for the 17-States PEIS allowed the BLM to use 18 herbicide active ingredients, including clopyralid, available for a full range of vegetation treatments in 17 western states. The BLM is proposing the continued use of the active ingredient clopyralid to treat vegetation. This Ecological Risk Assessment (ERA) evaluates the potential risks to plants and animals from the use of the herbicide clopyralid, including risks to rare, threatened, and endangered (RTE) plant and animal species. The BLM previously relied upon the clopyralid risk assessment conducted on behalf of the U.S. Department of Agriculture Forest Service (Forest Service). This ERA updates information in the Forest Service risk assessment and evaluates risks to plants and animals based on treatment methods and application types and rates used by the BLM.

Herbicide Description

Clopyralid is a selective, systemic herbicide used primarily in the control of broadleaf weeds and woody brush. It is a plant growth regulator and acts as a synthetic auxin or hormone, altering the plant's metabolism and growth characteristics and often causing a proliferation of abnormal growth that interferes with the transport of nutrients throughout the plant. Clopyralid is used for vegetation control in the BLM's Rangeland, Public-Domain Forestland, Energy and Mineral Sites, Rights-of-Way, and Recreation programs. Herbicide application is carried out through aerial and ground dispersal. Aerial applications are performed using airplanes and helicopters. Ground applications are executed on foot or on horseback with backpack sprayers or from all-terrain vehicles, utility vehicles, or trucks equipped with spot or boom/broadcast sprayers. The BLM typically applies clopyralid at 0.25 pounds (lbs) acid equivalent (a.e.) per acre (ac), with a maximum application rate of 0.5 lbs a.e. /ac.

ERA Objectives and Methods

The main objectives of this ERA were to evaluate the potential risks to the health and welfare of non-target plants and animals and their habitats from the use of clopyralid, and to provide risk managers with a range of generic risk estimates that vary as a function of site conditions. The ERA consisted of the following steps based on guidance in the *Vegetation Treatments Programmatic EIS Ecological Risk Assessment Protocol Final Report* (Methods Document). The guidance was used in conducting analyses for the 18 herbicide active ingredients evaluated in the 17-States PEIS, and was developed by the BLM in cooperation with the United States Environmental Protection Agency (USEPA), National Oceanic and Atmospheric Administration National Marine Fisheries Service, and USDOI U.S. Fish and Wildlife Service.

- 1. Exposure pathway evaluation The effects of clopyralid on several ecological receptor groups (in other words [i.e.], terrestrial animals, non-target terrestrial plants, fish and aquatic invertebrates, and non-target aquatic plants) via particular exposure pathways were evaluated. The resulting exposure scenarios included the following:
 - direct contact with the herbicide or a contaminated water body;

- indirect contact with contaminated foliage;
- ingestion of contaminated food items;
- off-site drift of spray to terrestrial areas and water bodies;
- surface runoff from the application area to off-site soils or water bodies;
- wind erosion resulting in deposition of contaminated dust; and
- accidental spills to water bodies.
- 2. Definition of data evaluated in the ERA Herbicide concentrations used in the ERA were based on typical and maximum application rates provided by the BLM. These application rates were used to predict herbicide concentrations in various environmental media (for example [e.g.], soils, water). Some of these calculations required computer models:
 - AgDRIFT[®] was used to estimate off-site herbicide transport due to spray drift.
 - GLEAMS was used to estimate off-site transport of herbicide in surface runoff and root zone groundwater.
 - AERMOD and CALPUFF were used to predict the transport and deposition of herbicides sorbed to windblown dust.
- 3. Identification of risk characterization endpoints Endpoints used in the ERA included acute mortality; adverse direct effects on growth, reproduction, or other ecologically important sublethal processes; and adverse indirect effects on the survival, growth, or reproduction of salmonids. Each of these endpoints was associated with measures of effect such as the no observed adverse effect level and the median lethal effect dose and concentration (LD₅₀ and LC₅₀).
- 4. Development of a conceptual model The purpose of the conceptual model was to display working hypotheses about how clopyralid might pose hazards to ecosystems and ecological receptors. These hypotheses are shown via a conceptual model diagram of the possible exposure pathways and the receptors for each exposure pathway.

In the analysis phase of the ERA, estimated exposure concentrations (EECs) were identified for the various receptor groups in each of the applicable exposure scenarios via exposure modeling. Risk quotients (RQs) were then calculated by dividing the EECs by herbicide- and receptor-specific or exposure media-specific Toxicity Reference Values (TRVs) selected from the available literature. These RQs were compared to Levels of Concern (LOCs) established by the USEPA Office of Pesticide Programs (OPP) for specific risk presumption categories (in other words [i.e.], acute high risk, acute high risk potentially mitigated through restricted use, acute high risk to endangered species, and chronic high risk).

Uncertainty

Uncertainty is introduced into the herbicide ERA through the selection of surrogates to represent a broad range of species on BLM lands, the use of mixtures of clopyralid with other herbicides (pre-mixes or tank mixtures) or other potentially toxic ingredients (i.e., degradates, inert [other] ingredients, and adjuvants), and the estimation of effects via exposure concentration models. The uncertainty inherent in screening level ERAs is especially problematic for the evaluation of risks to RTE species, which are afforded higher levels of protection through government regulations and policies. To attempt to minimize the chances of underestimating risk to RTE and other species, the lowest toxicity levels found in the literature were selected as TRVs, uncertainty factors were incorporated into these TRVs, allometric scaling was used to develop dose values; model assumptions were designed to conservatively estimate herbicide exposure, and indirect as well as direct effects on species of concern were evaluated.

Herbicide Effects

Literature Review

According to the Ecological Incident Information System database run by the USEPA OPP, clopyralid has been associated with 205 reported "ecological incidents" involving damage or mortality to non-target flora or fauna. In 99 of these 205 incidents, it was listed as probable (95 incidents) or highly probable (4 incidents) that clopyralid was responsible for the given incident.

A review of the available ecotoxicological literature published since 2004¹ was conducted in order to evaluate the potential for clopyralid to negatively directly or indirectly affect non-target taxa. This review was also used to identify or derive TRVs for use in the ERA. Peer-reviewed literature was only used in the ERA if the study conformed to specific suitability parameters related to the test material, test species, exposure route, and toxicity endpoint as described in the Methods Document. Studies were excluded if they did not meet the requirements defined in the suitable study parameters.

The sources identified in this review indicate that clopyralid poses little to no acute toxicity hazard to mammals via dermal and oral exposure. The herbicide also has little toxic impact on birds, terrestrial invertebrates, fish, aquatic invertebrates, and aquatic plants. However, non-target terrestrial plants are susceptible to clopyralid toxicity at application rates recommended for noxious weed control. Concentrations of clopyralid as low as 0.0027 lbs a.e. /ac have been shown to negatively affect the plant growth (measured as seed dry weight) of non-target terrestrial plants (about 1% of the typical application rate).

ERA Results

Based on the ERA, clopyralid presents a potential risk to ecological receptors on BLM-administered lands under certain exposure scenarios. The following summarizes the risk assessment findings for clopyralid:

- 1. Direct Spray The ERA predicted risks to non-target terrestrial and aquatic plants under scenarios in which plants or water bodies are accidentally sprayed. No risks were predicted for terrestrial wildlife, fish, or aquatic invertebrates.
- 2. Off-site Drift The ERA predicted risks to non-target terrestrial plants from off-site drift. However, no risks were predicted for aquatic plants, fish, aquatic invertebrates, or piscivorous birds in ponds or streams. The ERAs evaluated risks from off-site drift at modeled distances of 25, 100, and 900 feet from the application site for ground applications, and at distances of 100, 300, and 900 feet for aerial applications. The Recommendations section provides buffers for protecting non-target plants, which were extrapolated from the modeling results.
 - a. The ERA predicted risks to non-target terrestrial RTE plant species for plane applications of clopyralid at the largest modeled distance (900 feet [ft]) in forested and non-forested areas at the typical and maximum application rates. Risks to typical plant species were predicted for plane applications of clopyralid at typical and maximum rates at a modeled distance of 300 ft in forested areas, and at distances of 100 ft and 300 ft (for the typical and maximum application rate, respectively) in non-forested areas.
 - b. The ERA predicted that the majority of the helicopter applications in forested areas would not pose a risk to ecological receptors. The single exception was the potential for adverse effects to RTE terrestrial plant

¹ The Forest Service published a comprehensive risk assessment for clopyralid in December, 2004 (Syracuse Environmental Research Associates 2004). The objective of this literature review was to identify new ecotoxicological studies published since 2004.

species as a result of a helicopter application of clopyralid at the maximum application rate at modeled distances of 100 ft or less. In non-forested areas, typical species would be at risk for adverse effects from helicopter applications of clopyralid at distances of 100 ft and 300 ft or less (for the typical and maximum application rate, respectively). RTE species would be at risk for adverse effects from helicopter applications at distances of 300 ft or less, for the typical and maximum application rate, respectively.

- c. The ERA predicted that typical plant species would not be at risk for adverse effects from ground applications of clopyralid using a low boom. However, RTE species would be at risk from ground applications using a low boom, at distances of 25 ft or less for the typical application rate, and 100 ft or less for the maximum application rate. Additionally, RTE species would be at risk for adverse effects from ground applications using a high boom at distances of 100 ft or less under both typical and maximum application rates. Typical plant species would be at risk for adverse effects from ground applications using a high boom at a distance of 25 ft or less at the maximum application rate, but would not be at risk from ground applications with a high boom at the typical application rate.
- 3. Surface Runoff– The ERA predicted that non-target terrestrial plants, fish, aquatic plants, and piscivorous birds would not be at risk for adverse effects under surface runoff exposure scenarios.
- 4. Wind Erosion and Transport Off-site The ERA predicted that non-target typical terrestrial plants would not be at risk for adverse effects under any of the modeled scenarios, and RTE species would not be at risk under the majority of the evaluated conditions. However, a minimal risk (Risk Quotients [RQs] up to 2.05) to non-target RTE plants from wind erosion was predicted for a watershed modeled based on conditions in Medford, Oregon, at a distance of up to 1.5 kilometer (km; 0.9 miles) from the application area. An RQ of 1.05 from wind erosion was predicted for a watershed modeled based on conditions in Lander, Wyoming, at a modeled distance of up to 1.5 km, for applications at the maximum application rate.
- 5. Accidental Spill to Pond The ERA predicted that aquatic plants and aquatic invertebrates would not be at risk for adverse effects under accidental spill exposure scenarios. Under the accidental helicopter spill scenario, the RQ for fish was 0.08, which exceeds the LOC for acute risk to endangered species (0.05). However, this value is below the other fish LOCs, suggesting that risks to non-endangered species would be minimal.

With the exception of the accidental spill scenario, no direct risks to RTE fish species (e.g., salmonids) were predicted in the modeling and salmonids are not likely to be indirectly impacted by a reduction in food supply (i.e., fish and aquatic invertebrates). Species that depend on non-target plant species for habitat, cover, and/or food may be indirectly impacted by a possible reduction in terrestrial or aquatic vegetation. For example, accidental direct spray and off-site drift may negatively impact terrestrial and/or aquatic plants, reducing the cover available to RTE salmonids within a stream.

Based on the results of the ERA, it is unlikely that RTE species would be harmed by appropriate and selective use of the herbicide clopyralid on BLM-administered lands. Although non-target terrestrial and aquatic plants have the potential to be adversely affected by application of clopyralid, adherence to specific application guidelines (e.g., defined application rates, equipment, herbicide mixture, and downwind distance to potentially sensitive habitat) would minimize the potential effects on non-target plants and associated indirect effects on species, such as salmonids, that depend on those plants for food, habitat, and cover.

Recommendations

The following recommendations are designed to reduce potential unintended impacts to the environment from clopyralid:

1. Select herbicide products carefully to minimize additional impacts from degradates, adjuvants, inert ingredients, and tank mixtures. This is especially important for application scenarios that already predict potential risk from the active ingredient alone.

- 2. Review, understand, and conform to the "Environmental Hazards" section on the herbicide label. This section warns of known pesticide risks to wildlife receptors or to the environment and provides practical ways to avoid harm to organisms and their environment.
- 3. Avoid accidental direct spray and spill conditions to reduce the most significant potential impacts.
- 4. Use the typical application rate, rather than the maximum application rate, to reduce risk for exposure via off-site drift (drift to soils).
- 5. If impacts to typical or RTE terrestrial plants are of concern and an aerial application is planned using the maximum application rate, establish the following buffer zones to reduce off-site drift and potential risks to terrestrial plants²:
 - Application by plane over forest 1,400 feet (ft) if RTE species are present and 900 feet if typical species are present.
 - Application by plane over non-forest 1,500 ft if RTE species are present and 800 ft if typical species are present.
 - Application by helicopter over forest 200 ft if RTE species are present and 100 ft if typical species are present.
 - Application by helicopter over non-forest 1,450 ft if RTE species are present and 600 feet if typical species are present.
- 6. If impacts to typical or RTE terrestrial plants are of concern and an aerial application is planned using the typical application rate, establish the following buffer zones to reduce off-site drift and potential risks to terrestrial plants:
 - Application by plane over forest -1,100 ft if RTE species are present and 900 feet if typical species are present.
 - Application by plane over non-forest -1,050 ft if RTE species are present and 300 feet if typical species are present.
 - Application by helicopter over forest 100 ft.
 - Application by helicopter over non-forest 800 ft if RTE species are present and 200 ft if typical species are present.
- 7. If a ground application is planned at the maximum application rate, establish a buffer zone of 500 ft for applications with a low boom and 700 ft for applications with a high boom to reduce off-site drift and potential risks to RTE terrestrial plants. If a ground application is planned at the typical application rate, establish a buffer zone of 250 ft for applications with a low boom and 400 ft for applications with a high boom to reduce off-site drift and potential risks to RTE terrestrial plants. Reduced buffer distances may be used if RTE species are not present (25 ft for low boom applications and high boom applications at the typical or maximum rate, and high boom applications at the typical rate, and 100 ft for high boom applications at the maximum rate).

² Note: Buffer distances provided in this section were obtained by plotting the RQs against the modeled distances, fitting a curve to the data, and then determining the distance at which the RQ was equivalent to an LOC of 1 for terrestrial plants (with an RQ based on a no observed adverse effect level for RTE species and the 25% effect concentration [EC₂₅] for typical species). The curve was extended beyond the largest modeled distance to extrapolate buffers beyond 900 feet.

 Consider the proximity of potential application areas to salmonid habitat and the possible effects of herbicide application on riparian vegetation. Use the preceding guidance for buffer distances to protect typical or RTE plants to protect riparian vegetation (including RTE plants) and prevent any associated indirect effects on salmonids and their habitat.

The results from this ERA will assist BLM field offices on the proper application of clopyralid to ensure that impacts to plants and animals and their habitat are minimized to the extent practical.

CONTENTS

1.0 INTE	RODUCTION		1-1
1.1			
1.2	Objectives of th	ne Ecological Risk Assessment	1-1
		PROGRAM DESCRIPTION	
2.1		ption	
2.2		e BLM Vegetation Treatment Program	
		rograms	
	2.2.1.1	Rangeland	
	2.2.1.2	Public-domain Forestland	
	2.2.1.3	Energy and Mineral Sites	
	2.2.1.4	Rights-of-way	
	2.2.1.5	Recreation and Cultural Sites	
	2.2.2 Applica	tion Methods	2-3
	2.2.2.1	Aerial Application Methods	2-3
	2.2.2.2	Ground Application Methods	2-4
2.3	Herbicide Desc	ription	2-5
2.4	Herbicide Incid	lent Reports	
2 A 11ED	DICIDE TOVIC	COLOCY DIVICIAL CHEMICAL DODEDTIES AND	
		COLOGY, PHYSICAL-CHEMICAL PROPERTIES, AND	
		cology	
0.1		20085) 201	
		y to Terrestrial Organisms	
	3.1.2.1	Mammals	
	3.1.2.2	Birds	
	3.1.2.3	Terrestrial Invertebrates	
	3.1.2.4	Terrestrial Plants	
		y to Aquatic Organisms	
	3.1.3 Toxicity	Fish	
	3.1.3.1		
		Amphibians	
	3.1.3.3	Aquatic Invertebrates	
2.2	3.1.3.4	Aquatic Plants	
		ical-Chemical Properties	
3.3	Herbicide Envir	ronmental Fate	
4.0 ECO	LOGICAL RIS	K ASSESSMENT	4-1
		lation	
		on of Risk Assessment Objectives	
		cal Characterization	
		re Pathway Evaluation	
		on of Data Evaluated in the ERA	
		cation of Risk Characterization Endpoints	
		pment of the Conceptual Model	
4.2			
4.2		erization of Exposure	
		1	
	4.2.1.1	Direct Spray	
	4.2.1.2	Off-site Drift	
	4.2.1.3	Surface and Groundwater Runoff	
	4.2.1.4	Wind Erosion and Transport Off-site	
	4.2.1.5	Accidental Spill to Pond	4-7

	4.2.2 Effects Characterization	
4.3	Risk Characterization	
	4.3.1 Direct Spray	
	4.3.1.1 Terrestrial Wildlife	
	4.3.1.2 Non-target Plants – Terrestrial and Aquatic	
	4.3.1.3 Fish and Aquatic Invertebrates	
	4.3.2 Off-site Drift	
	4.3.2.1 Non-target Plants – Terrestrial and Aquatic	
	4.3.2.2 Fish and Aquatic Invertebrates	
	4.3.2.3 Piscivorous Birds	
	4.3.3 Surface Runoff	
	4.3.3.1 Non-target Plants – Terrestrial and Aquatic	
	4.3.3.2 Fish and Aquatic Invertebrates	
	4.3.3.3 Piscivorous Birds	
	4.3.4 Wind Erosion and Transport Off-site	
	4.3.5 Accidental Spill to Pond	
	4.3.6 Potential Risk to Salmonids from Indirect Effects	
	4.3.6.1 Qualitative Evaluation of Impacts to Prey	
	4.3.6.2 Qualitative Evaluation of Impacts to Vegetative Cover	
	4.3.6.3 Conclusions	
5 A SENI	SITIVITY ANALYSIS	5 1
5.0 SEN:		
5.1	5.1.1 GLEAMS Sensitivity Variables	
	5.1.2 GLEAMS Results	
5.2		
	AERMOD and CALPUFF	
5.5		<i>J</i> -т
6.0 RAR	RE, THREATENED, AND ENDANGERED SPECIES	
	Use of LOCs and TRVs to Provide Protection.	
	Use of Species Traits to Provide Protection to RTE Species	
	6.2.1 Identification of Surrogate Species	
	6.2.1.1 Species Selected in Development of TRVs	
	6.2.1.2 Species Selected as Surrogates in the ERA	
	6.2.2 Surrogates Specific to Taxa of Concern	
	6.2.3 Biological Factors Affecting Impact from Herbicide Exposure	
6.3		
	6.3.1 Uncertainty Factors	
	6.3.2 Allometric Scaling	
	6.3.3 Recommendations	
6.4	Indirect Effects on Salmonids	
	6.4.1 Biological Disturbance	
	6.4.2 Physical Disturbance	
6.5	Conclusions	
	CERTAINTY IN THE ECOLOGICAL RISK ASSESSMENT	
7.1		
7.2		
7.3	I had a signal. Dialog of Dagana data with sold to sold to the A. P. S.	7.2
	7.3.1 Degradates	
	7.3.1 Degradates7.3.2 Inert ingredients	
	7.3.1 Degradates	

	7.3.3.2 Tank Mixtures	7-5
7.4	Uncertainty Associated with Herbicide Exposure Concentration Models	
	7.4.1 AgDRIFT [®]	
	7.4.2 GLEAMS	7-7
	7.4.2.1 Herbicide Loss Rates	7-7
	7.4.2.2 Root Zone Groundwater	
	7.4.3 AERMOD and CALPUFF	
7.5	Summary of Potential Sources of Uncertainty	
8.0 SUM	MARY	8-1
8.1	Summary of ERA Results	
8.2	Summary of ERA Results Recommendations	
9.0 REFF	CRENCES	9-1

APPENDICES

- Appendix A USEPA Office of Pesticide Programs Ecological Incident Information System Incident Reports for Clopyralid
- Appendix B Summary of Available and Relevant Toxicity Data for Clopyralid

Appendix B.1 Bibliography List

- Appendix B.2 Spreadsheet of Toxicity Data for Clopyralid TRV
- Appendix C Ecological Risk Assessment Worksheets
- Appendix D Species Listed Under the Endangered Species Act for 17 BLM States

LIST OF TABLES

TABLE 2-1	BLM Clopyralid Use Statistics	
TABLE 3-1	Selected Toxicity Reference Values for Clopyralid	.3-9
TABLE 3-2	Physical-chemical Properties of Clopyralid	3-11
TABLE 4-1	Levels of Concern	4-13
TABLE 4-2	Risk Quotients for Direct Spray and Spill Scenarios	4-14
TABLE 4-3	Risk Quotients for Off-site Drift Scenarios	4-16
TABLE 4-4	Risk Quotients for Surface Runoff Scenarios	4-22
TABLE 4-5	Risk Quotients for Wind Erosion and Transport Off-site Scenarios	4-34
TABLE 5-1	Relative Effects of GLEAMS Input Variables on Herbicide Exposure Concentrations using Typical BLM Application Rate	5-7
TABLE 5-2	Relative Effects of Soil and Vegetation Type on Herbicide Exposure Concentrations using Typical BLM Application Rate	5-8
TABLE 5-3	Herbicide Exposure Concentrations used during the Supplemental AgDRIFT® Sensitivity Analysis	.5-9
TABLE 6-1	Surrogate Species Used to Derive Clopyralid TRVs	5-11
TABLE 6-2	Surrogate Species Used in Quantitative ERA Evaluation	5-11
TABLE 6-3	Federally Listed Birds and Selected Surrogates	5-12
TABLE 6-4	Federally Listed Mammals and Selected Surrogates	5-13
TABLE 6-5	Federally Listed Reptiles and Selected Surrogates	5-14
TABLE 6-6	Federally Listed Amphibians and Selected Surrogates	5-15
TABLE 6-7	Species and Organism Traits That May Influence Herbicide Exposure and Response	5-16
TABLE 6-8	Summary of Findings - Interspecific Extrapolation Variability	5-17
TABLE 6-9	Summary of Findings - Intraspecific Extrapolation Variability	5-17
TABLE 6-10	0 Summary of Findings - Acute-to-Chronic Extrapolation Variability	5-17
TABLE 6-1	1 Summary of Findings - LOAEL-to-NOAEL Extrapolation Variability	5-17
TABLE 6-12	2 Summary of Findings - Laboratory to Field Extrapolations	5-18
TABLE 7-1	Potential Sources of Uncertainty in the ERA Process	7-10
	Herbicide Loss Rates Predicted by the GLEAMS Model	
TABLE 8-1	Typical Risk Level Resulting from Clopyralid Application	.8-4

LIST OF FIGURES

FIGURE 4-1. Conceptual Model for Terrestrial Herbicides.	4-35
FIGURE 4-2. Simplified Food Web.	4-36
FIGURE 4-3. Direct Spray - Risk Quotients for Terrestrial Animals.	4-37
FIGURE 4-4. Direct Spray - Risk Quotients for Non-target Terrestrial Plants.	4-38
FIGURE 4-5. Accidental Direct Spray and Spills - Risk Quotients for Non-target Aquatic Plants.	4-39
FIGURE 4-6. Accidental Direct Spray and Spills - Risk Quotients for Fish.	4-40
FIGURE 4-7. Accidental Direct Spray and Spills - Risk Quotients for Aquatic Invertebrates	4-41
FIGURE 4-8. Off-site Drift - Risk Quotients for Non-target Terrestrial Plants.	4-42
FIGURE 4-9. Off-site Drift - Risk Quotients for Non-target Aquatic Plants.	4-43
FIGURE 4-10. Off-site Drift - Risk Quotients for Fish.	4-44
FIGURE 4-11. Off-site Drift - Risk Quotients for Aquatic Invertebrates	4-45
FIGURE 4-12. Off-site Drift - Risk Quotients for Piscivorous Birds.	4-46
FIGURE 4-13. Surface Runoff - Risk Quotients for Non-target Terrestrial Plants	4-47
FIGURE 4-14. Surface Runoff - Risk Quotients for Non-target Aquatic Plants	4-48
FIGURE 4-15. Surface Runoff - Risk Quotients for Fish.	4-49
FIGURE 4-16. Surface Runoff - Risk Quotients for Aquatic Invertebrates.	4-50
FIGURE 4-17. Surface Runoff - Risk Quotients for Piscivorous Birds.	4-51
FIGURE 4-18. Wind Erosion and Transport Off-Site - Risk Quotients for Non-target Terrestrial Plants	4-52

ac-Acresa.eAcid equivalenta.iActive ingredientARS-Agricultural Research ServiceATV-All Terrain VehicleBCF-Bioconcentration FactorBLM-Bureau of Land ManagementBW-Body Weight°C-Degrees CelsiusCALPUFF-California Puff ModelCFR-Code of Federal Regulationscm-Cubic meters per secondECs-Concentration causing 55% inhibition of a process (Effect Concentration)ECs-Concentration causing 55% inhibition of a process (Median Effective Concentration)EEC-Estimated Exposure Concentratione.gFor exampleEI-Erosion IndexEIS-Environmental Impact StatementEIS-Environmental Impact StatementEIS-Endangered Species ActFIFRA-Federal Insecticide, Fungicide and Rodenticide Actft-Feetg-GrannGLEAMS-Concentration causing 50% mortality (Median Lethal Concentration)LCs_0-Concentration causing 50% mortality (Median Lethal Concentration)LCs_0-Cateward Soft Mortality (Median Lethal Concentration)LDs_0-Dose causing 50% mortality (Median Lethal Concentration)LDs_0-Dose causing 50% mortality (Median Lethal Concentration)LDs_0-<	2,4-D	-	2,4-dichlorophenoxyacetic acid
a.iActive ingredientARS-Active ingredientARS-All Terrain VehicleBCF-Bioconcentration FactorBLM-Bureau of Land ManagementBW-Body Weight°C-Degrees CelsiusCALPUFF-California Puff ModelCFR-Code of Federal Regulationscm-Centimetercms-Concentration causing 25% inhibition of a process (Effect Concentration)EC25-Concentration causing 25% inhibition of a process (Median Effective Concentration)EEC-Estimated Exposure Concentratione.gFor exampleEI-For sompleEIS-For information SystemERA-Ecological Incident Information SystemERA-Ecological Incident Information SystemERA-Federal Insecticide, Fungicide and Rodenticide Actft-Federal Insecticide, Fungicide and Rodenticide Actft- <td></td> <td></td> <td></td>			
a.iActive ingredientARS-Active ingredientARS-All Terrain VehicleBCF-Bioconcentration FactorBLM-Bureau of Land ManagementBW-Body Weight°C-Degrees CelsiusCALPUFF-California Puff ModelCFR-Code of Federal Regulationscm-Centimetercms-Concentration causing 25% inhibition of a process (Effect Concentration)EC25-Concentration causing 25% inhibition of a process (Median Effective Concentration)EEC-Estimated Exposure Concentratione.gFor exampleEI-For sompleEIS-For information SystemERA-Ecological Incident Information SystemERA-Ecological Incident Information SystemERA-Federal Insecticide, Fungicide and Rodenticide Actft-Federal Insecticide, Fungicide and Rodenticide Actft- <td>a.e.</td> <td>-</td> <td>Acid equivalent</td>	a.e.	-	Acid equivalent
$\begin{array}{rcl} ATV & & All Terrain Vehicle \\ BCF & & Bioconcentration Factor \\ BLM & & Bureau of Land Management \\ BW & & Body Weight \\ ^{\circ}C & & Degrees Celsius \\ CALPUFF & California Puff Model \\ CFR & & Code of Federal Regulations \\ cm & & Centimeter \\ cms & & Cubic meters per second \\ EC_{25} & & Concentration causing 25% inhibition of a process (Effect Concentration) \\ EC_{30} & & Concentration causing 50% inhibition of a process (Median Effective Concentration) \\ EC_{40} & & Concentration causing 50% inhibition of a process (Median Effective Concentration) \\ EEC & & Estimated Exposure Concentration \\ e.g. & For example \\ EI & & Erosion Index \\ EIS & & Environmental Impact Statement \\ EIS & & Environmental Impact Statement \\ EIS & & Ecological Risk Assessment \\ ESA & & Ecological Risk Assessment \\ ESA & & Endangered Species Act \\ FIFRA & & Federal Insecticide, Fungicide and Rodenticide Act \\ ft & & Feet \\ g & & Gravm \\ GLEAMS & Groundwater Loading Effects of Agricultural Management Systems \\ i.e. & that is \\ kg & & Kilograms \\ km & & Kilometers \\ kwe & & Organic carbon partition coefficient \\ L & & Liters \\ lbs & & Pounds \\ LC_{50} & & Concentration causing 50% mortality (Median Lethal Concentration) \\ LD_{50} & & Douse causing 50% mortality (Median Lethal Concentration) \\ LD_{50} & & Concentration causing 50% mortality (Median Lethal Concentration) \\ LD_{50} & & Lovel Of Concern \\ Lowet Observed Adverse Effect Level \\ LOCC & Level of Concern \\ Lowet Record Identification Number \\ n & & Sample size \\ NA & Not applicable \\ NEPA & National Environmental Policy Act \\ NMFS & National Marine Fisheries Service \\ \end{array}$	a.i.		
BCF-Bioconcentration FactorBLM-Bureau of Land ManagementBW-Body Weight $^{\circ}$ C-Degrees CelsiusCALPUFF-California Puff ModelCFR-Code of Federal Regulationscm-Centimeterems-Cubic meters per secondECs0-Concentration causing 25% inhibition of a process (Effect Concentration)ECC-Estimated Exposure Concentratione.gFor exampleEI-Erosion IndexEIS-Erosion IndexEIS-Ecological Risk AssessmentERA-Ecological Risk AssessmentERA-Ecological Risk AssessmentERA-Federal Insecticide, Fungicide and Rodenticide Actft-Feetg-GramGLEAMS-Groundwater Loading Effects of Agricultural Management Systemsi.eNitogramskm-Kilogramskm-Literslbs-PoundsLCs0-Concentration causing 50% mortality (Median Lethal Concentration)LDs0-Dose causing 50% morta		-	Agricultural Research Service
BLM-Bureau of Land ManagementBW-Body Weight $^{\circ}$ -Degrees CelsiusCALPUFF-California Puff ModelCFR-Code of Federal Regulationscm-Centimetercms-Cubic meters per secondEC25-Concentration causing 25% inhibition of a process (Effect Concentration)EC50-Concentration causing 50% inhibition of a process (Median Effective Concentration)EEC-Estimated Exposure Concentratione.gFor exampleEI-Erosion IndexEIS-Ecological Incident Information SystemERA-Ecological Risk AssessmentESA-Ecological Risk AssessmentESA-Endangered Species ActfIFRA-Federal Insecticide, Fungicide and Rodenticide Actft-Feetg-GrannGLEAMS-Kilogramskm-Kilogramskm-Literslbs-PoundsLC50-Concentration causing 50% mortality (Median Lethal Concentration)LD50-Dose causing 50% mortality (Median Lethal Concentration)LD50-Lovest Observed Adverse Effect LevelLC60-Level of ConcernLC9-Level of ConcernLoAEL-Level of ConcernLoAEL-Level of ConcernLoAEL-Level of Concern	ATV	-	All Terrain Vehicle
BWBody Weight $^{\circ}C$ Degrees CelsiusCALPUFFCalifornia Puff ModelCFRCode of Federal RegulationscmCentimetercmsConcentration causing 25% inhibition of a process (Effect Concentration)EC25Concentration causing 50% inhibition of a process (Median Effective Concentration)EC6Estimated Exposure Concentratione.g.For exampleEIErosion IndexEISEnvironmental Impact StatementEISEcological Incident Information SystemERAEcological Risk AssessmentESAEcological Risk AssessmentESAEdangered Species ActFIFRAFederal Insecticide, Fungicide and Rodenticide ActftFeetgGramGLEAMSGroundwater Loading Effects of Agricultural Management Systemsi.e.that iskgVilogramskmKilometersKocOrganic carbon partition coefficientLLitterslbsPoundsLC50Lowest Observed Adverse Effect LevelLOCLevel of ConcernLOgCommon logarithm (base 10)mMetersmgMilligramsMRIDMaster Record Identification NumbernSample sizeNANot applicableKiepNational Environmental Policy ActNMFSNational Marine Fisheries Service	BCF	-	Bioconcentration Factor
$^{\circ}$ CDegrees CelsiusCALPUFFCalifornia Puff ModelCFRCode of Federal RegulationscmCentimetercmsCubic meters per secondEC_5Concentration causing 25% inhibition of a process (Effect Concentration)EC_5Concentration causing 50% inhibition of a process (Median Effective Concentration)EECEstimated Exposure Concentratione.g.For exampleEIErosion IndexEISEnvironmental Impact StatementEISEcological Incident Information SystemERAEcological Risk AssessmentESAEndegred Species ActFIFRAFederal Insecticide, Fungicide and Rodenticide ActftFeetgGramGLEAMSGroundwater Loading Effects of Agricultural Management Systemsi.e.that iskgKilogramskmKilogramskmLiterslbsPoundsLC50Concentration causing 50% mortality (Median Lethal Concentration)LD50Dose causing 50% mortality (Median Lethal Concentration)LD50Lowest Observed Adverse Effect LevelLOCLevel of ConcernLogCommon logarithm (base 10)mMetersmgMilligramsMRIDMaster Record Identification NumbernSample sizeNANot applicableNHEPANational Marine Fisheries Service	BLM	-	Bureau of Land Management
$\begin{array}{llllllllllllllllllllllllllllllllllll$	BW	-	Body Weight
CFR-Code of Federal Regulationscm-Centimetercms-Cubic meters per second EC_{25} -Concentration causing 25% inhibition of a process (Effect Concentration) EC_{50} -Concentration causing 50% inhibition of a process (Median Effective Concentration) EC_{50} -Estimated Exposure Concentration $e.g.$ -For exampleEI-Frosion IndexEIS-Erosion IndexEIS-Ecological Incident Information SystemERA-Ecological Risk AssessmentESA-Endagered Species ActFIFRA-Federal Insecticide, Fungicide and Rodenticide Actft-Feetg-GranmGLEAMS-Groundwater Loading Effects of Agricultural Management Systemsi.ethat iskg-Kilogramskm-Kilogramskm-Concentration causing 50% mortality (Median Lethal Concentration)LDs0-Concentration causing 50% mortality (Median Lethal Concentration)LDs1-Literslbs-Dose causing 50% mortality (Median Lethal Dose)LOAEL-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MiligramsMRID-Master Record Identification Numbern-Sam	°C	-	Degrees Celsius
cmCentimetercmsCubic meters per secondEC25Concentration causing 25% inhibition of a process (Effect Concentration)EC30Concentration causing 50% inhibition of a process (Median Effective Concentration)EECEstimated Exposure Concentratione.g.For exampleEIEstimated Exposure Concentratione.g.For exampleEIEnvironmental Impact StatementEIISEcological Incident Information SystemERAEcological Risk AssessmentESAEcological Risk AssessmentESAFederal Insecticide, Fungicide and Rodenticide ActftFeetgGramGLEAMSGroundwater Loading Effects of Agricultural Management Systemsi.e.that iskgKilogramskmKilogramskmConcentration causing 50% mortality (Median Lethal Concentration)LD50Concentration causing 50% mortality (Median Lethal Concentration)LD51Lovest Observed Adverse Effect LevelLOAELLevel of ConcernLOAELLevel of ConcernLOQLevel of ConcernLOQCommon logarithm (base 10)mMaster Record Identification NumbernSample sizeNAANot applicableNEPANational Environmental Policy ActNMFSNational Marine Fisheries Service	CALPUFF	-	California Puff Model
cms-Cubic meters per second EC_{25} -Concentration causing 25% inhibition of a process (Effect Concentration) EC_{50} -Concentration causing 50% inhibition of a process (Median Effective Concentration) EEC -Estimated Exposure Concentration $e.g.$ -For example EI -Erosion IndexEIS-Eological Incident Information SystemERA-Ecological Incident Information SystemERA-Ecological Risk AssessmentESA-Endangered Species ActFIFRA-Federal Insecticide, Fungicide and Rodenticide Actft-Feetg-GramGLEAMS-Groundwater Loading Effects of Agricultural Management Systemsi.ethat iskg-Kilogramskm-Literslbs-Dose causing 50% mortality (Median Lethal Concentration)LD50-Concentration causing 50% mortality (Median Lethal Concentration)LD51-Level of ConcernLOC-Level of ConcernLOQ-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNKPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	CFR	-	Code of Federal Regulations
$\begin{array}{llllllllllllllllllllllllllllllllllll$	cm	-	Centimeter
$\begin{array}{llllllllllllllllllllllllllllllllllll$	cms	-	Cubic meters per second
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EC_{25}	-	Concentration causing 25% inhibition of a process (Effect Concentration)
EECEstimated Exposure Concentratione.g.For exampleEIErosion IndexEISEnvironmental Impact StatementEIISEcological Incident Information SystemERAEcological Risk AssessmentESAEndangered Species ActFIFRAFederal Insecticide, Fungicide and Rodenticide ActftFeetgGramGLEAMSGroundwater Loading Effects of Agricultural Management Systemsi.e.that iskgKilogramskmKilogramskmLiterslbsPoundsLC ₅₀ Concentration causing 50% mortality (Median Lethal Concentration)LD ₅₀ Dose causing 50% mortality (Median Lethal Concentration)LD ₅₀ Lowest Observed Adverse Effect LevelLOCLevel of ConcernLogCommon logarithm (base 10)mMetersmgMilligramsMRIDMaster Record Identification NumbernSample sizeNANot applicableNMFSNational Environmental Policy ActNMFSNational Marine Fisheries Service	EC_{50}		
e.gFor exampleEI-Erosion IndexEIS-Erosion IndexEIS-Ecological Incident Information SystemERA-Ecological Risk AssessmentESA-Endangered Species ActFIFRA-Federal Insecticide, Fungicide and Rodenticide Actft-Feetg-GramGLEAMS-Groundwater Loading Effects of Agricultural Management Systemsi.ethat iskg-Kilogramskm-Kilogramskm-Literslbs-PoundsLCs0-Concentration causing 50% mortality (Median Lethal Concentration)LDs0-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service		-	Estimated Exposure Concentration
EI-Erosion IndexEIS-Environmental Impact StatementEIIS-Ecological Incident Information SystemERA-Ecological Risk AssessmentESA-Endangered Species ActFIFRA-Federal Insecticide, Fungicide and Rodenticide Actft-Feetg-GramGLEAMS-Groundwater Loading Effects of Agricultural Management Systemsi.ethat iskg-Kilogramskm-KilometersKoc-Organic carbon partition coefficientL-Literslbs-PoundsLC50-Concentration causing 50% mortality (Median Lethal Concentration)LD50-Dose causing 50% mortality (Median Lethal Concentration)LD50-Concerntration causing 50% mortality (Median Lethal Dose)LOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	e.g.	-	For example
EIISEcological Incident Information SystemERAEcological Risk AssessmentESAEndangered Species ActFIFRAFederal Insecticide, Fungicide and Rodenticide Actft-gGramGLEAMSGroundwater Loading Effects of Agricultural Management Systemsi.ethat iskg-Kilogramskm-KilometersKoc-Organic carbon partition coefficientL-Litterslbs-PoundsLC ₅₀ -Concentration causing 50% mortality (Median Lethal Concentration)LD50-LOAEL-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-MRID-Matersmg-MiligramsMRID-Naster Record Identification Numbern-Sample sizeNA-NetPANational Environmental Policy ActNMFS-National Marine Fisheries Service	EI	-	Erosion Index
ERA-Ecological Risk AssessmentESA-Endangered Species ActFIFRA-Federal Insecticide, Fungicide and Rodenticide Actft-Feetg-GramGLEAMS-Groundwater Loading Effects of Agricultural Management Systemsi.ethat iskg-Kilogramskm-KilometersKoc-Organic carbon partition coefficientL-Literslbs-PoundsLC50-Concentration causing 50% mortality (Median Lethal Concentration)LD50-Dose causing 50% mortality (Median Lethal Dose)LOAEL-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	EIS	-	Environmental Impact Statement
ESA-Endangered Species ActFIFRA-Federal Insecticide, Fungicide and Rodenticide Actft-Feetg-GramGLEAMS-Groundwater Loading Effects of Agricultural Management Systemsi.ethat iskg-Kilogramskm-KilometersKoc-Organic carbon partition coefficientL-Litterslbs-PoundsLC ₅₀ -Concentration causing 50% mortality (Median Lethal Concentration)LD50-Dose causing 50% mortality (Median Lethal Dose)LOAEL-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	EIIS	-	Ecological Incident Information System
FIFRA-Federal Insecticide, Fungicide and Rodenticide Actft-Feetg-GramGLEAMS-Groundwater Loading Effects of Agricultural Management Systemsi.ethat iskg-Kilogramskm-KilometersKoc-Organic carbon partition coefficientL-Literslbs-PoundsLC ₅₀ -Concentration causing 50% mortality (Median Lethal Concentration)LD ₅₀ -Dose causing 50% mortality (Median Lethal Dose)LOAEL-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	ERA	-	Ecological Risk Assessment
ft-Feetg-GramGLEAMS-Groundwater Loading Effects of Agricultural Management Systemsi.ethat iskg-Kilogramskm-Kilometers K_{oc} -Organic carbon partition coefficientL-Literslbs-PoundsLC ₅₀ -Concentration causing 50% mortality (Median Lethal Concentration)LD ₅₀ -Dose causing 50% mortality (Median Lethal Dose)LOAEL-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service			Endangered Species Act
ft-Feetg-GramGLEAMS-Groundwater Loading Effects of Agricultural Management Systemsi.ethat iskg-Kilogramskm-Kilometers K_{oc} -Organic carbon partition coefficientL-Literslbs-PoundsLC ₅₀ -Concentration causing 50% mortality (Median Lethal Concentration)LD ₅₀ -Dose causing 50% mortality (Median Lethal Dose)LOAEL-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	FIFRA	-	Federal Insecticide, Fungicide and Rodenticide Act
$GLEAMS$ Groundwater Loading Effects of Agricultural Management Systemsi.e.that iskgKilogramskmKilometers K_{oc} Organic carbon partition coefficientLLiterslbsPoundsLC ₅₀ Concentration causing 50% mortality (Median Lethal Concentration)LD ₅₀ Dose causing 50% mortality (Median Lethal Dose)LOAELLowest Observed Adverse Effect LevelLOCLevel of ConcernLogCommon logarithm (base 10)mMetersmgMilligramsMRIDMaster Record Identification NumbernSample sizeNANot applicableNEPANational Environmental Policy ActNMFSNational Marine Fisheries Service	ft	-	Feet
i.ethat iskg-Kilogramskm-Kilometers K_{oc} -Organic carbon partition coefficientL-Literslbs-PoundsLC ₅₀ -Concentration causing 50% mortality (Median Lethal Concentration)LD ₅₀ -Dose causing 50% mortality (Median Lethal Dose)LOAEL-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service			Gram
kg-Kilogramskm-Kilometers K_{oc} -Organic carbon partition coefficientL-Literslbs-PoundsLC ₅₀ -Concentration causing 50% mortality (Median Lethal Concentration)LD ₅₀ -Dose causing 50% mortality (Median Lethal Dose)LOAEL-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	GLEAMS	-	Groundwater Loading Effects of Agricultural Management Systems
$\begin{array}{llllllllllllllllllllllllllllllllllll$	i.e.	-	that is
km- Kilometers K_{oc} - Organic carbon partition coefficientL- Literslbs- Pounds LC_{50} - Concentration causing 50% mortality (Median Lethal Concentration) LD_{50} - Dose causing 50% mortality (Median Lethal Dose)LOAEL- Lowest Observed Adverse Effect LevelLOC- Level of ConcernLog- Common logarithm (base 10)m- Metersmg- MilligramsMRID- Master Record Identification Numbern- Sample sizeNA- Not applicableNEPA- National Environmental Policy ActNMFS- National Marine Fisheries Service	kg		•
L-Literslbs-Pounds LC_{50} -Concentration causing 50% mortality (Median Lethal Concentration) LD_{50} -Dose causing 50% mortality (Median Lethal Dose) $LOAEL$ -Lowest Observed Adverse Effect Level LOC -Level of Concern Log -Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	km	-	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	K _{oc}	-	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
LD50-Dose causing 50% mortality (Median Lethal Dose)LOAEL-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service			
LOAEL-Lowest Observed Adverse Effect LevelLOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service			
LOC-Level of ConcernLog-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service			
Log-Common logarithm (base 10)m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service			
m-Metersmg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service		-	
mg-MilligramsMRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	Log	-	•
MRID-Master Record Identification Numbern-Sample sizeNA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	m	-	
n - Sample size NA - Not applicable NEPA - National Environmental Policy Act NMFS - National Marine Fisheries Service		-	
NA-Not applicableNEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service	MRID	-	
NEPA-National Environmental Policy ActNMFS-National Marine Fisheries Service		-	1
NMFS - National Marine Fisheries Service		-	
		-	
NOAA National Oceanic and Atmospheric Administration		-	
1	NOAA	-	National Oceanic and Atmospheric Administration
NOAEL - No Observed Adverse Effect Level		-	
	NR	-	Not reported
ND Not reported	INIX	-	not reported

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS (continued)

OPP OPPTS	Office of Pesticide ProgramsOffice of Pollution Prevention and Toxic Substances
PEIS	 Programmatic Environmental Impact Statement
ppm	- Parts per million
ROD	- Record of Decision
ROW	- Right-of-way
RQ	- Risk Quotient
RTE	- Rare, Threatened, and Endangered
SDTF	- Spray Drift Task Force
SERA	- Syracuse Environmental Research Associates, Inc.
ТР	- Transformation Product
TRV	- Toxicity Reference Value
U.S.	- United States
USDA	- United States Department of Agriculture
USDOI	- United States Department of the Interior
USEPA	- United States Environmental Protection Agency
USFWS	- United States Fish and Wildlife Service
USLE	- Universal Soil Loss Equation
μg	- micrograms
UTV	- Utility Vehicle
>	- greater than
<	- less than
=	- equal to

1.0 INTRODUCTION

The United States Department of the Interior (USDOI) Bureau of Land Management (BLM) administers about 247.9 million acres in 17 western states in the continental United States (U.S.) and Alaska. One of the BLM's highest priorities is to promote ecosystem health, and one of the greatest obstacles to achieving this goal is the rapid expansion of invasive plants (including noxious weeds and other plants not native to an area) across public lands. These invasive plants can dominate and often cause permanent damage to natural plant communities. If not eradicated or controlled, invasive plants will jeopardize the health of public lands and the activities that occur on them. Herbicides are one method employed by the BLM to control these plants.

1.1 Background

In 2007, the BLM published the *Vegetation Treatments Using Herbicides on Bureau of Land Management Lands in 17 Western States Programmatic Environmental Impact Statement* (17-States PEIS; USDOI BLM 2007a). The Record of Decision (ROD) for the 17-States PEIS allowed the BLM to use 18 herbicide active ingredients, including clopyralid, available for a full range of vegetation treatments in 17 western states (USDOI BLM 2007b). The BLM is proposing the continued use of the active ingredient clopyralid to treat vegetation. This Ecological Risk Assessment (ERA) evaluates the potential risks to plants and animals from the use of the herbicide clopyralid, including risks to rare, threatened, and endangered (RTE) plant and animal species. The BLM previously relied upon the clopyralid risk assessment conducted on behalf of the U.S. Department of Agriculture Forest Service (Forest Service; Syracuse Environmental Research Associates, Inc. [SERA] 2004). This ERA updates information in the Forest Service risk assessment and evaluates risks to plants and animals based on treatment methods and application types and rates used by the BLM.

Analysis used in this ERA is based on guidance in the *Vegetation Treatments Programmatic EIS Ecological Risk Assessment Protocol Final Report* (Methods Document; ENSR 2004). The guidance was used in conducting analyses for the 18 herbicide active ingredients evaluated in the 17-States PEIS, and was developed by the BLM in cooperation with the U.S. Environmental Protection Agency (USEPA), National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS), and USDOI U.S. Fish and Wildlife Service (USFWS).

1.2 Objectives of the Ecological Risk Assessment

The purpose of this ERA is to evaluate the ecological risks of clopyralid on the health and welfare of plants and animals, including RTE species and their habitats. This ERA contains the following sections:

Section 1: Introduction.

Section 2: BLM Herbicide Program Description – This section contains information regarding the formulation, mode of action, and specific BLM use of clopyralid, which includes application rates and methods of dispersal. This section also contains a summary of incident reports documented with the USEPA.

Section 3: Herbicide Toxicology, Physical-chemical Properties, and Environmental Fate – This section contains a summary of scientific literature pertaining to the toxicology and the environmental fate of clopyralid in terrestrial and aquatic environments, and discusses how its physical-chemical properties are used in the risk assessment.

Section 4: Ecological Risk Assessment – This section describes the exposure pathways and scenarios and the assessment endpoints including potential measured effects. It provides quantitative estimates of risks for several risk pathways and receptors.

Section 5: Sensitivity Analysis – This section describes the sensitivity of the three ERA models to specific input parameters. The importance of these conditions to exposure concentration estimates is discussed.

Section 6: Rare, Threatened, and Endangered Species – This section identifies RTE species potentially directly and/or indirectly affected by the herbicide program. It also describes how the ERA can be used to evaluate potential risks to RTE species.

Section 7: Uncertainty in the Ecological Risk Assessment – This section describes data gaps and assumptions made during the risk assessment process and how uncertainty should be considered in interpreting results.

Section 8: Summary – This section provides a synopsis of the ecological receptor groups, application rates, and modes of exposure. This section also provides a summary of the factors that most influence exposure concentrations, with general recommendations for risk reduction.

2.0 BLM HERBICIDE PROGRAM DESCRIPTION

2.1 Problem Description

Millions of acres of once healthy, productive rangelands, forestlands and riparian areas have been overrun by noxious weeds and other invasive plants. Noxious weeds are plants that have been designated by a federal, state or county government as injurious to public health, agriculture, recreation, wildlife, or property (Sheley et al. 1999). Invasive plants include not only noxious weeds, but also other plants that are not native to the region. The BLM considers plants invasive if they have been introduced into an environment in which they did not evolve. Invasive plants usually have no natural enemies to limit their reproduction and spread (Westbrooks 1998). They invade recreation areas, BLM-administered public lands, national parks, state parks, roadsides, streambanks, and federal, state, and private lands. Invasive plants can:

- destroy wildlife habitat;
- displace RTE species and other species critical to ecosystem functioning (for example [e.g.], riparian plants);
- reduce plant and animal diversity;
- invade following wildland and prescribed fire (potentially into previously unaffected areas), limiting regeneration and establishment of native species and rapidly increasing acreage of infested land;
- reduce opportunities for hunting, fishing, camping and other recreational activities;
- increase fuel loads and decrease the length of fire cycles and/or increase the intensity of fires;
- cost millions of dollars in treatment and loss of productivity to private land owners.

The BLM's ability to respond effectively to the challenge of noxious weeds and other invasive plants depends on the adequacy of the agency's resources. The BLM uses an Integrated Pest Management approach to manage invasive plants. Management techniques may be biological, manual, mechanical, chemical, or cultural. Eighteen herbicide active ingredients, including clopyralid, are currently used by the BLM to manage vegetation under their chemical control program. This report considers the impact to ecological receptors (animals and plants) from the use of the herbicide clopyralid for the management of vegetation on BLM-administered lands.

2.2 Overview of the BLM Vegetation Treatment Program

This section identifies the land programs, application types, application vehicles, and application methods for herbicide use in the BLM vegetation treatment program.

2.2.1 Land Programs

The BLM vegetation treatment program covers six land types or programs:

- Rangeland
- Public-domain Forestland
- Energy and Mineral Sites

- Rights-of-way
- Recreation and Cultural Sites
- Aquatic Sites

Herbicides are used in rangeland improvement and silvicultural practice to improve the potential for success of desired vegetation by reducing competition for light, moisture, and soil nutrients with less desirable plant species. Herbicides are used to manage or restrict noxious plant species and to suppress vegetation that interferes with manmade structures or transportation corridors.

Herbicides are a component of the BLM's integrated weed management program, and are used in varying degrees in all land treatment categories. Herbicide use under the six land programs is discussed below.

2.2.1.1 Rangeland

Rangeland vegetation treatment operations provide forage for domestic livestock and wildlife by removing undesirable competing plant species and preparing seedbeds for desirable plants. Approximately 89% of the herbicide treated acreage in the BLM vegetation treatment program falls in the rangeland improvement category. Application methods include airplane, helicopter, truck (boom/broadcast or spot applications), ATV/UTV (boom/broadcast or spot applications), horseback (spot applications), and backpack (spot applications).

2.2.1.2 Public-domain Forestland

Public-domain forestland vegetation treatment operations, designed to ensure the establishment and healthy growth of timber crop species, are one of the BLM's least extensive programs for herbicide treatment. These operations include site preparation, plantation, maintenance, conifer release, pre-commercial thinning, and non-commercial tree removal. Site preparation treatments prepare newly harvested or inadequately stocked areas for planting new tree crops. Herbicides used in site preparation reduce vegetation that competes with conifers. In the brown-and-burn method of site preparation, herbicides are used to dry the vegetation, to be burned several months later. Herbicides are used in plantations some time after planting to promote the dominance and growth of already established conifers (release). Pre-commercial tree removal is used to eliminate dwarf mistletoe infested host trees. These latter two silvicultural practices primarily use manual applications methods. Herbicide uses in public-domain forests constitute less than 4% of the vegetation treatment operations in the BLM program. Application methods include airplane, helicopter, truck (boom/broadcast or spot applications), ATV/UTV (boom/broadcast or spot applications), horseback (spot applications).

2.2.1.3 Energy and Mineral Sites

Vegetation treatments in energy and mineral sites include the preparation and regular maintenance of areas for use as fire control lines or fuel breaks, and the reduction of plant species that could pose a hazard to fire control operations. More than 50% of the vegetation treatment programs at energy and mineral sites are herbicide applications. Application methods include airplane, helicopter, truck (boom/broadcast or spot applications), ATV/UTV (boom/broadcast or spot applications), horseback (spot applications), and backpack (spot applications).

2.2.1.4 Rights-of-way

Right-of-way treatments include roadside maintenance and maintenance of power transmission lines, waterways, and railroad corridors. In roadside maintenance, vegetation in ditches and on road shoulders is removed or reduced to prevent brush encroachment into driving lanes, to maintain visibility on curves for the safety of vehicle operators, to permit drainage structures to function as intended, and to facilitate maintenance operations. Herbicides have been used in nearly 50% of the BLM's roadside vegetation maintenance programs. Application methods include airplane, helicopter, truck (boom/broadcast or spot applications), ATV/UTV (boom/broadcast or spot applications), horseback (spot applications), and backpack (spot applications).

2.2.1.5 Recreation and Cultural Sites

Recreation and cultural site maintenance operations provide for the safe and efficient use of BLM facilities and recreation sites and for permittee/grantee uses of public amenities, such as, ski runs, waterways, and utility terminals. Vegetation treatments are made for the general maintenance and visual appearance of the areas and to reduce potential threats to the site's plants and wildlife, as well as to the health and welfare of visitors. The site maintenance program includes the noxious weed and poisonous plant program. Vegetation treatments in these areas are also done for fire management purposes. The BLM uses herbicides on approximately one-third of the total recreation site acreage identified as needing regular treatment operations. Application methods include airplane, helicopter, truck (boom/broadcast or spot applications), ATV/UTV (boom/broadcast or spot applications), horseback (spot applications).

2.2.2 Application Methods

The BLM conducts pretreatment surveys in accordance with BLM Handbook H-9011-1 (*Chemical Pest Control*) before making a decision to use herbicides on a specific land area. The herbicides can be applied by via airplane, helicopter, boat (boom/broadcast or spot applications), truck (boom/broadcast or spot applications), ATV/UTV (boom/broadcast or spot applications), horseback (spot applications), and backpack (spot applications) with the selected technique dependent upon the following variables:

- Treatment objective (removal or reduction)
- Accessibility, topography, and size of the treatment area
- Characteristics of the target species and the desired vegetation
- Location of sensitive areas in the immediate vicinity (potential environmental impacts)
- Anticipated costs and equipment limitations
- Meteorological and vegetative conditions of the treatment area at the time of treatment

Herbicide applications are scheduled and designed such that potential impacts to non-target plants and animals are minimized, while the objectives of the vegetation treatment program are kept consistent. Herbicides are applied from either the air or ground. The herbicide formulations may be in a liquid or granular form, depending on resources and program objectives. Aerial methods employ boom-mounted nozzles for liquid formulations or rotary broadcasters for granular formulations, carried by helicopters or airplanes. Ground application methods include vehicle- and boat-mounted, backpack, and horseback application techniques. Vehicle- and boat-mounted application systems use fixed-boom or hand-held spray nozzles mounted on trucks or ATVs/UTVs. Backpack systems use a pressurized sprayer to apply an herbicide as a broadcast spray directly to one or a group of individual plants.

2.2.2.1 Aerial Application Methods

Aerial application can be conducted by airplane (fixed-wing aircraft) or helicopter (rotary-wing aircraft). Between 2006 and 2011, the BLM treated 73% of its herbicide treatment sites by air. Helicopters are preferred on rangeland projects because the treatment units are numerous, far apart, and often small and irregularly shaped.

The size and type of these aircraft may vary, but the equipment used to apply the herbicides must meet specific guidelines. Contractor-operated helicopters or fixed-wing aircraft are equipped with an herbicide tank or bin (depending on whether the herbicide is a liquid or granular formulation). For aerial spraying, the aircraft is equipped with cylindrical jet-producing nozzles no less than 1/8 inch in diameter. The nozzles are directed with the slipstream, at a maximum of 45 degrees downward for fixed-wing applications, or up to 75 degrees downward for helicopter applications, depending on the flight speed. Nozzle size and pressure are designed to produce droplets with a diameter of 200 to 400 microns. For fixed-wing aircraft, the spray boom is typically ³/₄ of the vingspan, and for helicopters, the spray boom is often ³/₄ of the rotor diameter. All spray systems must have a positive liquid shut-off device that ensures

that no herbicide continues to drip from the boom once the pilot has completed a swath (i.e., specific spray path). The nozzles are spaced to produce a uniform pattern for the length of the boom.

Using helicopters for herbicide application is often more expensive than using fixed-wing aircraft, but helicopters offer greater versatility. Helicopters are well adapted to areas dominated by irregular terrain and long, narrow, and irregularly shaped land patterns, a common characteristic of public lands. Various helicopter aircraft types are used, including, Bell, Sikorsky, and Hiller models. These helicopters must be capable of accommodating the spray equipment and the herbicide tank or bin, and of maintaining an air speed of 40 to 50 miles per hour at a height of 20 to 45 feet above the vegetation (depending upon the desired application rate), and they must meet BLM safety performance standards.

Fixed-wing aircraft include the typical, small "cropduster" type aircraft. Fixed-wing aircraft are best suited for smoother terrain and larger tracts of land where abrupt turning is not required. Because the fixed-wing aircraft spraying operations are used for treating larger land areas, the cost per acre is generally lower than that of helicopter spraying. Aircraft capability requirements for fixed-wing aircraft are similar to helicopter requirements, except that an air speed of 100 to 120 miles per hour is necessary, with spraying heights of 10 to 40 feet generally used to produce the desired application rates.

Batch trucks are an integral part of any aerial application operation. They serve as mixing tanks for preparing the correct proportions of herbicide and carrier, and they move with the operation when different landing areas are required.

The number of workers involved in a typical aerial spray project varies according to the type of activity. A small operation may require up to six individuals, while a complex operation may require as many as 20 to 35 workers. An aerial operations crew for range management, noxious weed management, and ROW maintenance usually consists of five to eight individuals. Typically, personnel on a large project include a pilot, a mixer/loader, who is responsible for mixing the herbicide and loading it to the tank, a contracting officer's representative, an observer-inspector, a one- to six-member flagging crew, one or two law enforcement officers, one or two water monitors, and one or two laborers. Optional personnel include an air operations officer, a radio technician, a weather monitor, and a recorder. Workers evaluated in the HHRA for aerial applications include a pilot and a mixer/loader, as these are the receptors most likely to be exposed to herbicides. Other personnel are expected to have less or similar herbicide exposure.

2.2.2.2 Ground Application Methods

There are two types of ground application methods: human application methods (backpack and horseback) and vehicle application, which includes ATV/UTV-based application methods (spot-treatment or boom/broadcast treatment), and truck-mounted application methods (spot-treatment or boom/broadcast treatment). These are described in greater detail below.

<u>Human Application Methods</u> - Humans may apply herbicides by backpack or on horseback. The backpack method requires the use of a backpack spray tank for carrying the herbicide, with a handgun applicator with a single nozzle for herbicide application. Backpack and horseback spraying techniques are best adapted for very small scale applications in isolated spots and areas not accessible by vehicle. These methods are primarily used for spot treatments around signposts, spraying competing trees in public-domain forestland, delineators, power poles, scattered noxious weeds, and other areas that require selective spraying.

Backpack treatment is the predominant ground-based method for silviculture and range management. The principle hand application techniques are injection and stump treatment. Injection involves applying an herbicide with a hand-held container or injector through slits cut into the stems of target plants. Individual stem treatment by the injection method is also used for thinning crop trees or removing the undesirable trees. Stump treatment entails applying liquid herbicide directly to the cut stump of the target plant to inhibit sprouting. An herbicide can be applied by dabbing or painting the exposed cambium of a stump, or by using a squeeze bottle on a freshly cut cambium surface. Along with liquid formulations, certain active ingredients are formulated in a granular form that allows for direct application to the soil surface. Pressurized backpack treatment operations typically involve a supervisor (who may also function as a

mixer/loader), an inspector, a monitor, and 2 to 12 crew members. The receptor evaluated in this risk assessment for both backpack and horseback treatments is a combined applicator/mixer/loader, because these treatments are small in scale and it is likely that the same worker would mix the herbicide as well as load and apply the herbicide.

<u>Vehicle Application Methods</u> - Ground-based herbicide spray treatments involve use of a truck or an ATV/UTV. A vehicle application is made using a boom with several spray nozzles (boom/broadcast treatment) or a handgun with a single nozzle (spot treatment). Ground vehicle spray equipment can be mounted on ATVs/UTVs or trucks. Because of their small size and agility, the ATVs/UTVs can be adapted to many different situations.

The boom spray equipment used for vehicle operations is designed to spray wide strips of land where the vegetation does not normally exceed 18 inches in height and the terrain is generally smooth and free of deep gullies. Ground spraying from vehicles occurs along highway rights-of-way, energy and mineral sites, public-domain forestlands, and rangeland sites.

Spot-gun spraying is best adapted for spraying small, scattered plots. It may also be used to spray signposts and delineators within highway rights-of-way, and around wooden power lines as a means of reducing fire hazards within power line rights-of-way. This technique is also used to treat scattered noxious weeds, but it is limited to areas that are accessible by vehicles.

Right-of-way maintenance projects frequently use vehicle-mounted application techniques. A truck with a mixing/holding tank uses a front mounted spray boom or a hand-held pressurized nozzle to treat roadside vegetation on varying slopes. However, using this equipment for off-road ROW projects is limited to gentle slopes (less than 20%) and open terrain. Workers typically involved include a driver/mixer/loader and an applicator. Therefore, receptors evaluated in this HHRA include an applicator, a mixer/loader, and a combined applicator/mixer/loader. The applicator receptor is evaluated both separately and combined with the mixer/loader receptor to cover both smaller scale operations conducted by one person as well as larger scale operations where more workers are involved.

2.3 Herbicide Description

Clopyralid, a selective and systemic herbicide, is used primarily in the control of broadleaf weeds and woody brush. It is a plant growth regulator that acts as a synthetic auxin or hormone, altering the plant's metabolism and growth characteristics and often causing a proliferation of abnormal growth that interferes with the transport of nutrients throughout the plant (SERA 2004). It is used for vegetation control by the BLM's Rangeland, Public-Domain Forestland, Energy and Mineral Sites, ROW, and Recreation programs. Herbicide application is carried out through aerial and ground methods. Aerial applications are conducted using airplanes and helicopters. Ground applications are conducted on foot or on horseback with backpack sprayers or from ATVs, UTVs, or trucks equipped with spot or boom/broadcast sprayers. The BLM typically applies clopyralid at 0.25 lbs acid equivalent (a.e)./acre (ac), with a maximum application rate of 0.5 lbs a.e./ac. Details about clopyralid application rates and method of application are provided in Table 2-1.

The herbicide-specific use criteria discussed in this document were obtained from the clopyralid product label (as registered with the USEPA) as it applies to BLM use. Clopyralid application rates and methods discussed in this section are based on BLM herbicide use and are in accordance with product labels approved by the USEPA. The BLM should be aware of all state-specific label requirements and restrictions. In addition, new USEPA approved herbicide labels may be issued after publication of this report, and BLM land managers should be aware of all newly approved federal, state, and local restrictions on herbicide use when planning vegetation management programs.

For the purposes of this ERA, the herbicide-specific modeling and toxicity evaluation were conducted on an a.e. basis to correspond with the BLM application rates. The active ingredient (a.i.) is the portion of an herbicide formulation that controls the target weed; it is identified on the product label. For weak acids, such as clopyralid, the a.e. is defined as the portion of the formulation that can be converted back to the corresponding parent acid.

As a weak acid, clopyralid can donate a hydrogen ion to other compounds. When clopyralid is formulated into a commercial product, the hydrogen ion on the parent weak acid is replaced with a different ion (salt). The salt itself

does not have herbicidal properties, but results in a product that is easier to handle, mixes better with other agricultural chemicals, and/or is more effective than the parent weak acid. In the case of clopyralid, the monoethanolamine salt of clopyralid is the a.i. in the product Transline and the clopyralid anion is the a.e. of the salt.

2.4 Herbicide Incident Reports

An "ecological incident" occurs when non-target flora or fauna are killed or damaged due to application of a pesticide. When ecological incidents are reported to a state agency or other proper authority, they are investigated and an ecological incident report is generated. The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires product registrants to report adverse effects of their product to the USEPA.

The USEPA Office of Pesticide Programs (OPP) manages a database, the Ecological Incident Information System (EIIS), which contains much of the information provided in the ecological incident reports. As part of this ERA, all available EIIS incident reports listing clopyralid as a potential source of the observed ecological damage were obtained.

A total of 205 EIIS incident reports involved clopyralid. In all 205 incidents, crops were allegedly damaged by clopyralid. The incident reports listed the probability that clopyralid caused the observed damage as "highly probable" in 4 incidents, "probable" in 95 incidents, and "possible" in 99 incidents. In the 4 "highly probable" incidents, clopyralid was being used in accordance with its registered use. The total magnitude for these incidents was either not reported or unknown. The incident reports for clopyralid are presented in Appendix A.

TABLE 2-1

					Application Rate		
				Proposed	Typical	Maximum	
Program	Scenario	Vehicle	Method	for Use	(lbs. a.e./ac)	(lbs. a.e./ac)	
Rangeland	Aerial	Plane	Fixed Wing	Yes	0.25	0.5	
-		Helicopter	Rotary	Yes	0.25	0.5	
	Ground	Human	Backpack	Yes	0.25	0.5	
			Horseback	Yes	0.25	0.5	
		ATV/UTV	Spot	Yes	0.25	0.5	
			Boom/Broadcast	Yes	0.25	0.5	
		Truck	Spot	Yes	0.25	0.5	
			Boom/Broadcast	Yes	0.25	0.5	
Public-Domain	Aerial	Plane	Fixed Wing	Yes	0.25	0.5	
Forestland		Helicopter	Rotary	Yes	0.25	0.5	
	Ground	Human	Backpack	Yes	0.25	0.5	
			Horseback	Yes	0.25	0.5	
		ATV/UTV	Spot	Yes	0.25	0.5	
			Boom/Broadcast	Yes	0.25	0.5	
		Truck	Spot	Yes	0.25	0.5	
			Boom/Broadcast	Yes	0.25	0.5	
Energy and	Aerial	Plane	Fixed Wing	Yes	0.25	0.5	
Mineral Sites		Helicopter	Rotary	Yes	0.25	0.5	
	Ground	Human	Backpack	Yes	0.25	0.5	
			Horseback	Yes	0.25	0.5	
		ATV/UTV	Spot	Yes	0.25	0.5	
			Boom/Broadcast	Yes	0.25	0.5	
		Truck	Spot	Yes	0.25	0.5	
			Boom/Broadcast	Yes	0.25	0.5	
Rights-of-Way	Aerial	Plane	Fixed Wing	Yes	0.25	0.5	
c ,		Helicopter	Rotary	Yes	0.25	0.5	
	Ground	Human	Backpack	Yes	0.25	0.5	
			Horseback	Yes	0.25	0.5	
		ATV/UTV	Spot	Yes	0.25	0.5	
			Boom/Broadcast	Yes	0.25	0.5	
		Truck	Spot	Yes	0.25	0.5	
			Boom/Broadcast	Yes	0.25	0.5	
Recreation	Aerial	Plane	Fixed Wing	Yes	0.25	0.5	
		Helicopter	Rotary	Yes	0.25	0.5	
	Ground	Human	Backpack	Yes	0.25	0.5	
			Horseback	Yes	0.25	0.5	
		ATV/UTV	Spot	Yes	0.25	0.5	
			Boom/Broadcast	Yes	0.25	0.5	
		Truck	Spot	Yes	0.25	0.5	
			Boom/Broadcast	Yes	0.25	0.5	
Aquatic				No	-		

BLM Clopyralid Use Statistics

Application rates provided by the BLM.

$$ac = acres.$$

a.e. = acid equivalent. ATV/UTV = All-terrain vehicle/utility vehicle.

lbs = pounds.

3.0 HERBICIDE TOXICOLOGY, PHYSICAL-CHEMICAL PROPERTIES, AND ENVIRONMENTAL FATE

This section summarizes available herbicide toxicology information, describes how this information was obtained, and provides a basis for the level of concern values selected for this risk assessment. Clopyralid's physical-chemical properties and environmental fate are also discussed.

As discussed in the Methods Document (ENSR 2004), if the USEPA had reviewed a toxicology study and classified it as "acceptable," the study's findings were considered acceptable for development of toxicity reference values (TRVs). Studies classified as "supplemental" by the USEPA were only used if acceptable ("core") studies were unavailable for a certain exposure pathway/receptor. Core studies are those used to support registration of a pesticide and were conducted according to accepted methodologies. Supplemental studies are scientifically sound; however, they were performed under conditions that deviated from recommended protocols. These supplemental studies are generally not used for registration purposes, but are acceptable for use in a risk assessment.

3.1 Herbicide Toxicology

A review of the available ecotoxicological literature published since 2004³ was conducted in order to evaluate the potential for clopyralid to negatively affect the environment, and to identify or derive TRVs for use in the ERA (provided in italics in Sections 3.1.2 and 3.1.3). The process for the literature review and the TRV derivation is provided in the Methods Document (ENSR 2004). This review included a review of published manuscripts and registration documents, electronic databases (e.g., USEPA pesticide ecotoxicology database, USEPA's online ECOTOX database), and other internet sources. This review included both freshwater and marine/estuarine data, although marine/estuarine data were not considered for TRV development, as discussed in the Methods Document (ENSR 2004).

Two different processes may be used to manufacture clopyralid: the penta process and the electrochemical process. The penta process is the original method, while the electrochemical process was developed later. The two processes yield "slightly different ingredient profiles" (Dow AgroSciences 1998). The limited information indicates that technical grade clopyralid samples from the electrochemical process may be somewhat more toxic than those produced during the penta process (SERA 2004). These differences, however, are not substantial and may be due to random variability.

Endpoints for aquatic receptors and terrestrial plants were reported based on exposure concentrations (milligrams per liter [mg/L] and pounds per acre [lbs/ac], respectively). Dose-based endpoints (e.g., the acute dose causing 50% mortality $[LD_{50}]$) were used for birds and mammals. When possible, dose-based endpoints were obtained directly from the literature. When dosages were not reported, dietary concentration data were converted to dose-based values (e.g., the concentration causing 50% mortality $[LC_{50}]$ to LD_{50}) following the methodology recommended in USEPA risk assessment guidelines (Sample et al. 1996). Acute TRVs were derived first to provide an upper boundary for the remaining TRVs; chronic TRVs were always equivalent to, or less than, the acute TRV. The chronic TRV was established as the highest no observed adverse effect level (NOAEL) value that was less than both the chronic lowest

³ The Forest Service published a comprehensive risk assessment for clopyralid in December, 2004 (Syracuse Environmental Research Associates 2004). The objective of this literature review was to identify new ecotoxicological studies published since 2004.

observed adverse effect level (LOAEL) and the acute TRV. When acute or chronic toxicity data were unavailable, TRVs were extrapolated from other relevant data using an uncertainty factor of 3, as described in the Methods Document (ENSR 2004).

This section reviews the available information identified for clopyralid and presents the TRVs selected for this ERA (Table 3-1). Appendix B presents a summary of the clopyralid data identified during the literature review. Toxicity data are presented in the units presented in the reviewed study, which in this case applies to the active ingredient itself (clopyralid); however some data correspond to a specific product or applied mixture (e.g., Lontrel[®]). The availability of toxicity data is discussed in Section 7.1. The review of the toxicity data did not consider potential toxic effects of inert (other) ingredients, adjuvants, surfactants, and/or degradates. Section 7.3 of the Uncertainty section discusses the potential impacts of these constituents in a qualitative manner.

3.1.1 Overview

According to USEPA ecotoxicity classifications presented in registration materials,⁴ clopyralid poses little to no acute toxicity hazard to mammals via dermal and oral exposure. Clopyralid's mode of action is to act as a synthetic auxin or hormone, altering the plant's metabolism and growth characteristics and often causing a proliferation of abnormal growth that interferes with the transport of nutrients throughout the plant. Phytotoxicity is relatively specific to broadleaf plants, because clopyralid is rapidly absorbed across leaf surfaces, but much less readily absorbed by the roots of plants (SERA 2004). Phytotoxicity varies greatly depending on the application method; clopyralid is much more effective in post-emergent treatments (e.g., foliar application) than in pre-emergent treatments (e.g., application to soil; SERA 2004).

Given its selectivity, clopyralid has little toxic impact on birds, terrestrial invertebrates, fish, aquatic invertebrates, or aquatic plants. No toxicity studies conducted on amphibian species were found in the literature.

3.1.2 Toxicity to Terrestrial Organisms

3.1.2.1 Mammals

Based on a review of available ecotoxicological literature, clopyralid is characterized as not acutely toxic via dermal and oral routes of exposure to mammals. Toxicological studies estimated the acute dermal LD₅₀ for rabbits (*Leporidae* sp.) to be >2,000 mg a.e./kilogram (kg) body weight (BW; Saunders et al. 1983; Jeffrey 1987; Master Record Identification Numbers [MRIDs] 00127275, 40246301). Another study estimated the acute dermal LD₅₀ for rabbits to be >5,000 mg a.e./kg BW (Carreon and New 1981; MRID 01476690). Clopyralid administered orally to female rats (*Rattus* spp.) caused the death of 50% of the test organisms (in other words [i.e.], the LD₅₀ value) when the dose was 2,675 mg a.e./kg BW clopyralid manufactured via the electrochemical process (DowAgroSciences 1998). Clopyralid manufactured using the penta process resulted in an acute LD₅₀ in excess of 5,000 mg a.e/kg BW in rats (DowAgroSciences 1998), indicating that clopyralid manufactured via the electrochemical process may be somewhat more toxic than clopyralid manufactured via the penta process.

Dietary exposure to 150 mg a.e./kg BW-day clopyralid for 2 years resulted in decreased body weight in female Sprague-Dawley rats, but no adverse effects were observed at 50 mg a.e./kg BW-day (Humiston et al. 1977; MRID 00061376). In another 2-year dietary study, daily doses of clopyralid resulted in toxicity (skin effects) in rats at a dose level of 150 mg a.e./kg BW-day (Barna-Lloyd et al. 1986; MRID 00162393). In the same study, increased relative liver and kidney weights were observed at a dose level of 1,500 mg a.e./kg BW-day, but no treatment-related effects were observed at a dose level of 15 mg a.e./kg BW-day.

⁴ Available at URL: <u>http://www.epa.gov/oppefed1/ecorisk_ders/toera_analysis_eco.htm#Ecotox</u>

Reproductive effects were also examined in small mammals. No adverse effects on reproduction of mice (*Mus* spp.) were observed during an 18 month dietary study at a dose level of 350 parts per million (ppm; equivalent to 64.2 mg a.e./kg BW-day in mice; West and Willigan 1976, West et al. 1976; MRIDs 00081592, 00061377).

Based on these findings, the oral LD_{50} (2,675 mg a.e/kg BW) and chronic NOAEL (50 mg a.e./kg BW-day) were selected as the dietary small mammal TRVs. The dermal small mammal TRV was established at >2,000 mg a.e./kg BW-day.

Toxicity data for large mammals were more limited. In a subchronic dietary study, beagle dogs (*Canis lupus familiaris*) were exposed to clopyralid for 6 months. Toxicity was observed in female dogs at a dose level of 150 mg a.e./kg BW-day, but no treatment-related effects were observed at a dose level of 50 mg a.e./kg BW-day in females (Humiston et al. 1976; MRID 00061383). In the same study, no change in absolute or relative organ weight was noted in male dogs at a dose level of 150 mg a.e./kg BW-day.⁵ Chronic dietary exposure was evaluated in a 1-year feeding trial. In this study, beagle dogs experienced systemic toxicity at 1,000 mg a.e./kg BW-day and minimal effects at 320 mg a.e./kg BW-day (Breckenridge et al. 1984; MRID 00158256). No adverse effects were noted at a dose level of 100 mg a.e./kg BW-day.

Since no large mammal LD_{50} s were identified in the available literature, the small mammal LD_{50} of 2,675 mg a.e./kg BW was used as a surrogate value. The large mammal dietary NOAEL TRV was established at 100 mg a.e./kg BW-day.

3.1.2.2 Birds

The USEPA pesticide registration process requires toxicological data be supplied to evaluate avian tolerance to clopyralid. Clopyralid administered to mallards (*Anas platyrhynchos*) in a single gavage caused the death of 50% of the test organisms (i.e., the LD_{50} value) when the dose was 1,112 mg a.e./kg BW clopyralid as the monoethanolamine salt (MRID not reported). In the same study, no adverse effects were observed when clopyralid was administered in a single gavage at a dose level of 479 mg a.e./kg-BW. In a 14-day dietary study in mallards, the NOAEL was determined to be 911 mg a.e./kg BW (MRID 40151609).

Few avian studies reported a LOAEL for clopyralid. A 20-week reproduction study in mallards reported no adverse effects at a dose of 759 ppm a.e. (equivalent to 75.9 mg a.e./kg BW-day in mallards) using the Lontrel® formulation (MRID 00156001). The LOAEL value from this study was determined to be in excess of 759 ppm a.e. (>75.9 mg a.e/kg BW-day in mallards).

When clopyralid was administered to bobwhite quail (*Colinus virginianus*) in the diet, the LC₅₀ value was determined to be in excess of 4,640 ppm a.i. of the tested product identified as DOWCO 290 (MRID ACC236656). In these dietary tests, the test organism was presented with the dosed food for 5 days, with 3 days of additional observations after the dosed food was removed. The endpoint reported for this assay is generally an LC₅₀ representing mg/kg food. For this ERA, the concentration-based value was converted to a dose-based value following the methodology presented in the Methods Document (ENSR 2004).⁶ Then the dose-based value was multiplied by the number of days of exposure (generally 5 days) to determine an LD₅₀ value representing the full herbicide exposure over the course of the test. The resultant LD₅₀ value for quail was >10,632 mg a.e/kg BW (MRID ACC236656). In a second acute dietary study, the LC₅₀ value for bobwhite quail was estimated as being in excess of 5,620 ppm of the tested product

⁵ Among male dogs, changes in urinary bladder (cystitis, urethritis, and prostatitis) were noted. However, the etiology of the bladder effects is unknown. Hart and McConnell (1975a, b; MRIDs 00081590, 00061384) were unable to reproduce the bladder injury noted in Humiston et al. (1976; MRID 00061383).

⁶ Dose-based endpoint (mg/kg BW/day) = [Concentration-based endpoint (mg/kg food) x Food Ingestion Rate (kg food/day)]/BW (kg).

(equivalent to >12,878 mg a.e./kg-BW for quail; MRID 40151611). No LOAEL results were available in the literature for bobwhite quail. Data for piscivorous birds were not identified in the literature reviewed.

Based on these findings, the mallard dietary LD_{50} (1,112 mg a.e./kg BW) and chronic NOAEL (75.9 mg a.e./kg BWday) were selected as the large bird TRVs. The large bird NOAEL was selected as a surrogate value for the piscivorous bird. In the absence of a chronic LOAEL or NOAEL for bobwhite quail, the chronic NOAEL of 75.9 mg a.e./kg BW-day for large birds was used as a surrogate for small birds. This is a conservative assumption, since acute studies predict that bobwhite quail are less sensitive to clopyralid than mallards. The small bird LD_{50} is >10,632 mg a.e./kg BW.

3.1.2.3 Terrestrial Invertebrates

A standard acute contact toxicity bioassay in honeybees (*Apis mellifera*) is required for the USEPA pesticide registration process. In this study, clopyralid was directly applied to the bee's thorax, and mortality was assessed during a 48-hour period. The USEPA reports an LD_{50} value of more than 100 micrograms (µg) per bee, and the no effect level was 100 µg a.e./bee (Cole 1974a, b; Hinken et al. 1986; MRIDs 40151612, ACC236656, 40151612, 00081595, 00059971).

The honeybee dermal LD_{50} TRV was set at >100 µg a.e./bee.

3.1.2.4 Terrestrial Plants

Toxicity tests were conducted on several terrestrial plant species (plants tested were vegetable crop species rather than rangeland or forest species). Endpoints in the terrestrial plant toxicity tests were generally related to seedling germination and emergence, and sublethal (i.e., growth) impacts observed during vegetative vigor assays.

Germination assay results were available for two plant species: soybean (*Glycine max*) and sunflower (*Helianthus annus*). Soybean was more sensitive to the effects of clopyralid, with significant adverse effects noted after 14 days at concentrations as low as 0.0100 lb a.e./ac (MRID 40081401). The NOAEL for this study was 0.0017 lb a.e./ac. Sunflower was a less sensitive receptor in the germination assay, with a NOAEL of 0.0415 lb a.i./ac (MRID 40081401).

Tomato (*Lycopersicon esculentum*), soybean, and snapbean (*Phaseolus* sp.) were the most sensitive species in vegetative vigor (direct spray) assays with clopyralid as the monoethanolamine salt. The NOAELs reported for these three species were all 0.0007 lb a.e./ac in this 42-day assay (MRID 40081401). In the same test, wheat (*Triticum aestivum*) and onion (*Allium cepa*) were determined to be less sensitive to the effects of clopyralid, with NOAELs of 0.0659 lb a.e./ac.

In a 14-day foliar exposure (direct spray) assay, toxic effects related to seed growth were observed in pea (*Pisum sativum*) at a dose level of 0.0027 lb a.e./ac (Olszyk et al. 2009). This endpoint appeared to be the most sensitive endpoint in pea, as the EC_{25} (i.e., concentration that affects 25% of the tested population) for stem growth and healthy leaf area were 0.017 and 0.015 lb a.e./ac, respectively (Olszyk et al. 2009).

The lowest and highest germination-based NOAELs were selected to evaluate risk in surface runoff scenarios to RTE and typical species, respectively. Only one germination-based study was identified. Therefore, the selected TRVs were 0.0017 and 0.0415 lb a.e./ac based on the soybean and sunflower, respectively. Two additional endpoints were used to evaluate other plant scenarios. These included a life-cycle NOAEL of 0.0007 lb a.e./ac and an EC₂₅ of 0.0027 lb a.e./ac.

3.1.3 Toxicity to Aquatic Organisms

3.1.3.1 Fish

The toxicity of clopyralid to freshwater fish was evaluated by testing both coldwater and warmwater fish, and the lowest toxicity result was selected as the TRV for fish. Several studies examined the acute toxic effects of clopyralid on rainbow trout (*Oncorhynchus mykiss*), a coldwater fish species. The LC₅₀ (the concentration that causes mortality in 50% of the test organisms) during rainbow trout testing of 103.5 mg a.i./L clopyralid as the monoethanolamine salt (DOWCO 290; equivalent to 79 mg a.e./L; MRID ACC236656). The NOAEL reported for rainbow trout is 80 mg a.i./L using clopyralid as the monoethanolamine salt (DOWCO 290; equivalent to 61 mg a.e./L; MRID ACC236656). No chronic coldwater fish tests were identified.

Acute toxicity tests were also conducted with the warmwater fish species fathead minnow (*Pimephales promelas*) and bluegill sunfish (*Lepomis macrochirus*). Results from the toxicity tests varied depending on the specific formulation of clopyralid. 96-hour LC₅₀s ranged from 4,686 mg a.i./L using a 35% clopyralid product (equivalent to 3,556 mg a.e./L) to 125 mg a.i./L using clopyralid as the monoethanolamine salt (DOWCO 290; 100% active ingredient); equivalent to 95 mg a.e./L; AgroSciences 1998; MRIDs ACC236656, 40151608). NOAELs for bluegill sunfish and fathead minnow were 3,000 and 2,900 mg a.i./L,⁷ respectively, using a 35% clopyralid product (equivalent to 2,277 and 2,201 mg a.e./L, respectively) (MRID 40151608). NOAELs were not identified for the acute studies with the monoethanolamine salt. No chronic tests were identified using warmwater species.

The lower of the coldwater and warmwater fish endpoints were selected as the TRVs for fish. Therefore the coldwater 96-hour LC_{50} of 79 mg a.e./L was selected as the acute TRV. In the absence of chronic data, the acute NOAEL of 61 mg a.e./L was divided by an uncertainty factor of 3 to extrapolate to a chronic NOAEL of 20.3 mg a.e./L, and this value was used as the NOAEL TRV for chronic effects to fish.

Bidlack (1982) exposed bluegill sunfish to Carbon-14-labeled clopyralid for 28 days and found no indication of bioconcentration. As such, a bioconcentration factor of 1 was selected for clopyralid.

3.1.3.2 Amphibians

No toxicity studies for amphibians were found in the literature or in USEPA registration documents.

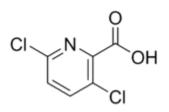
3.1.3.3 Aquatic Invertebrates

Freshwater invertebrate toxicity tests are required for the USEPA pesticide registration process. Several acute toxicity tests using water fleas (*Daphnia magna*) were found in the literature. In these acute studies, two statistical endpoints were reported, the LC_{50} and the EC_{50} . The EC_{50} is the concentration that causes an effect in 50% of the test organisms. The lowest of the LC_{50} or EC_{50} reported from these 48-or 96-hour studies was 225 ppm (equivalent to 171 ppm a.e.), using a 95% clopyralid product (Dow AgroSciences 1998).

A *D. magna* life-cycle test was completed to assess chronic toxicity to aquatic invertebrates and to fulfill the pesticide registration requirements. The reproduction NOAEL reported from this test (duration not reported) using a 35% clopyralid product was 23.1 mg a.e./L (DowAgroSciences 1998).

The EC_{50} (171 mg a.e./L) was selected as the invertebrate acute TRV, and the NOAEL (23.1 mg a.e./L) was selected as the chronic TRV.

 $^{^{7}}$ Note that the NOAELs reported for warmwater species exceeded the lowest LC₅₀ value. Since no NOAEL value in the reviewed literature was lower than the lowest LC₅₀ value for warmwater fish, the LC₅₀ value was divided by an uncertainty factor of 3 to estimate a NOAEL value of 32 mg a.e./L for the warmwater species. See Table 3-1.


3.1.3.4 Aquatic Plants

Standard toxicity tests were conducted on aquatic plants, including aquatic macrophytes and algae. The 14-day EC_{50} for growth inhibition in duckweed (*Lemna gibba*), an aquatic macrophyte, is 89 mg a.e./L (Dow AgroSciences 1998). The lowest reported EC_{50} for growth inhibition of green algae is 6.9 mg a.e./L in a 96-hour assay (Dill and Milazzo 1985). Only one NOAEL value was identified in the literature reviewed. No adverse effects were observed when pondweed (*Potamogeton pectinatus*) and common water milfoil (*Myriophyllum sibiricum*) were exposed to clopyralid as the monoethanolamine salt at a concentration of 0.1 mg/L for 12 hours (Forsyth et al. 1997).

The 96-hour EC_{50} (6.9 mg a.e./L) was selected as the aquatic plant acute TRV. In the absence of a chronic NOAEL, the acute NOAEL (0.1 mg a.e./L) was divided by an uncertainty factor of 3 to extrapolate to a chronic NOAEL of 0.03 mg a.e./L, which was selected as the chronic TRV.

3.2 Herbicide Physical-Chemical Properties

The chemical formula for clopyralid is 3,6-dichloropyridine-2-carboxylic acid (Compendium of Pesticide Names 2011), but it may also be known as 3,6-dichloropicolinic acid (Compendium of Pesticide Names 2011) or dichloropicolinic acid (USEPA [2011a] Pesticide Fate Database). The chemical structure of clopyralid is shown below:

Clopyralid Chemical Structure

The physical-chemical properties and degradation rates critical to clopyralid's environmental fate are listed in Table 3-2, which presents the range of values encountered in the literature for these parameters. To complete Table 3-2, USEPA literature on clopyralid was obtained from published manuscripts and registration documents. Additional sources, both on-line and in print, were consulted for information about the herbicide, and included:

- Baloch, R.I., and R.K. Grant. 1991. The Investigation of Degradation and Metabolism of Clopyralid in Two Standard and Three Agricultural Soils. Monograph British Crop Protection Council 4:101–108.
- Bidlack, H. 1982. Determination of the Bioconcentration Factor for 3,6-Dichloropicolinic Acid in Bluegill Sunfish during Continuous Aqueous Exposure: GH-C 1577. MRID No. 00128464.
- Budavari, S. 1989. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 11th ed. Merck and Company, Inc., Rahway, New Jersey.
- Compendium of Pesticide Common Names. Accessed Online 2011. Available at URL: <u>http://www.alanwood.net/pesticides/index.html</u>. Last updated: November 2010.
- Concha, M., and K. Shepler. 1994. Photodegradation of (carbon-14)-clopyralid in Buffered Aqueous Solution at pH 7 by Natural Sunlight: Lab Project Number: 451W: ENV94048. Unpublished Study Prepared by PTRL West, Inc. MRID No. 43891401.
- Dow AgroSciences, LLC. 1998. Submission of Residue Chemistry, Toxicity, Risk Assessment and Exposure Data in Support of the Registration of Stinger Herbicide, and the Petition for Tolerance for Clopyralid in/on Sugar Beets. Transmittal of Two Studies. MRID No. 44698700.

- Hawes, K., and S. Erhardt-Zabik. 1995. The Anaerobic Aquatic Metabolism of Clopyralid: Lab Project Number: ENV93076. Unpublished Study Prepared by DowElanco North American Environmental Chemistry Lab. MRID No. 43891404.
- International Programme on Chemical Safety (IPCS). 2011. Chemical Safety Information from Intergovernmental Organizations. Available at URL: <u>http://www.inchem.org/</u>.
- Knisel, W.G., and F.M. Davis. 2000. GLEAMS (Groundwater Loading Effects on Agricultural Management Systems), Version 3.0, User Manual. U.S. Department of Agriculture Agricultural Research Service USDA ARS), Southeast Watershed Research Laboratory, Tifton, Georgia. Publication Number.: SEWRL-WGK/FMD-050199. Report Dated May 1, 1999 and revised August 15, 2000.
- Oliver, G., E. Bjerke, M. Mackasey, et al. 1988. Field Dissipation and Leaching of Clopyralid under Rangeland Conditions: Laboratory Project ID GHC-2070. Unpublished Study Prepared by Dow Chemical USA. MRID No. 40676201.
- Pesticide Properties DataBase (PPDB). 2010. University of Hertfordshire. Available at URL: <u>http://sitem.herts.ac.uk/aeru/projects/ppdb/index.htm</u>.
- Petty, D., and J. Knuteson. 1991. Field Dissipation and Leaching of Clopyralid under Rangeland Conditions: Supplement to GH-C 2070: Lab Project Number: 87057 GC-C 2070 ADD1. Unpublished Study Prepared by DowElanco. MRID No. 42415401.
- Roberts, D., A. Phillips, B. Blakeslee, et al. 1996. Terrestrial Dissipation of Clopyralid in California: Lab Project Number: ENV95003. Unpublished Study Prepared by DowElanco and A&L Great Lakes Labs. MRID No. 44184701.
- Schutz, S., B. Weibbecker, and H.E. Hummel. 1996. Gas Chromatography-Mass spectrometry Analysis of the Herbicide Clopyralid in Differentially Cultivated Soils. Environmental Toxicology and Chemistry 15 (2):249–252.

United States Department of Agriculture Research Service (USDA ARS). 1995. Pesticide Properties for Clopyralid.

USEPA. 2010. Pesticide Fate Database. Available at URL: <u>http://cfpub.epa.gov/pfate/home.cfm</u>.

_. 2011b. Electronic Reading Room: Science Reviews Previously Released under the Freedom of Information Act. Available at URL: <u>http://www.epa.gov/pesticides/foia/reviews.htm</u>.

__. 2011c. Environmental Laboratory, Clopyralid. Available at URL: http://el.erdc.usace.army.mil/index.cfm.

United States National Library of Medicine. 2011. Hazardous Substances Data Bank Clopyralid. Available at URL: <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB</u>.

Woodburn, K. 1987. Clopyralid - The Hydrolysis of Clopyralid in Sterile, Buffered Water: Lab Project Number: LEH060893. Unpublished Study Prepared by Dow Chemical USA. MRID No. 42805701.

____, and B. French. 1987. A Soil Sorption/Desorption Study of Clopyralid: Laboratory Project ID: GH-C 1873. Unpublished Study Prepared by Dow Chemical USA. MRID No. 40095701.

An aquatic half-life biodegradation value was not available for clopyralid. Values for foliar halftime and foliar washoff fraction were obtained from a database included in the GLEAMS computer model (Knisel and Davis 2000). Residue rates were obtained from the Kenaga nomogram, as updated (Fletcher et al. 1994). Values selected for use in risk assessment calculations are shown in bold in Table 3-2.

3.3 Herbicide Environmental Fate

Clopyralid is moderately persistent in soil (PPDB 2010). In terrestrial systems, the following half-lives have been reported: a foliar half-life of 2 days and a half-life in soil of 13 to 65 days (depending on soil type; Baloch and Grant 1991, USDA ARS 1995, Knisel and Davis 2000, Table 3-2). Biodegradation occurs faster in clay loam soils (13 days) than in clay or sandy loam soils (38 and 36 days, respectively; United States National Library of Medicine 2011). Clopyralid appears to be stable to photodegradation in terrestrial systems (USDA ARS 1995).

The K_{oc} or organic carbon-water partitioning coefficient, measures the affinity of a chemical to organic carbon relative to water. A high K_{oc} indicates that the chemical is not very soluble in water and has a high affinity for organic carbon, an important constituent of soil particles. Therefore, the higher the K_{oc} , the less mobile the chemical is expected to be. K_{oc} values for clopyralid vary by soil type, and range between 0.4 and 60 (Bidlack 1982, Woodburn and French 1987, USDA ARS 1995, Dow AgroSciences 1998). K_{oc} values for clopyralid suggest that adsorption of clopyralid to soil and suspended solids and sediment in water may not be an important process under conditions that favor leaching (e.g., sandy soil, a sparse microbial population, and high rainfall; SERA 2004). The results of field leaching experiments indicate that applied clopyralid remained in the top soil and leaching was not significant (Baloch and Grant 1991, USDA ARS 1995).

Clopyralid is stable to hydrolysis over a pH range of 5 to 9 (Woodburn 1987). Based on its Henry's Law constant (the ratio of the chemical's distribution at equilibrium between the gas and liquid phases), volatilization of clopyralid from moist soil is an unimportant fate process (United States National Library of Medicine 2011). Field dissipation half-lives reported for clopyralid range from 2 to 250 days, depending on the concentration in soil (Petty and Knuteson 1991, USDA ARS 1995, Roberts et al. 1996, Schutz et al. 1996, Oliver et al. 1998, DowAgroSciences 1998, PPDB 2010; Table 3-2).

Clopyralid appears to be fairly stable and persistent in aquatic systems (PPDB 2010). As in terrestrial systems, photodegradation does not appear to play a major role in the aquatic environment (USDA ARS 1995). The half-life of clopyralid in water has been reported in the range of 148 and 261 days (Concha and Shepler 1994, PPBD 2010; Table 3-2). The half-life of clopyralid in aquatic sediment has been estimated at 1,000 days, since no significant degradation of clopyralid was observed over a 1-year period in anaerobic sediments (Hawes and Erhardt-Zabik 1995). An aquatic biodegradation half-life was not identified for clopyralid. Clopyralid is stable to hydrolysis over a pH range of 5 to 9 (USDA ARS 1995, PPDB 2010), and based on the Henry's Law constant, it is also unlikely to volatilize from aquatic systems (United States National Library of Medicine 2011). Based on reported bioconcentration factors of 1 to 13,⁸ clopyralid has a low tendency to bioaccumulate in aquatic organisms (PPDB 2010, United States National Library of Medicine 2011).

⁸ A bioconcentration factor of 13 was estimated from the water solubility of 1,000 mg/L, not experimentally, and a regression equation suggests that bioconcentration of clopyralid in aquatic organisms may not be important (U.S. National Library of Medicine 2011). Based on this information, a bioconcentration factor of 1 was selected for use in the risk assessment.

TABLE 3-1

Selected Toxicity Reference Values for Clopyralid

Receptor	Selected	Units Du	ration	Endpoint	Species	Notes
<u> </u>		RECEPTORS INC	LUDED	IN FOOD W	EB MODEL	-
Terrestrial Animals	100		10.1			
Honeybee	> 100	μg a.e./bee	48 h	LD ₅₀	honeybee	
Large Bird	1,112	mg a.e./kg bw	14 d	LD ₅₀	mallard	
Large Bird	75.9	mg a.e./kg bw-day	20 w	NOAEL	mallard	
Piscivorous Bird	75.9	mg a.e./kg bw-day	20 w	NOAEL	mallard	
Small Bird	> 10,632	mg a.e./kg bw	8 d	LD ₅₀	bobwhite quail	
Small Bird	75.9	mg a.e./kg bw-day	20 w	NOAEL	mallard	large bird study used
Large Mammal	2,675	mg a.e./kg bw	NR	LD ₅₀	rat	small mammal study used
Large Mammal	100	mg a.e./kg bw-day	12 m	NOAEL	dog	
Small Mammal	50	mg a.e./kg bw-day	3 gen	NOAEL	rat	
Small Mammal - dermal	> 2,000	mg a.e./kg bw	14 d	LD ₅₀	rabbit	
Small Mammal - ingestion	2,675	mg a.e./kg bw	NR	LD ₅₀	rat	
<u>Terrestrial Plants</u>						
Typical Species - direct spray, drift, dust	0.0027	lb a.e./ac	14 d	EC ₂₅	pea	foliar exposure
RTE Species - direct spray, drift, dust	t 0.0007	lb a.e./ac	42 d	NOAEL	multiple	vegetative vigor
Typical Species - runoff	0.0415	lb a.e./ac	14 d	NOAEL	sunflower	seedling emergence
RTE Species - runoff	0.0017	lb a.e./ac	14 d	NOAEL	soybean	seedling emergence
Aquatic Species						
Aquatic Invertebrates	171	mg a.e./L	NR	LC ₅₀	water flea	
Aquatic Invertebrates	23.1	mg a.e./L	NR	NOAEL	water flea	
Fish	79	mg a.e./L	96 h	LC ₅₀	rainbow trout	
Fish	20.3	mg a.e./L	96 h	NOAEL	rainbow trout	extrapolated based on acute study
Aquatic Plants and Algae	6.9	mg a.e./L	96 h	EC ₅₀	green algae	
Aquatic Plants and Algae	0.03	mg a.e./L	12 h	NOAEL	pondweed, milfoil	extrapolated based on acute study

BLM Vegetation Treatments ERA - Clopyralid BLM Order No. L10PD04555

TABLE 3-1 (Cont.)

Selected Toxicity Reference Values for Clopyralid

Receptor	Selected TRV	Units	Duration	Endpoint	Species	Notes		
		-	ADDITIONAL	ENDPOINT	S			
Amphibian	no data							
Warmwater Fish	95	mg a.e./L	96 h	LC ₅₀	bluegill sunfish			
Warmwater Fish	32	mg a.e./L	96 h	NOAEL	bluegill sunfish	See Section 3.1.3.1.		
Coldwater Fish	79	mg a.e./L	96 h	LC ₅₀	rainbow trout			
Coldwater Fish	61	mg a.e./L	96 h	NOAEL	rainbow trout			
Notes:								
TRVs preceded by a greater than sy concentration in these studies and the <u>Toxicity endpoints for terrestrial an</u>	herefore these valu			. However, it sho	ould be noted that the spec	ified effect was not observed at the highest tested		
LD ₅₀ - to address acute exposure.					Piscivorous	Piscivorous bird TRV = Large bird chronic TRV.		
NOAEL - to address chronic expos	ure.				Fish TRV =	Fish TRV = lower of coldwater and warm water fish TRVs.		
Toxicity endpoints for terrestrial pla	ants.				NR – Not re	NR – Not reported		
EC25 - to address direct spray, drift,	and dust impacts	on typical species.			Durations:	Durations:		
NOAEL - to address direct spray, d	rift, and dust impa	cts on threatened o	r endangered specie	es.	gen – gener	gen – generations		
Highest germination NOAEL - to a	ddress surface run	off impacts on typi	cal species.		h - hours	h - hours		
Lowest germination NOAEL - to address surface runoff impacts on threatened or endangered species.								
Toxicity endpoints for aquatic receptors.								
LC_{50} or EC_{50} - to address acute exposure (appropriate toxicity endpoint for non-target aquatic plants will be an EC_{50} .								
NOAEL - to address chronic expos	ure.	y - years	y - years					
Value for fish is the lower of the wa	armwater and cold	water values.			indicates	no notes are applicable to this scenario		

TABLE 3-2

Physical-chemical Properties of Clopyralid¹

Parameter	Value
Herbicide family	Pyridine compound (PPDB 2010).
Mode of action	Auxin-type growth hormone; disrupts normal plant development resulting in necrosis and death (USACE 2011a).
Chemical Abstract Service	Acid: 1702-17-6 (Budavari 1989).
number	Salt: 57754-85-5 (Compendium of Pesticide Common Names 2011).
Office of Pesticide Programs	117403 (clopyralid)
chemical code	117401 (clopyralid, monoethanolamine salt; USEPA 2011a).
Chemical name (International	3,6-dichloropyridine-2-carboxylic acid or 3,6-dichloropicolinic acid
Union of Pure and Applied	(Compendium of Pesticide Common Names 2011); dichloropicolinic acid
Chemistry)	(USEPA 2011a).
Empirical formula	C ₆ H ₃ Cl ₂ NO ₂ (Compendium of Pesticide Common Names 2011).
Molecular weight	192 (acid) , 253 (salt; Budavari 1989).
Appearance, ambient conditions	Odorless white or colorless crystals (International Programme on Chemical Safety 2011).
Acid / base properties (Acid dissociation constant)	2.33 (Bidlack 1982); 2.0 (Dow AgroSciences 1998); 2.3 (USDA ARS 1995); 2.01 (PPDB 2010).
Vapor pressure (millimeters mercury at 25°C)	1.2 x 10 ⁻⁵ (Budavari 1989).
Water solubility (mg/L at 25°C)	1,000 (Budavari 1989).
Log octanol-water partition coefficient (log (K _{ow})), unitless	-1.81 (pH 5), -2.63 (pH 7) , - 2.55 (pH 9; Dow AgroSciences 1998, USDA/ARS 1995); - 2.63 (PPDB 2010).
Henry's Law constant (atmosphere per cubic meter/mole)	3.03 x 10 ⁻⁹ (United States National Library of Medicine 2011).
Soil partition coefficient / organic matter sorption coefficient (K_d / K_{oc})	K _{oc} : 10 (Bidlack 1982); 0.4 to 29.8 (Dow AgroSciences 1998); 36 (13 to 60; USDA ARS 1995); 0.4 (clay loam), 3.15 (loam), 12.9 (sand; Woodburn and French 1987). K _d : 6 to 36 (USDA ARS 1995); 4 (3.43 to 7.34; PPDB 2010); 0.0094 (clay loam), 0.02 (loam), 0.0935 (sand; Woodburn and French 1987).
Bioconcentration factor	13 (estimated; United States National Library of Medicine 2011); 1 (Bidlack 1982, PPDB 2010).
Foliar wash-off fraction	0.95 (Knisel and Davis 2000).
Half-life – aquatic sediment 2	1,000 (Hawes and Erhardt-Zabik 1995).
Half-life – foliar	2 days (Knisel and Davis 2000).
Half-life – soil ³	14 days (clay), 25 days (loam), 29 days (sand; Baloch and Grant 1991); 26 days (13 to 39; USDA ARS 1995); 34 days (13 to 65 days; USDA ARS 1995).
Half-life – water	261 days (Concha and Shepler 1994); 148 days (PPBD 2010).
Half-life – hydrolysis	Stable over range of pH 5 to 9 (Woodburn 1987).
Half-life – photodegradation half- life in water (photolysis)	Stable (USDA ARS 1995); 271 days (PPBD 2010).
Half-life – photodegradation half- life in soil (photolysis)	Stable (USDA ARS 1995).
Half-life – Soil biodegradation	38 days (clay), 13 days (clay loam), 36 days (sandy loam; at 20°C; United States National Library of Medicine 2011).

Physical-chemical Properties of Clopyralid¹

Parameter	Value
	25 days (8 to 250; Dow AgroSciences 1998); 13 days (10 to 30; USDA ARS
Half-life – Field dissipation	1995); 10 days (Petty and Knuteson 1991, Oliver. et al. 1998); 19 to 48 days
(degradation and dissipation) ⁴	(Roberts et al. 1996); 57 to 161 days (Schutz et al. 1996); 11 days (2 to 24;
	PPDB 2010).
Residue rate for grass ⁵	197 ppm (maximum) and 36 ppm (typical) per lb a.i./ac.
Residue rate for vegetation ⁶	296 ppm (maximum) and 35 ppm (typical) per lb a.i./ac.
Residue rate for insects ⁷	350 ppm (maximum) and 45 ppm (typical) per lb a.i./ac.
Residue rate for berries ^{8,9}	40.7 ppm (maximum) and 5.4 ppm (typical) per lb a.i./ac.

Notes:

Values presented in bold were used in risk assessment calculations.

¹ Transline, the commercial formulation of clopyralid, is composed of 40.9% clopyralid as the monoethanolamine salt.

² Halftime set to 1,000 days based on Hawes and Erhardt-Zabik (1995) who observed no significant degradation over a 1-year period in anaerobic sediments.

³ Based on the experimental and estimated K_{oc}, the mobility of clopyralid in soil is expected to be high. However, in field leaching experiments applied clopyralid remained in the topsoil and leaching was not significant.

⁴ Soil persistence is dependent on concentration.

⁵ Residue rates selected are the high and mean values for long grass (Fletcher et al. 1994).

⁶ Residue rates selected are the high and mean values for leaves and leafy crops (Fletcher et al. 1994).

⁷Residue rates selected are the high and mean values for forage such as legumes (Fletcher et al. 1994).

⁸ Residue rates selected are the high and mean values for fruit (includes both woody and herbaceous; Fletcher et al. 1994).

⁹ McMurray et al. (1996) found that residue rates for strawberries (*Fragaria ananassa*) depended upon application rate, and that the time zero estimate for residues on strawberries at an application rate of 1 lb/ac is 0.12 mg/kg, a factor of about 58 less than the 7 mg/kg typical value given by Fletcher et al. (1994). The Fletcher et al. (1994) estimates are used in the risk assessment because they are more conservative and were derived from studies in which herbicides were applied directly to vegetation and residues were monitored over time. In the McMurray et al. (1996) study, clopyralid was applied before the fruit was formed.

4.0 ECOLOGICAL RISK ASSESSMENT

This section presents a screening-level evaluation of the risks to ecological receptors from potential exposure to the herbicide clopyralid. The general approach and analytical methods for conducting the clopyralid ERA were based on USEPA's *Guidelines for Ecological Risk Assessment* (USEPA 1998).

This ERA is a structured evaluation of scientific data (exposure chemistry, fate and transport, toxicity, etc.) that leads to quantitative estimates of risk from environmental stressors to non-human organisms and ecosystems. The current USEPA guidelines for conducting ERAs include three primary phases: problem formulation, analysis, and risk characterization. These phases are discussed in detail in the Methods Document (ENSR 2004) and briefly in the following subsections.

4.1 **Problem Formulation**

Problem formulation is the initial step of the standard ERA process, which provides the basis for decisions regarding the scope and objectives of the evaluation. The problem formulation phase for the clopyralid assessment included:

- definition of risk assessment objectives;
- ecological characterization;
- exposure pathway evaluation;
- definition of data evaluated in the ERA;
- identification of risk characterization endpoints; and
- development of the conceptual model.

4.1.1 Definition of Risk Assessment Objectives

The primary objective of this ERA was to evaluate the potential ecological risks from clopyralid to the health and welfare of plants and animals and their habitats. The BLM previously relied upon the clopyralid risk assessment conducted on behalf of the United States Department of Agriculture Forest Service (SERA 2004). This ERA has been conducted using treatment methods and application rates used on BLM-administered lands.

An additional goal of this process was to provide risk managers with a tool that develops a range of generic risk estimates that vary as a function of site conditions. This tool primarily consists of Excel spreadsheets (Appendix C), which may be used to calculate exposure concentrations and evaluate potential risks in the ERA. A number of the variables included in the worksheets can be modified by BLM land managers for future evaluations.

4.1.2 Ecological Characterization

As described in Section 2.2, clopyralid is used by the BLM for vegetation management in their Rangeland, Public-Domain Forestland, Energy and Mineral Sites, ROW, and Recreation programs on public lands in 17 western states in the continental U.S. and Alaska. These applications have the potential to occur in a wide variety of ecological habitats that could include deserts, forests, and prairie land. It is not feasible to characterize all of the potential habitats within this report. This ERA, however, was designed to address generic receptors, including RTE species (see Section 6.0), that could occur within a variety of habitats.

4.1.3 Exposure Pathway Evaluation

The following ecological receptor groups were evaluated in this evaluation:

- terrestrial animals;
- non-target terrestrial plants; and
- aquatic species (fish, invertebrates, and non-target aquatic plants).

These groups of receptor species were selected for evaluation because they: 1) are potentially exposed to herbicides applied on BLM-administered lands; 2) are likely to play key roles in site ecosystems; 3) have complex life cycles; 4) represent a range of trophic levels; and 5) are surrogates for other species likely to be found on BLM-administered lands.

The exposure scenarios considered in this ERA were primarily organized by potential exposure pathways. In general, the exposure scenarios describe how a particular receptor group may be exposed to the herbicide as a result of a particular exposure pathway. These exposure scenarios were developed to address potential acute and chronic impacts to receptors under a variety of exposure conditions that may occur on BLM-administered lands. Clopyralid is a terrestrial herbicide; therefore, as discussed in detail in the Methods Document (ENSR 2004), the following exposure scenarios were considered:

- direct contact with the herbicide or a contaminated water body;
- indirect contact with contaminated foliage;
- ingestion of contaminated food items;
- off-site drift of spray to terrestrial areas and water bodies;
- surface runoff from the application area to off-site soils or water bodies;
- wind erosion resulting in deposition of contaminated dust; and
- accidental spills to water bodies.

Two generic water bodies were considered in this ERA: 1) a small pond (¹/₄ acre pond of 1-meter [m] depth, with a volume of 1,011,715 L), and 2) a small stream representative of Pacific Northwest low-order streams that provide habitat for critical life stages of anadromous salmonids. The stream size was established at 2 m wide and 0.2 m deep with a mean water velocity of approximately 0.3 m per second, and a base flow discharge of 0.12 cubic meters per second (cms).

4.1.4 Definition of Data Evaluated in the ERA

Herbicide concentrations used in the ERA were based on typical and maximum application rates provided by the BLM (Table 2-1). These application rates were used to predict herbicide concentrations in various environmental media (e.g., soils, water). Some of these calculations were fairly straightforward and required only simple algebraic calculations (e.g., water concentrations from direct aerial spray), but others required more complex computer models (e.g., aerial deposition rates, transport from soils).

The AgDRIFT[®] computer model was used to estimate off-site herbicide transport due to spray drift. AgDRIFT[®] Version 2.0.05 (Spray Drift Task Force [SDTF] 2002) is a product of the Cooperative Research and Development Agreement between the USEPA's Office of Research and Development and the SDTF (a coalition of pesticide registrants). The GLEAMS computer model was used to estimate off-site transport of herbicide in surface runoff and

root zone groundwater. GLEAMS is able to estimate a wide range of potential herbicide exposure concentrations as a function of site-specific parameters, such as soil characteristics and annual precipitation.

The American Meteorological Society/USEPA's guideline air quality dispersion model (AERMOD version 11103) was used to determine potential herbicide migration due to wind-blown dust in the near-field for receptors located up to 50 kilometers (km; 31 miles) from the herbicide application locations. AERMOD is currently USEPA's preferred model for use at distances up to 50 km from an emission source. For receptors located between 50 and 100 km (31 and 62 miles) from an herbicide application area, the USEPA's California Puff (CALPUFF) air pollutant dispersion model was used to predict the transport and deposition of herbicides sorbed to wind-blown dust. The current USEPA approved version, CALPUFF version 5.8, was used with the single-station meteorological data used for the AERMOD modeling. Thus, for consistency, the near-field (AERMOD) modeling and the far-field (CALPUFF) modeling used the same set of meteorological data.

4.1.5 Identification of Risk Characterization Endpoints

Assessment endpoints and associated measures of effect were selected to evaluate whether populations of ecological receptors are potentially at risk from exposure to BLM applications of clopyralid. The selection process is discussed in detail in the Methods Document (ENSR 2004), and the selected endpoints are presented below.

Assessment Endpoint 1: Acute mortality to mammals, birds, invertebrates, and non-target plants:

• Measures of Effect included median lethal effect concentrations (e.g., LD₅₀ and LC₅₀) from acute toxicity tests on target organisms or suitable surrogates.

Assessment Endpoint 2: Acute mortality to fish, aquatic invertebrates, and aquatic plants:

• **Measures of Effect** included median lethal effect concentrations (e.g., LC₅₀ and EC₅₀) from acute toxicity tests on target organisms or suitable surrogates (e.g., data from other coldwater fish to represent threatened and endangered salmonids).

Assessment Endpoint 3: Adverse direct effects on growth, reproduction, or other ecologically important sublethal processes:

• **Measures of Effect** included standard chronic toxicity test endpoints such as the NOAEL for both terrestrial and aquatic organisms. Depending on data available for a given herbicide, chronic endpoints reflect either individual impacts (e.g., seed germination, growth, physiological impairment, or behavior), or population-level impacts (e.g., reproduction; Barnthouse 1993). For salmonids, careful attention was paid to smoltification (i.e., development of tolerance to seawater and other indications of change of parr [freshwater stage salmonids] to adulthood), thermoregulation (i.e., ability to maintain body temperature), and migratory behavior, if such data were available. With the exception of non-target plants, standard acute and chronic toxicity test endpoints were used for estimates of direct herbicide effects on RTE species. To add conservatism to the RTE assessment, levels of concern for RTE species were lower than those for typical species. Lowest available germination NOAELs were used to evaluate non-target RTE plants. Impacts to RTE species are discussed in more detail in Section 6.0.

Assessment Endpoint 4: Adverse indirect effects on the survival, growth, or reproduction of salmonid fish:

• **Measures of Effect** for this assessment endpoint depended on the availability of appropriate scientific data. Unless literature studies were found that explicitly evaluated the indirect effects of clopyralid on salmonids and their habitat, only qualitative estimates of indirect effects were possible. Such qualitative estimates were limited to a general evaluation of the potential risks to food (typically represented by acute and/or chronic toxicity to aquatic invertebrates) and cover (typically represented by potential for destruction of riparian vegetation). Similar approaches are already being applied by USEPA OPP for Endangered Species Effects Determinations and Consultations (available at URL: <u>http://www.epa.gov/oppfead1/endanger/effects</u>).

4.1.6 Development of the Conceptual Model

The clopyralid conceptual model (Figure 4-1) is presented as a series of working hypotheses about how clopyralid might pose hazards to the ecosystem and ecological receptors. The conceptual model indicates the possible exposure pathways for the herbicide, as well as the receptors evaluated for each exposure pathway. Figure 4-2 presents the trophic levels and receptor groups evaluated in the ERA.

4.2 Analysis Phase

The analysis phase of an ERA consists of two principal steps: the characterization of exposure and the characterization of ecological effects. The exposure characterization describes the source, fate, and distribution of the herbicide using standard models that predict concentrations in various environmental media (e.g., GLEAMS). The ecological effects characterization consists of compiling exposure-response relationships from all available toxicity studies on the herbicide.

4.2.1 Characterization of Exposure

The BLM uses herbicides in a variety of programs (e.g., maintenance of rangeland, oil and gas sites, ROW, and recreational sites) with several different application methods (e.g., vehicle, ATV-mounted, backpack sprayer, and aerial application). In order to assess the potential ecological impacts of these herbicide uses, a variety of exposure scenarios were considered. These scenarios, which were selected based on actual BLM herbicide usage under a variety of conditions, are described in Section 4.1.3.

When considering the exposure scenarios and the associated predicted concentrations, it is important to recall that the frequency and duration of the various scenarios are not equal. For example, exposures associated with accidental spills are very rare, while off-site drift associated with application is relatively common. Similarly, off-site drift events are short-lived (i.e., migration occurs within minutes), while erosion of herbicide-containing soil may occur over weeks or months following application. The ERA has generally treated these differences in a conservative manner (i.e., potential risks are presented despite their likely rarity and/or transience). Thus, tables and figures summarizing risk quotients may present both relatively common and very rare exposure scenarios. Additional perspective on the frequency and duration of exposures are provided in the narrative below.

As described in Section 4.1.3, the following ecological receptor groups were selected to address the potential risks due to unintended exposure to clopyralid: terrestrial animals, terrestrial plants, and aquatic species. A set of generic terrestrial animal receptors, listed below, were selected to cover a variety of species and feeding guilds that might be found on BLM-administered lands. Unless otherwise noted, receptor body weights were selected from the *Wildlife Exposure Factors Handbook* (USEPA 1993). This list includes surrogate species, although not all of these surrogate species would be present within each application area.

- A pollinating insect with a body weight of 0.093 grams (g). The honeybee was selected as the surrogate species to represent pollinating insects. This body weight was based on the estimated weight of receptors required for testing in 40 Code of Federal Regulations (CFR) 158.590.
- A small mammal with a body weight of 20 g (0.7 ounces) that feeds on fruit (e.g., berries). The deer mouse (*Peromyscus maniculatus*) was selected as the surrogate species to represent small mammalian omnivores consuming berries.
- A large mammal with a body weight of 70 kg (155 lbs) that feeds on plants. The mule deer (*Odocolieus hemionus*) was selected as the surrogate species to represent large mammalian herbivores, including wild horses (*Equus ferus*) and burros (*Equus asinus*; Hurt and Grossenheider 1976).

- A large mammal with a body weight of 12 kg (27 lbs) that feeds on small mammals. The coyote (*Canis latrans*) was selected as the surrogate species to represent large mammalian carnivores (Hurt and Grossenheider 1976).
- A small bird with a body weight of 80 g (3 ounces) that feeds on insects. The American robin (*Turdus migratorius*) was selected as the surrogate species to represent small avian insectivores.
- A large bird with a body weight of approximately 3.5 kg (8 lbs) that feeds on vegetation. The Canada goose (*Branta canadensis*) was selected as the surrogate species to represent large avian herbivores.
- A large bird with a body weight of approximately 5 kg (11 lbs) that feeds on fish in the pond. The northern subspecies of the bald eagle (*Haliaeetus leucocephalus alascanus*) was selected as the surrogate species to represent large avian piscivores (Brown and Amadon 1968⁹).

In addition, potential impacts to non-target terrestrial plants were considered by evaluating two types of plant receptors: the "typical" non-target species, and the RTE non-target species. Sunflower and soybean were the surrogate species chosen to represent typical and RTE terrestrial plants (toxicity data are only available for vegetable crop species). According to the label, clopyralid can affect susceptible broadleaf plants; therefore, clopyralid should not be applied directly to, or spray drift allowed to come in contact with, desirable broadleaf plants/crops (including sunflowers and soybeans). As such, sunflowers and soybeans represent very sensitive surrogate receptors.

Aquatic exposure pathways were evaluated using fish, aquatic invertebrates, and non-target aquatic plants in a pond or stream habitat (as defined in Section 4.1.3). Rainbow trout and bluegill sunfish were selected as surrogates for fish, the water flea was a surrogate for aquatic invertebrates, and non-target aquatic plants and algae were represented by green algae, pondweed, and common water milfoil.

Section 3.0 of the Methods Document (ENSR 2004) presents the details of the exposure scenarios considered in the risk assessments. The following subsections describe the scenarios that were evaluated for clopyralid.

4.2.1.1 Direct Spray

Plant and wildlife species may be unintentionally impacted during normal application of a terrestrial herbicide as a result of a direct spray of the receptor or the water body inhabited by the receptor, indirect contact with dislodgeable foliar residue after herbicide application, or consumption of food items sprayed during ground application. These exposures may occur within the application area (consumption of food items) or outside of the application area (water bodies accidentally sprayed during application of terrestrial herbicide). Generally, impacts outside of the intended application area are accidental exposures that are not typical of BLM application practices. The following direct spray scenarios were evaluated:

Exposure Scenarios Within the Application Area:

- Direct Spray of Terrestrial Wildlife
- Indirect Contact With Foliage After Direct Spray
- Ingestion of Food Items Contaminated by Direct Spray
- Direct Spray of Non-target Terrestrial Plants

⁹ As cited on the Virginia Tech Conservation Management Institute Endangered Species Information System website. Available at URL: <u>http://fwie.fw.vt.edu/WWW/esis/</u>.

Exposure Scenarios Outside the Application Area:

- Accidental Direct Spray Over Pond
- Accidental Direct Spray Over Stream

4.2.1.2 Off-site Drift

During normal application of herbicides, it is possible for a portion of the herbicide to drift outside of the treatment area and deposit onto non-target receptors. To simulate off-site herbicide transport as spray drift, AgDRIFT[®] software was used to evaluate a number of possible scenarios. Depending on actual BLM herbicide practices, ground applications were modeled using a low- or high-placed boom, and aerial applications were modeled from either a helicopter or a fixed-wing plane over forested (at 20 feet [ft] above the forest canopy) and non-forested (at 10 ft above the ground) land. Ground applications were modeled using either a high boom (spray boom height set at 50 inches above the ground) or a low boom (spray boom height set at 20 inches above the ground). Deposition rates vary by the height of the application (the higher the application, the greater the off-site drift). Drift deposition was modeled at 25, 100, and 900 ft from the application area for ground applications, and 100, 300, and 900 ft from the application area for ground applications. The AgDRIFT[®] model determined the fraction of the application rate that is deposited off-site without considering herbicide degradation. The following off-site drift scenarios were evaluated:

- Off-site Drift to Plants
- Off-site Drift to Pond
- Off-site Drift to Stream
- Consumption of Fish From Contaminated Pond

4.2.1.3 Surface and Groundwater Runoff

Precipitation may result in the transport of herbicides bound to soils from the application area via surface runoff and root-zone groundwater flow. This transport to off-site soils or water bodies was modeled using GLEAMS software. It should be noted that both surface runoff (i.e., soil erosion and soluble-phase transport) and loading in root-zone groundwater were assumed to affect the water bodies in question.

In the application of GLEAMS, it was assumed that root-zone loading of herbicide would be transported directly to a nearby water body. This is a feasible scenario in several settings, but is very conservative in situations in which the depth to the water table might be many feet. In much of the arid and semi-arid western states, in particular, it is common for the water table to be well below the ground surface and for there to be little, if any, groundwater discharge to surface water features.

GLEAMS variables include soil type, annual precipitation, size of application area, hydraulic slope, surface roughness, and vegetation type. These variables were altered to predict clopyralid soil concentrations in various watershed types at both the typical and maximum application rates. The following surface runoff scenarios were evaluated:

- Surface Runoff to Off-site Soils
- Surface Runoff to Off-site Pond
- Surface Runoff to Off-site Stream
- Consumption of Fish From Contaminated Pond

4.2.1.4 Wind Erosion and Transport Off-site

Dry conditions and wind may also allow transport of the herbicide from the application area as wind-blown dust onto non-target plants some distance away. This transport by wind erosion of the surface soil was modeled using AERMOD and CALPUFF software. Five distinct watersheds were evaluated to determine herbicide concentrations in dust deposited on plants after a wind event, with dust deposition estimates calculated up to 100 km (62 miles) from the application area. These watersheds were located in Winnemucca, Nevada; Tucson, Arizona; Glasgow, Montana; Medford, Oregon; and Lander, Wyoming. The models assumed that the herbicide was applied on a specific area (1,000 acres) of undisturbed soil in each of the watersheds.

4.2.1.5 Accidental Spill to Pond

To represent worst-case potential impacts to ponds, two spill scenarios were considered. These scenarios consist of a truck or a helicopter spilling entire loads (200 gallon spill and 140 gallon spill, respectively) of herbicide mixed for the maximum application rate into a $\frac{1}{4}$ -acre, 1-m-deep pond.

4.2.2 Effects Characterization

The ecological effects characterization phase entailed a compilation and analysis of the stressor-response relationships and any other evidence of adverse impacts from exposure to clopyralid. For the most part, available data consisted of the toxicity studies conducted in support of USEPA pesticide registration described in Section 3.1. As described in the Methods Document (ENSR 2004), the toxicity endpoint for most acute studies was mortality, immobilization, or failure to germinate, as assessed during a short-term exposure. The toxicity endpoint for most chronic studies was growth or reproduction, effects that were assessed over a long-term exposure. TRVs selected for use in the ERA are presented in Table 3-1. Appendix B presents the full set of toxicity information identified for clopyralid.

In order to address potential risks to ecological receptors, risk quotients (RQs) were calculated by dividing the estimated exposure concentration (EEC) for each of the previously described scenarios by the appropriate TRV presented in Table 3-1. The TRV may be a surface water or surface soil effects concentration, or a species-specific toxicity value derived from the literature.

The RQs were then compared to Levels of Concern (LOC) established by the USEPA OPP to assess potential risk to non-target organisms. Table 4-1 presents the LOCs established for this assessment. Distinct USEPA LOCs are currently defined for the following risk presumption categories:

- Acute high risk the potential for acute adverse effects is high.
- Acute restricted use the potential for acute adverse effects is high, but may be mitigated through restricted use.
- Acute endangered species the potential for acute adverse effects to endangered species is high.
- Chronic risk the potential for chronic adverse effects is high.

Additional uncertainty factors may also be applied to the standard LOCs to reflect uncertainties inherent in extrapolating from surrogate species toxicity data to obtain RQs (see Sections 6.3 and 7.0 for a discussion of uncertainty). A "chronic endangered species" risk presumption category for aquatic animals was added for this risk assessment. The LOC for this category was set to 0.5 to reflect the conservative 2-fold difference in contaminant sensitivity between RTE and surrogate test fishes (Sappington et al. 2001). Risk quotients predicted for acute scenarios (e.g., direct spray, accidental spill) were compared to the three acute LOCs, and the RQs predicted for chronic scenarios (e.g., long term ingestion) were compared to the two chronic LOCs. If all RQs were less than the most conservative LOC for a particular receptor, comparisons against other, more elevated LOCs were not necessary.

The RQ approach used in this ERA provides a conservative measure of the potential for risk based on a "snapshot" of environmental conditions (i.e., rainfall, slope) and receptor assumptions (i.e., body weight, ingestion rates). Sections 6.3 and 7.0 discuss several of the uncertainties inherent in the RQ methodology.

To specifically address potential impacts to RTE species, two types of RQ evaluations were conducted. For RTE terrestrial plant species, the RQ was calculated using different toxicity endpoints, but keeping the same LOC (set at 1) for all scenarios. The plant toxicity endpoints were selected to provide extra protection to the RTE species. In the direct spray, spray drift, and wind erosion scenarios, the selected toxicity endpoints were an EC_{25} for "typical" species and a NOAEL for RTE species. In runoff scenarios, high and low germination NOAELs were selected to evaluate exposure for typical and RTE species, respectively.

The evaluation of RTE terrestrial wildlife and aquatic species included a second type of RQ evaluation. The same toxicity endpoint was used for both typical and RTE species in all scenarios, but the LOC was lowered for RTE species.

4.3 Risk Characterization

The ecological risk characterization integrates the results of the exposure and effects phases (i.e., risk analysis), and provides comprehensive estimates of actual or potential risks to ecological receptors. Risk quotients are summarized in Tables 4-2 to 4-5 and presented graphically in Figures 4-3 to 4-18. The results are discussed below for each of the evaluated exposure scenarios.

Box plots are used to graphically display the range of RQs obtained from evaluating each receptor and exposure scenario combination (Figures 4-3 to 4-18). These plots illustrate how the data are distributed about the mean and their relative relationships with LOCs. Outliers (data points outside the 90th or 10th percentiles) were not discarded in this ERA; all risk quotient data presented in these plots were included in the risk assessment.

4.3.1 Direct Spray

As described in Section 4.2.1, potential impacts from direct spray were evaluated for exposure that could occur within the terrestrial application area (direct spray of terrestrial wildlife and non-target terrestrial plants, indirect contact with foliage, ingestion of contaminated food items) and outside the intended application area (accidental direct spray over a pond or stream). Table 4-2 presents the RQs for the above scenarios. Figures 4-3 to 4-7 present graphic representations of the range of RQs and associated LOCs.

4.3.1.1 Terrestrial Wildlife

All of the RQs for terrestrial wildlife were all below the most conservative LOC of 0.1 (acute endangered species), indicating that direct spray is not likely to pose a risk to terrestrial animals (Figure 4-3).

4.3.1.2 Non-target Plants – Terrestrial and Aquatic

As expected, because of the mode of action of herbicides, RQs for non-target terrestrial plants were above 1, ranging from 92.6 to 714 ((Figure 4-4; Table 4-2). The lowest RQs were calculated for typical species at the typical application rate, and the highest RQs were calculated for RTE species impacted at the maximum application rate. RQs for aquatic plants ranged from less than 1 to 9.3 for chronic exposures (Figure 4-5). These results indicate that direct spray impacts pose a risk to plants in both aquatic and terrestrial environments. It may be noted that the aquatic scenarios are particularly conservative because they evaluate an instantaneous concentration and do not consider flow, adsorption to particles, or degradation that may occur over time within the pond or stream.

4.3.1.3 Fish and Aquatic Invertebrates

All of the RQs for fish and aquatic invertebrates were below the most conservative LOC of 0.05 (acute endangered species), indicating that direct spray is not likely to pose a risk to these aquatic receptors (Figures 4-6 and 4-7).

4.3.2 Off-site Drift

As described in Section 4.2.1, AgDRIFT® software was used to evaluate a number of possible scenarios in which a portion of the applied herbicide drifts outside of the treatment area and deposits onto non-target receptors. Ground applications of clopyralid were modeled using both a low- and high-placed boom (spray boom height set at 20 and 50 inches above the ground, respectively), and aerial applications were modeled from both a helicopter and a plane over forested (20 feet above forest canopy) and non-forested (10 feet above the ground) lands. Drift deposition was modeled at 25, 100, and 900 ft from the application area for ground applications and 100, 300, and 900 ft from the aerial application area.

Table 4-3 presents the RQs for the following scenarios: off-site drift to soil, off-site drift to pond, off-site drift to stream, and consumption of fish from the contaminated pond. Figures 4-8 to 4-12 present graphic representations of the range of RQs and associated LOCs.

4.3.2.1 Non-target Plants – Terrestrial and Aquatic

Many of the RQs for non-target terrestrial plants affected by off-site drift to soil were above the plant LOC of 1 (Figure 4-8). These results indicate the potential for adverse effects to off-site non-target terrestrial plants as a result of clopyralid drift. For RTE species, the only RQs below the LOC for applications at the maximum rate were for off-site drift 900 ft from a ground application with a low or high boom and for off-site drift 300 ft from a helicopter application in forested areas. However, the evaluation of RTE species and the maximum application rate are considered the most conservative worst-case scenarios. For applications at the typical rate and typical plant species, the majority of RQs calculated based on aerial and ground application were below the LOC. Only four scenarios involving typical species and aerial applications at the typical rate resulted in RQs exceeding the LOC (RQs ranging from 1.11 to 3.15).

All of the RQs for aquatic plants were below the plant LOC of 1 (Figure 4-9).

4.3.2.2 Fish and Aquatic Invertebrates

Acute toxicity RQs for fish and aquatic invertebrates were all below the most conservative LOC of 0.05 (acute endangered species; Figures 4-10 and 4-11). All chronic RQs were well below the LOC for chronic risk to endangered species (0.5). These results indicate that off-site drift of clopyralid is not likely to pose an acute or chronic risk to these aquatic species.

4.3.2.3 Piscivorous Birds

Risk to piscivorous birds was assessed by evaluating impacts from consumption of fish from a pond contaminated by off-site drift. RQs for the piscivorous bird were all well below the most conservative terrestrial animal LOC (0.1), indicating that this scenario is not likely to pose a risk to piscivorous birds (Figure 4-12).

4.3.3 Surface Runoff

As described in Section 4.2.1, surface runoff and root zone groundwater transport of herbicides from the application area to off-site soils and water bodies was modeled using GLEAMS software. A total of 42 GLEAMS simulations were performed with different combinations of GLEAMS variables (i.e., soil type, soil erodability factor, annual precipitation, size of application area, hydraulic slope, surface roughness, and vegetation type) to account for a wide range of possible watersheds encountered on BLM-administered lands. In 24 simulations, soil type and precipitation

values were altered, while the rest of the variables were held constant in a "base watershed" condition. In the remaining 18 simulations, precipitation was held constant, while the other six variables (each with three levels) were altered.

Table 4-4 presents the RQs for the following scenarios: surface runoff to off-site soils, overland flow to an off-site pond, overland flow to an off-site stream, and consumption of fish from a contaminated pond. Figures 4-13 to 4-17 present graphic representations of the range of RQs and associated LOCs. Under a number of the scenarios, primarily those with low precipitation (e.g., 5 inches of precipitation per year), GLEAMS predicted no herbicide transport from the application area. Accordingly, there is no off-site risk associated with these scenarios. RQs are discussed below for scenarios predicting off-site transport and RQs greater than zero.

4.3.3.1 Non-target Plants – Terrestrial and Aquatic

All of the RQs for non-target terrestrial plants affected by surface runoff to off-site soil were below the plant LOC of 1 (Figure 4-13 and Table 4-4), indicating that transport due to surface runoff is not likely to pose a risk to typical or RTE terrestrial plant species.

Acute and chronic RQs for non-target aquatic plants in ponds and streams impacted by surface runoff of herbicide were all below the plant LOC of 1, indicating that this transport mechanism is not likely to pose a risk to these aquatic plant species (Figure 4-14 and Table 4-4).

4.3.3.2 Fish and Aquatic Invertebrates

Acute toxicity RQs for fish and aquatic invertebrates were all below the most conservative LOC of 0.05 (acute endangered species) for all pond and stream scenarios (Figures 4-15 and 4-16). All chronic RQs were well below the LOC for chronic risk to endangered species (0.5). These results indicate that surface runoff is not likely to pose a risk to these aquatic species.

4.3.3.3 Piscivorous Birds

Risk to piscivorous birds was assessed by evaluating impacts from consumption of fish from a pond contaminated by surface runoff. RQs for the piscivorous bird were all well below the most conservative terrestrial animal LOC (0.1), indicating that this scenario is not likely to pose a risk to piscivorous birds (Figure 4-17).

4.3.4 Wind Erosion and Transport Off-site

As described in Sections 4.2.1.4 and 5.3, five distinct watersheds were modeled using AERMOD and CALPUFF to determine herbicide concentrations in dust deposited on plants after a wind event, with dust deposition estimates calculated at 1.5, 10, and 100 km (0.9, 6.2, and 62 miles) from the application area. These watersheds were located in Winnemucca, Nevada; Tucson, Arizona; Glasgow, Montana; Medford, Oregon; and Lander, Wyoming.

Deposition results for Winnemucca, Nevada, and Tucson, Arizona, are not included in the analysis because the meteorological conditions (i.e., wind speed) that must be met to trigger particulate emissions for the land cover conditions assumed for these sites did not occur for any hour of the selected year. Therefore, it was assumed herbicide migration by windblown soil would not occur at those locations during that year and risks due to dust deposition were not evaluated in these two locations.

The soil type assumed for Winnemucca, Nevada, and Tucson, Arizona, is undisturbed sandy loam, which has a higher friction velocity (i.e., is harder for wind to pick up as dust) than the soil types at the other locations (Glasgow and Lander have loamy sand, and Medford has loam soil). As further explained in Section 5.3, friction velocity is a function of the measured wind speed and the surface roughness, a property affected by land use and vegetative cover. The threshold friction velocities at the other three sites were much lower, based on differences in the assumed soil types. At these sites, wind and land cover conditions combined to predict that the soil would be eroded on several

days. Similar predictions would have been made for soils of similar properties at Winnemucca and Tucson, if present, under weather conditions encountered there.

Table 4-5 summarizes the RQs for typical and RTE terrestrial plant species exposed to contaminated dust within the three watersheds with the potential for wind erosion (Glasgow, Montana; Medford, Oregon; and Lander, Wyoming) following applications of clopyralid at typical and maximum application rates. Figure 4-18 presents a graphic representation of the range of RQs and associated LOCs.

The ERA predicted no risks for non-target typical terrestrial plants under any of the modeled scenarios, or to RTE species under the majority of the modeled scenarios. Risks to RTE species were predicted for only two scenarios. Under a scenario of wind erosion in the Medford, Oregon, watershed at a distance of 1.5 km (0.9 mile), the RQs for RTE species were 1.03 for applications at the typical rate and 2.05 for applications at the maximum rate. Under a scenario of wind erosion in the Lander, Wyoming watershed at a distance of 1.5 km, the RQ for RTE species was 1.05 for applications at the maximum rate. These results indicate that under most scenarios, wind erosion is not likely to pose a significant risk to non-target terrestrial plants.

In cases where clopyralid applications occur in areas that have been denuded by a prescribed burn, lower deposition of herbicide-treated windblown soil would occur because the lack of vegetation within the application area would reduce wind resistance. In these cases, all RQs may be less than 1.

4.3.5 Accidental Spill to Pond

As described in Section 4.2.1, two spill scenarios were considered: a truck or a helicopter spilling entire loads (200gallon spill and 140-gallon spill, respectively) of herbicide prepared for the maximum application rate into a ¹/₄-acre, 1-m-deep pond. The herbicide concentration in the pond was the instantaneous concentration at the moment of the spill; the volume of the pond was determined and the volume of herbicide in the truck or helicopter was mixed into the pond volume.

Risk quotients calculated for the spill scenarios were below the LOCs identified for aquatic plants and aquatic invertebrates (Table 4-2). These results indicate that aquatic plants and aquatic invertebrates are not likely to be at risk if clopyralid is accidentally spilled into a pond under the modeled scenarios.

For fish, however, the RQ for the accidental helicopter spill scenario was 0.08, which exceeds the LOC for acute risk to endangered aquatic species (0.05); however, the value is below the acute high risk, and restricted use risk LOCs of 0.5 and 0.1, respectively. The results suggest that non-endangered fish species would be at a minimal risk for adverse effects. No risks to fish were predicted for truck spill scenarios.

4.3.6 Potential Risk to Salmonids from Indirect Effects

In addition to direct effects of herbicides on salmonids and other fish species in stream habitats (i.e., mortality due to herbicide concentrations in surface water), reduction in vegetative cover or food supply may indirectly impact individuals or populations. No literature studies were identified that explicitly evaluated the direct or indirect effects of clopyralid to salmonids and their habitat; therefore, only qualitative estimates of indirect effects are possible. These estimates were accomplished by evaluating predicted impacts to prey items and vegetative cover in the stream scenarios discussed above. These scenarios include accidental direct spray over the stream and transport to the stream via off-site drift and surface runoff. An evaluation of impacts to non-target terrestrial plants was also included as part of the discussion of vegetative cover within the riparian zone. Prey items for salmonids and other potential RTE species may include other fish species, aquatic invertebrates, or aquatic plants. Additional discussion of RTE species is provided in Section 6.0.

4.3.6.1 Qualitative Evaluation of Impacts to Prey

Fish and aquatic invertebrate species were evaluated directly in the ERA using acute and chronic TRVs based on the most sensitive warmwater or coldwater species identified during the literature search. No RQs in excess of the

appropriate acute or chronic LOC were observed for fish or aquatic invertebrates for any of the stream scenarios. Because the ERA did not predict direct impacts to fish and aquatic invertebrates in a stream as a result of clopyralid applications, salmonids are not likely to be indirectly affected by a reduction in prey.

4.3.6.2 Qualitative Evaluation of Impacts to Vegetative Cover

A qualitative evaluation of indirect impacts to salmonids due to destruction of riparian vegetation and reduction of available cover was made by considering impacts to terrestrial and aquatic plants. Aquatic plant RQs for accidental direct spray scenarios were above the plant LOC at both the typical and maximum application rates, indicating the potential for a reduction in the aquatic plant community. However, this is an extremely conservative scenario in which it is assumed that a stream is accidentally directly sprayed by a terrestrial herbicide. Because such a scenario is unlikely to occur as a result of BLM practices, it represents a worst-case scenario. In addition, although stream flow would be likely to dilute herbicide concentrations and reduce potential impacts, such a reduction in concentration is not considered in this scenario. However, if the stream were accidentally sprayed, salmonids could potentially be impacted as a result of a reduction in available cover.

Risk quotients for aquatic plants in a stream subjected to off-site drift from aerial applications of clopyralid were below the plant LOC. Additionally, no RQs in excess of the LOC were observed for aquatic plant species in the stream for any of the surface runoff scenarios. These results indicate that impacts to salmonids due to reduced aquatic plant cover under these application scenarios are unlikely.

Although not specifically evaluated in the stream scenarios of the ERA, terrestrial plants were evaluated for their potential to provide overhanging cover for salmonids. A reduction in the riparian cover has the potential to indirectly impact salmonids within the stream. For accidental direct spray scenarios at both the typical and maximum application rates, RQs for terrestrial plants were above the LOC, indicating the potential for a reduction in this plant community. However, as discussed above, this event is unlikely to occur as a result of BLM practices and represents a worst-case scenario.

RQs for typical and RTE terrestrial plants were also above the plant LOC (ranging from 1.11 to 24.6) for many scenarios involving off-site drift from aerial and, to a lesser extent, ground applications. No RQs in excess of the LOC were observed for terrestrial plant species for any of the surface runoff scenarios. These results indicate the potential for a reduction in riparian cover under selected off-site drift conditions.

4.3.6.3 Conclusions

This qualitative evaluation indicates that salmonids are not likely to be indirectly impacted by a reduction in food supply (i.e., fish and aquatic invertebrates). However, a reduction in vegetative cover may occur under limited conditions. Accidental direct spray and off-site drift during aerial and ground applications of clopyralid may negatively impact terrestrial and/or aquatic plants, reducing the cover available to salmonids within the stream. However, increasing the buffer zone or reducing the application rate during aerial spraying would reduce the likelihood of these impacts.

In addition, the effects of terrestrial herbicides in water are expected to be relatively transient, and stream flow is likely to reduce herbicide concentrations over time. In a review of potential impacts of another terrestrial herbicide to threatened and endangered salmonids, the USEPA OPP indicated that "for most pesticides applied to terrestrial environment, the effects in water, even lentic water, will be relatively transient" (Turner 2003). Only very persistent pesticides would be expected to have effects beyond the year of their application. The OPP report indicated that if a listed salmonid is not present during the year of application, there would likely be no concern (Turner 2003). Therefore, it is expected that potential adverse impacts to food and cover would not occur beyond the season of application.

	Risk Presumption	RQ	LOC
Terrestrial Animal	IS ¹		
	Acute High Risk	EEC/LC ₅₀	0.5
Dinda	Acute Restricted Use	EEC/LC ₅₀	0.2
Birds	Acute Endangered Species	EEC/LC ₅₀	0.1
	Chronic Risk	isk EEC/LC ₅₀ ered Species EEC/LC ₅₀ or EC ₅₀ ered Species EEC/NOAEL	1
Wild Mammals	Acute High Risk	EEC/LC ₅₀	0.5
	Acute Restricted Use	EEC/LC ₅₀	0.2
	Acute Endangered Species	EEC/LC ₅₀	0.1
	Chronic Risk	EEC/NOAEL	1
Aquatic Animals ²			
	Acute High Risk	EEC/LC ₅₀ or EC ₅₀	0.5
	Acute Restricted Use	EEC/LC ₅₀ or EC ₅₀	0.1
	Acute Endangered Species	EEC/LC ₅₀ or EC ₅₀	0.05
Aquatic Animals Fish and Aquatic Invertebrates	Chronic Risk	EEC/NOAEL	1
	Chronic Risk, Endangered Species	EEC/NOAEL	0.5
Plants ³			
Tomostrial Dis.	Acute High Risk	EEC/EC ₂₅	1
i errestriai Plants	Acute Endangered Species	ed Species EEC/LC ₅₀ EEC/NOAEL EEC/LC ₅₀ or EC ₅₀ Use EEC/LC ₅₀ or EC ₅₀ ed Species EEC/LC ₅₀ or EC ₅₀ EEC/NOAEL dangered Species EEC/NOAEL EEC/NOAEL	1
A matin Dland	Acute High Risk	EEC/EC ₅₀	1
Aquatic Plants	Acute Endangered Species	EEC/NOAEL	1

Levels of Concern

¹ Estimated Environmental Concentration (EEC) is in mg prey/kg body weight for acute scenarios and mg prey/kg body weight/day for chronic scenarios.
 ² EEC is in mg/L.
 ³ EEC is in lbs a.e./ac.

TABLE 4-2

Terrestrial Animals	Typical Application Rate	Maximum Application Rate
Direct Spray of Terrestrial Wildlife		
Small mammal - 100% absorption	8.13E-04	1.63E-03
Pollinating insect - 100% absorption	3.69E-02	7.37E-02
Small mammal - 1st order dermal adsorption	1.16E-05	2.33E-05
Indirect Contact With Foliage After Direct Spray		
Small mammal - 100% absorption	8.13E-05	1.63E-04
Pollinating insect - 100% absorption	3.69E-03	7.37E-03
Small mammal - 1st order dermal adsorption	1.16E-06	2.33E-06
Ingestion of Food Items Contaminated by Direct Spr.	ay	
Small mammalian herbivore - acute exposure	5.01E-05	4.68E-04
Small mammalian herbivore - chronic exposure	8.62E-05	8.05E-04
Large mammalian herbivore - acute exposure	2.96E-03	7.08E-03
Large mammalian herbivore - chronic exposure	1.04E-03	2.48E-03
Small avian insectivore - acute exposure	3.52E-04	1.24E-03
Small avian insectivore - chronic exposure	1.58E-03	5.55E-03
Large avian herbivore - acute exposure	1.93E-03	1.38E-02
Large avian herbivore - chronic exposure	9.05E-04	6.47E-03
Large mammalian carnivore - acute exposure	7.54E-04	1.51E-03
Large mammalian carnivore - chronic exposure	1.18E-04	2.36E-04

Risk Quotients for Direct Spray and Spill Scenarios

Risk Quotients for Direct Spray and Spill Scenarios

	Туріс	al Species	RTE Species		
Terrestrial Plants	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	
Direct Spray of Non-Target Terrestrial Plants Accidental direct spray	9.26E+01	1.85E+02	3.57E+02	7.14E+02	

	Fish		Aquatic Invertebrates		Non-Target Aquatic Plants			
Aquatic Species	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate		
Accidental Direct Spray Over Pond								
Acut	e 3.55E-04	7.09E-04	1.64E-04	3.28E-04	4.06E-03	8.12E-03		
Chroni	c 1.38E-03	2.76E-03	1.21E-03	2.43E-03	9.34E-01	1.87E+00		
Accidental Direct Spray Over								
Stream								
Acut	e 1.77E-03	3.55E-03	8.19E-04	1.64E-03	2.03E-02	4.06E-02		
Chroni	c 6.90E-03	1.38E-02	6.07E-03	1.21E-02	4.67E+00	9.34E+00		
Accidental spill								
Truck spill into pond		2.27E-02		1.05E-02		2.60E-01		
Helicopter spill into pond		7.95E-02		3.67E-02		9.10E-01		

Shading and boldface indicates plant RQs greater than 1 (LOC for all plant risks). Shading and boldface indicates acute RQs greater than 0.05 for fish (LOC for acute risk to endangered species - most conservative). RTE – Rare, threatened, and endangered.

-- indicates the scenario was not evaluated.

TABLE 4-3

Potential Risk to Non-target Terrestrial Plants									
			Typical	Species	Rare, Threatened, and Endangered Spec				
Mode of Application	Application Height or Type	Distance From Receptor (ft)	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate			
			Spray Drift to Off-Site S	oil	-	-			
Plane	Forested	100	3.15E+00	6.37E+00	1.21E+01	2.46E+01			
Plane	Forested	300	1.30E+00	2.67E+00	5.00E+00	1.03E+01			
Plane	Forested	900	4.07E-01	8.89E-01	1.57E+00	3.43E+00			
Plane	Non-Forested	100	1.33E+00	3.07E+00	5.14E+00	1.19E+01			
Plane	Non-Forested	300	6.30E-01	1.52E+00	2.43E+00	5.86E+00			
Plane	Non-Forested	900	3.33E-01	7.04E-01	1.29E+00	2.71E+00			
Helicopter	Forested	100	1.85E-01	3.70E-01	7.14E-01	1.43E+00			
Helicopter	Forested	300	7.41E-02	1.11E-01	2.86E-01	4.29E-01			
Helicopter	Forested	900	9.89E-03	2.15E-02	3.81E-02	8.30E-02			
Helicopter	Non-Forested	100	1.11E+00	2.44E+00	4.29E+00	9.43E+00			
Helicopter	Non-Forested	300	4.81E-01	1.15E+00	1.86E+00	4.43E+00			
Helicopter	Non-Forested	900	2.22E-01	6.30E-01	8.57E-01	2.43E+00			
Ground	Low Boom	25	4.07E-01	8.15E-01	1.57E+00	3.14E+00			
Ground	Low Boom	100	2.59E-01	5.19E-01	1.00E+00	2.00E+00			
Ground	Low Boom	900	7.41E-02	1.11E-01	2.86E-01	4.29E-01			
Ground	High Boom	25	6.67E-01	1.30E+00	2.57E+00	5.00E+00			
Ground	High Boom	100	3.70E-01	7.78E-01	1.43E+00	3.00E+00			
Ground	High Boom	900	7.41E-02	1.48E-01	2.86E-01	5.71E-01			

			Pot	ential Risk to Aqua	tic Receptors						
			Fi	sh	Aquatic In	vertebrates	Non-target Aquatic Plants				
Mode of Application	Application Height or Type	Distance From Receptor (ft)	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate			
	Off-Site Drift to Pond Acute Toxicity										
Plane	Forested	100	1.55E-05	3.14E-05	7.18E-06	1.45E-05	1.78E-04	3.59E-04			
Plane	Forested	300	5.80E-06	1.18E-05	2.68E-06	5.43E-06	6.64E-05	1.35E-04			
Plane	Forested	900	1.71E-06	3.56E-06	7.91E-07	1.65E-06	1.96E-05	4.08E-05			
Plane	Non-Forested	100	6.58E-06	1.50E-05	3.04E-06	6.93E-06	7.54E-05	1.72E-04			
Plane	Non-Forested	300	2.64E-06	6.39E-06	1.22E-06	2.95E-06	3.02E-05	7.31E-05			
Plane	Non-Forested	900	1.28E-06	2.87E-06	5.91E-07	1.33E-06	1.46E-05	3.29E-05			
Helicopter	Forested	100	9.38E-07	1.93E-06	4.33E-07	8.90E-07	1.07E-05	2.21E-05			
Helicopter	Forested	300	2.68E-07	5.48E-07	1.24E-07	2.53E-07	3.07E-06	6.28E-06			
Helicopter	Forested	900	4.29E-08	9.28E-08	1.98E-08	4.29E-08	4.91E-07	1.06E-06			
Helicopter	Non-Forested	100	5.55E-06	1.23E-05	2.57E-06	5.68E-06	6.36E-05	1.41E-04			
Helicopter	Non-Forested	300	2.08E-06	4.86E-06	9.59E-07	2.24E-06	2.38E-05	5.56E-05			
Helicopter	Non-Forested	900	9.55E-07	2.45E-06	4.41E-07	1.13E-06	1.09E-05	2.80E-05			
Ground	Low Boom	25	2.16E-06	4.31E-06	9.97E-07	1.99E-06	2.47E-05	4.94E-05			
Ground	Low Boom	100	1.18E-06	2.37E-06	5.46E-07	1.09E-06	1.35E-05	2.71E-05			
Ground	Low Boom	900	2.28E-07	4.57E-07	1.05E-07	2.11E-07	2.61E-06	5.23E-06			
Ground	High Boom	25	3.46E-06	6.93E-06	1.60E-06	3.20E-06	3.97E-05	7.93E-05			
Ground	High Boom	100	1.82E-06	3.65E-06	8.43E-07	1.69E-06	2.09E-05	4.18E-05			
Ground	High Boom	900	2.90E-07	5.80E-07	1.34E-07	2.68E-07	3.32E-06	6.64E-06			

Potential Risk to Aquatic Receptors										
			Fi	sh	Aquatic In	vertebrates	Non-target Aquatic Plants			
Mode of Application	Application Height or Type	Distance From Receptor (ft)	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate		
Off-Site Drift to Pond Chronic Toxicity										
Plane	Forested	100	6.05E-05	1.22E-04	5.31E-05	1.07E-04	4.09E-02	8.26E-02		
Plane	Forested	300	2.26E-05	4.57E-05	1.98E-05	4.02E-05	1.53E-02	3.09E-02		
Plane	Forested	900	6.66E-06	1.39E-05	5.85E-06	1.22E-05	4.51E-03	9.38E-03		
Plane	Non-Forested	100	2.56E-05	5.84E-05	2.25E-05	5.13E-05	1.73E-02	3.95E-02		
Plane	Non-Forested	300	1.03E-05	2.49E-05	9.03E-06	2.18E-05	6.95E-03	1.68E-02		
Plane	Non-Forested	900	4.98E-06	1.12E-05	4.37E-06	9.82E-06	3.37E-03	7.56E-03		
Helicopter	Forested	100	3.65E-06	7.50E-06	3.21E-06	6.59E-06	2.47E-03	5.07E-03		
Helicopter	Forested	300	1.04E-06	2.13E-06	9.16E-07	1.88E-06	7.05E-04	1.44E-03		
Helicopter	Forested	900	1.67E-07	3.61E-07	1.47E-07	3.17E-07	1.13E-04	2.44E-04		
Helicopter	Non-Forested	100	2.16E-05	4.79E-05	1.90E-05	4.21E-05	1.46E-02	3.24E-02		
Helicopter	Non-Forested	300	8.08E-06	1.89E-05	7.10E-06	1.66E-05	5.47E-03	1.28E-02		
Helicopter	Non-Forested	900	3.72E-06	9.52E-06	3.27E-06	8.37E-06	2.52E-03	6.44E-03		
Ground	Low Boom	25	8.40E-06	1.68E-05	7.38E-06	1.48E-05	5.68E-03	1.14E-02		
Ground	Low Boom	100	4.60E-06	9.21E-06	4.05E-06	8.09E-06	3.12E-03	6.23E-03		
Ground	Low Boom	900	8.89E-07	1.78E-06	7.81E-07	1.56E-06	6.01E-04	1.20E-03		
Ground	High Boom	25	1.35E-05	2.70E-05	1.18E-05	2.37E-05	9.12E-03	1.82E-02		
Ground	High Boom	100	7.10E-06	1.42E-05	6.24E-06	1.25E-05	4.81E-03	9.61E-03		
Ground	High Boom	900	1.13E-06	2.26E-06	9.91E-07	1.98E-06	7.63E-04	1.53E-03		

			Pot	ential Risk to Aqua	atic Receptors			
			Fi	sh	Aquatic In	vertebrates	Non-target A	quatic Plants
Mode of Application	Application Height or Type	Distance From Receptor (ft)	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
		-		Off-site Drift to Acute Toxic		-		
Plane	Forested	100	2.23E-05	4.51E-05	1.03E-05	2.08E-05	2.56E-04	5.16E-04
Plane	Forested	300	6.64E-06	1.34E-05	3.07E-06	6.20E-06	7.61E-05	1.54E-04
Plane	Forested	900	1.79E-06	3.72E-06	8.29E-07	1.72E-06	2.05E-05	4.26E-05
Plane	Non-Forested	100	9.16E-06	2.05E-05	4.23E-06	9.47E-06	1.05E-04	2.35E-04
Plane	Non-Forested	300	2.85E-06	6.91E-06	1.32E-06	3.19E-06	3.26E-05	7.92E-05
Plane	Non-Forested	900	1.32E-06	2.99E-06	6.08E-07	1.38E-06	1.51E-05	3.43E-05
Helicopter	Forested	100	1.26E-06	2.64E-06	5.84E-07	1.22E-06	1.45E-05	3.02E-05
Helicopter	Forested	300	3.14E-07	6.46E-07	1.45E-07	2.98E-07	3.59E-06	7.39E-06
Helicopter	Forested	900	4.83E-08	1.03E-07	2.23E-08	4.78E-08	5.53E-07	1.18E-06
Helicopter	Non-Forested	100	7.80E-06	1.67E-05	3.60E-06	7.72E-06	8.93E-05	1.91E-04
Helicopter	Non-Forested	300	2.38E-06	5.22E-06	1.10E-06	2.41E-06	2.73E-05	5.98E-05
Helicopter	Non-Forested	900	9.74E-07	2.50E-06	4.50E-07	1.16E-06	1.12E-05	2.86E-05
Ground	Low Boom	25	3.88E-06	7.76E-06	1.79E-06	3.59E-06	4.44E-05	8.89E-05
Ground	Low Boom	100	1.14E-06	2.27E-06	5.25E-07	1.05E-06	1.30E-05	2.60E-05
Ground	Low Boom	900	1.18E-07	2.35E-07	5.44E-08	1.09E-07	1.35E-06	2.70E-06
Ground	High Boom	25	6.50E-06	1.30E-05	3.00E-06	6.01E-06	7.44E-05	1.49E-04
Ground	High Boom	100	1.84E-06	3.68E-06	8.51E-07	1.70E-06	2.11E-05	4.22E-05
Ground	High Boom	900	1.56E-07	3.11E-07	7.19E-08	1.44E-07	1.78E-06	3.56E-06

			Pot	ential Risk to Aqua	atic Receptors			
			Fi	sh	Aquatic In	vertebrates	Non-target A	quatic Plants
Mode of Application	Application Height or Type	Distance From Receptor (ft)	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
		-	-	Off-Site Drift to Chronic Tox		-	-	_
Plane	Forested	100	8.69E-05	1.75E-04	7.64E-05	1.54E-04	5.88E-02	1.19E-01
Plane	Forested	300	2.59E-05	5.22E-05	2.27E-05	4.59E-05	1.75E-02	3.53E-02
Plane	Forested	900	6.98E-06	1.45E-05	6.14E-06	1.27E-05	4.73E-03	9.80E-03
Plane	Non-Forested	100	3.56E-05	7.98E-05	3.13E-05	7.01E-05	2.41E-02	5.40E-02
Plane	Non-Forested	300	1.11E-05	2.69E-05	9.74E-06	2.36E-05	7.50E-03	1.82E-02
Plane	Non-Forested	900	5.12E-06	1.16E-05	4.50E-06	1.02E-05	3.46E-03	7.88E-03
Helicopter	Forested	100	4.92E-06	1.03E-05	4.33E-06	9.01E-06	3.33E-03	6.94E-03
Helicopter	Forested	300	1.22E-06	2.51E-06	1.07E-06	2.21E-06	8.26E-04	1.70E-03
Helicopter	Forested	900	1.88E-07	4.03E-07	1.65E-07	3.54E-07	1.27E-04	2.72E-04
Helicopter	Non-Forested	100	3.03E-05	6.50E-05	2.67E-05	5.72E-05	2.05E-02	4.40E-02
Helicopter	Non-Forested	300	9.27E-06	2.03E-05	8.15E-06	1.79E-05	6.27E-03	1.38E-02
Helicopter	Non-Forested	900	3.79E-06	9.74E-06	3.33E-06	8.56E-06	2.57E-03	6.59E-03
Ground	Low Boom	25	1.51E-05	3.02E-05	1.33E-05	2.65E-05	1.02E-02	2.04E-02
Ground	Low Boom	100	4.42E-06	8.85E-06	3.89E-06	7.78E-06	2.99E-03	5.99E-03
Ground	Low Boom	900	4.58E-07	9.16E-07	4.03E-07	8.05E-07	3.10E-04	6.20E-04
Ground	High Boom	25	2.53E-05	5.06E-05	2.22E-05	4.45E-05	1.71E-02	3.42E-02
Ground	High Boom	100	7.17E-06	1.43E-05	6.30E-06	1.26E-05	4.85E-03	9.70E-03
Ground	High Boom	900	6.06E-07	1.21E-06	5.32E-07	1.06E-06	4.10E-04	8.20E-04

	Potential Risk to Piscivorous Bird from Ingestion of Fish from Contaminated PondIode of ApplicationApplication Height or TypeDistance From Receptor (ft)Typical Application RateMaximum Application RatePlaneForested1001.28E-062.58E-06PlaneForested3004.76E-079.66E-07PlaneForested9001.41E-072.93E-07PlaneNon-Forested1005.41E-071.23E-06PlaneNon-Forested3002.17E-075.25E-07PlaneNon-Forested9001.05E-072.36E-07PlaneNon-Forested9001.28E-061.58E-07PlaneNon-Forested3002.20E-084.51E-08HelicopterForested3002.20E-084.51E-08HelicopterForested9003.53E-097.62E-09HelicopterNon-Forested3001.71E-073.99E-07HelicopterNon-Forested3001.71E-073.99E-07HelicopterNon-Forested3001.71E-073.99E-07HelicopterNon-Forested3001.71E-073.99E-07HelicopterNon-Forested9007.85E-082.01E-07HelicopterNon-Forested9007.85E-082.01E-07HelicopterNon-Forested9007.85E-082.01E-07HelicopterNon-Forested9007.85E-073.55E-07HelicopterNon-Forested9007.85E-082.01E-07										
Mode of Application											
Plane	Forested	100	1.28E-06	2.58E-06							
Plane	Forested	300	4.76E-07	9.66E-07							
Plane	Forested	900	1.41E-07	2.93E-07							
Plane	Non-Forested	100	5.41E-07	1.23E-06							
Plane	Non-Forested	300	2.17E-07	5.25E-07							
Plane	Non-Forested	900	1.05E-07	2.36E-07							
Helicopter	Forested	100	7.71E-08	1.58E-07							
Helicopter	Forested	300	2.20E-08	4.51E-08							
Helicopter	Forested	900	3.53E-09	7.62E-09							
Helicopter	Non-Forested	100	4.56E-07	1.01E-06							
Helicopter	Non-Forested	300	1.71E-07	3.99E-07							
Helicopter	Non-Forested	900	7.85E-08	2.01E-07							
Ground	Low Boom	25	1.77E-07	3.55E-07							
Ground	Low Boom	100	9.72E-08	1.94E-07							
Ground	Low Boom	900	1.88E-08	3.75E-08							
Ground	High Boom	25	2.85E-07	5.69E-07							
Ground	High Boom	100	1.50E-07	3.00E-07							
Ground	High Boom	900	2.38E-08	4.76E-08							

Risk Quotients for Off-site Drift Scenarios

Shading and boldface indicates plant RQs greater than 1 (LOC for all plant risks).

ft = feet.

RTE – Rare, threatened, and endangered.

TABLE 4-4

				Potentia	l Risk to Non-targe	t Terrestria	l Plants			
							Typical	Species	RTE S	Species
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
				S	urface Runoff to C	Off-Site Soils				
5	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	10	0.05	0.015	0.401	Weeds (78)	Clay	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	10	0.05	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10	10	0.05	0.015	0.401	Weeds (78)	Clay	1.17E-07	2.33E-07	2.85E-06	5.70E-06
10	10	0.05	0.015	0.401	Weeds (78)	Loam	2.30E-09	4.61E-09	5.62E-08	1.12E-07
25	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00
25	10	0.05	0.015	0.401	Weeds (78)	Clay	2.00E-07	3.99E-07	4.87E-06	9.75E-06
25	10	0.05	0.015	0.401	Weeds (78)	Loam	3.07E-09	6.14E-09	7.50E-08	1.50E-07
50	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.05	0.015	0.401	Weeds (78)	Clay	1.06E-05	2.13E-05	2.60E-04	5.19E-04
50	10	0.05	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
100	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00
100	10	0.05	0.015	0.401	Weeds (78)	Clay	3.34E-05	6.69E-05	8.16E-04	1.63E-03
100	10	0.05	0.015	0.401	Weeds (78)	Loam	5.45E-08	1.09E-07	1.33E-06	2.66E-06
150	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00
150	10	0.05	0.015	0.401	Weeds (78)	Clay	1.09E-04	2.18E-04	2.66E-03	5.32E-03
150	10	0.05	0.015	0.401	Weeds (78)	Loam	4.61E-09	9.21E-09	1.12E-07	2.25E-07
200	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00
200	10	0.05	0.015	0.401	Weeds (78)	Clay	1.59E-04	3.18E-04	3.88E-03	7.76E-03
200	10	0.05	0.015	0.401	Weeds (78)	Loam	4.76E-08	9.52E-08	1.16E-06	2.32E-06

				Potential	Risk to Non-targe	t Terrestrial	Plants			
							Typical	Species	RTE S	pecies
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
				Sı	urface Runoff to C	off-Site Soils				
250	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00
250	10	0.05	0.015	0.401	Weeds (78)	Clay	2.08E-04	4.17E-04	5.09E-03	1.02E-02
250	10	0.05	0.015	0.401	Weeds (78)	Loam	1.93E-07	3.85E-07	4.70E-06	9.41E-06
50	1	0.05	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	100	0.05	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	1,000	0.05	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.05	0.015	0.05	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.05	0.015	0.2	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.05	0.015	0.5	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.05	0.023	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.05	0.046	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.05	0.15	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.005	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.01	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.1	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.05	0.015	0.401	Weeds (78)	Silt Loam	4.87E-06	9.73E-06	1.19E-04	2.38E-04
50	10	0.05	0.015	0.401	Weeds (78)	Silt	5.68E-06	1.14E-05	1.39E-04	2.77E-04
50	10	0.05	0.015	0.401	Weeds (78)	Clay Loam	4.32E-05	8.63E-05	1.05E-03	2.11E-03
50	10	0.05	0.015	0.401	Shrubs (79)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.05	0.015	0.401	Rye Grass (54)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	10	0.05	0.015	0.401	Conifer + Hardwood (71)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00

					Potentia	l Risk to	Aquatic Rece	ptors				
							Fi	ish	Aquatic In	vertebrates	Non-target A	quatic Plants
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
		-	-	-	Surfa		ff to Off-site Po Toxicity	nd	-	-	-	-
5	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	10	0.05	0.015	0.401	Weeds (78)	Clay	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	10	0.05	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10	10	0.05	0.015	0.401	Weeds (78)	Sand	1.32E-05	2.63E-05	6.08E-06	1.22E-05	1.51E-04	3.01E-04
10	10	0.05	0.015	0.401	Weeds (78)	Clay	2.72E-10	5.44E-10	1.26E-10	2.51E-10	3.11E-09	6.23E-09
10	10	0.05	0.015	0.401	Weeds (78)	Loam	9.78E-08	1.96E-07	4.52E-08	9.03E-08	1.12E-06	2.24E-06
25	10	0.05	0.015	0.401	Weeds (78)	Sand	3.52E-05	7.03E-05	1.62E-05	3.25E-05	4.03E-04	8.05E-04
25	10	0.05	0.015	0.401	Weeds (78)	Clay	3.47E-10	6.94E-10	1.60E-10	3.20E-10	3.97E-09	7.94E-09
25	10	0.05	0.015	0.401	Weeds (78)	Loam	2.59E-05	5.19E-05	1.20E-05	2.40E-05	2.97E-04	5.94E-04
50	10	0.05	0.015	0.401	Weeds (78)	Sand	2.09E-05	4.18E-05	9.67E-06	1.93E-05	2.40E-04	4.79E-04
50	10	0.05	0.015	0.401	Weeds (78)	Clay	2.92E-08	5.84E-08	1.35E-08	2.70E-08	3.34E-07	6.69E-07
50	10	0.05	0.015	0.401	Weeds (78)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
100	10	0.05	0.015	0.401	Weeds (78)	Sand	5.09E-05	1.02E-04	2.35E-05	4.70E-05	5.83E-04	1.17E-03
100	10	0.05	0.015	0.401	Weeds (78)	Clay	2.69E-06	5.39E-06	1.24E-06	2.49E-06	3.09E-05	6.17E-05
100	10	0.05	0.015	0.401	Weeds (78)	Loam	1.95E-05	3.89E-05	8.99E-06	1.80E-05	2.23E-04	4.46E-04
150	10	0.05	0.015	0.401	Weeds (78)	Sand	5.20E-05	1.04E-04	2.40E-05	4.80E-05	5.95E-04	1.19E-03
150	10	0.05	0.015	0.401	Weeds (78)	Clay	3.29E-06	6.58E-06	1.52E-06	3.04E-06	3.76E-05	7.53E-05
150	10	0.05	0.015	0.401	Weeds (78)	Loam	3.41E-05	6.81E-05	1.57E-05	3.15E-05	3.90E-04	7.80E-04
200	10	0.05	0.015	0.401	Weeds (78)	Sand	3.26E-05	6.53E-05	1.51E-05	3.01E-05	3.74E-04	7.47E-04
200	10	0.05	0.015	0.401	Weeds (78)	Clay	4.11E-06	8.22E-06	1.90E-06	3.80E-06	4.70E-05	9.41E-05
200	10	0.05	0.015	0.401	Weeds (78)	Loam	3.48E-05	6.97E-05	1.61E-05	3.22E-05	3.99E-04	7.98E-04

					Potential	Risk to A	quatic Recept	tors				
							Fi	ish	Aquatic In	vertebrates	Non-target A	quatic Plants
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
	-	_	-	-	Surface		to Off-site Pon	ıd	-	-	-	-
						Acute T						
250	10	0.05	0.015	0.401	Weeds (78)	Sand	2.46E-05	4.91E-05	1.13E-05	2.27E-05	2.81E-04	5.62E-04
250	10	0.05	0.015	0.401	Weeds (78)	Clay	4.26E-06	8.51E-06	1.97E-06	3.93E-06	4.87E-05	9.75E-05
250	10	0.05	0.015	0.401	Weeds (78)	Loam	2.92E-05	5.83E-05	1.35E-05	2.69E-05	3.34E-04	6.68E-04
50	1	0.05	0.015	0.401	Weeds (78)	Loam	9.92E-06	1.98E-05	4.58E-06	9.16E-06	1.14E-04	2.27E-04
50	100	0.05	0.015	0.401	Weeds (78)	Loam	1.25E-05	2.50E-05	5.77E-06	1.15E-05	1.43E-04	2.86E-04
50	1,000	0.05	0.015	0.401	Weeds (78)	Loam	1.26E-05	2.51E-05	5.80E-06	1.16E-05	1.44E-04	2.88E-04
50	10	0.05	0.015	0.05	Weeds (78)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.05	0.015	0.2	Weeds (78)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.05	0.015	0.5	Weeds (78)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.05	0.023	0.401	Weeds (78)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.05	0.046	0.401	Weeds (78)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.05	0.15	0.401	Weeds (78)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.005	0.015	0.401	Weeds (78)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.01	0.015	0.401	Weeds (78)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.1	0.015	0.401	Weeds (78)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.05	0.015	0.401	Weeds (78)	Silt Loam	1.09E-05	2.19E-05	5.05E-06	1.01E-05	1.25E-04	2.50E-04
50	10	0.05	0.015	0.401	Weeds (78)	Silt	9.54E-06	1.91E-05	4.41E-06	8.82E-06	1.09E-04	2.19E-04
50	10	0.05	0.015	0.401	Weeds (78)	Clay Loam	1.24E-05	2.49E-05	5.75E-06	1.15E-05	1.43E-04	2.85E-04
50	10	0.05	0.015	0.401	Shrubs (79)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.05	0.015	0.401	Rye Grass (54)	Loam	1.15E-05	2.29E-05	5.30E-06	1.06E-05	1.31E-04	2.63E-04
50	10	0.05	0.015	0.401	Conifer + Hardwood (71)	Loam	1.26E-05	2.52E-05	5.82E-06	1.16E-05	1.44E-04	2.89E-04

					Potentia	l Risk to	Aquatic Recep	otors				
							Fi	sh	Aquatic In	vertebrates	Non-target A	quatic Plants
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
					Surfac		f to Off-site Po c Toxicity	nd				
5	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	10	0.05	0.015	0.401	Weeds (78)	Clay	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	10	0.05	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10	10	0.05	0.015	0.401	Weeds (78)	Sand	5.12E-05	1.02E-04	4.50E-05	9.00E-05	3.47E-02	6.93E-02
10	10	0.05	0.015	0.401	Weeds (78)	Clay	1.06E-09	2.12E-09	9.30E-10	1.86E-09	7.16E-07	1.43E-06
10	10	0.05	0.015	0.401	Weeds (78)	Loam	3.80E-07	7.61E-07	3.34E-07	6.69E-07	2.57E-04	5.15E-04
25	10	0.05	0.015	0.401	Weeds (78)	Sand	1.37E-04	2.74E-04	1.20E-04	2.40E-04	9.26E-02	1.85E-01
25	10	0.05	0.015	0.401	Weeds (78)	Clay	1.35E-09	2.70E-09	1.19E-09	2.37E-09	9.13E-07	1.83E-06
25	10	0.05	0.015	0.401	Weeds (78)	Loam	1.01E-04	2.02E-04	8.87E-05	1.77E-04	6.83E-02	1.37E-01
50	10	0.05	0.015	0.401	Weeds (78)	Sand	8.14E-05	1.63E-04	7.15E-05	1.43E-04	9.26E-02	1.10E-01
50	10	0.05	0.015	0.401	Weeds (78)	Clay	1.14E-07	2.27E-07	9.99E-08	2.00E-07	7.69E-05	1.54E-04
50	10	0.05	0.015	0.401	Weeds (78)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
100	10	0.05	0.015	0.401	Weeds (78)	Sand	1.98E-04	3.96E-04	1.74E-04	3.48E-04	1.34E-01	2.68E-01
100	10	0.05	0.015	0.401	Weeds (78)	Clay	1.05E-05	2.10E-05	9.22E-06	1.84E-05	7.10E-03	1.42E-02
100	10	0.05	0.015	0.401	Weeds (78)	Loam	7.58E-05	1.52E-04	6.66E-05	1.33E-04	5.13E-02	1.03E-01
150	10	0.05	0.015	0.401	Weeds (78)	Sand	2.02E-04	4.05E-04	1.78E-04	3.56E-04	1.37E-01	2.74E-01
150	10	0.05	0.015	0.401	Weeds (78)	Clay	1.28E-05	2.56E-05	1.12E-05	2.25E-05	8.66E-03	1.73E-02
150	10	0.05	0.015	0.401	Weeds (78)	Loam	1.33E-04	2.65E-04	1.16E-04	2.33E-04	8.97E-02	1.79E-01
200	10	0.05	0.015	0.401	Weeds (78)	Sand	1.27E-04	2.54E-04	1.12E-04	2.23E-04	8.59E-02	1.72E-01
200	10	0.05	0.015	0.401	Weeds (78)	Clay	1.60E-05	3.20E-05	1.40E-05	2.81E-05	1.08E-02	2.16E-02
200	10	0.05	0.015	0.401	Weeds (78)	Loam	1.36E-04	2.71E-04	1.19E-04	2.38E-04	9.18E-02	1.84E-01

					Potential	Risk to A	Aquatic Recep	otors				
							F	ish	Aquatic In	vertebrates	Non-target A	Aquatic Plants
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
							to Off-site Po	nd				
							Toxicity					
250	10	0.05	0.015	0.401	Weeds (78)	Sand	9.56E-05	1.91E-04	8.40E-05	1.68E-04	6.47E-02	1.29E-01
250	10	0.05	0.015	0.401	Weeds (78)	Clay	1.66E-05	3.31E-05	1.46E-05	2.91E-05	1.12E-02	2.24E-02
250	10	0.05	0.015	0.401	Weeds (78)	Loam	1.13E-04	2.27E-04	9.97E-05	1.99E-04	7.68E-02	1.54E-01
50	1	0.05	0.015	0.401	Weeds (78)	Loam	3.86E-05	7.72E-05	3.39E-05	6.78E-05	2.61E-02	5.22E-02
50	100	0.05	0.015	0.401	Weeds (78)	Loam	4.86E-05	9.71E-05	4.27E-05	8.54E-05	3.29E-02	6.57E-02
50	1,000	0.05	0.015	0.401	Weeds (78)	Loam	4.89E-05	9.78E-05	4.30E-05	8.59E-05	3.31E-02	6.62E-02
50	10	0.05	0.015	0.05	Weeds (78)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.05	0.015	0.2	Weeds (78)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.05	0.015	0.5	Weeds (78)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.05	0.023	0.401	Weeds (78)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.05	0.046	0.401	Weeds (78)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.05	0.15	0.401	Weeds (78)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.005	0.015	0.401	Weeds (78)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.01	0.015	0.401	Weeds (78)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.1	0.015	0.401	Weeds (78)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.05	0.015	0.401	Weeds (78)	Silt Loam	4.26E-05	8.51E-05	3.74E-05	7.48E-05	2.88E-02	5.76E-02
50	10	0.05	0.015	0.401	Weeds (78)	Silt	3.71E-05	7.43E-05	3.26E-05	6.53E-05	2.51E-02	5.03E-02
50	10	0.05	0.015	0.401	Weeds (78)	Clay Loam	4.84E-05	9.69E-05	4.26E-05	8.52E-05	3.28E-02	6.56E-02
50	10	0.05	0.015	0.401	Shrubs (79)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.05	0.015	0.401	Rye Grass (54)	Loam	4.46E-05	8.93E-05	3.92E-05	7.84E-05	3.02E-02	6.04E-02
50	10	0.05	0.015	0.401	Conifer + Hardwood (71)	Loam	4.90E-05	9.81E-05	4.31E-05	8.62E-05	3.32E-02	6.64E-02

					Potentia	Risk to	Aquatic Recep	tors				
							Fi	sh	Aquatic In	vertebrates	Non-target A	quatic Plants
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
					Surface		o Off-site Stre	am				
							Foxicity					
5	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	10	0.05	0.015	0.401	Weeds (78)	Clay	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	10	0.05	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10	10	0.05	0.015	0.401	Weeds (78)	Sand	1.01E-08	2.03E-08	4.68E-09	9.37E-09	1.16E-07	2.32E-07
10	10	0.05	0.015	0.401	Weeds (78)	Clay	5.82E-13	1.16E-12	2.69E-13	5.38E-13	6.66E-12	1.33E-11
10	10	0.05	0.015	0.401	Weeds (78)	Loam	7.14E-11	1.43E-10	3.30E-11	6.59E-11	8.17E-10	1.63E-09
25	10	0.05	0.015	0.401	Weeds (78)	Sand	1.97E-07	3.93E-07	9.09E-08	1.82E-07	2.25E-06	4.50E-06
25	10	0.05	0.015	0.401	Weeds (78)	Clay	2.14E-12	4.28E-12	9.89E-13	1.98E-12	2.45E-11	4.90E-11
25	10	0.05	0.015	0.401	Weeds (78)	Loam	8.52E-08	1.70E-07	3.94E-08	7.87E-08	9.76E-07	1.95E-06
50	10	0.05	0.015	0.401	Weeds (78)	Sand	3.01E-07	6.01E-07	1.39E-07	2.78E-07	3.44E-06	6.88E-06
50	10	0.05	0.015	0.401	Weeds (78)	Clay	1.79E-10	3.57E-10	8.25E-11	1.65E-10	2.04E-09	4.09E-09
50	10	0.05	0.015	0.401	Weeds (78)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
100	10	0.05	0.015	0.401	Weeds (78)	Sand	5.35E-07	1.07E-06	2.47E-07	4.95E-07	6.13E-06	1.23E-05
100	10	0.05	0.015	0.401	Weeds (78)	Clay	5.74E-08	1.15E-07	2.65E-08	5.31E-08	6.58E-07	1.32E-06
100	10	0.05	0.015	0.401	Weeds (78)	Loam	3.27E-07	6.54E-07	1.51E-07	3.02E-07	3.74E-06	7.49E-06
150	10	0.05	0.015	0.401	Weeds (78)	Sand	7.09E-07	1.42E-06	3.27E-07	6.55E-07	8.12E-06	1.62E-05
150	10	0.05	0.015	0.401	Weeds (78)	Clay	7.98E-08	1.60E-07	3.69E-08	7.38E-08	9.14E-07	1.83E-06
150	10	0.05	0.015	0.401	Weeds (78)	Loam	4.53E-07	9.06E-07	2.09E-07	4.19E-07	5.19E-06	1.04E-05
200	10	0.05	0.015	0.401	Weeds (78)	Sand	7.86E-07	1.57E-06	3.63E-07	7.27E-07	9.00E-06	1.80E-05
200	10	0.05	0.015	0.401	Weeds (78)	Clay	1.04E-07	2.07E-07	4.79E-08	9.58E-08	1.19E-06	2.38E-06
200	10	0.05	0.015	0.401	Weeds (78)	Loam	5.47E-07	1.09E-06	2.53E-07	5.05E-07	6.26E-06	1.25E-05

					Potential	Risk to A	Aquatic Recep	otors				
							Fi	ish	Aquatic In	vertebrates	Non-target A	quatic Plants
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
					Overland		o Off-site Stre	am				
							Foxicity					
250	10	0.05	0.015	0.401	Weeds (78)	Sand	8.08E-07	1.62E-06	3.73E-07	7.46E-07	9.25E-06	1.85E-05
250	10	0.05	0.015	0.401	Weeds (78)	Clay	1.15E-07	2.30E-07	5.30E-08	1.06E-07	1.31E-06	2.63E-06
250	10	0.05	0.015	0.401	Weeds (78)	Loam	6.06E-07	1.21E-06	2.80E-07	5.60E-07	6.94E-06	1.39E-05
50	1	0.05	0.015	0.401	Weeds (78)	Loam	2.12E-08	4.23E-08	9.78E-09	1.96E-08	2.42E-07	4.85E-07
50	100	0.05	0.015	0.401	Weeds (78)	Loam	9.68E-07	1.94E-06	4.47E-07	8.95E-07	1.11E-05	2.22E-05
50	1,000	0.05	0.015	0.401	Weeds (78)	Loam	2.64E-06	5.29E-06	1.22E-06	2.44E-06	3.03E-05	6.05E-05
50	10	0.05	0.015	0.05	Weeds (78)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.05	0.015	0.2	Weeds (78)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.05	0.015	0.5	Weeds (78)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.05	0.023	0.401	Weeds (78)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.05	0.046	0.401	Weeds (78)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.05	0.15	0.401	Weeds (78)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.005	0.015	0.401	Weeds (78)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.01	0.015	0.401	Weeds (78)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.1	0.015	0.401	Weeds (78)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.05	0.015	0.401	Weeds (78)	Silt Loam	1.37E-07	2.73E-07	6.32E-08	1.26E-07	1.57E-06	3.13E-06
50	10	0.05	0.015	0.401	Weeds (78)	Silt	1.40E-07	2.81E-07	6.48E-08	1.30E-07	1.61E-06	3.21E-06
50	10	0.05	0.015	0.401	Weeds (78)	Clay Loam	1.22E-07	2.44E-07	5.63E-08	1.13E-07	1.40E-06	2.79E-06
50	10	0.05	0.015	0.401	Shrubs (79)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.05	0.015	0.401	Rye Grass (54)	Loam	1.81E-07	3.62E-07	8.37E-08	1.67E-07	2.08E-06	4.15E-06
50	10	0.05	0.015	0.401	Conifer + Hardwood (71)	Loam	2.09E-07	4.18E-07	9.66E-08	1.93E-07	2.39E-06	4.79E-06

					Potentia	Risk to	Aquatic Recep	tors				
							Fi	sh	Aquatic In	vertebrates	Non-target A	quatic Plants
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
					Overla		o Off-site Stre	am				
							Toxicity					
5	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	10	0.05	0.015	0.401	Weeds (78)	Clay	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	10	0.05	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10	10	0.05	0.015	0.401	Weeds (78)	Sand	3.94E-08	7.89E-08	3.47E-08	6.93E-08	2.67E-05	5.34E-05
10	10	0.05	0.015	0.401	Weeds (78)	Clay	2.26E-12	4.53E-12	1.99E-12	3.98E-12	1.53E-09	3.07E-09
10	10	0.05	0.015	0.401	Weeds (78)	Loam	2.78E-10	5.55E-10	2.44E-10	4.88E-10	1.88E-07	3.76E-07
25	10	0.05	0.015	0.401	Weeds (78)	Sand	7.65E-07	1.53E-06	6.73E-07	1.35E-06	5.18E-04	1.04E-03
25	10	0.05	0.015	0.401	Weeds (78)	Clay	8.33E-12	1.67E-11	7.32E-12	1.46E-11	5.64E-09	1.13E-08
25	10	0.05	0.015	0.401	Weeds (78)	Loam	3.32E-07	6.63E-07	2.91E-07	5.83E-07	2.24E-04	4.49E-04
50	10	0.05	0.015	0.401	Weeds (78)	Sand	1.17E-06	2.34E-06	1.03E-06	2.06E-06	7.92E-04	1.58E-03
50	10	0.05	0.015	0.401	Weeds (78)	Clay	6.95E-10	1.39E-09	6.11E-10	1.22E-09	4.70E-07	9.41E-07
50	10	0.05	0.015	0.401	Weeds (78)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
100	10	0.05	0.015	0.401	Weeds (78)	Sand	2.08E-06	4.17E-06	1.83E-06	3.66E-06	1.41E-03	2.82E-03
100	10	0.05	0.015	0.401	Weeds (78)	Clay	2.24E-07	4.47E-07	1.96E-07	3.93E-07	1.51E-04	3.03E-04
100	10	0.05	0.015	0.401	Weeds (78)	Loam	1.27E-06	2.54E-06	1.12E-06	2.24E-06	8.61E-04	1.72E-03
150	10	0.05	0.015	0.401	Weeds (78)	Sand	2.76E-06	5.52E-06	2.42E-06	4.85E-06	1.87E-03	3.73E-03
150	10	0.05	0.015	0.401	Weeds (78)	Clay	3.11E-07	6.21E-07	2.73E-07	5.46E-07	2.10E-04	4.21E-04
150	10	0.05	0.015	0.401	Weeds (78)	Loam	1.76E-06	3.53E-06	1.55E-06	3.10E-06	1.19E-03	2.39E-03
200	10	0.05	0.015	0.401	Weeds (78)	Sand	3.06E-06	6.12E-06	2.69E-06	5.38E-06	2.07E-03	4.14E-03
200	10	0.05	0.015	0.401	Weeds (78)	Clay	4.04E-07	8.07E-07	3.55E-07	7.10E-07	2.73E-04	5.46E-04
200	10	0.05	0.015	0.401	Weeds (78)	Loam	2.13E-06	4.26E-06	1.87E-06	3.74E-06	1.44E-03	2.88E-03

Potential Risk to Aquatic Receptors												
							Fish		Aquatic Invertebrates		Non-target Aquatic Plants	
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
Overland Flow to Off-site Stream												
	10	0 0 -	0.01.5	0.404			Toxicity					
250	10	0.05	0.015	0.401	Weeds (78)	Sand	3.14E-06	6.29E-06	2.76E-06	5.52E-06	2.13E-03	4.25E-03
250	10	0.05	0.015	0.401	Weeds (78)	Clay	4.47E-07	8.94E-07	3.93E-07	7.85E-07	3.02E-04	6.05E-04
250	10	0.05	0.015	0.401	Weeds (78)	Loam	2.36E-06	4.72E-06	2.07E-06	4.15E-06	1.60E-03	3.19E-03
50	1	0.05	0.015	0.401	Weeds (78)	Loam	8.24E-08	1.65E-07	7.24E-08	1.45E-07	5.58E-05	1.12E-04
50	100	0.05	0.015	0.401	Weeds (78)	Loam	3.77E-06	7.54E-06	3.31E-06	6.62E-06	2.55E-03	5.10E-03
50	1,000	0.05	0.015	0.401	Weeds (78)	Loam	1.03E-05	2.06E-05	9.04E-06	1.81E-05	6.96E-03	1.39E-02
50	10	0.05	0.015	0.05	Weeds (78)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.05	0.015	0.2	Weeds (78)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.05	0.015	0.5	Weeds (78)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.05	0.023	0.401	Weeds (78)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.05	0.046	0.401	Weeds (78)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.05	0.15	0.401	Weeds (78)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.005	0.015	0.401	Weeds (78)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.01	0.015	0.401	Weeds (78)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.1	0.015	0.401	Weeds (78)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.05	0.015	0.401	Weeds (78)	Silt Loam	5.32E-07	1.06E-06	4.68E-07	9.35E-07	3.60E-04	7.20E-04
50	10	0.05	0.015	0.401	Weeds (78)	Silt	5.46E-07	1.09E-06	4.80E-07	9.60E-07	3.70E-04	7.39E-04
50	10	0.05	0.015	0.401	Weeds (78)	Clay Loam	4.74E-07	9.49E-07	4.17E-07	8.34E-07	3.21E-04	6.42E-04
50	10	0.05	0.015	0.401	Shrubs (79)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.05	0.015	0.401	Rye Grass (54)	Loam	7.05E-07	1.41E-06	6.20E-07	1.24E-06	4.77E-04	9.55E-04
50	10	0.05	0.015	0.401	Conifer + Hardwood (71)	Loam	8.14E-07	1.63E-06	7.15E-07	1.43E-06	5.51E-04	1.10E-03

Potential Risk to Piscivorous Bird from Ingestion of Fish from Contaminated Pond											
Annual Precipitation Rate (in/yr)	Application Area (ac)	Hydraulic Slope	Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate			
5	10	0.05	0.015	0.401	Weeds (78)	Sand	0.00E+00	0.00E+00			
5	10	0.05	0.015	0.401	Weeds (78)	Clay	0.00E+00	0.00E+00			
5	10	0.05	0.015	0.401	Weeds (78)	Loam	0.00E+00	0.00E+00			
10	10	0.05	0.015	0.401	Weeds (78)	Sand	1.08E-06	2.16E-06			
10	10	0.05	0.015	0.401	Weeds (78)	Clay	2.23E-11	4.47E-11			
10	10	0.05	0.015	0.401	Weeds (78)	Loam	8.03E-09	1.61E-08			
25	10	0.05	0.015	0.401	Weeds (78)	Sand	2.89E-06	5.78E-06			
25	10	0.05	0.015	0.401	Weeds (78)	Clay	2.85E-11	5.70E-11			
25	10	0.05	0.015	0.401	Weeds (78)	Loam	2.13E-06	4.26E-06			
50	10	0.05	0.015	0.401	Weeds (78)	Sand	1.72E-06	3.44E-06			
50	10	0.05	0.015	0.401	Weeds (78)	Clay	2.40E-09	4.80E-09			
50	10	0.05	0.015	0.401	Weeds (78)	Loam	9.42E-07	1.88E-06			
100	10	0.05	0.015	0.401	Weeds (78)	Sand	4.18E-06	8.36E-06			
100	10	0.05	0.015	0.401	Weeds (78)	Clay	2.21E-07	4.43E-07			
100	10	0.05	0.015	0.401	Weeds (78)	Loam	1.60E-06	3.20E-06			
150	10	0.05	0.015	0.401	Weeds (78)	Sand	4.27E-06	8.55E-06			
150	10	0.05	0.015	0.401	Weeds (78)	Clay	2.70E-07	5.40E-07			
150	10	0.05	0.015	0.401	Weeds (78)	Loam	2.80E-06	5.60E-06			
200	10	0.05	0.015	0.401	Weeds (78)	Sand	2.68E-06	5.36E-06			
200	10	0.05	0.015	0.401	Weeds (78)	Clay	3.38E-07	6.75E-07			
200	10	0.05	0.015	0.401	Weeds (78)	Loam	2.86E-06	5.73E-06			
250	10	0.05	0.015	0.401	Weeds (78)	Sand	2.02E-06	4.04E-06			
250	10	0.05	0.015	0.401	Weeds (78)	Clay	3.50E-07	7.00E-07			
250	10	0.05	0.015	0.401	Weeds (78)	Loam	2.40E-06	4.79E-06			
50	1	0.05	0.015	0.401	Weeds (78)	Loam	8.15E-07	1.63E-06			
50	100	0.05	0.015	0.401	Weeds (78)	Loam	1.03E-06	2.05E-06			
50	1,000	0.05	0.015	0.401	Weeds (78)	Loam	1.03E-06	2.06E-06			
50	10	0.05	0.015	0.05	Weeds (78)	Loam	9.42E-07	1.88E-06			
50	10	0.05	0.015	0.2	Weeds (78)	Loam	9.42E-07	1.88E-06			

TABLE 4-4 (Cont.)

	I	Potential Risk to	Piscivorous Bire	d from Ingestion	n of Fish from Con	taminated Pon	d	
Annual Precipitation Rate (in/yr)	cipitation Application Hydrogeneity Application		Surface Roughness	USLE Soil Erodibility Factor	Vegetation Type	Soil Type	Typical Application Rate	Maximum Application Rate
50	10	0.05	0.015	0.5	Weeds (78)	Loam	9.42E-07	1.88E-06
50	10	0.05	0.023	0.401	Weeds (78)	Loam	9.42E-07	1.88E-06
50	10	0.05	0.046	0.401	Weeds (78)	Loam	9.42E-07	1.88E-06
50	10	0.05	0.15	0.401	Weeds (78)	Loam	9.42E-07	1.88E-06
50	10	0.005	0.015	0.401	Weeds (78)	Loam	9.42E-07	1.88E-06
50	10	0.01	0.015	0.401	Weeds (78)	Loam	9.42E-07	1.88E-06
50	10	0.1	0.015	0.401	Weeds (78)	Loam	9.42E-07	1.88E-06
50	10	0.05	0.015	0.401	Weeds (78)	Silt Loam	8.99E-07	1.80E-06
50	10	0.05	0.015	0.401	Weeds (78)	Silt	7.84E-07	1.57E-06
50	10	0.05	0.015	0.401	Weeds (78)	Clay Loam	1.02E-06	2.05E-06
50	10	0.05	0.015	0.401	Shrubs (79)	Loam	9.42E-07	1.88E-06
50	10	0.05	0.015	0.401	Rye Grass (54)	Loam	9.42E-07	1.88E-06
50	10	0.05	0.015	0.401	Conifer + Hardwood (71)	Loam	1.04E-06	2.07E-06

Risk Quotients for Surface Runoff Scenarios

in/yr = inches per year.

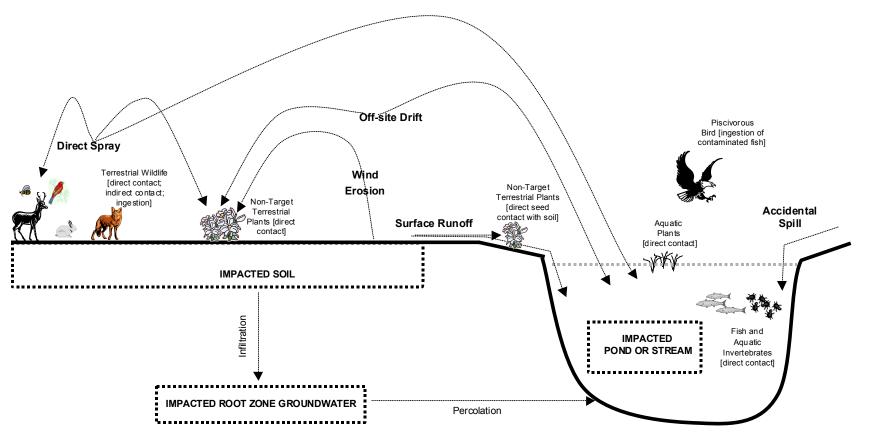
ac = acres.

USLE = Universal Soil Loss Equation.

Values of zero indicate that GLEAMS did not predict herbicide transport from the application area; therefore, the resulting risk quotient is zero. Values in parentheses represent number assigned in GLEAMS for that variable.

TABLE 4-5

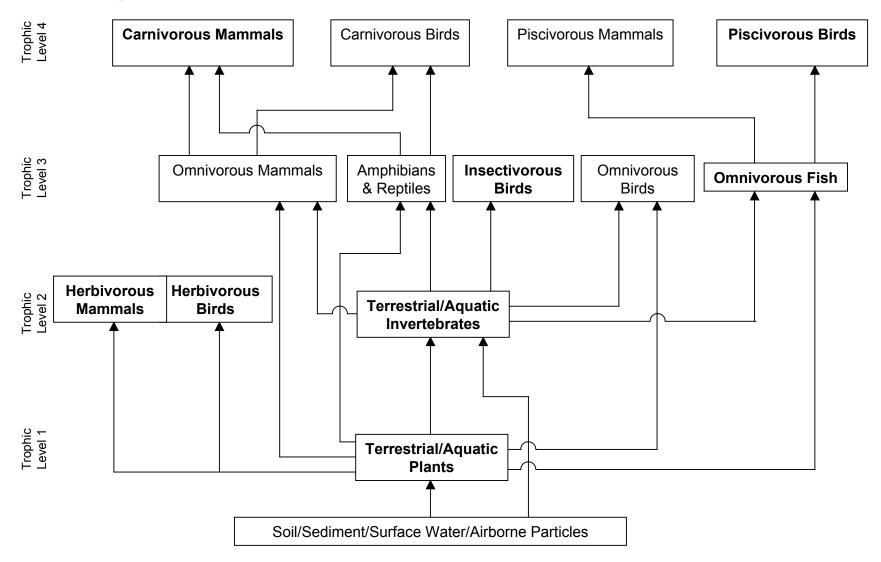
		Typical	l Species	RTE S	Species
Watershed Location	Distance from Receptor (km)	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
Montana	1.5	2.31E-02	4.63E-02	8.92E-02	1.78E-01
Montana	10	6.78E-04	1.36E-03	2.62E-03	5.23E-03
Montana	100	2.37E-05	4.74E-05	9.14E-05	1.83E-04
Oregon	1.5	2.66E-01	5.32E-01	1.03E+00	2.05E+00
Oregon	10	7.10E-03	1.42E-02	2.74E-02	5.48E-02
Oregon	100	1.74E-04	3.47E-04	6.70E-04	1.34E-03
Wyoming	1.5	1.37E-01	2.73E-01	5.27E-01	1.05E+00
Wyoming	10	4.89E-03	9.79E-03	1.89E-02	3.77E-02
Wyoming	100	1.56E-04	3.12E-04	6.02E-04	1.20E-03


Risk Quotients for Wind Erosion and Transport Off-site Scenarios

km = kilometers; 1.5 km = 0.9 miles, 10 km = 6.2 miles, and 100 km = 62 miles.

RTE = Rare, threatened, and endangered.

Shading and boldface indicates plant RQs greater than 1 (LOC for all plant risks).


FIGURE 4-1. Conceptual Model for Terrestrial Herbicides.

Application of terrestrial herbicides may occur by aerial (i.e., plane, helicopter) or ground (I.e., truck, backpack) methods.

See Figure 4-2 for simplified food web & evaluated receptors.

FIGURE 4-2. Simplified Food Web.

Receptors in **bold** type quantitatively assessed in the BLM herbicide ERAs.

FIGURE 4-3. Direct Spray - Risk Quotients for Terrestrial Animals.

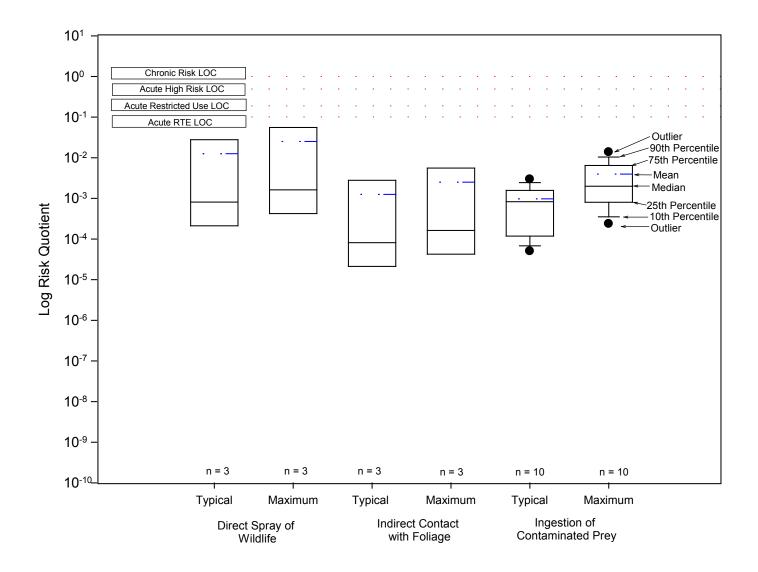
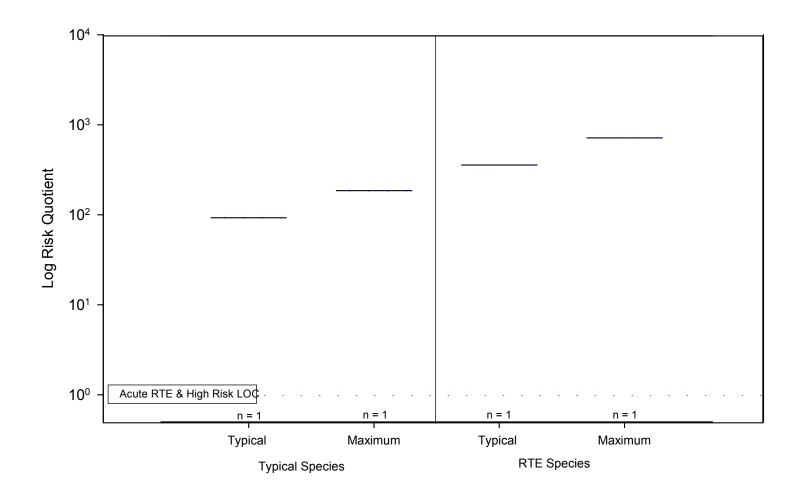
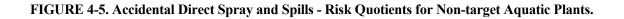
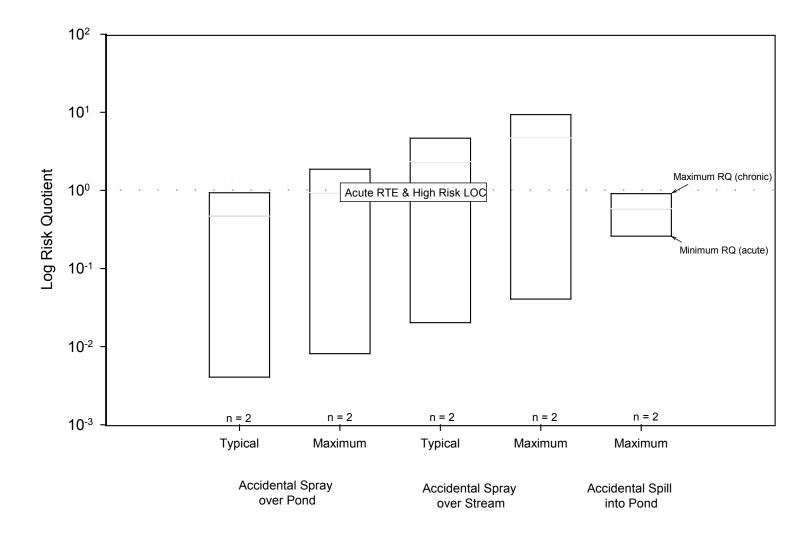





FIGURE 4-4. Direct Spray - Risk Quotients for Non-target Terrestrial Plants.

FIGURE 4-6. Accidental Direct Spray and Spills - Risk Quotients for Fish.

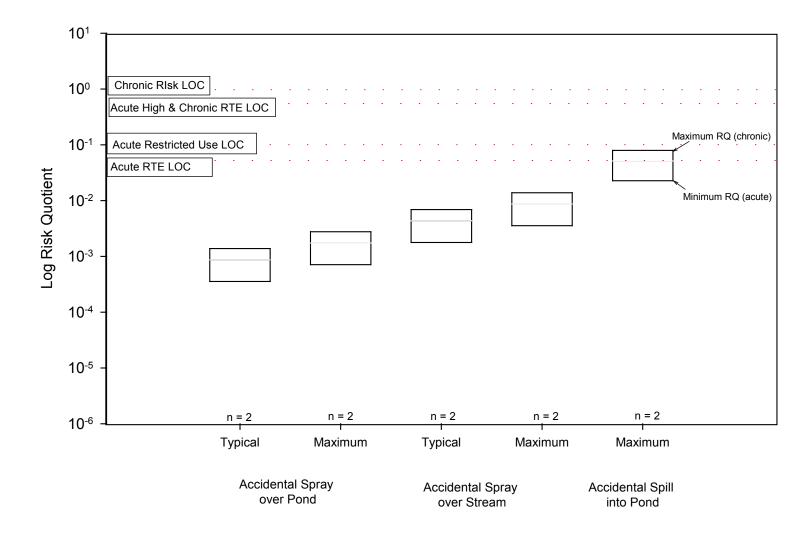
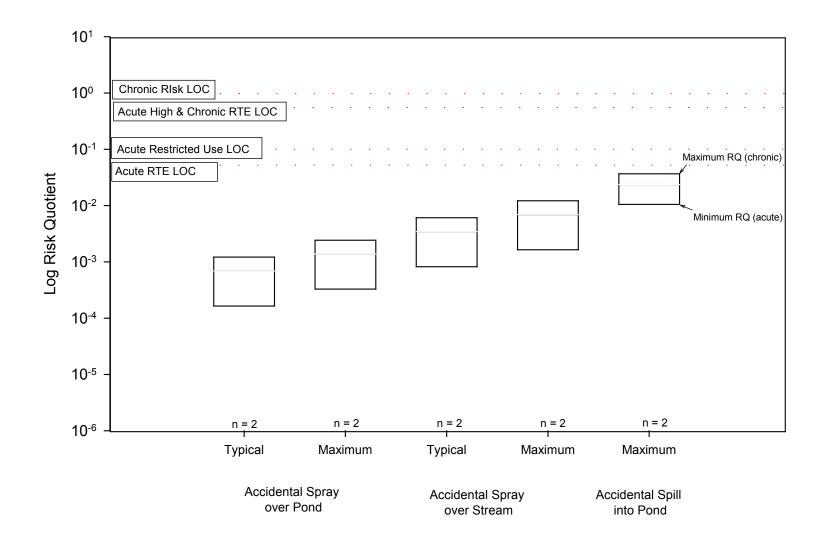
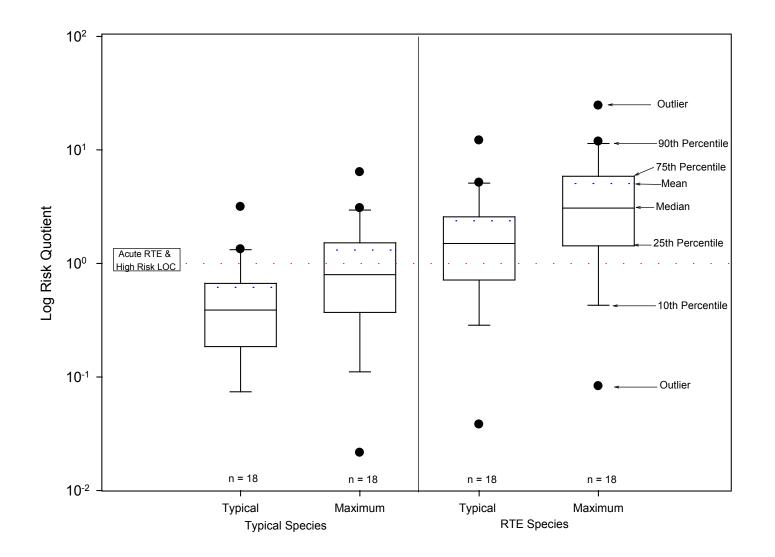
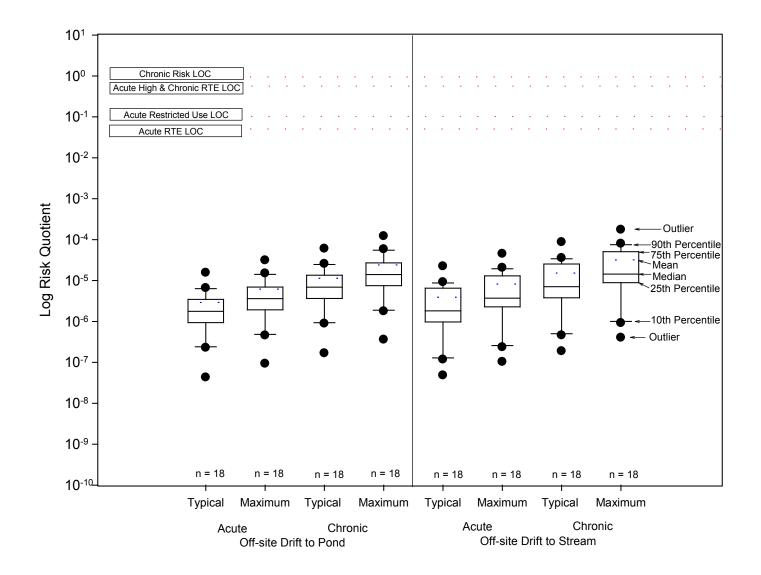


FIGURE 4-7. Accidental Direct Spray and Spills - Risk Quotients for Aquatic Invertebrates.


FIGURE 4-8. Off-site Drift - Risk Quotients for Non-target Terrestrial Plants.

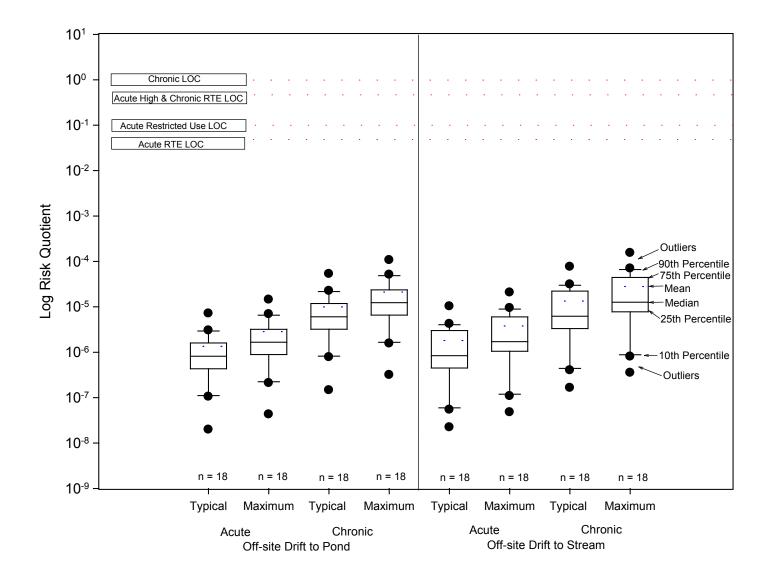

10³ 10² 10¹ 10⁰ Acute RTE & High Risk LOC Outlier **10**-1 90th Percentile Log Risk Quotient 75th Percentile -Mean 10-2 Median 25th Percentile 10⁻³ 10th Percentile - Outlier 10-4 10⁻⁵ · 10-6 -10⁻⁷ · n = 18 10-8 Typical Typical Maximum Typical Maximum Typical Maximum Maximum Chronic Acute Chronic Acute Off-site Drift to Pond Off-site Drift to Stream

FIGURE 4-9. Off-site Drift - Risk Quotients for Non-target Aquatic Plants.

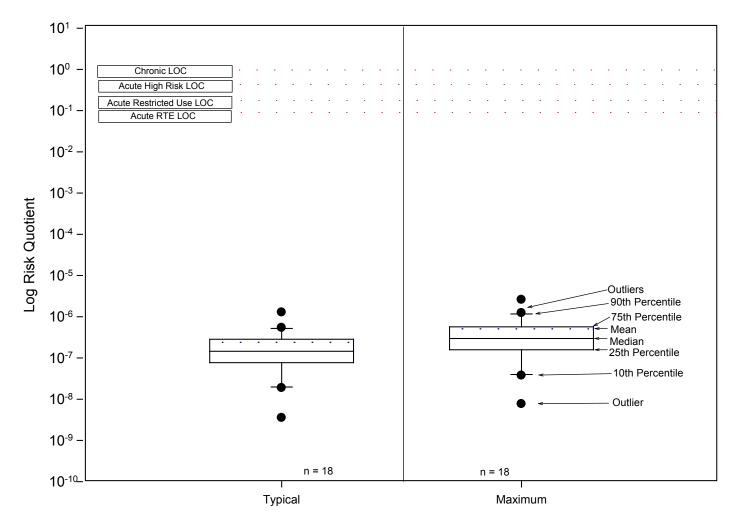

FIGURE 4-10. Off-site Drift - Risk Quotients for Fish.

FIGURE 4-11. Off-site Drift - Risk Quotients for Aquatic Invertebrates.

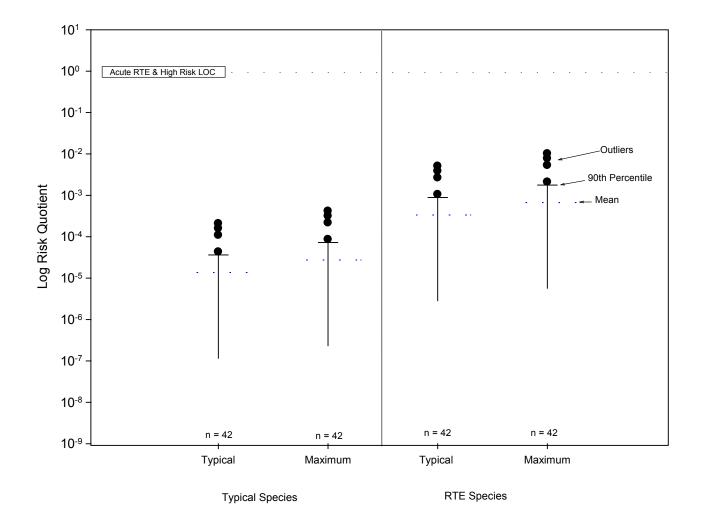


FIGURE 4-12. Off-site Drift - Risk Quotients for Piscivorous Birds.

Consumption of Fish from Contaminated Pond

Note - Due to the number of RQs equal to zero, not all percentiles could be properly calculated by SigmaPlot.

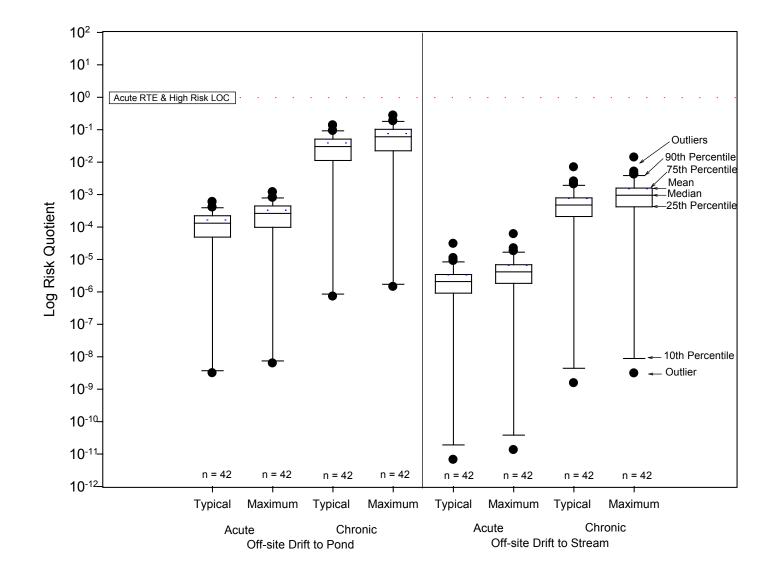
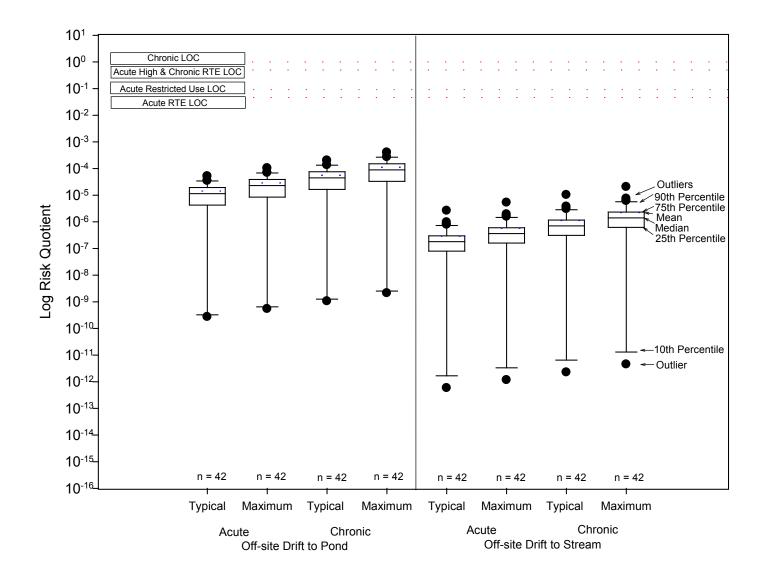
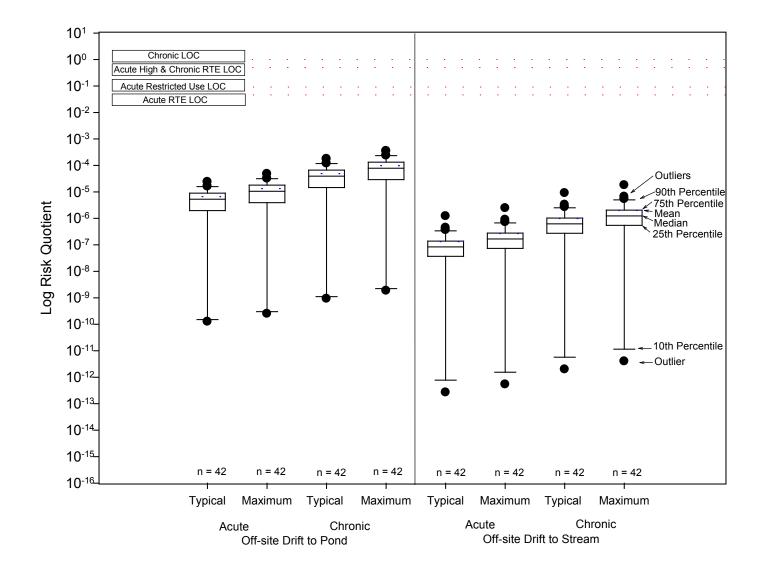
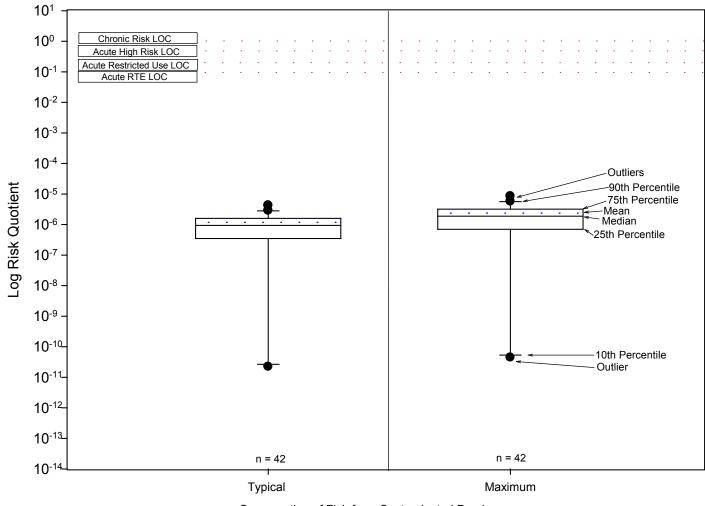




FIGURE 4-14. Surface Runoff - Risk Quotients for Non-target Aquatic Plants.


FIGURE 4-15. Surface Runoff - Risk Quotients for Fish.

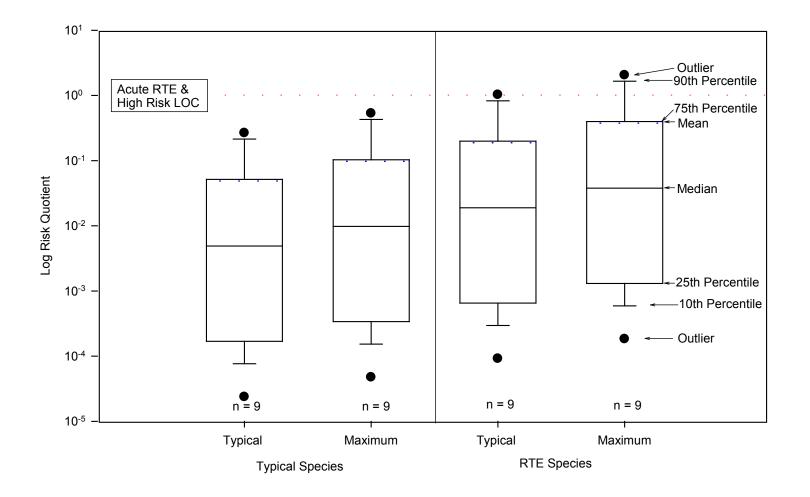


FIGURE 4-18. Wind Erosion and Transport Off-site - Risk Quotients for Non-target Terrestrial Plants.

5.0 SENSITIVITY ANALYSIS

A sensitivity analysis was designed to determine which factors used to predict exposure concentrations most greatly affect exposure concentrations. A base case for each model used (GLEAMS, AgDRIFT[®], AERMOD, and CALPUFF) was established. Input factors were changed independently, allowing the importance of each factor to be estimated separately. This section provides information specific to the sensitivity of each model to select input variables. This section provides information specific to the sensitivity of each model to select input variables.

5.1 GLEAMS

GLEAMS (Groundwater Loading Effects of Agricultural Management Systems) is a model developed for field-sized areas to evaluate the effects of agricultural management systems on the movement of agricultural chemicals within and through the plant root zone (Leonard et al. 1987). The model simulates surface runoff and groundwater flow of herbicide from edge-of-field and bottom-of-root-zone loadings of water, sediment, pesticides, and plant nutrients as a result of the complex climate-soil-management interactions. Agricultural pesticides are simulated by GLEAMS using model input parameters that characterize three major components of the system: hydrology, erosion, and pesticides. This section describes the sensitivity of the model output to input variables controlling environmental conditions (i.e., precipitation, soil type). The goal of the sensitivity analysis was to investigate the control that measurable watershed variables have on the predicted outcome of a GLEAMS simulation.

5.1.1 GLEAMS Sensitivity Variables

A total of eight variables were selected for the sensitivity analysis of the GLEAMS model. The variables were selected because of their potential to affect the outcome of a simulation and their likelihood to change from site to site. These variables generally have the greatest variability among field application areas. The following parameters were included in the model sensitivity analysis:

- 1. <u>Annual Precipitation</u> Variation in annual precipitation on herbicide export rates was investigated to determine the effect of runoff on predicted stream and pond concentrations. It is expected that the greater the amount of precipitation, the greater the expected exposure concentration. However, this relationship is not linear because it is influenced by additional factors such as evapotranspiration. The lowest and highest precipitation values evaluated were 25 and 250 inches per year, respectively (this represents one half and two times the precipitation level considered in the base watershed in the ERA).
- <u>Application Area</u> Variation in field size was investigated to determine its influence on herbicide export rates and predicted stream and pond concentrations. The lowest and highest values for application areas evaluated were 1 and 1,000 acres, respectively.
- <u>Field Slope</u> Variation in field slope was investigated to determine its effect on herbicide export. The slope of the application field affects predicted runoff, percolation, and the degree of sediment erosion resulting from rainfall events. The lowest and highest values for slope evaluated were 0.005 and 0.1 (unitless), respectively (equivalent to slopes of 0.5% and 10%).
- 4. <u>Surface Roughness</u> The Manning Roughness value, a measure of surface roughness, was used in the GLEAMS model to predict runoff intensity and erosion of sediment. The Manning Roughness value is not measured directly but can be estimated using the general surficial characteristics of the application area. The lowest and highest values for surface roughness evaluated were 0.015 and 0.15 (unitless), respectively.
- <u>Erodibility</u> Variation in soil erodibility was investigated to determine its effect on predicted river and pond concentrations. The soil erodibility factor is a composite parameter representing an integrated average annual value of the total soil and soil profile reaction to numerous erosive and hydrologic processes. These processes

include soil detachment and transport by raindrop impact and surface flow, localized redeposition due to topography and tillage-induced roughness, and rainwater infiltration into the soil profile. The lowest and highest values for erodibility evaluated were 0.05 and 0.5 (tons per acre per English erosion index [EI]), respectively.

- <u>Pond Volume or Stream Flow Rate</u> The effect of variability in pond volume and stream flow on herbicide concentrations was evaluated. The lowest and highest pond volumes evaluated were 0.41 and 1,640 cubic meters, respectively. The lowest and highest stream flow values evaluated were 0.05 and 100 cms, respectively.
- Soil Type The influence of soil characteristics on predicted herbicide export rates and concentration was investigated by simulating different soil types within the application area. In this sensitivity analysis, clay, loam, and sand were evaluated.
- 8. <u>Vegetation Type</u> Because vegetation type strongly affects the evapotranspiration rate, this parameter was expected to have a large influence on the hydrologic budget. Plants that cover a greater proportion of the application area for longer periods of the growing season remove more water from the subsurface, and therefore result in diminished percolation rates through the soil. Vegetation types evaluated in this sensitivity analysis were weeds, shrubs, rye grass, and conifers and hardwoods.

5.1.2 GLEAMS Results

The effects of the eight different input model variables were evaluated to determine the relative effect of each variable on model output concentrations. A base case was established using the following values:

- annual precipitation rate of 50 inches per year;
- application area of 10 acres;
- slope of 0.05 ft/ft;
- roughness of 0.015;
- erodibility of 0.401 tons per acre per English EI;
- vegetation type of weeds; and
- loam soils.

While certain parameters used in the base case for the GLEAMS sensitivity analysis may not be representative of typical BLM lands, the base case values were selected to maximize changes in the other variables during the sensitivity analysis. For each variable, Table 5-1 provides the difference in predicted exposure concentrations in the stream and the pond using the highest and the lowest input values, with all other variables held constant. Any increase in herbicide concentration results in an increase in RQs and ecological risk. The ratio of herbicide concentrations represents the relative increase/decrease in ecological risk, where values greater than 1.0 denote a positive relationship between herbicide concentration and the variable (increase in RQ), and values less than 1.0 denote a negative relationship (decrease in RQ). A similar table was created for the non-numerical variables soil and vegetation type (Table 5-2). This table presents the difference in concentration under different soil and vegetation types relative to the base case. A ratio was created by dividing the adjusted variable concentration by the base case concentration. Values further away from 1.0, either positive or negative, indicate that predicted concentrations are more susceptible to changes within that particular variable.

Two separate results are presented: 1) relative change in average annual stream or pond concentration and 2) relative change in maximum 3-day average concentration. Precipitation and application area are positively related to herbicide

exposure concentrations; as these factors increase, so do herbicide concentrations and ecological risk. Conversely, increased flow or pond volume decreases herbicide concentrations and associated ecological risk. Changing from loam to sand, clay, or clay loam soils increased stream and pond concentrations. Changing to silt loam and silt soils produced mixed results: average annual concentrations (decreased) and maximum 3-day average concentrations (increased). Changing from weeds to other vegetation types resulted in increased concentrations under conifer and hardwood cover only. All other scenarios resulted in no change in concentration (no change in ecological risk).

5.2 AgDRIFT[®]

Changes to individual input parameters of predictive models have the potential to substantially influence the results of an analysis such as that conducted in this ERA. This is particularly true for models such as AgDRIFT[®], which are intended to represent complex problems such as the prediction of off-target spray drift of herbicides. Predicted off-target spray drift and downwind deposition can be substantially altered by a number of variables intended to represent the herbicide application process including, but not limited to, nozzle type used in the spray application of an herbicide mixture; ambient wind speed; release height (application boom height); and evaporation. Hypothetically, any variable in the model that is intended to represent some part of the physical process of spray drift and deposition can substantially alter predicted downwind drift and deposition patterns. This section will present the changes that occur to the estimated exposure concentration, with changes to important input parameters and assumptions used in the AgDRIFT[®] model. It is important to note that changes in the EEC directly affect the estimated RQ. Thus, this information is presented in order to help local land managers understand the factors that are likely to be related to higher potential ecological risk. Table 5-3 summarizes the relative change in exposure concentrations, and therefore ecological risk, based on specific model input parameters (i.e., mode of application, application rate).

Factors that are thought to have the greatest influence on downwind drift and deposition are spray drop-size distribution, release height, and wind speed (Teske and Barry 1993, Teske et al. 1998, Teske and Thistle 1999, *as cited in* SDTF 2002). To better quantify the influence of these and other parameters a sensitivity analysis was undertaken by the SDTF and documented in the AgDRIFT[®] user's manual. In this analysis, AgDRIFT[®] Tier II model input parameters (model input parameters are discussed in Appendix B of the human health risk assessment; AECOM 2014) were varied by 10% above and below the default assumptions (four different drop-size distributions were evaluated). The findings of this analysis indicate the following:

- The largest variation in predicted downwind drift and deposition patterns occurred as a result of changes in the shape and content of the spray drop-size distribution.
- The next greatest change in predicted downwind drift and deposition patterns occurred as a result of changes in boom height (the release height of the spray mixture).
- Changes in spray boom length resulted in significant variations in drift and deposition within 200 ft downwind of the hypothetical application area.
- Changes in the assumed ambient temperature and relative humidity resulted in a small variation in drift and deposition at distances greater than 200 ft downwind of the hypothetical application area.
- Varying the assumed number of application swaths (aircraft flight lines), application swath width, and wind speed resulted in little change in predicted downwind drift and deposition.
- Variation in the nonvolatile fraction of the spray mixture had no effect on downwind drift and deposition.

These results, except for the minor to negligible influence of varying wind speed and nonvolatile fraction, were consistent with previous observations. The 10% variation in wind speed and nonvolatile fraction was likely too small to produce substantial changes in downwind drift and deposition. It is expected that varying these by a larger percentage would eventually produce some effect. In addition, changes in wind speed resulted in changes in

application swath width and swath offset, which masked the effect of wind speed alone on downwind drift and deposition.

Based on these findings, and historic field observations, the hierarchy of parameters that have the greatest influence on downwind drift and deposition patterns is as follows:

- 1. Spray drop-size distribution
- 2. Application boom height
- 3. Wind speed
- 4. Spray boom length
- 5. Relative humidity
- 6. Ambient temperature
- 7. Nonvolatile fraction

An additional limitation of the AgDRIFT[®] user's manual sensitivity analysis is the focus on distances less than 200 ft downwind of a hypothetical application area. From a land management perspective, distance downwind from the point of deposition can represent a hypothetical buffer zone between the application area and a potentially sensitive habitat. In this ERA, distances as great as 900 ft downwind of a hypothetical application were considered. In an effort to expand on the existing AgDRIFT[®] sensitivity analysis provided in the user's manual, the sensitivity of mode of application, application height or vegetation type, and application rate were evaluated in this ERA. Results of this supplemental analysis are provided in Table 5-3.

The results of the expanded sensitivity analysis indicate that deposition and corresponding ecological risk drop off substantially between 25 and 900 ft downwind of hypothetical application area. Thus, from a land management perspective, the size of a hypothetical buffer zone (the downwind distance from a hypothetical application area to a potentially sensitive habitat) may be the single most controllable variable (other than the application equipment and herbicide mixtures chosen) that has a substantial impact on ecological risk (Table 5-3).

The most conservative case at the typical application rate (using the smallest downwind distance measured in this ERA – 25 ft) was then evaluated using two different boom heights. Predicted concentrations were higher with high vs. low boom height (Table 5-3). Vegetation types for aerial applications were not evaluated, since aerial applications are only used by the BLM in their Rangeland program which contains only non-forested areas. Using the minimum downwind distance, non-forest vegetation and high boom heights, a comparison was made to determine the effect of mode of application. Concentrations resulting from plane applications were highest and concentrations from ground applications were lowest, with helicopter concentrations falling between the two (Table 5-3). The final variable analyzed was application rate (maximum vs. typical), and, as expected, predicted concentrations by a factor of three for ground applications. In general, the evaluation presented in Table 5-3 indicates herbicide migration and associated ecological risk decreases with increased downward distance (i.e., buffer zone). Herbicide migration increases with increases application height and rate.

5.3 AERMOD and CALPUFF

To determine the downwind deposition of herbicide that might occur as a result of dust-borne herbicide migration, the AERMOD and CALPUFF models were used with 1 year of meteorological data for Glasgow, Montana, Medford, Oregon, and Lander, Wyoming. As indicated in Section 4.3.4, the meteorological conditions (i.e., minimum wind speed) that must be met to trigger particulate emissions were not met for watersheds in Winnemucca, Nevada, or Tucson, Arizona, so dust deposition was not modeled for these two locations.

For this analysis, certain meteorological triggers were considered to determine whether herbicide migration was possible (ENSR 2004). Herbicide migration is not likely during periods of sub-freezing temperatures, precipitation events, and periods with snow cover. For example, it was assumed that herbicide migration would not be possible if the hourly ambient temperature was at or below 28 degrees Fahrenheit, because the local ground would be frozen and very resistant to soil erosion. Deposition rates predicted by the model were most affected by the meteorological conditions and the surface roughness or land use at each of the sites.

Higher surface roughness lengths (a measure of the height of obstacles to the wind flow) result in higher deposition simply because deposition is more likely to occur on obstacles to wind flow (e.g., trees) than on a smooth surface. Therefore, the type of land use affects deposition as predicted by AERMOD and CALPUFF. For the three sites evaluated, deposition computations assumed that vegetation typical of the area was in place, rather than being burned off by prescribed burning or removed by other methods prior to the application of the herbicide. For the closest distances in areas with lush vegetation (e.g., Medford, Oregon and to a lesser extent, Lander, Wyoming), this assumption would cause AERMOD to overestimate herbicide deposition if the vegetation were instead denuded by fire near the herbicide application area.

In addition, a disturbed surface (e.g., through activities such as bulldozing) is more subject to wind erosion because the surface soil is exposed and loosened. The surface roughness in the AERMOD and CALPUFF analysis has been selected to represent typical vegetation (1.3 m in Oregon due to forest cover, but much lower in Wyoming at 0.26 m and only 0.04 m in Montana, depicting little vegetation). The AERMOD and CALPUFF modeling is conservative in that it assumes that herbicide was applied just before each day during the full year modeled that had sufficient wind to cause windblown dust. In actual practice, it is unlikely that more than one herbicide application would be made in a given year at a specific site, and it is very possible that rainfall would activate the herbicide and leach it into the soil surface before a high wind event. Therefore, running the model with multiple windblown dust events can conservatively produce a high frequency of herbicide transport events, and the worst-case modeled event is used for summarizing the predicted herbicide deposition as a function of transport distance.

AERMOD and CALPUFF use hourly meteorological data, in conjunction with the site surface roughness, to calculate the deposition velocities that are used to determine deposition rates at downwind distances. The amount of deposition at a particular distance is especially dependent on the "friction velocity." The friction velocity is the square root of the surface shearing stress divided by the air density (a quantity with units of wind speed). Surface shearing stress is related to the vertical transfer of momentum from the air to the Earth's surface. Shearing stress, and therefore friction velocity, increases with increasing wind speed and with increased surface roughness. Higher friction velocities result in higher deposition rates. Because the friction velocity is calculated from hourly observed wind speeds, meteorological conditions at a particular location greatly influence deposition rates as predicted by AERMOD and CALPUFF.

The threshold friction velocity is the ground level wind speed (accounting for surface roughness) that is assumed to lead to soil (and herbicide) scour. The threshold friction velocity is a function of the vegetative cover and soil type. Finer grained, less dense, and poorly vegetated soils tend to have relatively low threshold friction velocities. As the threshold friction velocity declines, wind events capable of scouring soil become more common. In fact, given the typical temporal distributions of wind speed, scour events would be predicted to be much more common as the threshold friction velocity declines from rare events to relatively common ones. The threshold wind speeds selected for the AERMOD and CALPUFF modeling effort are based on typical vegetation in the example areas. In the event that very fine soils or ash are present at the site, the threshold wind speed could be lower and scouring wind events more common, but the vegetation available for capturing the windblown dust would likely be removed, thus lowering the actual deposition rate for any given windblown soil event. Since the AERMOD and CALPUFF modeling evaluated numerous potential windblown dust events (very unlikely in actual practice due to infrequent herbicide applications), the modeling approach very likely identifies the worst-case deposition event, provided the actual friction velocity exceeds the threshold value at least a few times during the modeled year.

The size of the treatment area also impacts the predicted herbicide migration and deposition results. The size of the treatment area is directly proportional to the total amount of herbicide that can be moved via soil erosion. Because a fixed amount of herbicide per unit area is required for treatment, a larger treatment area would yield a larger amount

of herbicide that could migrate off site. In addition, increased herbicide mass would lead to increased downwind deposition.

In summary:

- Herbicide migration does not occur unless the surface wind speed is high enough to produce a friction velocity that can lift soil particles into the air. However, the modeling considers herbicide transport for every single hour in the course of a year in which the friction velocity exceeds the threshold value and the surface is not wet or frozen.
- The presence of surface "roughness elements" (buildings, trees and other vegetation) has an effect on the deposition rate. Areas of higher roughness result in more intense vertical eddies that can mix suspended particles down through the air and into the soil more effectively than smoother surfaces can. Thus, higher deposition of suspended soil and herbicide is predicted for areas with high roughness.
- Disturbed surfaces, such as areas recently burned and large treatment areas, experience greater herbicide migration, but if the vegetation is burned off, the deposition rate per unit emissions in these areas is lower due to the lack of vegetation surfaces to intercept the airborne soil.

TABLE 5-1
Relative Effects of GLEAMS Input Variables on Herbicide Exposure Concentrations using Typical BLM Application Rate

					Stream	Scenarios					
					e Predicted ntration	0	ue Predicted entration		ntration _H / ntration _L		Change in entration
Input Variable	Units	Input Low Value (L)	Input High Value (H)	Average Annual Stream	Maximum 3 Day Avg. Stream	Average Annual Stream	Maximum 3 Day Avg. Stream	Average Annual Stream	Maximum 3 Day Avg. Stream	Average Annual Stream	Maximum 3 Day Avg. Stream
Precipitation	inches	25	100	3.08E-08	7.36E-07	3.29E-06	3.92E-05	106.82	53.23	+	+
Area	acres	1	1,000	1.71E-04	2.91E-03	2.39E-02	1.70E-01	139.90	58.51	+	+
Slope	unitless	0.005	0.1	9.29E-07	1.38E-05	9.29E-07	1.38E-05	1.000	1.000	No Change	No Change
Erodibility	tons/acre per English EI	0.05	0.5	9.29E-07	1.38E-05	9.29E-07	1.38E-05	1.000	1.000	No Change	No Change
Roughness	unitless	0.015	0.15	9.29E-07	1.38E-05	9.29E-07	1.38E-05	1.000	1.000	No Change	No Change
Flow Rate	m ³ /sec	0.05	100	1.96E-06	2.39E-05	1.28E-09	2.49E-08	0.001	0.001	-	-
					Pond S	cenarios					
					e Predicted ntration	0	ue Predicted entration	Concentration $_{\rm H}$ / Concentration $_{\rm L}$		Relative Change in Concentration	
Input Variable	Units	Input Low Value (L)	Input High Value (H)	Average Annual Pond	Maximum 3 Day Avg. Pond	Average Annual Pond	Maximum 3 Day Avg. Pond	Average Annual Pond	Maximum 3 Day Avg. Pond	Average Annual Pond	Maximum 3 Day Avg. Pond
Precipitation	inches	25	100	8.59E-06	2.29E-05	1.65E-04	3.61E-04	19.27	15.80	+	+
Area	acres	1	1,000	1.34E-01	1.61E-01	2.01E-01	2.19E-01	1.50	1.36	+	+
Slope	unitless	0.005	0.1	9.59E-05	1.90E-04	9.59E-05	1.90E-04	1.000	1.000	No Change	No Change
Erodibility	tons/acre per English EI	0.05	0.5	9.59E-05	1.90E-04	9.59E-05	1.90E-04	1.000	1.000	No Change	No Change
Roughness	unitless	0.015	0.15	9.59E-05	1.90E-04	9.59E-05	1.90E-04	1.000	1.000	No Change	No Change
Pond Volume	ac/ft	0.05	100	1.00E-04	1.95E-04	4.02E-07	8.25E-07	0.004	0.004	-	-

EI = Erosion index.

 $m^3/sec = cubic$ meters per second.

ac/ft-acre feet.

Avg. = Average.

Concentration swere based on the average application rate. + = Increase in concentration from low to high input value = increase in RQ = increase in ecological risk. - = Decrease in concentration from low to high input value = decrease in RQ = decrease in ecological risk. Concentration _H / Concentration _L = Ratio of high value concentration to low value concentration.

TABLE 5-2

Relative Effects of Soil and Vegetation Type on Herbicide Exposure Concentrations using Typical BLM Application Rate

]	Predicted Concentration				Concentration $X_{Soil Type}$ / Concentration Loam				Relative Change in Concentration			
Soil Type	Avg. Annual Stream	Max. 3 Day Avg. Stream	Avg. Annual Pond	Max. 3 Day Avg. Pond	Avg. Annual Stream	Max. 3 Day Avg. Stream	Avg. Annual Pond	Max. 3 Day Avg. Pond	Avg. Annual Stream	Max. 3 Day Avg. Stream	Avg. Annual Pond	Max. 3 Day Avg. Pond	
Loam ¹	9.29E-07	1.38E-05	9.59E-05	1.90E-04	NA	NA	NA	NA	NA	NA	NA	NA	
Sand	5.97E-06	1.08E-04	8.42E-04	2.50E-03	6.4271	7.8423	8.7800	13.1476	+	+	+	+	
Clay	2.08E-06	2.21E-04	1.65E-04	6.21E-03	2.2348	15.9667	1.7227	32.7390	+	+	+	+	
Clay Loam	1.47E-06	1.57E-04	9.80E-05	2.68E-03	1.5876	11.3184	1.0220	14.1283	+	+	+	+	
Silt Loam	5.89E-07	4.23E-05	5.01E-05	7.84E-04	0.6341	3.0605	0.5228	4.1332	-	+	-	+	
Silt	6.06E-07	4.65E-05	4.41E-05	7.96E-04	0.6528	3.3605	0.4601	4.1951	-	+	-	+	

]	Predicted Concentration				Concentration X Veg Type / Concentration Weeds				Relative Change in Concentration			
Vegetation Type	Avg. Annual Stream	Max. 3 Day Avg. Stream	Avg. Annual Pond	Max. 3 Day Avg. Pond	Avg. Annual Stream	Max. 3 Day Avg. Stream	Avg. Annual Pond	Max. 3 Day Avg. Pond	Avg. Annual Stream	Max. 3 Day Avg. Stream	Avg. Annual Pond	Max. 3 Day Avg. Pond	
Weeds ¹	9.29E-07	1.38E-05	9.59E-05	1.90E-04	NA	NA	NA	NA	NA	NA	NA	NA	
Conifer + Hardwood	1.29E-06	1.88E-05	1.13E-04	2.14E-04	1.3902	1.3585	1.1744	1.1293	+	+	+	+	
Shrubs	9.29E-07	1.38E-05	9.59E-05	1.90E-04	1.0000	1.0000	1.0000	1.0000	No Change	No Change	No Change	No Change	
Rye Grass	9.29E-07	1.38E-05	9.59E-05	1.90E-04	1.0000	1.0000	1.0000	1.0000	No Change	No Change	No Change	No Change	

Avg. = Average.

NA = Not an applicable comparison.

¹Base Case

Concentrations were based on the average application rate.

+ = Increase in concentration from base case = increase in RQ = increase in ecological risk.

- = Decrease in concentration from base case = decrease in RQ = decrease in ecological risk.

Concentration $_{X \text{ Soil Type}}$ / Concentration $_{Loam}$ = Ratio of concentration in indicated soil type to concentration in loam model.

Concentration $_{X \text{ Veg Type}}$ / Concentration $_{Weed}$ = Ratio of concentration in indicated vegetation type to concentration in weed model.

TABLE 5-3

Herbicide Exposure Concentrations used during the Supplemental AgDRIFT® Sensitivity Analysis

				Minimum Downwind Distance			Maximum Downwind Distance Concentration			
Mode of Application	Application Height or Vegetation Type		Maximum Downwind Distance (ft)	Terrestrial (lb a.i./ac)	Stream (mg/L)	Pond (mg/L)	Terrestrial (lb a.i./ac)	Stream (mg/L)	Pond (mg/L)	
			Туріс	al Applicati	on Rate					
Plane	Forest	100	900	8.50E-03	9.00E-03	1.23E-03	1.10E-03	7.23E-04	1.35E-04	
	Non-Forest	100	900	3.60E-03	3.69E-03	5.20E-04	9.00E-04	5.30E-04	1.01E-04	
Helicopter	Forest	100	900	5.00E-04	5.10E-04	7.41E-05	2.67E-05	1.95E-05	3.39E-06	
_	Non-Forest	100	900	3.00E-03	3.14E-03	4.39E-04	6.00E-04	3.92E-04	7.55E-05	
Ground	Low Boom	25	900	1.10E-03	1.56E-03	1.70E-04	2.00E-04	4.74E-05	1.80E-05	
	High Boom	25	900	1.80E-03	2.62E-03	2.74E-04	2.00E-04	6.27E-05	2.29E-05	
			Maxim	um Applica	tion Rate					
Plane	Forest	100	900	1.72E-02	1.82E-02	2.48E-03	2.40E-03	1.50E-03	2.81E-04	
	Non-Forest	100	900	8.30E-03	8.26E-03	1.19E-03	1.90E-03	1.21E-03	2.27E-04	
Helicopter	Forest	100	900	1.00E-03	1.06E-03	1.52E-04	5.81E-05	4.17E-05	7.33E-06	
	Non-Forest	100	900	6.60E-03	6.73E-03	9.72E-04	1.70E-03	1.01E-03	1.93E-04	
Ground	Low Boom	25	900	2.20E-03	3.13E-03	3.41E-04	3.00E-04	9.49E-05	3.61E-05	
	High Boom	25	900	3.50E-03	5.24E-03	5.47E-04	4.00E-04	1.25E-04	4.58E-05	

Effect of Downwind Distance

					entration ntration ₂₅			e Change entration	
Mode of Application	Application Height or Vegetation Type	Minimum Downwind Distance (ft)	Maximum Downwind Distance (ft)	Terrestrial	Stream	Pond	Terrestrial	Stream	Pond
			Typical	Application	Rate				
Plane	Forest	100	900	0.1294	0.0804	0.1102	-	-	-
	Non-Forest	100	900	0.2500	0.1437	0.1943	-	-	-
Helicopter	Forest	100	900	0.0534	0.0382	0.0458	-	-	-
	Non-Forest	100	900	0.2000	0.1249	0.1720	-	-	-
Ground	Low Boom	25	900	0.1818	0.0303	0.1059	-	-	-
	High Boom	25	900	0.1111	0.0239	0.0836	-	-	-
			Maximur	n Applicatio	n Rate				
Plane	Forest	100	900	0.1395	0.0825	0.1136	-	-	-
	Non-Forest	100	900	0.2289	0.1459	0.1913	-	-	-
Helicopter	Forest	100	900	0.0581	0.0393	0.0482	-	-	-
	Non-Forest	100	900	0.2576	0.1497	0.1988	-	-	-
Ground	Low Boom	25	900	0.1364	0.0303	0.1059	-	-	-
	High Boom	25	900	0.1143	0.0239	0.0837	-	-	-

TABLE 5-3 (Cont.)

Herbicide Exposure Concentrations used during the Supplemental AgDRIFT® Sensitivity Analysis

Effect of Application Height (Vegetation Type or Boom Height)

		Cond	centration Ra	ıtio ¹	Relative Change in Concentration			
Mode of Application	Application Height or Vegetation Type	Terrestrial	Stream	Pond	Terrestrial	Stream	Pond	
Typical Appli	cation Rate							
Plane	Forest/ Non-Forest	2.3611	2.4392	2.3603	+	+	+	
Helicopter	Forest/ Non-Forest	0.1667	0.1622	0.1688	-	-	-	
Ground	High/Low Boom	1.6364	1.6749	1.6059	+	+	+	
Maximum Ap	oplication Rate							
Plane	Forest/ Non-Forest	2.0723	2.1981	2.0900	+	+	+	
Helicopter	Forest/ Non-Forest	0.1515	0.1577	0.1566	-	-	-	
Ground	High/Low Boom	1.5909	1.6749	1.6059	+	+	+	

Effect of Mode of Application

	Con	centration Ra	tio ²	Relative C	Relative Change in Concentration			
	Terrestrial	Stream	Pond	Terrestrial	Stream	Pond		
		Typical App	plication Rate					
Plane vs. Helicopter	1.2000	1.1745	1.1853	+	+	+		
Plane vs. Ground	2.0000	1.4084	1.9005	+	+	+		
Helicopter vs. Ground	1.6667	1.1992	1.6034	+	+	+		
Maximum Application R	late							
Plane vs. Helicopter	1.2576	1.2270	1.2193	+	+	+		
Plane vs. Ground	2.3714	1.5773	2.1653	+	+	+		
Helicopter vs. Ground	1.8857	1.2855	1.7759	+	+	+		

TABLE 5-3 (Cont.)

Herbicide Exposure Concentrations used during the Supplemental AgDRIFT® Sensitivity Analysis

Effect of Mode of Application Rate

	Cone	centration Ra	atio ³	Relative Change in Concentration			
	Terrestrial	Stream	Pond	Terrestrial	Stream	Pond	
Maximum vs. Typical	1.9444	2.0000	2.0000	+	+	+	

ft = feet.

mg/L = milligrams per liter.

lb a.i./ac = pounds active ingredient per acre.

Concentration $_{900}$ / Concentration $_{25 \text{ or } 100}$ = Ratio of concentration at 900 ft to concentration at 25 or 100 ft.

¹Using concentrations modeled at minimum distance from application area.

² Using concentrations modeled at minimum distance from application area and non-forest aerial or high boom ground applications.

³ Using concentrations modeled at minimum distance from application area and high boom ground applications.

+ = Increase in concentration = increase in RQ = increase in ecological risk.

- = Decrease in concentration = decrease in RQ = decrease in ecological risk.

+ = Increase in concentration = increase in RQ = increase in ecological risk.

- = Decrease in concentration = decrease in \overrightarrow{RQ} = decrease in ecological risk.

6.0 RARE, THREATENED, AND ENDANGERED SPECIES

Rare, threatened, and endangered species have the potential to be impacted by herbicides applied for vegetation control. RTE species are of potential increased concern to screening level ERAs, which utilize surrogate species and generic assessment endpoints to evaluate potential risk, rather than examining site- and species-specific effects to individual RTE species. Several factors complicate our ability to evaluate site- and species-specific effects:

- Toxicological data specific to the species (and sometimes even class) of organism are often absent from the literature.
- The other assumptions involved in the ERA (e.g., rate of food consumption, surface-to-volume ratio) may differ for RTE species relative to selected surrogates, and/or data for RTE species may be unavailable.
- The high level of protection afforded RTE species suggests that secondary effects (e.g., potential loss of prey or cover), as well as site-specific circumstances that might result in higher rates of exposure, should receive more attention.

A common response to these issues is to design screening level ERAs, including this one, to be highly conservative. Such a design includes assumptions such as 100% exposure to an herbicide by simulating scenarios where the organism lives year-round in the most affected area (i.e., area of highest concentration), or in which the organism consumes only food items that have been impacted by the herbicide. Other conservative assumptions are incorporated into the herbicide concentration models such as GLEAMS (Appendix B; ENSR 2004). Even with these highly conservative assumptions, however, determining potential risk to specific RTE species may still raise concerns.

To help address this potential concern, the following section will discuss the ERA assumptions as they relate to the protection of RTE species. The goals of this discussion are as follows:

- Present the methods the ERA employs to account for risks to RTE species and the reasons for their selection.
- Define the factors that might motivate a site- and/or species-specific evaluation¹⁰ of potential herbicide impacts to RTE species and provide a perspective useful for such an evaluation.
- Present information that can be used to assess the uncertainty in the ERA's conclusions about risks to RTE species.

The following sections describe information used in the ERA to provide protection to RTE species, including mammals, birds, reptiles, amphibians, fish (e.g., salmonids), and plants potentially occurring on BLM-administered lands. It includes a discussion of the quantitative and qualitative factors used to provide additional protection to RTE species and a discussion of potential secondary effects of herbicide use on RTE species.

Section 6.1 provides a review of the selection of LOCs and TRVs to provide additional protection to RTE species. Section 6.2 provides a discussion of species-specific traits and how they relate to the RTE protection strategy in this ERA. Section 6.2 also includes a discussion of the selection of surrogate species (Section 6.2.1), the RTE taxa of

¹⁰ Such an evaluation might include site-specific estimation of exposure point concentrations using one or more models, more focused consideration of potential risk to individual RTE species; and/or more detailed assessment of indirect effects to RTE species, such as those resulting from impacts to habitat.

concern, and the surrogates used to represent them (Section 6.2.2), and the biological factors that affect the exposure to and response of organisms to herbicides (Section 6.2.3). This discussion includes information about how the ERA was defined to assure that consideration of these factors resulted in a conservative assessment. Mechanisms for extrapolating toxicity data from one taxon to another are briefly reviewed in Section 6.3. The potential for impacts, both direct and secondary, to salmonids is discussed in Section 6.4. Section 6.5 provides a summary of the section.

6.1 Use of LOCs and TRVs to Provide Protection

Potential direct impacts to receptors, including RTE species, are the measures of effect typically used in screening level ERAs. Direct impacts, such as those resulting from direct or indirect contact or ingestion, were assessed in the clopyralid ERA by comparing calculated RQs to receptor-specific LOCs. As described in the methodology document for this ERA (ENSR 2004), RQs are calculated as the potential dose or EEC divided by the TRV selected for that pathway. An RQ greater than the LOC indicates the potential for impacts to that receptor group via that exposure pathway. As described below, the selection of TRVs and the use of LOCs were pursued in a conservative fashion in order to provide a greater level of protection for RTE species.

The LOCs used in the ERAwere developed by the USEPA for the assessment of pesticides (LOC information obtained from Michael Davy, USEPA OPP on June 13 2002). In essence, the LOCs act as uncertainty factors often applied to TRVs. For example, using an LOC of 1.0 provides the same result as dividing the TRV by 10. The LOC for avian and mammalian RTE species is 0.1 for acute and chronic exposures. For RTE fish and aquatic invertebrates, acute and chronic LOCs are 0.05 and 0.5, respectively. Therefore, up to a 20-fold uncertainty factor has been included in the TRVs for animal species. As noted below, such uncertainty factors provide a greater level of protection to the RTE species to account for the factors listed in the introduction to this section.

For RTE plants, the exposure concentration, TRVs, and LOCs provided a direct assessment of potential impacts. For all exposure scenarios, the maximum modeled concentrations were used as the exposure concentrations. The TRVs used for RTE plants were selected based on highly sensitive endpoints, such as germination, rather than direct mortality of seedlings or larger plants. Conservatism was built into the TRVs during their development (Section 3.1); the lowest suitable endpoint concentration available was used as the TRV for RTE plant species. Given the conservative nature of the RQ, and consistent with USEPA policy, no additional levels of protection were required for the LOC (i.e., all plant LOCs are 1).

6.2 Use of Species Traits to Provide Protection to RTE Species

Over 500 RTE species currently listed under the Federal Endangered Species Act have the potential to occur in the 17 states covered under this Programmatic ERA. Some marine mammals are included in the list of RTE species, but given the low likelihood that these species would be exposed to herbicides applied to BLM-administered lands, no surrogates specific to marine species are included in this ERA. However, the terrestrial mammalian surrogate species identified for use in the ERA include species that can be considered representative of these marine species as well. The complete list is presented in Appendix D.

Of the over 500 species potentially occurring in the 17 states, just over 300 species may occur on lands administered by the BLM. Protection of these species is an integral goal of the BLM, and they are the focus of the RTE evaluation for the ERA and EIS. These species are different from one another in regards to home range, foraging strategy, trophic level, metabolic rate, and other species-specific traits. Several methods were used in the ERA to take these differences into account during the quantification of potential risk. Despite this precaution, these traits are reviewed in order to provide a basis for potential site- and species-specific risk assessment. Review of these factors provides a supplement to other sections of the ERA that discuss the uncertainty in the conclusions specific to RTE species.

6.2.1 Identification of Surrogate Species

Use of surrogate species in a screening ERA is necessary to address the broad range of species likely to be encountered on BLM-administered lands as well as to accommodate the fact that toxicity data may be restricted to a limited number of species. In this ERA, surrogates were selected to account for variation in the nature of potential herbicide exposure (e.g., direct contact, food chain) as well as to ensure that different taxa, and their behaviors, are considered. As described in Section 3.0 of the Methods Document (ENSR 2004), surrogate species were selected to represent a broad range of taxa in several trophic guilds that could be potentially impacted by herbicides on BLM-administered lands. Generally, the surrogate species that were used in the ERA are species commonly used as representative species in ecological risk assessment. Many of these species are common laboratory species, or are described in the *Exposure Factors Handbook for Wildlife* (USEPA 1993). Other species were included in the *California Wildlife Biology, Exposure Factor, and Toxicity Database* (California Office of Environmental Health Hazard Assessment and University of California at Davis 2003),¹¹ or have been recommended by USEPA OPP for tests to support pesticide registration. Surrogate species were used to derive TRVs, and in exposure scenarios that involve organism size, weight, or diet, surrogate species were used to model herbicide exposure scenarios to represent potential impact to other species that may be present on BLM-administered lands.

Toxicity data from surrogate species were used in the development of TRVs because few, if any, data are available that demonstrate the toxicity of chemicals to RTE species. Most reliable toxicity tests are performed under controlled conditions in a laboratory, using standardized test species and protocols, and RTE species are not used in laboratory toxicity testing. In addition, field-generated data, which are very limited in number but may include anecdotal information about RTE species, are not as reliable as laboratory data because uncontrolled factors may complicate the results of the tests (e.g., secondary stressors such as unmeasured toxicants, imperfect information on rate of exposure).

As described below, inter-species extrapolation of toxicity data often produces unknown bias in risk calculations. This ERA approached the evaluation of higher trophic level species by life history (e.g., large animals vs. small animals, herbivore vs. carnivores). Then, surrogate species were used to evaluate all species of similar life history potentially found on BLM-administered lands, including RTE species. This procedure was not done for plants, invertebrates, and fish, as most exposure of these species to herbicides is via direct contact (e.g., foliar deposition, dermal deposition, dermal/gill uptake) rather than ingestion of contaminated food items. Therefore, altering the life history of these species would not result in more or less exposure.

The following subsections describe the selection of surrogate species used in two separate contexts in the ERA for the development of TRVs and to represent all potentially exposed receptors on a generic level.

6.2.1.1 Species Selected in Development of TRVs

As presented in Appendix B of the ERA, limited numbers of species are used for toxicity testing of chemicals, including herbicides. Species are typically selected because they tolerate laboratory conditions well. The species used in laboratory tests have relatively well-known response thresholds to a variety of chemicals. Growth rates, ingestion rates, and other species-specific parameters are known; therefore, test duration and endpoints of concern (e.g., mortality, germination) have been established in protocols for many of these laboratory species. Data generated during a toxicity test, therefore, can be compared to data from other tests and relative species sensitivity can be compared. Of course, in the case of RTE species, it would be unacceptable to subject individuals to toxicity tests.

The TRVs used in the ERA were selected after reviewing available ecotoxicological literature for clopyralid. Test quality was evaluated, and tests with multiple substances were not considered for the TRV. For most receptor groups, the lowest value available for an appropriate endpoint (e.g., mortality, germination) was selected as the TRV. Using

¹¹ Available at URL: <u>http://www.oehha.org/cal_ecotox/default.htm.</u>

the most sensitive species provides a conservative level of protection for all species. The surrogate species used in the clopyralid TRVs are presented in Table 6-1.

6.2.1.2 Species Selected as Surrogates in the ERA

Plants, fish, insects, and aquatic invertebrates were evaluated on a generic level. That is, the surrogate species evaluated to create the TRVs were selected to represent all potentially exposed species. For vertebrate terrestrial animals, in addition to these surrogate species, specific species were selected as surrogates to represent the populations of similar species. The species used in the ERA are presented in Table 6-2.

The surrogate terrestrial vertebrate species selected for the ERA include species from several trophic levels that represent a variety of foraging strategies. Whenever possible, the species selected are found throughout the range of land included in the EIS; all species selected are found in at least a portion of the range. The surrogate species are common species whose life histories are well documented (USEPA 1993, California Office of Environmental Health Hazard Assessment and University of California at Davis 2003). Because species-specific data, including body weight and food ingestion rates, can vary for a single species throughout its range, data from studies conducted in western states or with western populations were selected preferentially. As necessary, site-specific data can be used to estimate potential risk to species known to occur locally.

6.2.2 Surrogates Specific to Taxa of Concern

Protection levels for different species and individuals vary. Some organisms are protected on a community level; that is, slight risk to individual species may be acceptable if the community of organisms (e.g., wildflowers, terrestrial insects) is protected. Generally, community level organisms include plants and invertebrates. Other organisms are protected on a population level; that is, slight risk to individuals of a species may be acceptable if the population, as a whole, is not endangered. However, RTE species are protected as individuals; that is, risk to any single organism is considered unacceptable. This higher level of protection motivates much of the conservative approach taken in this ERA. Surrogate species were grouped by general life strategy: sessile (i.e., plants), water dwelling (i.e., fish), and mobile terrestrial vertebrates (i.e., birds and mammals). The approach to account for RTE species was divided along the same lines.

Plants, fish, insects, and aquatic invertebrates were assessed using TRVs developed from surrogate species. All species from these taxa (identified in Appendix D) were represented by the surrogate species presented in Table 6-1. The evaluation of terrestrial vertebrates used surrogate species to develop TRVs and to estimate potential risk using simple food chain models. Tables 6-3 and 6-4 present the federally listed birds and mammals found on BLM-administered lands and their appropriate surrogate species.

Very few laboratory studies have been conducted using reptiles or amphibians. Therefore, data specific to the adverse effects of a chemical species of these taxa are often unavailable. These animals, being cold-blooded, have very different rates of metabolism than mammals or birds (i.e., they require lower rates of food consumption). Nonetheless, mammals and birds were used as the surrogate species for reptiles and adult amphibians because of the lack of data for these taxa. Fish were used as surrogates for juvenile amphibians. For each trophic level of RTE reptile or adult amphibian, a comparable mammal or bird was selected to represent the potential risks. Table 6-5 presents the federally listed reptiles found on BLM-administered lands and the surrogate species chosen to represent them in the ERA. Table 6-6 presents the federally listed amphibians found on BLM-administered lands and their surrogate species.

The sensitivity of reptiles and amphibians relative to other species is generally unknown. Some information about reptilian exposures to pesticides, including herbicides, is available. The following provides a brief summary of the data (see Sparling et al. 2000), including data for pesticides not evaluated in this ERA:

• Mountain garter snakes (*Thamnophis elegans elegans*) were exposed to the herbicide thiobencarb in the field and in the laboratory. No effects were noted in the snakes fed contaminated prey or those caged and exposed directly to treated areas.

- No adverse effects to turtles were noted in a pond treated twice with the herbicide Kuron (2,4,5-T).
- Tortoises in Greece were exposed in the field to atrazine, paraquat, Kuron, and 2,4-dichlorophenoxyacetic acid (2,4-D). No effects were noted on the tortoises exposed to atrazine or paraquat. In areas treated with Kuron and 2,4-D, no tortoises were noted following the treatment. The authors of the study concluded it was a combination of direct toxicity (tortoises were noted with swollen eyes and nasal discharge) and loss of habitat (much of the vegetation killed during the treatment had provided important ground cover for the tortoises).
- Reptilian LD₅₀ values from six organochlorine pesticides were compared to avian LD₅₀ values. Of the six pesticides, five lizard LD₅₀s were higher than the avian LD₅₀s, indicating lower sensitivity. Overlapping data were available for turtle exposure to one organochlorine pesticide; the turtle was less sensitive than the birds or lizards.
- In general, reptiles were found to be less sensitive than birds to cholinesterase inhibitors.

Unfortunately, these observations do not provide any sort of rigorous review of dose and response. On the other hand, there is little evidence that reptiles are more sensitive to pesticides than other, more commonly tested organisms.

As with reptiles, some toxicity data describing the effects of herbicides on amphibians are available. The following provides a brief summary of the data (see Sparling et al. 2000):

- Leopard frog (Rana pipiens) tadpoles exposed to up to 0.075 mg/L atrazine showed no adverse effects.
- In a field study, it was noted that frog eggs in a pond where atrazine was sprayed nearby suffered 100% mortality.
- Common frog (*Rana temporaria*) tadpoles showed behavioral and growth effects when exposed to 0.2 to 20 mg/L cyanatryn.
- Caged common frog and common toad (*Bufo bufo*) tadpoles showed no adverse effects when exposed to 1.0 mg/L diquat or 1.0 mg/L dichlobenil.
- All leopard frog eggs exposed to 2.0 to 10 mg/L diquat or 0.5 to 2.0 mg/L paraquat hatched normally, but showed adverse developmental effects. It was noted that commercial formulations of paraquat were more acutely toxic than technical grade paraquat. Tadpoles, however, showed significant mortality when fed paraquat-treated parrot feather watermilfoil (*Myriophyllum* sp.).
- 4-chloro-2-methylphenoaxyacetic acid is relatively non-toxic to the African clawed frog (*Xenopus laevis*), with an LC₅₀ of 3,602 mg/L and slight growth retardation at 2,000 mg/L.
- Approximately 86% of juvenile toads died when exposed to monosodium methanearsonate (ANSAR 259® HC) at 12.5% of the recommended application rate.
- Embryo hatch success, tadpole mortality, growth, paralysis, and avoidance behavior were studied in three species of ranid frogs (*Rana* sp.) exposed to hexazinone and triclopyr. No effects were noted in hexazinone exposure up to 100 mg/L. Two species showed 100% mortality at 2.4 mg/L triclopyr; no significant mortality was observed in the third species.

No conclusions can be drawn regarding the sensitivity of amphibians to exposure to clopyralid relative to the surrogate species selected for the ERA. Amphibians are particularly vulnerable to changes in their environment (chemical and physical) because they have skin with high permeability, making them at risk to dermal contact, and have complex life cycles, making them vulnerable to developmental defects during the many stages of metamorphosis. Although there are very low risks to most animals in the modeled exposures, the effects of regular

usage of clopyralid are uncertain. It should be noted that certain amphibians can be sensitive to pesticides, and siteand species-specific risk assessments should be carefully considered in the event that amphibian RTE species are present near a site of application.

Although the uncertainties associated with the potential risk to RTE mammals, birds, reptiles, amphibians, and insects are valid, the vertebrate RQs generated in the ERA for clopyralid are generally very low (Section 4.3). None of the RQs exceed respective LOCs. Of the four general scenarios in which vertebrate receptors were evaluated, the highest RQ was 0.007 (acute exposure of large mammalian herbivore ingesting food contaminated by direct spray at maximum application rate). This RQ is lower than the lowest LOC for mammals (0.1 for RTE acute exposure). Most vertebrate RQs, including fish exposure to accidental spills, were lower than respective LOCs by several orders of magnitude.

6.2.3 Biological Factors Affecting Impact from Herbicide Exposure

The potential for ecological receptors to be exposed to, and affected by, an herbicide is dependent upon many factors. Many of these factors are independent of the biology or life history of the receptor (e.g., timing of herbicide use, distance to receptor). These factors were explored in the ERA by simulating scenarios that vary these factors (ENSR 2004), which are discussed in Section 5.0 of this document. However, there are differences in life history among and between receptors that also influence the potential for exposure. Therefore, individual species have a different potential for exposure as well as response. In order to provide perspective on the assumptions made here, as well as the potential need to evaluate alternatives, receptor traits that may influence species-specific exposure and response were examined. These traits are presented and discussed in Table 6-7.

In addition to providing a review of the approach used in the ERA, the factors listed in Table 6-7 can be evaluated to assess whether a site- and species-specific ERA should be considered to address potential risks to a given RTE. They also provide perspective on the uncertainty associated with applying the conclusions of the ERA to a broad range of RTE species.

6.3 Review of Extrapolation Methods Used to Calculate Potential Exposure and Risk

Ecological risk assessment relies on extrapolation of observations from one system (e.g., species, toxicity endpoint) to another (see Table 6-7). While every effort has been made to anticipate bias in these extrapolations and to use them to provide an overestimate of risk, it is worth evaluating alternative approaches.

Toxicity Extrapolations in Terrestrial Systems (Fairbrother and Kapustka 1996) is an opinion paper that describes the difficulties associated with trying to quantitatively evaluate a particular species when toxicity data for that species, and/or for the endpoint of concern, are not available. The authors provided an overview of uncertainty factors and methods of data extrapolation used in terrestrial organism TRV development, and suggested an alternative approach to establishing inter-species TRVs. The following subsections summarize their findings for relevant methods of extrapolation.

6.3.1 Uncertainty Factors

Uncertainty factors are used often in both human health and ecological risk assessment. The uncertainty factor most commonly used in ERA is 10. This value has little empirical basis, but was developed and adopted by the risk assessment community because it seemed conservative and was "simple to use."¹² Six situations in which uncertainty

¹² Section 2, Fairbrother and Kaputska (1996:7).

factors may be applied in ecotoxicology were identified: 1) accounting for intraspecific heterogeneity, 2) supporting interspecific extrapolation, 3) converting acute to chronic endpoints and vice versa, 4) estimating LOAEL from NOAEL, 5) supplementing professional judgment, and 6) extrapolating laboratory data to field conditions. No extrapolation of toxicity data among Classes (i.e., among birds, mammals, and reptiles) was discussed. The methods to extrapolate available laboratory toxicity data to suit the requirements of the TRVs in this ERA are discussed in Section 3. For this reason, extrapolation used to develop TRVs is not discussed in this section.

Empirical data for each of the situations discussed in the Fairbrother and Kapustka paper (1996: as applicable) are presented in Tables 6-8 through 6-12. In each of these tables, the authors have presented the percentage of the available data that is included within a stated factor. For example, 90% of the observed LD_{50} s for bird species lie within a factor of ten (i.e., the highest LD_{50} within the central 90% of the population is 10-fold higher than the lowest value). This approach can be compared to the approach used in this ERA. For example, for aquatic invertebrates, an LOC of 0.05 was defined, which is analogous to application of an uncertainty factor 20 to the relevant TRV. In this case, the selected TRV is not the highest or the mid-point of the available values, but a value at the lower end of the available range. Thus, dividing the TRV by a factor of 20 is very likely to place it well below any observed TRV. With this perspective, the ranges (or uncertainty factors) provided by Fairbrother and Kapustka (1996) generally appear to support the approach used in the ERA (i.e., select low TRVs and consider comparison to an LOC < 1.0).

6.3.2 Allometric Scaling

Allometric scaling provides a formula based on body weight that allows translation of doses from one animal species to another. In this ERA, allometric scaling was used to extrapolate the terrestrial vertebrate TRVs from the laboratory species to the surrogate species used to estimate potential risk. The Environmental Sciences Division of the Oak Ridge National Laboratory (Opresko et al. 1994, Sample et al. 1996) has used allometric scaling for many years to establish benchmarks for vertebrate wildlife. The USEPA has also used allometric scaling in development of wildlife water quality criteria in the Great Lakes Water Quality Initiative and in the development of ecological soil screening levels (USEPA 2000).

The theory behind allometric scaling is that metabolic rate is proportional to body size.¹³ However, assumptions are made that toxicological processes are dependent on metabolic rate, and that toxins are equally bioavailable among species. Similar to other types of extrapolation, allometric scaling is sensitive to the species used in the toxicity test selected to develop the TRV. Given the limited amount of data, using the lowest value available for the most sensitive species is the best approach, although the potential remains for site-specific receptors to be more sensitive to the toxin. Further uncertainty is introduced to allometric scaling when the species-specific parameters (e.g., body weight, ingestion rate) are selected. Interspecies variation of these parameters can be considerable, especially among geographic regions. Allometric scaling is not applicable between classes of organisms (i.e., bird to mammal). However, given these uncertainties, allometric scaling remains the most reliable easy-to-use means to establish TRVs for a variety of terrestrial vertebrate species (Fairbrother and Kapustka 1996).

6.3.3 Recommendations

Fairbrother and Kapustka (1996) provided a critical evaluation of the existing, proposed, and potential means of intraspecies toxicity value extrapolation. The paper they published describes the shortcomings of many methods of intraspecific extrapolation of toxicity data for terrestrial organisms. Using uncertainty factors or allometric scaling for extrapolation can often over- or under-predict the toxic effect to the receptor organism. Although using physiologically-based models may be a more scientifically correct way to predict toxicity, the logistics involved with

¹³ In the 1996 update to the Oak Ridge National Laboratory terrestrial wildlife screening values document (Sample et al. 1996), studies by Mineau et al. (1996) using allometric scaling indicated that, for 37 pesticides studied, avian LD₅₀s varied from 1 to 1.55, with a mean of 1.148. The LD₅₀ for birds is now recommended to be 1 across all species.

applying them to an ERA on a large scale make them impractical. In this ERA, extrapolation was performed using techniques most often employed by the scientific risk assessment community. These techniques included the use of uncertainty factors (i.e., potential use of LOC < 1.0) and allometric scaling.

6.4 Indirect Effects on Salmonids

In addition to the potential direct toxicity associated with herbicide exposure, organisms may be harmed from indirect effects, such as habitat degradation or loss of prey. Under Section 9 of the ESA of 1973, it is illegal to take an endangered species of fish or wildlife. "Take" is defined as "harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct" (16 United States Code 1532(19)). The NMFS (NOAA 1999) published a final rule clarifying the definition of "harm" as it relates to take of endangered species in the ESA. The NMFS defines "harm" as any act that injures or kills fish and wildlife. Acts may include "significant habitat modification or degradation where it actually kills or injures fish or wildlife by significantly impairing essential behavioral patterns, including breeding, spawning, rearing, migrating, feeding or sheltering." To comply with the ESA, potential secondary effects to salmonids were evaluated to ensure that use of clopyralid on BLM-administered lands would not cause harm to salmonids.

Indirect effects can generally be categorized into effects caused by biological or physical disturbance. Biological disturbance includes impacts to the food chain, while physical disturbance includes impacts to habitat¹⁴ (Freeman and Boutin 1994). The NMFS has internal draft guidance for their ESA Section 7 pesticide evaluations (NOAA 2002). The internal draft guidance describes the steps that should be taken in an ERA to ensure salmonids are addressed appropriately. The following subsections describe how, consistent with internal draft guidance from NMFS, the clopyralid ERA dealt with the indirect effects assessment.

6.4.1 Biological Disturbance

Potential direct effects to salmonids were evaluated in the ERA. Sensitive endpoints were selected for the RTE species RQ calculations, and worst-case scenarios were assumed. Indirect effects caused by disturbance to the surrounding biological system were evaluated by looking at potential damage to the food chain.

The majority of the salmonid diet consists of aquatic invertebrates and other fish. Sustaining the aquatic invertebrate population is vital for minimizing biological damage to salmonids from herbicide use. Consistent with ERA guidance (USEPA 1997, 1998), protection of non-RTE species, such as the aquatic invertebrates and fish serving as prey to salmonids, is at the population or community level, not the individual level. Sustainability of the numbers (population) or types (community) of aquatic invertebrates and fish is the assessment endpoint. Therefore, unless acute risks are present, it is unlikely the herbicide will cause harm to the prey base of salmonids from direct damage to the aquatic invertebrates and fish. The RQ for fish under the accidental spill from helicopter scenario exceeded the fish RTE acute LOC (Section 4.3), but as discussed previously, the aquatic scenarios are particularly conservative because they evaluate an instantaneous concentration and do not consider flow, adsorption to particles, or degradation that may occur over time within the pond or stream. No aquatic invertebrate acute or chronic RQs exceeded the LOCs, suggesting that under most scenarios, direct impact to the diet of salmonids is unlikely.

Aquatic vegetation may be at risk for adverse impacts under certain worst-case scenarios, and disturbance to the aquatic vegetation (as primary producers and the food base of aquatic invertebrates) may affect the aquatic invertebrate population, thereby affecting salmonids. As discussed in Section 4.3, aquatic vegetation is at risk for

¹⁴ Physical damage to habitat may also be covered under an evaluation of critical habitat. Since all reaches of streams and rivers on BLM land may not be listed as critical habitat, a generalized approach to potential damage to any habitat was conducted. This should satisfy a general evaluation of critical habitats. Any potential for risk due to physical damage to habitat should be addressed specifically for areas deemed critical habitat.

adverse impacts under accidental direct spray scenarios. The RQ for accidental direct spray over the pond at the maximum application rate resulted in a RQ of 1.87, and the RQs for accidental direct spray over the stream were 4.67 for the typical application rate and 9.34 for the maximum application rate. The ERA did not predict risks to aquatic plants as a result of exposure to clopyralid via off-site drift or runoff. This suggests that the potential for impacts to aquatic vegetation, and associated indirect effects to salmonids, are likely to be restricted to only a few, worst-case scenarios.

The actual food items of many aquatic invertebrates are not leafy aquatic vegetation, but detritus or benthic algae. Should aquatic vegetation be affected by an accidental herbicide exposure, the detritus in the stream should increase. Benthic algae are often the principal primary producers in streams. As such, disturbance of algal communities would cause an indirect effect (i.e., reduction in biomass at the base of the food chain) on all organisms living in the water body, including salmonids. Few data indicating the toxicity of herbicides to benthic algae are available. Of the algae data available for clopyralid, the closest species to benthic algae (green algae, *Selenastrum capricornutum*) has an EC_{50} of 6.9 mg/L, which is the basis of the acute TRV used in the ERA. A second study conducted using green algae reported an EC_{50} of 449 mg/L, which is almost two orders of magnitude higher than the selected acute TRV. These results suggest that impacts to algae and attending secondary effects are unlikely.

Based on an evaluation of the RQs calculated for this ERA, it is unlikely RTE fish, including salmonids, would be at risk from the indirect effects clopyralid may have on the aquatic food chain. One exception would be the risk for acute effects to aquatic life from accidental spills, an extreme and unlikely scenario that was considered in this ERA to add conservatism to the risk estimates. Appropriate and careful use of clopyralid should preclude such an incident.

6.4.2 Physical Disturbance

The potential for indirect effects to salmonids due to physical disturbance is less easy to define than the potential for direct biological effects. Salmonids have distinct habitat requirements; any alteration to the coldwater streams in which they spawn and live until returning to the ocean as adults can be detrimental to the salmonid population. Among the effects of herbicide application, it is likely that killing instream and riparian vegetation would cause the most important physical disturbances. The potential adverse effects could include, but would not necessarily be limited to, loss of primary producers (Section 4.1.6), loss of overhead cover, which may serve as refuge from predators or shade to provide cooling to the water bodies, and increased sedimentation due to loss of riparian vegetation.

Adverse effects caused by herbicides can be cumulative, both in terms of toxicity stress from break-down products and other chemical stressors that may be present, and in terms of the use of herbicide on lands already stressed on a larger scale. Cumulative watershed effects often arise in conjunction with other land use practices, such as prescribed burning.¹⁵ In forested areas, herbicides are generally used in areas that have been previously altered, by such means as by cutting or burning, during vegetative succession when invasive species may dominate. The de-vegetation of these previously stressed areas can delay the stabilization of the substrate, increasing the potential for erosion and resulting sedimentation in adjacent water bodies.

Based on the results of the ERA, non-target terrestrial and aquatic plants are at risk for impacts under extreme circumstances, such as accidental direct spray scenarios, and for terrestrial plants under some off-site drift scenarios. However, under the runoff exposure scenario, no risks to non-target terrestrial or aquatic plants are predicted and no risks to aquatic plants are predicted for the off-site drift scenarios.

¹⁵ The following website provides a more detailed discussion of cumulative watershed effects at URL: <u>http://www.humbolt1.com/~heyenga/Herb.Drft.8_12_99.html.</u>

The results indicate that it is unlikely that responsible use of clopyralid by BLM managers will indirectly affect salmonids by killing in-stream or riparian vegetation. Land managers should consider the proximity of salmonid habitat to potential application areas. It may be productive to develop a more site- and/or species-specific ERA in order to assure that the herbicide application will not result in secondary impacts to salmonids, particularly those associated with loss of riparian cover.

6.5 Conclusions

The clopyralid ERA evaluated the potential risks to many species using many exposure scenarios. Some exposure scenarios are likely to occur, whereas others are unlikely to occur but were included to provide a level of conservatism to the ERA. Individual RTE species were not directly evaluated; instead, surrogate species toxicity data were used to indirectly evaluate RTE species exposure. Higher trophic level receptors were also evaluated based on their life history strategies; RTE species were represented by one of several avian or mammalian species commonly used in ERAs. To provide a layer of conservatism to the evaluation, lower LOCs and TRVs were used to assess the potential impacts to RTE species.

Uncertainty factors and allometric scaling were used to adjust the toxicity data on a species-specific basis when they were likely to improve applicability and/or conservatism. As discussed in Section 3.1, TRVs were developed using the best available data; uncertainty factors were applied to toxicity data consistent with recommendation of Chapman et al. (1998).

Potential secondary effects of clopyralid use should be of primary concern for the protection of RTE species. Habitat disturbance and disruptions in the food chain are often the cause of declines of populations and species. Herbicides may reduce riparian zones or harm primary producers in the water bodies. The results of the ERA indicate that non-target terrestrial and aquatic plants may be at risk from clopyralid, particularly when accidents occur, such as accidental direct spraying, or as a result of off-site drift when herbicides are applied too close to non-target terrestrial plants.

In a review of potential impacts of another terrestrial herbicide to threatened and endangered salmonids, the USEPA OPP indicated that "for most pesticides applied to terrestrial environment, the effects in water, even lentic water, will be relatively transient". Only very persistent pesticides would be expected to have effects beyond the year of their application. The OPP report indicated that if a listed salmonid is not present during the year of application, there would likely be no concern (Turner 2003).

Based on the results of the ERA, it is unlikely RTE salmoninds would be harmed by appropriate and responsible use of the herbicide clopyralid on BLM lands; however, there is certain risk to RTE plants, which could indirectly affect other RTE species, such as salmonids. There is the opportunity to minimize the risk to RTE plants if certain application recommendations are followed (see Section 8.0). Managers can further decrease risks to RTE species and non-target populations and communities by increasing buffer zones between application areas and areas of concern, particularly if clopyralid is applied aerially.

Species in Clopyrali	Species in Clopyralid Laboratory/Toxicity Studies				
Species	Scientific Name	Surrogate for			
Honeybee	Apis mellifera	Pollinating insects			
Rat	Rattus norvegicus spp.	Mammals			
Dog	Canis familiaris	Mammals			
Rabbit	<i>Leporidae</i> sp.	Mammals			
Bobwhite quail	Colinus virginianus	Birds			
Mallard	Anas platyrhynchos	Birds			
Tomato	Lycopersicon esculentum	Non-target terrestrial plants			
Snapbean	Phaseolus sp.	Non-target terrestrial plants			
Soybean	Glycine max	Non-target terrestrial plants			
Pea	Pisum sativum	Non-target terrestrial plants			
Sunflower	Helianthus annus	Non-target terrestrial plants			
Water flea	Daphnia magna	Aquatic invertebrates			
Rainbow trout	Oncorhynchus mykiss	Fish/salmonids			
Green algae	Selanastrum capricornutum	Non-target aquatic plants			
Pondweed	Potamogeton pectinatus	Non-target aquatic plants			
Common Water Milfoil	Myriophyllum sibiricum	Non-target aquatic plants			
Bluegill sunfish	Lepomis macrochirus	Fish			

Surrogate Species Used to Derive Clopyralid TRVs

TABLE 6-2

Surrogate Species Used in Quantitative ERA Evaluation

Species	Scientific Name	Trophic Level/Guild	Pathway Evaluated
American robin	Turdus migratorius	Avian invertivore/vermivore/ insectivore	Ingestion
Canada goose	Branta canadensis	Avian granivore/herbivore	Ingestion
Deer mouse	Peromyscus maniculatus	Mammalian frugivore/herbivore	Direct contact and Ingestion
Mule deer	Odocolieus hemionus	Mammalian herbivore/granivore	Ingestion
Bald eagle (northern)	Haliaeetus leucocephalus alascanus	Avian carnivore/piscivore	Ingestion
Coyote	Canis latrans	Mammalian carnivore	Ingestion

Guild definitions -

Carnivore - Feeding on flesh.

Frugivore – Feeding on fruit. Gramivore – Feeding on grain and seeds. Herbivore – Feeding on plant material.

Insectivore – Feeding on insects.

Invertivore - Feeding on invertebrates. Piscivore – Feeding on fish.

Vermivore – Feeding on worms.

Federally Listed Avian Species Potentially Occurring on BLM-administered Lands				
Species	Scientific Name	RTE Trophic Guild	Surrogates Bald eagle	
Marbled murrelet	Brachyramphus marmoratus marmoratus	Piscivore		
Gunnison sage-grouse	Centrocercus minimus	Omnivore [Insectivore/	American robin	
		herbivore]	Canada goose	
Greater sage-grouse (Bi-State DPS)	Centrocercus urophasianus	Omnivore [Insectivore/	American robin	
		herbivore]	Canada goose	
Western snowy plover	Charadrius alexandrinus nivosus	Insectivore	American robin	
Piping plover	Charadrius melodus	Insectivore	American robin	
Mountain plover	Charadrius montanus	Insectivore	American robin	
Yellow-billed cuckoo (Western DPS)	Coccyzus americanus	Insectivore	American robin	
Southwestern willow flycatcher	Empidonax traillii extimus	Insectivore	American robin	
Streak horned lark	Eremophila alpestris strigata	Insectivore	American robin	
Northern aplomado falcon	Falco femoralis septentrionalis	Carnivore	Bald eagle	
			Coyote	
			Coyote	
Whooping crane	Grus Americana	Piscivore	Bald eagle	
California condor	Gymnogyps californianus	Carnivore	Bald eagle Coyote	
Inyo California towhee	Pipilo crissalis eremophilus Omnivore [Granivore/insective]		Canada goose American robin	
Coastal California gnatcatcher	Polioptila californica californica	Insectivore	American robin	
Stellar's eider	Polysticta stelleri	Piscivore	Bald eagle	
Yuma clapper rail	Rallus longirostris yumanensis	Carnivore	Bald eagle Coyote	
Spectacled eider	Somateria fischeri	Omnivore [Insectivore/	American robin	
		herbivore]	Canada goose	
Least tern	Sterna antillarum	Piscivore	Bald eagle	
Northern spotted owl	Strix occidentalis caurina	Carnivore	Bald eagle Coyote	
Mexican spotted owl	Strix occidentalis lucida	Carnivore	Bald eagle Coyote	
Lesser prairie-chicken	Tympanachus pallidicinctus	Omnivore [Insectivore/ Americ herbivore] Canada		
Least Bell's vireo	Vireo bellii pusillus	Insectivore	American robin	

Federally Listed Birds and Selected Surrogates

Species	Scientific Name	RTE Trophic Guild	Surrogates
Sonoran pronghorn	Antilocapra americana sonoriensis	Herbivore	Mule deer
Pygmy rabbit	Brachylagus idahoensis	Herbivore	Mule deer
Gray wolf	Canis lupus	Carnivore	Coyote
Utah prairie dog	Cynomys parvidens	Herbivore	Deer mouse
Morro Bay kangaroo rat	Dipodomys heermanni morroensis	Omnivore [Herbivore/ Insectivore]	Deer mouse American robin
Giant kangaroo rat	Dipodomys ingens	Granivore/herbivore	Deer mouse
San Bernardino Merriam's kangaroo rat	Dipodomys merriami parvus	Granivore/herbivore	Deer mouse
Fresno kangaroo rat	Dipodomys nitratoides exilis	Granivore/herbivore	Deer mouse
Tipton kangaroo rat	Dipodomys nitratoides nitratoides	Granivore/herbivore	Deer mouse
Stephens' kangaroo rat	Dipodomys stephensi (incl. D. cascus)	Granivore	Deer mouse
Lesser long-nosed bat	Leptonycteris curosoae yerbabuenae	Frugivore/nectivore	Deer mouse
Mexican long-nosed bat	Leptonycteris nivalis	Herbivore	Deer mouse
Canada lynx	Lynx canadensis	Carnivore	Coyote
Amargosa vole	Microtus californicus scirpensis	Herbivore	Deer mouse
Hualapai Mexican vole	Microtus mexicanus hualpaiensis	Herbivore	Deer mouse
Black-footed ferret	Mustela nigripes	Carnivore	Coyote
Riparian (=San Joaquin Valley) woodrat	Neotoma fuscipes riparia	Herbivore	Deer mouse
Columbian white-tailed deer	Odocolieus virginianus leucurus	Herbivore	Mule deer
Bighorn sheep	Ovis canadensis ssp. nelsoni	Herbivore	Mule deer
Bighorn sheep	Ovis canadensis ssp. sierrae	Herbivore	Mule deer
Jaguar	Panthera onca	Carnivore	Coyote
Woodland caribou	Rangifer tanandus caribou	Herbivore	Mule deer
Buena Vista Lake ornate shrew	Sorex ornatus relictus	Granivore/herbivore	Deer mouse
Northern Idaho ground squirrel	Spermophilus brunneus brunneus	Herbivore	Deer mouse
Grizzly bear	Ursus arctos horribilis	Omnivore [herbivore/ insectivore/piscivore]	American robin Mule deer Bald eagle
San Joaquin kit fox	Vulpes macrotis mutica	Carnivore	Coyote
New Mexico meadow jumping mouse	Zapus hudsonius luteus	Omnivore [herbivore/ insectivore]	American robin Deer mouse
Preble's meadow jumping mouse	Zapus hudsonius preblei	Omnivore [herbivore/ insectivore]	American robin American robin

Federally Listed Mammals and Selected Surrogates

Note: Several marine mammals (e.g., whales, seals, sea otters, sea lions) are also listed species in the 17 states evaluated in this ERA. However, it is unlikely any exposure to herbicide would occur to marine species.

Federally Listed Reptile Species Potentially Occurring on BLM-administered Lands				
Species	Scientific Name	RTE Trophic Guild	Surrogates	
New Mexican ridge-nosed rattlesnake	Crotalus willardi obscurus	Carnivore/insectivore	Coyote Bald eagle American robin	
Blunt-nosed leopard lizard	Gambelia silus	Carnivore/insectivore	Coyote Bald eagle American robin	
Desert tortoise	Gopherus agassizii	Herbivore	Canada goose	
Northern Mexican garter snake	Thamniphis eques megalops	Carnivore/insectivore/piscivore	Coyote Bald eagle American robin	
Giant garter snake	Thamnophis gigas	Carnivore/insectivore/piscivore	American robin Bald eagle Bald eagle	
Narrow-headed garter snake	Thamniphis rufipunctatus	Carnivore/insectivore/piscivore	Coyote Bald eagle American rob	
Coachella Valley fringe-toed lizard	Uma inornata	Insectivore	American robin	

Federally Listed Reptiles and Selected Surrogates

Note: Five sea turtles are also listed species in the 17 states evaluated in this ERA. However, it is unlikely any exposure to herbicide would occur to marine species.

Federally Listed Amphibian Species Potentially Occurring on BLM-administered Lands					
Species	Scientific Name	RTE Trophic Guild	Surrogates		
California tiger salamander	Ambystoma californiense	Invertivore ¹ Vermivore ²	Bluegill sunfish Rainbow trout ³ American robin ⁴		
Sonoran tiger salamander	Ambystoma tigrinum stebbinsi	Invertivore/insectivore ¹	Bluegill sunfish Rainbow trout ³ American robin ⁴		
Desert slender salamander	Batrachoseps aridus	Invertivore	American robin ^{4,5}		
Wyoming toad	Bufo baxteri	Insectivore	Bluegill sunfish Rainbow trout ³ American robin ⁴		
Arroyo toad (=Arroyo southwestern toad)	Bufo californicus	Herbivore ¹ Invertivore ²	Bluegill sunfish Rainbow trout ³ American robin ⁴		
California red-legged frog	Rana aurora draytonii	Herbivore ¹ Invertivore ²	Bluegill sunfish Rainbow trout ³ American robin ⁴		
Chiricahua leopard frog	Rana chiricahuensis	Herbivore ¹	Bluegill sunfish Rainbow trout ³		
Mountain yellow-legged frog (Northern DPS)	Rana muscosa	Invertivore ² Herbivore ¹ Invertivore ²	American robin ⁴ Bluegill sunfish Rainbow trout ³ American robin ⁴		
Oregon spotted frog	Rana pretiosa	Herbivore ¹	Bluegill sunfish Rainbow trout ³		
Sierra Nevada yellow-legged frog	Rana sierrae	Invertivore ² Herbivore ¹ Invertivore ²	American robin ⁴ Bluegill sunfish Rainbow trout ³ American robin ⁴		
Mountain yellow-legged frog (Northern DPS)					

Federally Listed Amphibians and Selected Surrogates

¹ Diet of juvenile (larval) stage.

² Diet of adult stage.

³ Surrogate for juvenile stage.

⁴ Surrogate for adult stage.

⁵ *Bratrachoseps aridus* is a lungless salamander that has no aquatic larval stage, and is terrestrial as an adult.

Species and Organism Traits That May Influence Herbicide Exposure and Response

Characteristic	Mode of Influence	ERA Solution
Body size	Larger organisms have more surface area potentially exposed during a direct spray exposure scenario. However, larger organisms have a smaller surface area to volume ratio, leading to a lower per body weight dose of herbicide per application event.	To evaluate potential impacts from direct spray, small organisms were selected (i.e., honeybee and deer mouse).
Habitat preference	Not all of BLM-administered lands are subject to nuisance vegetation control.	It was assumed that all organisms evaluated in the ERA were present in habitats subject to herbicide treatment.
Duration of potential exposure/ home range	Some species are migratory or present during only a portion of the year, and larger species have home ranges that likely extend beyond application areas, thereby reducing exposure duration.	It was assumed that all organisms evaluated in the ERA were present within the zone of exposure full-time.
Trophic level	Many chemical concentrations increase in higher trophic levels.	Although the herbicides evaluated in the ERA have very low potential to bioaccumulate, Bioconcentration factors were selected to estimate uptake to trophic level 3 fish (prey item for the piscivores), and several trophic levels (primary producers through top-level carnivore) were included in the ERA.
Food preference	Certain types of food or prey may be more likely to attract and retain herbicide.	It was assumed that all types of food were susceptible to high deposition and retention of herbicide.
Food ingestion rate	On a mass ingested per body weight basis, organisms with higher food ingestion rates (e.g., mammals versus reptiles) are more likely to ingest large quantities of food (therefore, herbicide).	Surrogate species were selected that consume large quantities of food, relative to body size. When ranges of ingestion rates were provided in the literature, the upper end of the values was selected for use in the ERA.
Foraging strategy	The way an organism finds and eats food can influence its potential exposure to herbicide. Organisms that consume insects or plants that are underground are less likely to be exposed via ingestion than those that consume exposed prey items, such as grasses and fruits.	It was assumed all food items evaluated in the ERA were fully exposed to herbicide during spray or runoff events.
Metabolic and excretion rate	While organisms with high metabolic rates may ingest more food, they may also have the ability to excrete herbicides quickly, lowering the potential for chronic impact.	It was assumed that no herbicide was excreted readily by any organism in the ERA.
Rate of dermal uptake	Different organisms will assimilate herbicides across their skins at different rates. For example, thick scales and shells of reptiles and the fur of mammals are likely to present a barrier to uptake relative to bare skin.	It was assumed that uptake across the skin was unimpeded by scales, shells, fur, or feathers.
Sensitivity to herbicide	Species respond to chemicals differently; some species may be more sensitive to certain chemicals.	The literature was searched and the lowest values from appropriate toxicity studies were selected as TRVs. Choosing the sensitive species as surrogates for the TRV development provides protection to more species.
Mode of toxicity	Response sites to chemical exposure may not be the same among all species. For instance, the presence of aryl hydrocarbon receptors in an organism increases its susceptibility to compounds that bind to proteins or other cellular receptors. However, not all species, even within a given taxonomic group (e.g., mammals) have aryl hydrocarbon receptors.	Mode of toxicity was not specifically addressed in the ERA. Rather, by selecting the lowest TRVs, it was assumed that all species evaluated in the ERA were also sensitive to the mode of toxicity.

Summary of Findings - Interspecific Extrapolation Variability

TurkefDate	Percentage of Data Variability Accounted for within a Factor of:								
Type of Data	2	4	10	15	20	50	100	250	300
Bird LD ₅₀			90				99	100	
Mammal LD ₅₀		58			90		96		
Bird and Mammal Chronic						94			
Plants	93 ¹ 80 ²			80 ³					80 ⁴

¹ Intra-genus extrapolation. ² Intra-family extrapolation. 3

Intra-order extrapolation.

⁴ Intra-class extrapolation.

TABLE 6-9

Summary of Findings - Intraspecific Extrapolation Variability

Type of Data	Percentage of Data Variability Accounted for within Factor of 10	Citation from Fairbrother and Kapustka 1996	
490 probit log-dose slopes	92	Dourson and Starta 1983 as cited in Abt Assoc., Inc. 1995	
Bird LC ₅₀ :LC ₁	95	Hill et al. 1975	
Bobwhite quail LC ₅₀ :LC ₁	71.5	Shirazi et al. 1994	

TABLE 6-10

Summary of Findings - Acute-to-Chronic Extrapolation Variability

Type of Data	Percentage of Data Variability Accounted for within Factor of 10	Citation from Fairbrother and Kapustka 1996	
Bird and mammal dietary toxicity NOAELs (n=174)	90	Abt Assoc., Inc. 1995	

TABLE 6-11

Summary of Findings - LOAEL-to-NOAEL Extrapolation Variability

Type of Data	0	Data Variability within Factor of:	Citation from Fairbrother and	
	6	10	– Kapustka 1996	
Bird and mammal LOAELs and	80	97	Abt Assoc., Inc. 1995	
NOAELs				

Type of Data	Response	Citation from Fairbrother and Kapustka 1996
Plant EC_{50} values	3 of 20 EC_{50} lab study values were 2-fold higher than field data. 3 of 20 EC_{50} values from field data were 2-fold higher than lab study data.	Fletcher et al. 1990
Bobwhite quail	Shown to be more sensitive to cholinesterase- inhibitors when cold-stressed (i.e., more sensitive in the field).	Maguire and Williams 1987
Gray-tailed vole (<i>Mycrotus canicaudus</i>) and deer mouse	Laboratory data overpredicted risk.	Edge et al. 1995

Summary of Findings - Laboratory to Field Extrapolations

7.0 UNCERTAINTY IN THE ECOLOGICAL RISK ASSESSMENT

Every time an assumption is made, some level of uncertainty is introduced into the risk assessment. A thorough description of uncertainties is a key component that serves to identify possible weaknesses in the ERA analysis, and to elucidate what impact such weaknesses might have on the final risk conclusions. This uncertainty analysis lists the uncertainties, with a discussion of what bias—if any—the uncertainty may introduce into the risk conclusions. This bias is represented in qualitative terms that best describe whether the uncertainty might 1) underestimate risk, 2) overestimate risk, or 3) be neutral with regard to the risk estimates, or whether it cannot be determined without additional study.

Uncertainties in the ERA process are summarized in Table 7-1. Several of the uncertainties warrant further evaluation and are discussed below. In general, the assumptions made in this risk assessment have been designed to yield a conservative evaluation of the potential risks to the environment from herbicide application.

7.1 Toxicity Data Availability

The majority of the toxicity data was obtained from studies conducted as part of the USEPA pesticide registration process. There are a number of uncertainties related to the use of this data set in the risk assessment. In general, it is preferable to base any ecological risk analysis on reliable field studies that clearly identify and quantify the amount of potential risk associated with particular exposure concentrations of the chemical of concern. However, in most risk assessments it is more common to extrapolate the results obtained in the laboratory to the receptors found in the field. It should be noted, however, that laboratory studies often overestimate risk relative to field studies (Fairbrother and Kapustka 1996).

Two hundred and five clopyralid EIIS reports were available from the USEPAs Environmental Fate and Effects Division. These reports can be used to validate exposure models and/or hazards to ecological receptors. These reports, described in Section 2.3, indicated that damage to crops might be, in part, due to unintended exposure to clopyralid. The incident reports listed the probability that clopyralid caused the observed damage as "highly probable" in 4 incidents, "probable" in 95 incidents, and "possible" in 99 incidents. In the 4 "highly probable" incidents, clopyralid was used according to its registered use, and total magnitude for these incidents was either not reported or unknown. These reports support the risk assessment's prediction that non-target terrestrial plants are at risk from accidental direct spray and off-site drift of clopyralid. However, since the incident reports provide limited information, it is impossible to fully correlate the impacts predicted in the ERA with the incident reports.

Species for which toxicity data are available may not necessarily be the most sensitive species to a particular herbicide. These species have been selected as laboratory test organisms because they are generally sensitive to stressors, yet they can be maintained under laboratory conditions. Furthermore, the selected toxicity value for each receptor was based on a thorough review of the available data by qualified toxicologists and the selection of the most appropriate sensitive surrogate species. Because of the selection limitations, surrogate species are not exact matches to the wildlife receptors included in the ERA. For example, the only avian data available are for two primarily herbivorous birds: the mallard duck and the bobwhite quail. However, TRVs based on these receptors were also used to evaluate risk to insectivorous and piscivorous birds. Species with alternative feeding habits may be more or less sensitive to the herbicide than species tested in the laboratory. As discussed previously, plant toxicity data are generally only available for crop species, which may have different sensitivities than the rangeland plants occurring on BLM-administered lands. The label indicates that clopyralid can affect susceptible broadleaf plants and should not be applied directly to, or spray drift allowed to come in contact with, vegetables, flowers, tomatoes, potatoes (*Solanum tuberosum*), beans, lentils (*Lens culinaris*), peas, alfalfa (*Medicago sativa*), sunflowers, soybeans, safflower (*Carthamus tinctorius*), or other desirable broadleaf crops or ornamental plants. As such, the use of data from toxicity

testing with vegetable crops and ornamental species likely represent toxicity to sensitive receptors. This indicates that impacts to rangeland and noncropland species may be overestimated by the use of toxicity data based on vegetable crops and ornamental species.

In general, the most sensitive available endpoint for the appropriate surrogate test species was used to derive TRVs. This approach is conservative since there may be a wide range of data and effects for different species. For example, nine 96-hour LC_{50} s were available for fish. The LC_{50} s ranged from 79 mg a.e./L for the rainbow trout to 3,556 mg a.e./L for the bluegill sunfish. Accordingly, 79 mg a.e./L was selected as the fish TRV, even though eight results were above this value. In general, this selection criterion for the TRVs has the potential to overestimate risk within the ERA. In some cases, chronic effects data were unavailable and chronic TRVs were derived from acute effects toxicity data, adding an additional level of uncertainty.

In some toxicological studies, a response was not observed at the highest tested concentration or dose. In these cases, the toxicological endpoint was recorded as being greater than (>) a given concentration or dose (see Section 3.1 and Table 3-1). For example, some of the avian LC_{50} studies result in mortality for 50% of the test organisms at the highest tested concentration; therefore the LC_{50} was reported as being greater than the highest concentration tested (i.e., it takes more than that concentration to result in mortality for 50% of test organisms). In the ERA, TRVs preceded by a greater than symbol were applied at the specified value, which is conservative and may lead to an overestimation of risk because a higher concentration or dose is needed to reach the specified effect.

There is also some uncertainty in the conversion of food concentration-based toxicity values (mg herbicide per kg food) to dose-based values (mg herbicide per kg body weight) for birds and mammals. Converting the concentration-based endpoint to a dose-based endpoint is dependent on certain assumptions, specifically the test animal ingestion rate and test animal body weight. Default ingestion rates for different test species were used in the conversions unless test-specific values were measured and given. The ingestion rate was assumed to be constant throughout a test. However, it is possible that a test chemical may positively or negatively affect ingestion, thus resulting in an over- or underestimation of total dose.

For the purposes of pesticide registration, tests are conducted according to specific test protocols. For example, in the case of an avian oral LD₅₀ study, test guidance follows the harmonized Office of Pollution Prevention and Toxic Substances (OPPTS) protocol 850.2100, Avian Acute Oral Toxicity Test, or its Toxic Substances Control Act or FIFRA predecessor (e.g., 40 CFR 797.2175 and OPP 71-1). In this test the bird is given a single dose, by gavage, of the chemical and the test subject is observed for a minimum of 14 days. The LD₅₀ derived from this test is the true dose (mg herbicide per kg body weight). However, dietary studies were selected preferentially for this ERA, and historical dietary studies followed 40 CFR 797.2050, OPP 71-2, or Organisation for Economic Co-operation and Development 205, the procedures for which are harmonized in OPPTS 850.2200, *Avian Dietary Toxicity Test*. In this test, the test organism is presented with the dosed food for 5 days, with 3 days of additional observations after the chemical-laden food is removed. The endpoint for this assay is reported as an LC₅₀ representing mg herbicide per kg food. For this ERA, the concentration-based value was converted to a dose-based value following the methodology presented in the Methods Document (ENSR 2004)¹⁶. Then the dose-based value was multiplied by the number of days of exposure (generally 5) to result in an LD₅₀ value representing the full herbicide exposure over the course of the test.

As indicated in Section 3.1, the toxicity data within the ERA are presented in the units reported in the reviewed studies. For the toxicity evaluation, toxicity data were then converted, as necessary, from units of a.i. to a.e. to

¹⁶ Dose-based endpoint $(mg/kg BW/day) = [Concentration-based endpoint <math>(mg/kg food) \times Food Ingestion Rate (kg food/day)]/BW$ (kg)

correspond with the application rates used by the BLM. Attempts were not made to adjust toxicity data to the percent active ingredient, since it was not consistently provided in all reviewed materials. In most cases the toxicity data apply to the active ingredient itself; however, some data correspond to a specific product containing the active ingredient under consideration, and potentially other ingredients (e.g., other active ingredients or inert ingredients). It is assumed that the toxicity observed in the tests is attributable to the active ingredient under consideration. However, it is possible that the additional ingredients in the different formulations also had an effect. The OPP's Ecotoxicity Database (a source of data for the ERAs) does not adjust the toxicity data to the percent active ingredient, and presents the data directly from the registration study in order to capture the potential effect caused by various inert ingredients, additives, or other active ingredients in the tested product. In many cases the tested material represents the highest purity produced, and higher exposure to the active ingredient would not be likely.

For clopyralid, the percent active ingredients, listed in Appendix B when available from the reviewed study, ranged from 35% to 100%. The lowest percent active ingredient used in the actual TRV derivation was 35% in the studies used to derive the terrestrial invertebrate LD_{50} and aquatic invertebrate No Observed Effect Concentration. Adjusting the TRV to 100% of the active ingredient (by multiplying the TRV by the percent active ingredient in the study) would lower these TRVs to 35 µg /bee for the honeybee and 8.1 ppm for the aquatic invertebrate. Lowering the TRVs would increase the associated RQs for these receptors. The remaining TRVs are based on studies with higher percentages of active ingredient.

7.2 Potential Indirect Effects on Salmonids

No actual field studies or ecological incident reports on the effects of clopyralid on salmonids were identified during the ERA. Therefore, any discussion of direct or indirect impacts to salmonids was limited to qualitative estimates of potential impacts on salmonid populations and communities. The acute fish TRV used in the risk assessment was based on laboratory studies conducted with a salmonid, the rainbow trout, reducing the uncertainties in this evaluation. A discussion of the potential indirect impacts to salmonids is presented in Section 4.3.6, and Section 6.4 provides a discussion of RTE salmonid species. These evaluations indicated that that salmonids are not likely to be indirectly impacted by a reduction in food supply (i.e., fish and aquatic invertebrates). However, a reduction in vegetative cover may occur under limited conditions, which might impact salmonids.

It is anticipated that these qualitative evaluations overestimate the potential risk to salmonids due to the conservative selection of TRVs for salmonid prey and vegetative cover, application of additional LOCs (with uncertainty/safety factors applied) to assess risk to RTE species, and the use of conservative stream characteristics in the exposure scenarios (i.e., low order stream, relatively small instantaneous volume, limited consideration of herbicide degradation or absorption in models).

7.3 Ecological Risks of Degradates, Inert Ingredients, Adjuvants, and Tank Mixtures

In a detailed herbicide risk assessment, it is preferable to estimate risks not just from the active ingredient of an herbicide, but also from the cumulative risks of inert ingredients, adjuvants, surfactants, and degradates. Other herbicides may also factor into the risk estimates, as many herbicides can be tank-mixed to expand the level of control and to accomplish multiple identified tasks. However, it is only practical, using currently available models (e.g., GLEAMS), to compare deterministic risk calculations (i.e., exposure modeling, effects assessment, and RQ calculations) for a single active ingredient.

In addition, information on inert ingredients, adjuvants, surfactants, and degradates is often limited by the availability of, and access to, reliable toxicity data for these constituents. The sections below present a qualitative evaluation of the potential risk for adverse effects due to exposure degradates, inert ingredients, adjuvants, and tank mixes.

7.3.1 Degradates

The potential toxicity of degradates, also called herbicide transformation products (TPs), should be considered when selecting an herbicide; however, it is beyond the scope of this risk assessment to evaluate all of the possible degradates of the various herbicide formulations containing clopyralid. Degradates may be more or less mobile and more or less toxic in the environment than their source herbicides (Battaglin et al. 2003). Differences in environmental behavior (e.g., mobility) and toxicity between parent herbicides and TPs makes prediction of potential TP impacts challenging. For example, a less toxic, but more mobile, bioaccumulative, or persistent TP may potentially have a greater adverse impact on the environment than a more toxic, less mobile TP, as a result of residual concentrations in the environment. A recent study indicated that 70% of TPs had either similar or reduced toxicity to fish, daphnids, and algae than the parent pesticide. However, 4.2% of the TPs were more than an order of magnitude more toxic than the parent pesticide, with a few instances of acute toxicity values below 1 mg/L (Sinclair and Boxall 2003). No evaluation of impacts to terrestrial species was conducted in this study. The lack of data on the toxicity of degradates of clopyralid represents a source of uncertainty in the risk assessment.

7.3.2 Inert ingredients

Herbicides, like all pesticides, contain both "active" and "inert" or "other" ingredients, as stated on the label. The active ingredients are responsible for the pest management activity, while the inert ingredients are included in the formulation as solvents that may improve the active ingredient's ability to move through the leaf surface, to improve the shelf-life of the formulation, to reduce the degradation of the active ingredient, or to provide a color to the formulation. It is important to note that the term "inert" does not imply that the ingredients that make up this portion of the formulation are nontoxic.

Unlike the active ingredient, federal law does not require that the individual ingredients be identified by name or percentage on the label, but the law does require that the total percentage of the formulation associated with the inert ingredients be stated on the label.

In the 17-States PEIS, the BLM took advantage of the List Category policy, created in 1987, for the purpose of prioritizing inert ingredients in pesticide products. The prioritization process involved the establishment of four categories of "toxicological concern." As stated on the web site (<u>http://www.epa.gov/opprd001/inerts/</u>) now that reassessment of food tolerances/tolerance exemptions under the Food Quality Protection Act is complete, there are no longer inert ingredients classified as List 1, 2, or 3. The "4A" category is still being used for the purposes of FIFRA Section 25(b), and USDA is still utilizing "List 4" for their National Organic Program. For non-food inert ingredients, the List Category policy remains pertinent (including labeling) for those identified as "List 1" (toxicological concern)."

For the purpose of pesticides, there are now two categories of inert ingredients approved for use in pesticides: Nonfood Use Only and Food and Nonfood Use. The BLM requires that inert ingredients found in herbicide formulations and adjuvants be listed in one of these two categories.

Nonfood Use Only – Inert ingredients permitted solely for use in pesticide products applied to nonfood use sites, such as ornamental plants, highway right-of-ways, rodent control, etc. These inert ingredients may not be applied to food.

Food and Nonfood Use – Inert ingredients approved for use in pesticide products applied to food. These inert ingredients have either tolerances or tolerance exemptions in 40 CFR Part 180 (the majority are found in Sections 180.910 - 960) or their residues are not found in food. All food use inert ingredients are also permitted for nonfood use.

7.3.3 Adjuvants and Tank Mixtures

Evaluating the potential additional/cumulative risks from mixtures and adjuvants of pesticides is substantially more difficult than evaluating the inert ingredients in the herbicide composition. While many herbicides are present in the

natural environment along with other pesticides and toxic chemicals, the composition of such mixtures is highly sitespecific, and thus nearly impossible to address at the level of the programmatic EIS.

Herbicide label information indicates whether a particular herbicide can be tank mixed with other pesticides. Adjuvants (e.g., surfactants, crop oil concentrates, fertilizers) may also be added to the spray mixture to improve herbicide efficacy. Without product-specific toxicity data, it is impossible to quantify the potential impacts of these mixtures. In addition, a quantitative analysis could only be conducted if reliable scientific evidence allowed a determination of whether the joint action of the mixture was additive, synergistic, or antagonistic. Such evidence is not likely to exist unless the mode of action is common among the chemicals and receptors.

7.3.3.1 Adjuvants

Adjuvants generally function to enhance or prolong the activity of an active ingredient. For terrestrial herbicides, adjuvants may aid in the absorption of the active ingredient into plant tissue. Adjuvant is a broad term that includes surfactants, selected oils, anti-foaming agents, buffering compounds, drift control agents, compatibility agents, stickers, and spreaders. Adjuvants are not under the same registration guidelines as pesticides, and the USEPA does not register or approve the labeling of spray adjuvants. Individual herbicide labels identify which types of adjuvants are approved for use with the particular herbicide.

In reviewing the labels of clopyralid formulations, a nonionic surfactant was the only adjuvant listed for use with the particular formulations. In general, adjuvants compose a relatively small portion of the volume of herbicide applied. However, it is recommended that an adjuvant with low toxic potential be selected. Potential toxicity of any material should be considered prior to its use as an adjuvant.

The GLEAMS model was used to estimate the potential portion of an adjuvant that might reach an adjacent water body via surface runoff. The chemical characteristics of the generalized inert/adjuvant compound were set at extremely high/low values to describe it as a very mobile and stable compound, respectively. The application rate of the inert ingredient/adjuvant compound was fixed at 1 lb a.i./ac; the test watershed was the "base case" used in the risk assessment, with sandy soil and 50 inches of precipitation per year. Under these conditions, the maximum predicted ratio of inert ingredient concentration to herbicide application rate was 0.69 mg/L per lb a.i./ac (3-day maximum in the pond).

Several studies (Muller 1980, Lewis 1991, Dorn et al. 1997, Wong et al. 1997) have generally suggested that acute toxicity to aquatic life for surfactants and anti-foam agents ranges from 1 to 10 mg/L, and that chronic toxicity can be as low as 0.1 mg/L. At the application rate recommended for nonionic surfactants, 1 to 2 quarts per 100 gallons of spray mixture (0.25% to 0.5% volume to volume [v/v]), and the maximum ground application rate for clopyralid (0.5 lbs a.e./ac), the maximum predicted concentration of the inert ingredient/adjuvant compound would be 0.09 to 0.17 mg/L. These values are slightly below and just above the chronic toxicity value for nonionic surfactants (0.1 mg/L) and at the low end of the range for behavioral and physiological effects (0.002 to 40.0 mg/L; Lewis 1991).

This evaluation indicates that adjuvants may not add significant uncertainty to the level of risk predicted for the active ingredient. However, more specific modeling and toxicity data would be necessary to define the level of uncertainty. Selection of adjuvants is under the control of the BLM land managers, and it is recommended that land managers follow all label instructions and abide by any warnings. Selection of adjuvants with limited toxicity and low volumes is recommended to reduce the potential for the adjuvant to influence the toxicity of the herbicide.

7.3.3.2 Tank Mixtures

The use of tank mixtures of labeled herbicides, along with the addition of an adjuvant (when stated on the label) may be an effective use of equipment and personnel. However, knowledge of both products and their interactions is necessary to avoid unintended negative effects. In general, herbicide interactions can be classified as additive, synergistic, or antagonistic:

- Additive effects occur when mixing two herbicides produces a response equal to the combined effects of each herbicide applied alone. The products neither hurt nor enhance each other.
- Synergistic responses occur when two herbicides provide a greater response than the added effects of each herbicide applied separately.
- Antagonistic responses occur when two herbicides applied together produce less control than each herbicide applied separately.

These types of interactions also describe the potential changes to the toxic effects of the individual herbicides and the tank mixture (i.e., the mixture may have more or less toxicity than either of the individual products). A quantitative evaluation of potential clopyralid tank mixtures is beyond the scope of this ERA.

Selection of tank mixes, like adjuvants, is under the control of BLM land managers. To reduce uncertainties and potential negative impacts, it is required that land managers follow all label instructions and abide by any warnings. Labels for tank mixed products should be thoroughly reviewed and mixtures with the least potential for negative effects should be selected. This is especially relevant when a mixture is applied in a manner that may have increased potential for risk (e.g., runoff to ponds in sandy watersheds). Use of a tank mix under these conditions increases the level of uncertainty in predicting risk to the environment.

7.4 Uncertainty Associated with Herbicide Exposure Concentration Models

This ERA relies on different models to predict the off-site impacts of herbicide use. These models have been developed and applied in order to develop a conservative estimate of herbicide loss from the application area to off-site locations.

As in any screening or higher-tier ERA, a discussion of potential uncertainties from fate and exposure modeling is necessary to identify potential overestimates or underestimates of risk. In particular, the uncertainty analysis focused on which environmental characteristics (e.g., soil type, annual precipitation) exert the biggest numeric impact on model outputs. The results of this uncertainty analysis have important implications not only for the uncertainty analysis itself, but also for the ability to apply risk calculations to different site characteristics from a risk management perspective.

7.4.1 AgDRIFT[®]

Off-target spray drift and resulting terrestrial deposition rates and water body concentrations (hypothetical pond or stream) were predicted using the computer model, AgDRIFT[®] Version 2.0.05 (SDTF 2002). As with any complex ERA model, a number of simplifying assumptions were made to ensure that the risk assessment results would be protective of most environmental settings encountered in the BLM land management program.

Predicted off-site spray drift and downwind deposition can be substantially altered by variables intended to simulate the herbicide application process including, but not limited, to nozzle type used in the spray application of an herbicide mixture; ambient wind speed; release height (application boom height); and evaporation. Hypothetically, any variable in the model that is intended to represent some part of the physical process of spray drift and deposition can substantially alter predicted downwind drift and deposition patterns. Recognizing the lack of absolute knowledge about all of the scenarios likely to be encountered in the BLM land management program, these assumptions were developed to be conservative and likely result in overestimation of actual off-site spray drift and environmental impacts.

7.4.2 GLEAMS

The GLEAMS model was used to predict the loading of clopyralid to nearby soils, ponds, and streams from overland and surface runoff, erosion, and root zone groundwater runoff. The GLEAMS model conservatively assumes that the soil, pond, and stream are directly adjacent to the application area. The use of buffer zones would reduce potential herbicide loading to the exposure areas.

7.4.2.1 Herbicide Loss Rates

The trends in herbicide loss rates (herbicide loss computed as a percent of the herbicide applied within the watershed) and water concentrations predicted by the GLEAMS model echo trends that have been documented in a wide range of streams located in the Midwestern United States. Lerch and Blanchard (2003) recognized that factors affecting herbicide transport to streams can be organized into four general categories:

- Intrinsic factors soil and hydrologic properties and geomorphologic characteristics of the watershed
- Anthropogenic factors land use and herbicide management
- Climate factors particularly precipitation and temperature
- Herbicide factors chemical and physical properties and formulation

These findings were based on the conclusions of several prior investigations, data collected as part of the U.S. Geological Survey's National Stream Quality Accounting Network program, and the results of runoff and baseflow water samples collected in 20 streams in northern Missouri and southern Iowa. The investigation concluded that the median runoff loss rates for atrazine, cyanazine, acetochlor, alachlor, metolachlor, and metribuzin ranged from 0.33 to 3.9% of the mass applied—loss rates that were considerably higher than in other areas of the United States. Furthermore, the study indicated that the runoff potential was a critical factor affecting herbicide transport. Table 7-2 is a statistical summary of the GLEAMS-predicted total loss rates and runoff loss rates for several herbicides. The median total loss rates range from 0 to 77%, and the median runoff loss rates range were all equal to 0%.

The results of the GLEAMS simulations indicate trends similar to those identified in the Lerch and Blanchard (2003) study. First, the GLEAMS simulations demonstrated that the most dominant factors controlling herbicide loss rates are soil type and precipitation; both are directly related to the amount of runoff from an area following an herbicide application. This was demonstrated in each of the GLEAMS simulations that considered the effect of highly variable annual precipitation rates and soil type on herbicide transport. In all cases, the GLEAMS model predicted that runoff loss rate was positively correlated with both precipitation rate and soil type.

Second, consistent with the conclusion reached by Lerch and Blanchard (2003; i.e., that runoff potential is critical to herbicide transport) and the GLEAMS model results, estimating the groundwater discharge concentrations by using the predicted root zone concentrations as a surrogate is extremely conservative. For example, while the median runoff loss rates were all equal to 0%, confirming the Lerch and Blanchard study, the median total loss rates predicted using GLEAMS are substantially higher. This discrepancy may be due to the differences between the watershed characteristics in the field investigation and those used to describe the GLEAMS simulations. It is probably partially a result of the conservative nature of the baseflow predictions.

Based on the results and conclusions of prior investigations, the runoff loss rates predicted by the GLEAMS model are approximately equivalent to loss rates determined within the Mississippi River watershed and elsewhere in the United States, and the percolation loss rates are probably conservatively high. This confirms that our GLEAMS modeling approach either approximates or overestimates the rate of loadings observed in the field.

7.4.2.2 Root Zone Groundwater

In the application of GLEAMS, it was assumed that root zone loading of herbicide would be transported directly to a nearby water body. This scenario is feasible in several settings, but is very conservative in situations in which the depth to the water table is many feet. In particular, it is common in much of the arid and semi-arid western states for the water table to be well below the ground surface and for there to be little, if any, groundwater discharge to surface water features. Some ecological risk scenarios were dominated by the conservatively-estimated loading of herbicide by groundwater discharge to surface waters. Again, while possible, this is likely to be an overestimate of likely impacts in most settings on BLM-administered lands.

7.4.3 AERMOD and CALPUFF

The USEPA's AERMOD and CALPUFF air pollutant dispersion models were used to predict impacts from the potential migration of the herbicide between 1.5 and 100 km (0.9 and 62 miles) from the application area by windblown soil (fugitive dust). Several assumptions were made that could overpredict or underpredict the deposition rates obtained from this model.

The use of flat terrain could underpredict deposition for mountainous areas. In these areas, hills and mountains would likely focus wind and deposition into certain areas, resulting in pockets of increased risk. The use of bare, undisturbed soil results in less uptake and transport than disturbed (i.e., tilled) soil. However, the BLM does not apply herbicides to agricultural areas, so this assumption may be appropriate for BLM-administered lands.

The modeling conservatively assumed that all of the herbicide would be present in the soil at the commencement of a windy event, and that no reduction due to vegetation interception/uptake, leaching, or solar or chemical half-life would have occurred since the time of aerial application. Thus, the model likely overpredicts the deposition rates unless the herbicide is taken by the wind as soon as it is applied. It is more likely that a portion of the applied herbicide would be sorbed to plants or degraded over time.

Assuming a 1 millimeter penetration depth is also conservative and likely overestimates impacts. This penetration depth is less than the depth used in previous herbicide risk assessments (SERA 2004) and the depth assumed in the GLEAMS model (1 cm surface soil).

The surface roughness in the vicinity of the application site directly affects the deposition rates predicted by AERMOD and CALPUFF. The surface roughness length used in the models is a measure of the height of obstacles to wind flow and varies by land-use types. Forested areas and urban areas have the highest surface roughness lengths (0.5 m to 1.3 m) while grasslands have the lowest (0.001 m to 0.1 m).

Predicted deposition rates are likely to be higher near the application area and lower at greater distances if the surface roughness in the area is relatively high (above 1 m, such as in forested areas). Therefore, overestimation of the surface roughness could overpredict deposition within about 50 km (31 miles) of the application area and underpredict deposition beyond 50 km. Overestimation of the surface roughness could occur if, for example, prescribed burning was used to treat a typically forested area prior to planned herbicide treatment.

The surface roughness in the vicinity of the application site also affects the calculated "friction velocity" used to determine deposition velocities, which in turn are used by the models to calculate the deposition rate. Friction velocity increases with increasing wind speed and also with increased surface roughness. Higher friction velocities result in higher deposition velocities and likewise higher deposition rates, particularly within about 50 km of the emission source.

The AERMOD and CALPUFF modeling assumes that the data from the selected National Weather Service stations is representative of meteorological conditions in the vicinity of the application sites. Site-specific meteorological data (e.g., from an on-site meteorological tower) could provide slightly different wind patterns, possibly due to local terrain, which could impact the deposition rates as well as locations of maximum deposition.

7.5 Summary of Potential Sources of Uncertainty

The analysis presented in this section has identified several potential sources of uncertainty that may introduce bias into the risk conclusions. This bias has the potential to 1) underestimate risk, 2) overestimate risk, or 3) be neutral with regard to the risk estimates, or be undetermined without additional study. In general, few of the sources of uncertainty in this ERA are likely to underestimate risk to ecological receptors. It is more likely that risk is overestimated, or that the impacts of the uncertainty are neutral or impossible to predict.

The following bullets summarize the potential impacts on the risk predictions based on the analysis presented above:

- Toxicity Data Availability Although the species for which toxicity data are available may not necessarily be the most sensitive species to a particular herbicide, the TRV selection methodology has focused on identifying conservative toxicity values that are likely to be protective of most species. The use of various LOCs contributes an additional layer of protection for species that may be more sensitive than the tested species (i.e., RTE species).
- Potential Indirect Effects on Salmonids Only a qualitative evaluation of indirect risk to salmonids was possible because no relevant studies or incident reports were identified. It is likely that this qualitative evaluation overestimates the potential risk to salmonids as a result of the numerous conservative assumptions related to TRVs and exposure scenarios and the application of additional LOCs (with uncertainty/safety factors applied) to assess risk to RTE species.
- Ecological Risks of Degradates, Inert ingredients, Adjuvants, and Tank Mixtures Only limited information
 is available regarding the toxicological effects of degradates, inert ingredients, adjuvants, and tank mixtures.
 In general, it is unlikely that highly toxic degradates or inert ingredients are present in approved herbicides.
 Also, selection of tank mixes and adjuvants is under the control of BLM land managers, and to reduce
 uncertainties and potential risks, products should be thoroughly reviewed and mixtures with the least
 potential for negative effects should be selected.
- Uncertainty Associated with Herbicide Exposure Concentration Models Environmental characteristics (e.g., soil type, annual precipitation) impact the models used to predict the off-site impacts of herbicide use (i.e., AgDRIFT[®], GLEAMS, AERMOD, CALPUFF); in general, the assumptions used in the models were developed to be conservative and likely result in overestimation of actual off-site environmental impacts.
- General ERA Uncertainties The general methodology used to conduct the ERA is more likely to overestimate risk than to underestimate risk because of its conservative assumptions (i.e., entire home range and diet is assumed to be impacted, aquatic water bodies are relatively small, and herbicide degradation over time is not applied in most scenarios).

TABLE 7-1

Potential Sources of Uncertainty in the ERA Process

Potential Source of Uncertainty	Direction of Effect	Justification
Physical-chemical properties of the active ingredient	Unknown	Available sources were reviewed for a variety of parameters. However, not all sources presented the same value for a parameter (e.g., water solubility) and some values were estimated.
Food chain assumed to represent those found on BLM-administered lands	Unknown	BLM-administered lands cover a wide variety of habitat types. A number of different exposure pathways have been included, but additional pathways may occur within management areas.
Receptors included in food chain model assumed to represent those found on BLM-administered lands	Unknown	BLM-administered lands cover a wide variety of habitat types. A number of different receptors have been included, but alternative receptors may occur within management areas.
Food chain model exposure parameter assumptions	Unknown	Some exposure parameters (e.g., body weight, food ingestion rates) were obtained from the literature and some were estimated. Efforts were made to select exposure parameters representative of a variety of species or feeding guilds.
Assumption that receptor species will spend 100% of time in impacted terrestrial or aquatic area (home range = application area)	Overestimate	These model exposure assumptions do not take into consideration the ecology of the wildlife receptor species. Organisms will spend varying amounts of time in different habitats, thus affecting their overall exposures. Species are not restricted to one location within the application area, may migrate freely off-site, may undergo seasonal migrations (as appropriate), and are likely to respond to habitat quality in determining foraging, resting, nesting, and nursery activities. A likely overly conservative assumption has been made that wildlife species obtain all their food items from the application area.
Water body characteristics	Overestimate	The pond and stream were designed with conservative assumptions resulting in relatively small volumes. Larger water bodies are likely to exist within application areas.
Extrapolation from test species to representative wildlife species		Species differ with respect to absorption, metabolism, distribution, and excretion of chemicals. The magnitude and direction of the difference may vary with species. It should be noted, though, that in most cases, laboratory studies actually overestimate risk relative to field studies (Fairbrother and Kapustka 1996).
Consumption of contaminated food	Unknown	Toxicity to prey receptors may result in sickness or mortality. Fewer prey items would be available for predators. Predators may stop foraging in areas with reduced prey populations, discriminate against, or conversely, select contaminated prey.
No evaluation of inhalation exposure pathways	Underestimate	The inhalation exposure pathways are generally considered insignificant due to the low concentration of contaminants under natural atmospheric conditions. However, under certain conditions, these exposure pathways may occur.

TABLE 7-1 (Cont.)

Potential Sources of Uncertainty in the ERA Process

Potential Source of Uncertainty	Direction of Effect	Justification				
Assumption of 100% drift for chronic ingestion scenarios	Overestimate	It is unlikely that 100% of the application rate would be deposited on a plant or animal used as food by another receptor. As indicated with the AgDRIFT [®] model, off-site drift is only a fraction of the applied amount.				
Ecological exposure concentration	Overestimate	It is unlikely any receptor would be exposed continuously to the full predicted EEC.				
Over-simplification of dietary composition in the food web models	Unknown	Assumptions were made that contaminated food items (e.g., vegetation, fish) were the primary food items for wildlife. In reality, other food items are likely consumed by these organisms.				
Degradation or adsorption of herbicide	Overestimate	Risk estimates for direct spray and off-site drift scenarios generally do not consider degradation or adsorption. Concentrations tend to decrease over time from degradation. Organic carbon in water or soil/sediment may bind to herbicide and reduce bioavailability.				
Bioavailability of herbicides	Overestimate	Most risk estimates assume a high degree of bioavailability. Environmental factors (e.g., binding to organic carbon, weathering) may reduce bioavailability.				
Limited evaluation of dermal exposure pathways	Unknown	The dermal exposure pathway is generally considered insignificant due to natural barriers found in fur and feathers of most ecological receptors. However, under certain conditions (e.g., for amphibians), these exposure pathways may occur.				
Amount of receptor's body exposed	Unknown	More or less than $\frac{1}{2}$ of the honeybee or small mammal may be affected in the accidental direct spray scenarios.				
Lack of toxicity information for amphibian and reptile species	Unknown	Information is not available on the toxicity of herbicides to reptile and amphibian species resulting from dietary or direct contact exposures.				
Lack of toxicity information for RTE species	Unknown	Information is not available on the toxicity of herbicides to RTE species resulting from dietary or direct contact exposures. Uncertainty factors have been applied to attempt to assess risk to RTE receptors. See Section 7.2 for additional discussion of salmonids.				
Safety factors applied to TRVs	Overestimate	Assumptions regarding the use of 3-fold uncertainty fac- tors are based on precedent, rather than scientific data.				
Use of lowest toxicity data to derive TRVs	Overestimate	The lowest data point observed in the laboratory may not be representative of the actual toxicity that might occur in the environment. Using the lowest reported toxicity data point as a benchmark concentration is a very conservative approach, especially when there is a wide range in reported toxicity values for the relevant species. See Section 7.1 for additional discussion.				
Use of NOAELs	Overestimate	Use of NOAELs may overestimate effects since this measurement endpoint does not reflect any observed impacts. LOAELs may be orders of magnitudes above observed literature-based NOAELs, yet NOAELs were generally selected for use in the ERA.				

TABLE 7-1 (Cont.)

Potential Sources of Uncertainty in the ERA Process

Potential Source of Uncertainty	Direction of Effect	Justification
Use of chronic exposures to estimate effects of herbicides on receptors	Overestimate	Chronic toxicity screening values assume that ecological receptors experience continuous, chronic exposure. Exposure in the environment is unlikely to be continuous for many species that may be transitory and move in and out of areas of maximum herbicide concentration.
Use of measures of effect	Overestimate	Although an attempt was made to have measures of effect reflect assessment endpoints, limited available ecotoxicological literature resulted in the selection of certain measures of effect that may overestimate assessment endpoints.
Lack of toxicity information for mammals or birds	Unknown	TRVs for certain receptors were based on a limited number of studies conducted primarily for pesticide registration. Additional studies may indicate higher or lower toxicity values. See Section 7.1 for additional discussion.
Lack of seed germination toxicity information	Unknown	TRVs were based on a limited number of studies conducted primarily for pesticide registration. A wide range of germination data was not always available. Emergence or other endpoints were also used and may be more or less sensitive to the herbicide.
Species used for testing in the laboratory assumed to be equally sensitive to herbicide as those found within application areas.	Unknown	Laboratory toxicity tests are normally conducted with species that are highly sensitive to contaminants in the media of exposure. Guidance manuals from regulatory agencies contain lists of the organisms that they consider to be sensitive enough to be protective of naturally occurring organisms. However, reaction of all species to herbicides is not known, and species found within application areas may be more or less sensitive than those used in the laboratory toxicity testing. See Section 7.1 for additional discussion.
Risk evaluated for individual receptors only	Overestimate	Effects on individual organisms may occur with little population or community level effects. However, as the number of affected individuals increases, the likelihood of population-level effects increases.
Lack of predictive capability	Unknown	The RQ approach provides a conservative estimate of risk based on a "snapshot" of conditions; this approach has no predictive capability.
Unidentified stressors	Unknown	It is possible that physical stressors other than those measured may affect ecological communities.
Effect of decreased prey item populations on predatory receptors	Unknown	Adverse population effects to prey items may reduce the foraging population for predatory receptors, but may not necessarily adversely impact the population of predatory species.
Multiple conservative assumptions	Overestimate	Cumulative impact of multiple conservative assumptions predicts high risk to ecological receptors.

TABLE 7-1 (Cont.)

Potential Source of Uncertainty	Direction of Effect	Justification
Predictions of off-site transport	Overestimate	Assumptions are implicit in each of the software models used in the ERA (AgDRIFT [®] , GLEAMS, AERMOD, CALPUFF). These assumptions have been made in a conservative manner when possible. These uncertainties are discussed further in Section 7.4.
Impact of the other ingredients (e.g., inert ingredients, adjuvants) in the application of the herbicide	Unknown	Only the active ingredient has been investigated in the ERA. Inert ingredients, adjuvants, and tank mixtures may increase or decrease the impacts of the active ingredient. These uncertainties are discussed further in Section 7.3.

Potential Sources of Uncertainty in the ERA Process

TABLE 7-2

Herbicide —	Total	Loss Rate (pe	rcent)	Runoff Loss Rate (percent)			
	Median	90 th	Maximum	Median	90 th	Maximum	
2,4-D acid	0.00	0.14	1.8	0.00	0.01	1.8	
2,4-D ester	0.00	0.46	1.5	0.00	0.04	1.5	
2, 4-D acid/W*	0.00	0.15	1.8	0.00	0.01	1.8	
2,4-D ester/W*	0.00	0.46	1.5	0.00	0.04	1.5	
Aminopyralid	77	85	89	0.00	0.08	0.34	
Clopyralid	5.7	18	28	0.00	0.01	0.06	
Fluroxypyr	0.00	4.8	22	0.00	0.13	2.9	
Rimsulfuron	3.0	11	22	0.00	0.09	1.5	

Herbicide Loss Rates Predicted by the GLEAMS Model

* "W" denotes model runs with woody vegetation.

8.0 SUMMARY

8.1 Summary of ERA Results

Ecological receptors would potentially be at risk from exposure to clopyralid under specific conditions on BLMadministered lands. Table 8-1 summarizes the relative magnitude of risk predicted for ecological receptors for each route of exposure. Risk levels were determined by comparing the RQs against the most conservative LOC, and ranking the results for each receptor-exposure route combination from "no potential" to "high potential" for risk. As expected given the mode of action of terrestrial herbicides, the highest risk level is predicted for non-target terrestrial plant species under an accidental exposure scenario (i.e., direct spray). The ERA predicted a minimal risk for adverse effects to aquatic plants, and essentially no risk to terrestrial animals, fish, or aquatic invertebrates.

The following bullets further summarize the risk assessment findings for clopyralid under these conditions:

- 1. Direct Spray The ERA predicted risks to non-target terrestrial and aquatic plants under scenarios in which plants or water bodies are accidentally sprayed. No risks were predicted for terrestrial wildlife, fish, or aquatic invertebrates.
- 2. Off-site Drift The ERA predicted risks to non-target terrestrial plants from off-site drift. However, no risks were predicted for aquatic plants, fish, aquatic invertebrates, or piscivorous birds in ponds or streams. ERAs evaluated risks from off-site drift at modeled distances of 25, 100, and 900 feet from the application site for ground applications, and at distances of 100, 300, and 900 feet for aerial applications. The Recommendations section provides buffers for protecting non-target plants, which were extrapolated from the modeling results.
 - a. The ERA predicted risks to non-target terrestrial RTE plant species for plane applications of clopyralid at the largest modeled distance (900 feet [ft]) in forested and non-forested areas at the typical and maximum application rates. Risks to typical plant species were predicted for plane applications of clopyralid at typical and maximum rates at a modeled distance of 300 ft in forested areas, and at distances of 100 ft and 300 ft (for the typical and maximum application rate, respectively) in non-forested areas.
 - b. The ERA predicted that the majority of the helicopter applications in forested areas would not pose a risk to ecological receptors. The single exception was the potential for adverse effects to RTE terrestrial plant species as a result of a helicopter application of clopyralid at the maximum application rate at modeled distances of 100 ft or less. In non-forested areas, typical species would be at risk for adverse effects from helicopter applications of clopyralid at distances of 100 ft or less (for the typical and maximum application rate, respectively). RTE species would be at risk for adverse effects from helicopter applications at distances of 300 ft or less, for the typical and maximum application rate, respectively.
 - c. The ERA predicted that typical plant species would not be at risk for adverse effects from ground applications of clopyralid using a low boom. However, RTE species would be at risk from ground applications using a low boom, at distances of 25 ft or less for the typical application rate, and 100 ft or less for the maximum application rate. Additionally, RTE species would be at risk for adverse effects from ground applications using a high boom at distances of 100 ft or less under both typical and maximum application rates. Typical plant species would be at risk for adverse effects from ground applications using a high boom at the maximum application rate, but would not be at risk from ground applications with a high boom at the typical application rate.
- 3. Surface Runoff The ERA predicted that non-target terrestrial plants, fish, aquatic plants, and piscivorous birds would not be at risk for adverse effects under surface runoff exposure scenarios.
- 4. Wind Erosion and Transport Off-site The ERA predicted that non-target typical terrestrial plants would not be at risk for adverse effects under any of the modeled scenarios, and RTE species would not be at risk under the

majority of the evaluated conditions. However, a minimal risk (RQs up to 2.05) to non-target RTE plants from wind erosion was predicted for a watershed modeled based on conditions in Medford, Oregon, at a distance of up to 1.5 km (0.9 miles) from the application area. An RQ of 1.05 from wind erosion was predicted for non-target RTE terrestrial plants for a watershed modeled based on conditions in Lander, Wyoming, at a modeled distance of up to 1.5 km using the maximum application rate.

5. Accidental Spill to Pond – The ERA predicted that aquatic plants and aquatic invertebrates would not be at risk for adverse effects under accidental spill exposure scenarios. Under the accidental helicopter spill scenario, the RQ for fish was 0.08, which exceeds the LOC for acute risk to endangered species (0.05). However, this value is below the other fish LOCs, suggesting that risks to non-endangered species would be minimal.

With the exception of the accidental spill scenario, no direct risks to RTE fish species (e.g., salmonids) were predicted in the modeling and salmonids are not likely to be indirectly impacted by a reduction in food supply (i.e., fish and aquatic invertebrates). Species that depend on non-target plant species for habitat, cover, and/or food may be indirectly impacted by a possible reduction in terrestrial or aquatic vegetation as a result of clopyralid applications. For example, accidental direct spray and off-site drift may negatively impact terrestrial and/or aquatic plants, reducing the cover available to RTE salmonids within the stream.

Based on the results of the ERA, it is unlikely that RTE species would be harmed by appropriate and selective use of the herbicide clopyralid on BLM-administered lands. Although non-target terrestrial and aquatic plants have the potential to be adversely affected by application of clopyralid, adherence to specific application guidelines (e.g., defined application rates, equipment, herbicide mixture, and downwind distance to potentially sensitive habitat) would minimize the potential for adverse effects to non-target plants, and associated indirect effects to species, such as salmonids, that depend on these plants for food, habitat, and cover.

8.2 Recommendations

The following recommendations are designed to reduce potential unintended impacts to the environment from clopyralid:

- 1. Select herbicide products carefully to minimize additional impacts from degradates, adjuvants, inert ingredients, and tank mixtures. This is especially important for application scenarios that already predict potential risk from the active ingredient alone.
- 2. Review, understand, and conform to the "Environmental Hazards" section on the herbicide label. This section warns of known pesticide risks to wildlife receptors or to the environment and provides practical ways to avoid harm to organisms and their environment.
- 3. Avoid accidental direct spray and spill conditions to reduce the most significant potential impacts.
- 4. Use the typical application rate, rather than the maximum application rate, to reduce risk for exposure via off-site drift (drift to soils).
- 5. If impacts to typical or RTE terrestrial plants are of concern and an aerial application is planned using the maximum application rate, establish the following buffer zones to reduce off-site drift and potential risks to terrestrial plants¹⁷:

¹⁷ Note: The ERAs provided information about the closest modeled distance for which negative effects were predicted (25, 100, or 900 feet for ground applications, and 100, 300, or 900 feet for aerial applications). Distances provided in this section were obtained by plotting the risk quotients for the modeled distances, fitting a curve to the data, and then determining the distance at which the risk

- Application by plane over forest 1,400 feet (ft) if RTE species are present and 900 feet if typical species are present.
- Application by plane over non-forested land 1,500 ft if RTE species are present and 800 ft if typical species are present.
- Application by helicopter over forest -200 ft if RTE species are present and 100 ft if typical species are present.
- Application by helicopter over non-forested land -1,450 ft if RTE species are present and 600 feet if typical species are present.
- 6. If use of the typical application rate is required and RTE species may be present, establish the following buffer zones during aerial and ground applications to reduce risks due to off-site drift on non-target terrestrial plants:
 - Application by plane over forest -1,100 ft if RTE species are present and 900 feet if typical species are present.
 - Application by plane over non-forested land -1,050 ft if RTE species are present and 300 feet if typical species are present.
 - Application by helicopter over forest 100 ft.
 - Application by helicopter over non-forested land –800 ft if RTE species are present and 200 ft if typical species are present.
- 7. If a ground application is planned at the maximum application rate, establish a buffer zone of 500 ft for applications with a low boom and 700 ft for applications with a high boom to reduce off-site drift and potential risks to RTE terrestrial plants. If a ground application is planned at the typical application rate, establish a buffer zone of 250 ft for applications with a low boom and 400 ft for applications with a high boom to reduce off-site drift and potential risks to RTE terrestrial plants. Reduced buffer distances may be used if RTE species are not present (25 ft for low boom applications and high boom applications at the typical or maximum rate, and high boom applications at the typical rate, and 100 ft for high boom applications at the maximum rate).
- 8. Consider the proximity of potential application areas to salmonid habitat and the possible effects of herbicide application on riparian vegetation. Use the preceding guidance for buffer distances to protect typical or RTE plants to protect riparian vegetation (including RTE plants) and prevent any associated indirect effects on salmonids and their habitat.

quotient was equivalent to the acute endangered species LOC for terrestrial plants (risk quotient of 1). The curve was extended beyond the largest modeled distance to extrapolate buffers beyond 900 feet.

TABLE 8-1

	Direct Spray/Spill		Off-site Drift		Surface Runoff		Wind Erosion	
	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate	Typical Application Rate	Maximum Application Rate
Terrestrial Animals	0 [16: 16]	0 [16: 16]	NA	NA	NA	NA	NA	NA
Terrestrial Plants (Typical Species)	M [1: 1]	H [1: 1]	0 [14: 18]	0 [11: 18]	0 [42: 42]	0 [42: 42]	0 [9: 9]	0 [9: 9]
Terrestrial Plants (RTE Species)	H [1:1]	H [1: 1]	L [11: 18]	L [11: 18]	0 [42: 42]	0 [42: 42]	0 [8: 9]	0 [7: 9]
Fish in the Pond	0 [2: 2]	0 [4: 4]	0 [36: 36]	0 [36: 36]	0 [84: 84]	0 [84: 84]	NA	NA
Fish in the Stream	0 [2: 2]	0 [2: 2]	0 [36: 36]	0 [36: 36]	0 [84: 84]	0 [84: 84]	NA	NA
Aquatic Invertebrates in the Pond	0 [2: 2]	0 [4: 4]	0 [36: 36]	0 [36: 36]	0 [84: 84]	0 [84: 84]	NA	NA
Aquatic Invertebrates in the Stream	0 [2: 2]	0 [2: 2]	0 [36: 36]	0 [36: 36]	0 [84: 84]	0 [84: 84]	NA	NA
Aquatic Plants in the Pond	0 [2: 2]	0 [3: 4]	0 [36: 36]	0 [36: 36]	0 [84: 84]	0 [84: 84]	NA	NA
Aquatic Plants in the Stream	L [1:2]	L [1:2]	0 [36: 36]	0 [36: 36]	0 [84: 84]	0 [84: 84]	NA	NA
Piscivorous Bird	NA	NA	0 [18: 18]	0 [18: 18]	0 [42: 42]	0 [42: 42]	NA	NA

Typical Risk Level Resulting from Clopyralid Application

RISK LEVELS

0 = No potential for risk (majority of RQs < most conservative LOC).

L = Low potential for risk (majority of RQs 1-10 times the most conservative LOC).

M = Moderate potential for risk (majority of RQs 10-100 times the most conservative LOC).

H = High potential for risk (majority of RQs >100 times the most conservative LOC).

The reported Risk Level is based on the risk level of the majority of the RQs for each exposure scenario within each of the above receptor groups and exposure categories (i.e., direct spray/spill, off-site drift, surface runoff, wind erosion). As a result, risk may be higher than the reported risk category for some scenarios within each category. The reader should consult the risk tables in Section 4 to determine the specific scenarios that result in the displayed level of risk for a given receptor group.

Number in brackets represents Number of RQs in the Indicated Risk Level: Number of Scenarios Evaluated.

NA = Not applicable. No RQs calculated for this scenario.

In cases of a tie, the more conservative (higher) risk level was selected.

9.0 REFERENCES

- Abt Assoc., Inc. 1995. Technical Basis for Recommended Ranges of Uncertainty Factors Used in Deriving Wildlife Criteria for the Great Lakes Water Quality Initiative. Draft Report Submitted to USEPA Office of Water, March 11. Abt Associates, Inc., Bethesda, Maryland.
- AECOM. 2014. Final Human Health Risk Assessment. Prepared for the Bureau of Land Management, Washington, D.C.
- Baloch, R.I., and R.K. Grant. 1991. The Investigation of Degradation and Metabolism of Clopyralid in Two Standard and Three Agricultural Soils. Monograph British Crop Protection Council 4:101–108.
- Barna-Lloyd, T., J. Szabo, and B. Rachunek. 1986. Dowco 290: 2-Year Rat Diet Chronic Toxicity and Oncogenicity Study: Final Report: Report No. TXT: K-038252-25. Unpublished Study Prepared by Dow Chemical USA. MRID No. 00162393.
- Barnthouse, L. 1993. Population-Level Effects. Pages 247-274 *in* Ecological Risk Assessment (G.W. Suter, II, Editor). Lewis Publishers, Boca Raton, Florida.
- Battaglin, A.W., E.M. Thurman, S.J. Kalkhoff, and S.D. Porter. 2003. Herbicides and Transformation Products in Surface Waters of the Midwestern United States. Journal of the American Water Resources Association. August. Pages 743 – 756.
- Bidlack, H. 1982. Determination of the Bioconcentration Factor for 3,6-Dichloropicolinic Acid in Bluegill Sunfish During Continuous Aqueous Exposure: GH-C 1577. MRID No. 00128464.
- Breckenridge, C., G. Lulham, P. Araujo, et al. 1984. A 12-Month Oral Toxicity Study of 3,6-Dichloropicolinic Acid in the Beagle Dog: Project No. 81347. Unpublished Study Prepared by Bio Research Laboratories Ltd. MRID No. 00158256.
- Brown, L., and D. Amadon. 1968. Eagles, Hawks and Falcons of the World. Volume 1. Hamlyn Publishing Group Limited, New York, New York.
- Budavari, S. 1989. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 11th Edition. Merck and Company, Incorporated. Rahway, New Jersey.
- California Office of Environmental Health Hazard Assessment and University of California at Davis. 2003. California Wildlife Biology, Exposure Factor, and Toxicity Database. State of. Available at: URL: <u>http://www.oehha.ca.gov/cal_ecotox/default.htm</u>.
- Carreon R., and M. New. 1981. XRM-3972: Acute Toxicological Properties. Unpublished Study Prepared by Dow Chemical, USA. MRID No. 00147690.
- Chapman, P.M., A. Fairbrother, and D. Brown. 1998. A Critical Evaluation of Safety (Uncertainty) Factors for Ecological Risk Assessment. Environmental Toxicology and Chemistry. 17: 99-108.
- Cole, J.H. 1974a. The Acute Contact and Oral Toxicity to Worker Honey Bees of Technical Dowco 290: DWC246/74726. Unpublished Study Received July 30, 1979 under 464-EX-55. Prepared by Huntingdon Research Centre, England, Submitted by Dow Chemical USA, Midland, Michigan. CDL:098875-I. MRID No. 00081595.

. 1974b. The Acute Contact and Oral Toxicity to Worker Honey Bees of Technical Dowco 290: WC246/74726. Unpublished Study Received November 12, 1980 under 464-563; Prepared by Huntingdon Research Centre, England, Submitted by Dow Chemical USA, Midland, Michigan. CDL:099724-F. MRID No. 00059971.

- Compendium of Pesticide Common Names. 2011. Available at URL: <u>http://www.alanwood.net/pesticides/index.html</u>. Last updated: November 2010.
- Concha, M., and K. Shepler. 1994. Photodegradation of (Carbon-14)-Clopyralid in Buffered Aqueous Solution at pH 7 by Natural Sunlight. Lab Project Number: 451W: ENV94048. Unpublished Study Prepared by PTRL West, Inc. MRID No. 43891401.
- Dill, D., and D. Milazzo. 1985. Evaluation of the Toxicity of Lontrel T Herbicide to the Green Alga, *Selenastrum capricornutum* Printz: ES-746. Unpublished Study Prepared by Dow Chemical USA. MRID No. 40081402.
- Dorn, P.B., J.H. Rodgers, Jr., W.B. Gillespie, Jr., R.E. Lizotte, Jr., and A.W. Dunn. 1997. The Effects of C12-13 Linear Alcohol Ethoxylate Surfactant on Periphyton, Macrophytes, Invertebrates and Fish in Stream Mesocosms. Environmental Toxicology and Chemistry 16(8):1634-1645.
- Dourson, M.L., and J.F. Starta. 1983. Regulatory History and Experimental Support of Uncertainty (Safety) Factors. Regulation of Toxicology and Pharmacology 3:224-238.
- Dow AgroSciences LLC. 1998. Submission of Residue Chemistry, Toxicity, Risk Assessment and Exposure Data in Support of the Registration of Stinger Herbicide, and the Petition for Tolerance for Clopyralid in/on Sugar Beets. Transmittal of 2 Studies. MRID No. 44698700.
- Edge, W.D., R.L. Carey, J.O. Wolff, L.M. Ganio, and T. Manning. 1995. Effects of Guthion 2S on *Microtus canicaudus*: A Risk Assessment Validation. Journal of Applied Ecology 33:269-278.
- ENSR. 2004. Vegetation Treatments Programmatic EIS Ecological Risk Assessment Protocol Final Report. Prepared for the Bureau of Land Management, Reno, Nevada.
- Fairbrother, A., and L.A. Kapustka. 1996. Toxicity Extrapolations in Terrestrial Systems. Ecological Planning and Toxicology, Inc.
- Fletcher, J.S., F.L. Johnson, and J.C. McFarlane. 1990. Influence of Greenhouse versus Field Testing and Taxonomic Differences on Plant Sensitivity to Chemical Treatment. Environmental Toxicology and Chemistry 9:769-776.
 - , J.E. Nellesson, and T.G. Pfleeger. 1994. Literature Review and Evaluation of the EPA Food-Chain (Kenaga) Nomogram, an Instrument for Estimating Pesticide Residues on Plants. Environmental Toxicology and Chemistry 13(9):1383-1391.
- Forsyth, D.J., P.A. Martin, and G.G. Shaw. 1997. Effects of Herbicides on Two Submersed Aquatic Macrophytes, *Potamogeton pectinatus* L. and *Myriophyllum sibiricum Komarov*, in a Prairie Wetland. Environmental Pollution 95(2):259–268.
- Freeman, K.E., and C. Boutin. 1994. Impacts of Agricultural Herbicide Use on Terrestrial Wildlife: a Review with Special Reference to Canada. Canada Minister of the Environment, Canadian Wildlife Service. Technical Report 196.
- Hawes, K., and S. Erhardt-Zabik. 1995. The Anaerobic Aquatic Metabolism of Clopyralid. Lab Project Number: ENV93076. Unpublished Study Prepared by DowElanco North American Environmental Chemistry Lab. MRID No. 43891404.

- Hill, E.F., R.G. Heath, J.W. Spann, and J.D. Williams. 1975. Lethal Dietary Toxicities of Environmental Pollutants to Birds. U.S. Fish and Wildlife Service, Special Scientific Report No. 191. Washington, D.C.
- Hinken, C., J. Dingledine, and M. Jaber. 1986. Lontrel 35A Herbicide Concentrate: An Acute Contact Toxicity Study with the Honey Bee. Project No.: 103-256. Unpublished Study Prepared by Wildlife International Ltd. MRID No. 40151612.
- Humiston, C.G., J.F. Quast, and C.E. Wade. 1976. Dowco 290 Herbicide (3,6-Dichloropicolinic Acid): Results of a Six-Month Dietary Feeding Study in Beagle Dogs. Unpublished Study Received November 12, 1980 under 464-563. Submitted by Dow Chemical USA, Midland, Michigan. CDL: 099731-F. MRID No. 00061383.
 - , G.C. Jersey, C.E. Wade, and et al. 1977. Dowco 290 (3,6-Dichloropicolinic Acid): Results of a Two-Year Chronic Toxicity and Oncogenicity Study in Rats by the Dietary Route. Unpublished Study Received November 12, 1980 under 464-563. Submitted by Dow Chemical USA, Midland, MI. CDL:0 99732-B. MRID No. 00061376.
- Hurt, W.H., and R.P Grossenheider. 1976. A Field Guide to the Mammals: North American North of Mexico. Third Edition. Houghton Mifflin Company, Boston, Massachusetts.
- International Programme on Chemical Safety (IPCS). 2011. Chemical Safety Information from Intergovernmental Organizations. Available at URL: <u>http://www.inchem.org/</u>.
- Jeffrey, M., J. Battjes, and M. Zimmer. 1987. Lontrel 3A Herbicide: Acute Dermal Toxicity Study in New Zealand White Rabbits: Final Report. Laboratory Project Study ID: 003972-004. Unpublished Study Prepared by Dow Chemical Co. 17 p. MRID No. 40246301.
- Knisel W.G., and F.M. Davis. 2000. GLEAMS (Groundwater Loading Effects on Agricultural Management Systems), Version 3.0, User Manual. U.S. Department of Agriculture, Agricultural Research Service, Southeast Watershed Research Laboratory, Tifton, Georgia. Pub. No.: SEWRL-WGK/FMD-050199. Report Dated May 1, 1999 and Revised August 15, 2000. 194 pp.
- Leonard, R.A., W.G. Knisel, and D.A. Still. 1987. GLEAMS: Groundwater Loading Effects of Agricultural Management Systems. Transactions of the American Society of Agricultural Engineers 30(5): 1403-1418.
- Lerch, R.N., and P.E. Blanchard. 2003. Watershed Vulnerability to Herbicide Transport in Northern Missouri and Southern Iowa Streams. Environmental Science and Technology. 37(24): 5518-5527.
- Lewis, M.A. 1991. Chronic and Sublethal Toxicities of Surfactants to Aquatic Animals: A Review and Risk Assessment. Water Research 25(1):101-113.
- Maguire, C.C., and B.A. Williams. 1987. Response of Thermal Stressed Juvenile Quail to Dietary Organophosphate Exposure. Environmental Pollution 47:25-39.
- McMurray G.L., D.W. Monks, and R.B. Leidy. 1996. Clopyralid Use in Strawberries (*Fragaria x ananassa* Duch.) Grown On Plastic Mulch. Weed Science 44(2):350–354.
- Muller, R. 1980. Fish Toxicity and Surface Tension of Non-Ionic Surfactants: Investigations of Anti-Foam Agents. Journal of Fish Biology 16:585-589.
- National Oceanic and Atmospheric Administration (NOAA). 1999. Endangered and Threatened Wildlife and Plants; Definition of 'Harm.' National Marine Fisheries Service. Federal Register 64(215) Rules and Regulations: 60:727-60,731.
 - . 2002. Pesticides and Pacific Salmon: Technical Guidance for NOAA Fisheries Section 7 Pesticide Consultations (Draft). Environmental Conservation Division. Seattle, Washington.

- Oliver, G., E. Bjerke, M. Mackasey, and et al. 1988. Field Dissipation and Leaching of Clopyralid under Rangeland Conditions. Laboratory Project ID GHC-2070. Unpublished Study Prepared by Dow Chemical USA. MRID No. 40676201.
- Olszyk, D., T. Pfleeger, H. Lee, and M. Plocher. 2009. Pea (*Pisum Sativum*) Seed Production as an Assay for Reproductive Effects Due to Herbicides. Environmental Toxicology and Chemistry 28(9):1920-1929.
- Opresko, D.M., B.E. Sample, and G.W. Suter. 1994. Toxicological Benchmarks for Wildlife. Oak Ridge National Laboratory, Oak Ridge, Tennessee. ES/ER/TM-86/R1.
- Pesticide Properties DataBase (PPDB). 2010. University of Hertfordshire. Available at URL: <u>http://sitem.herts.ac.uk/aeru/projects/ppdb/index.htm</u>.
- Petty, D., and J. Knuteson. 1991. Field Dissipation and Leaching of Clopyralid under Rangeland Conditions: Supplement to GH-C 2070. Lab Project Number: 87057: GC-C 2070 ADD1. Unpublished Study Prepared by DowElanco. MRID No. 42415401.
- Roberts, D., A. Phillips, B. Blakeslee, and et al. 1996. Terrestrial Dissipation of Clopyralid in California. Lab Project Number: ENV95003. Unpublished Study Prepared by DowElanco and A&L Great Lakes Labs. MRID No. 44184701.
- Sample, B.E., D.M. Opresko, and G.W. Suter. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. Risk Assessment Program. Oak Ridge National Laboratory, Oak Ridge, Tennessee. Document ES/ER/TM-86/R-3. Available at URL: <u>http://www.hsrd.ornl.gov/ecorisk/reports.html</u>.
- Sappington, L.C., F.L. Mayer, F.J. Dwyer, D.R. Buckler, J.R. Jones, and M.R. Ellersieck. 2001. Contaminant Sensitivity of Threatened and Endangered Fishes Compared *to Standard Surrogate Species*. *Environmental Toxicology and Chemistry* 20:2869-2876.
- Saunders, J., R. Carreon, K. Johnson, and et al. 1983. Lontrel T: Acute Toxicological Properties and Industrial Handling Hazards. Unpublished Study Received April 7, 1983 under 464-563. Submitted by Dow Chemical USA, Midland, Michigan. CDL: 071510-A. MRID No. 00127275.
- Schutz, S., B. Weibbecker, and H.E. Hummel. 1996. Gas Chromatography-Mass Spectrometry Analysis of the Herbicide Clopyralid in Differentially Cultivated Soils. Environmental Toxicology and Chemistry 15(2):249– 252.
- Sheley, R., J. Petroff, and M. Borman. 1999. Introduction to Biology and to Management of Noxious Rangeland Weeds. Corvallis, Oregon.
- Shirazi, M.A., R.S. Bennett, and R.K. Ringer. 1994. An Interpretation of Toxicity Response of Bobwhite Quail with Respect to Duration of Exposure. Archives of Environmental Contamination and Toxicology 26:417-424.
- Sinclair, C.J., and A.B.A. Boxall. 2003. Assessing the Ecotoxicity of Pesticide Transformation Products. Environmental Science and Technology. 37: 4617-4625.
- Sparling, D.W., G. Linder, and C.A. Bishop (eds.). 2000. Ecotoxicology of Amphibians and Reptiles. Society of Environmental Toxicology and Chemistry (SETAC). Pensacola, Florida.
- Spray Drift Task Force (SDTF). 2002. A User's Guide for AgDRIFT 2.0.05: A Tiered Approach for the Assessment of Spray Drift of Pesticides. Regulatory Version.
- Syracuse Environmental Research Associates, Inc. (SERA). 2004. Syracuse Environmental Research Associates, Inc. Clopyralid Human Health and Ecological Risk Assessment Final Report. Prepared for: U. S. Department of Agriculture Forest Service. SERA TR 04-43-17-03c. December 5, 2004.

- Teske, M.E., and J.W. Barry. 1993. Parametric Sensitivity in Aerial Application. Transactions of the American Society of Agricultural Engineers 36(1):27-33.
 - _____, and H.W. Thistle. 1999. A Simulation of Release Hand Wind Speed Effects for Drift Minimization. Transactions of the American Society of Agricultural Engineers 42(3):583-591.
 - _____, ____, J.W. Barry, and B. Eav. 1998. A Simulation of Boom Length Effects for Drift Minimization. Transactions of the American Society of Agricultural Engineers 41(3):545-551.
- Turner, L. 2003. Diuron Analysis of Risks to Endangered and Threatened Salmon and Steelhead. Environmental Field Branch. Office of Pesticide Programs. July 30. Washington, D.C.
- United States Army Corps of Engineers (USACE). 2011. Environmental Laboratory, Clopyralid. Available at URL: <u>http://el.erdc.usace.army.mil/index.cfm</u>.
- United States Department of Agriculture (USDA) Agriculture Research Service (ARS). 1995. Pesticide Properties for Clopyralid. Last updated May 1995.
- United States Department of the Interior Bureau of Land Management (USDOI BLM). 2007a. Vegetation Treatments Using Herbicides on Bureau of Land Management Lands in 17 Western States Programmatic Environmental Impact Statement. Washington, D.C.

. 2007b. Record of Decision Vegetation Treatments Using Herbicides on Bureau of Land Management Lands in 17 Western States. Washington, D.C.

United States Environmental Protection Agency (USEPA). 1993. Wildlife Exposure Factors Handbook. Volumes I and II. Office of Research and Development, Washington, D.C. EPA/600-R/R-93/187a,187b.

. 1997. Ecological Risk Assessment Guidance for Superfund, Process for Designing and Conducting Ecological Risk Assessments (Interim Final). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response. EPA 540/R-97/006. June.

. 1998. Guidelines for Ecological Risk Assessment. U.S. Environmental Protection Agency, Washington, D.C. EPA/630/R-95/002F.

. 2000. Ecological Soil Screening Level Guidance. Draft. United States Environmental Protection Agency. Office of Emergency and Remedial Response. July 10.

. 2010. USEPA Pesticide Ecotoxicity Database. Provided by Brian Montague, Office of Pesticide Programs. December.

____. Pesticide Fate Database. 2011a. Available at URL: <u>http://cfpub.epa.gov/pfate/home.cfm;</u>.

. 2011b. Electronic Reading Room: Science Reviews Previously Released Under the Freedom of Information Act. Available at URL: <u>http://www.epa.gov/pesticides/foia/reviews.htm</u>.

___. 2011c. Environmental Laboratory, Clopyralid. Available at URL: http://el.erdc.usace.army.mil/index.cfm.

- United States National Library of Medicine Hazardous Substances Data Bank. 2011. Clopyralid. Available at URL: <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB</u>.
- West, B., and D.A. Willigan. 1976. 18-Month Mouse Oncology Study: Laboratory Reference No. A-896. Final Report. Unpublished Study Received November 12, 1980 under 464-563. Prepared by Biometric Testing, Inc. and others. Submitted by Dow Chemical USA, Midland, Michigan. CDL:099732-C. MRID No. 00061377.

- West, B., D.A. Willigan, and Stein. 1976. 18-month Mouse Oncology Study: Laboratory Reference No. A-896. Final Report. Unpublished Study Received July 30, 1979 under 464-EX-55. Prepared by Biometric Testing, Inc. in Cooperation with Microscopy for Biological Research, Ltd. Submitted by Dow Chemical USA, Midland, Michigan. CDL: 098874-B. MRID No. 00081592.
- Westbrooks, R. 1998. Invasive Plants, Changing the Landscape of America: Fact Book. Federal Interagency Committee for the Management of Noxious and Exotic Weeds (FICMNEW). Washington, D.C.
- Wong, D., P.B. Dorn, and E.Y. Chai. 1997. Acute Toxicity and Structure-Activity Relationships of Nine Alcohol Ethoxylate Surfactants to Fathead Minnow and *Daphnia magna*. Environmental Toxicology and Chemistry 16(9):1970-1976.
- Woodburn, K. 1987. Clopyralid--The Hydrolysis of Clopyralid in Sterile, Buffered Water: Lab Project Number: LEH060893. Unpublished Study Prepared by Dow Chemical USA. MRID No. 42805701.

, and B. French. 1987. A Soil Sorption/Desorption Study of Clopyralid. Laboratory Project ID: GH-C 1873. Unpublished Study Prepared by Dow Chemical USA. 47 p. MRID No. 40095701.

9-6

APPENDIX A – USEPA OFFICE OF PESTICIDE PROGRAMS ECOLOGICAL INCIDENT INFORMATION SYSTEM INCIDENT REPORTS FOR CLOPYRALID

EIIS Pesticide Summary Report: General Information Clopyralid (117403)

	Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
PLANTS	5								
Agricult	ural Area								
	I004848-001	1/1/1996		IL	3	RU	N/R	N/R	ALL
	I003104-001	1/1/1996		ID	4	RU	N/R	N/R	ALL
	1006848-002	1/1/1998		IA	3	RU	N/R	N/R	ALL
	I007251-001	1/1/1998		WI	3	RU	N/R	N/R	ALL
	I006848-001	1/1/1998		MI	3	RU	N/R	N/R	ALL
	1006848-003	1/1/1998		IA	3	RU	N/R	N/R	ALL
	1007867-003	4/25/1998	CASS	IA	2	RU	N/R	GROUND-BROAD	40 ACRES
	1007754-003	4/28/1998	GOODHUE	MN	2	RU	N/R	Broadcast	80 ACRES
	1008324-002	5/1/1998	GOODHUE	MN	1	UN	N/R	Broadcast	90 ACRES
	I007754-001	5/1/1998	LEE	IL	3	RU	N/R	GROUND-BROAD	56
	I007867-004	5/2/1998	BREMER	IA	2	RU	N/R	GROUND-BROAD	21 ACRES
	I007755-006	5/5/1998	DUNN	WI	2	RU	N/R	GROUND-BROAD	180 ACRES
	1008324-004	5/6/1998	POCAHONTAS	IA	2	RU	N/R	Broadcast	259 ACRES

Tuesday, August 02,

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable.

Page 1 of 13

-	Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
-	I007867-001	5/11/1998	SHELBY	IA	3	RU	N/R	GROUND-BROAD	ALL
	I008324-003	5/15/1998	DAKOTA	MN	3	MA	N/R	Broadcast	100 ACRES
	I008324-001	5/15/1998	HURON	OH	3	RU	N/R	Broadcast	33 ACRES
	I007714-001	5/24/1998	WARREN	IL	3	RU	N/R	GROUND-BROAD	20-30% PLANTS
	1007867-002	5/31/1998	ISANTI	MN	2	RU	N/R	GROUND-BROAD	40 ACRES
	I008335-001	6/9/1998	FREMONT	WY	2	RU	N/R	N/R	124 ACRES
	I009512-012	5/15/1999	LE SUEUR	MN	2	MA	N/R	Broadcast	ALL
	I009512-010	5/15/1999	GOODHUE	MN	1	UN	N/R	Broadcast	200 ACRES
	I013636-004	5/1/2002	PIERCE	WI	2	RU		Broadcast	373 Acres
	I014806-001	7/1/2003	Bannock	ID	2	RU	N/R	N/R	3020 acres
ALFALF	"A								
	I007874-001	4/4/1998	GRANT	WA	3	RU	N/R	Broadcast	300 ACRES
	I009512-005	6/23/1999	PIERCE	WI	2	RU	N/R	Broadcast	20 ACRES
	I016962-046	6/7/2005	Ozaukee	WI	2	RU			30 Acres
ASPARA	GUS								
	I009509-001	9/2/1999	FRANKLIN	WA	3	RU	N/R	N/R	250 ACRES
CORN									
	I006445-001			NE	3	RU	F	N/R	UNKNOWN
	I006445-005			WI	3	RU	F	N/R	UNKNOWN

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable.

Page 2 of 13

Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
1006445-004			IA	3	RU	F	N/R	UNKNOWN
1006445-002			IL	3	RU	F	N/R	UNKNOWN
1006214-001	11/3/1997		MN	3	RU	N/R	N/R	UNKNOWN
1006214-011	11/3/1997		MN	3	RU	N/R	N/R	UNKNOWN
1006214-010	11/3/1997		MN	3	RU	N/R	N/R	UNKNOWN
1006214-009	11/3/1997		MN	3	RU	N/R	N/R	UNKNOWN
1006214-007	11/3/1997		IL	3	RU	N/R	N/R	UNKNOWN
1006214-008	11/3/1997		IA	3	RU	N/R	N/R	UNKNOWN
1006214-005	11/3/1997		IA	3	RU	N/R	N/R	UNKNOWN
1006214-006	11/3/1997		IA	3	RU	N/R	N/R	UNKNOWN
1006214-002	11/3/1997		IA	3	RU	N/R	N/R	UNKNOWN
1006214-003	11/3/1997		IA	3	RU	N/R	N/R	UNKNOWN
1007259-004	1/1/1998		WI	2	RU	N/R	UNKNOWN	UNKNOWN
1007259-001	1/1/1998		WI	2	RU	N/R	UNKNOWN	UNKNOWN
1007259-002	1/1/1998		WI	2	RU	N/R	UNKNOWN	UNKNOWN
1007259-003	1/1/1998		WI	2	RU	N/R	UNKNOWN	UNKNOWN
1007755-011	4/23/1998	MACOUPIN	IL	1	RU	N/R	Broadcast	70 ACRES
1007755-013	4/25/1998	MACOUPIN	IL	2	RU	N/R	GROUND AIR BL	90 ACRES

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable.

Legality Code: RU=Registered Use, M=Misuse, MA=Misuse (Accidental), MI=Misuse (Intentional), U=Unknown.

Page 3 of 13

Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
I008079-011	4/26/1998	POCAHONTAS	IA	2	RU	N/R	GROUND/BROAD	911 ACRES
I008079-009	4/26/1998	POCAHONTAS	IA	2	RU	F	Broadcast	898 ACRES
1008079-006	4/27/1998	POCAHONTAS	IA	3	RU	N/R	GROUND-BROAD	837 ACRES
1008079-004	4/27/1998	POCAHONTAS	IA	3	RU	N/R	Broadcast	395 ACRES
1008079-007	4/28/1998	POCAHONTAS	IA	2	RU	F	Broadcast	392 ACRES
1007755-002	4/30/1998	STEELE	MN	1	RU	N/R	Broadcast	155 ACRES
I007755-001	4/30/1998	BUFFALO	WI	2	RU	N/R	UUUGROUND BR	67 ACRES
1007755-004	4/30/1998	PIERCE	WI	2	RU	N/R	Soil incorporation	230 ACRES
1008079-002	4/30/1998	JASPER	IA	2	RU	N/R	GROUND/BROAD	300 ACRES
1007755-005	5/1/1998		MN	2	RU	N/R	Broadcast	40 ACRES
I007750-001	5/1/1998	RICHLAND	ND	3	RU	N/R	Broadcast	60 ACRES
1007755-009	5/2/1998	RENVILLE	MN	2	RU	N/R	N/R	33 ACRES
1007755-008	5/3/1998	STORY	IA	2	RU	N/R	GROUND-BROAD	500 ACRES
1008079-003	5/5/1998	MONONA	IA	2	RU	N/R	AERIAL/BROADC	160 ACRES
1008079-005	5/5/1998	CALHOUN	IA	2	RU	N/R	GROUND/BROAD	938 ACRES
1007755-007	5/5/1998	BOONE	IA	2	RU	N/R	Broadcast	200 ACRES
1008079-001	5/7/1998	DUBUQUE	IA	2	RU	N/R	GROUND/BROAD	120 ACRES
1008079-010	5/12/1998	WALWORTH	WI	2	RU	N/R	GROUND/BROAD	90 ACRES

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable.

Page 4 of 13

Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
1008079-008	5/12/1998	POCAHONTAS	IA	2	RU	F	Broadcast	90 ACRES
1007755-010	5/18/1998	MACOUPIN	IL	2	RU	N/R	GROUND-BROAD	5 ACRES
I009512-001	6/13/1998	CASS	ND	3	RU	G	Broadcast	50% OF 53 ACRES
1007702-013	7/19/1998	VERMILION	IL	2	UN		BAND	18 ROWS
I007702-014	7/20/1998	VERMILION	IL	2	UN		Broadcast	UNKNOWN
1007702-007	8/4/1998	FORD	IL	2	UN		Broadcast	ALL 10 ACRES
1007702-008	8/4/1998	FORD	IL	2	UN		Broadcast	ALL 10 ACRES
1007702-006	8/5/1998	IROQUOIS	IL	2	UN		Broadcast	ALL 25 ACRES
1007702-002	8/9/1998	DELAWARE	IN	2	UN		Broadcast	ALL 100 ACRES
1007702-005	8/9/1998	HAMILTON	IN	2	UN		Broadcast	30 ACRES OUT OF 60
1007702-001	8/9/1998	HENRY	IN	2	UN		Broadcast	100 ACRES OF 100
1007702-003	8/9/1998	MADISON	IN	2	UN		Broadcast	ALL 40 ACRES
1007702-004	8/9/1998	TIPTON	IN	2	UN		Broadcast	50 ACRES OUT OF 100
1007702-009	8/10/1998	MADISON	IN	2	UN		Broadcast	ALL 60 ACRES
1007702-011	8/12/1998	DOUGLAS	IL	2	UN		Broadcast	ALL 80 ACRES
1008002-006	8/16/1998	BENTON	IN	2	RU		Broadcast	ALL 160 ACRES
1007702-010	8/18/1998	PIERCE	NE	2	UN		Broadcast	ALL 70 ACRES
1007702-012	8/25/1998	CHIPPEWA	WI	2	UN		Broadcast	ALL 3 ACRES

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable.

Page 5 of 13

Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
1008002-004	9/30/1998	BUFFALO	WI	2	RU		Broadcast	ALL 655 ACRES
I008002-001	10/11/1998	CALHOUN	IA	2	UN		Broadcast	80 ACRES
1008002-002	10/12/1998	CARROLL	IA	2	RU		Broadcast	ALL 330 ACRES
I008010-001	10/12/1998	CERRO GORDO	IA	2	RU		Broadcast	25 ACRES OF 213
1008002-003	10/13/1998	GRUNDY	IA	2	RU		Broadcast	ALL 2400 ACRES
1008010-002	10/14/1998	YORK	NE	2	RU		BAND	80 ACRES OF 1200
1008002-005	10/15/1998	TAZEWELL	IL	2	RU		Broadcast	ALL 37.8 ACRES
I008187-003	12/6/1998	MARSHALL	IL	2	RU	N/R	Broadcast	ALL 100 ACRES
1008187-002	12/6/1998	PEORIA	IL	2	RU	N/R	Broadcast	69 ACRES
I008187-001	12/7/1998	BREMER	IA	2	RU	N/R	Broadcast	35 ACRES
I008187-004	12/15/1998	BOONE	NE	2	RU	N/R	Broadcast	61 ACRES OUT OF 7
I008455-001	2/5/1999	PARKE	IN	2	RU		N/R	144 ACRES
1008455-002	2/24/1999	SIOUX	IA	2	RU		N/R	ALL
1009512-008	5/1/1999	THURSTON	NE	3	RU	N/R	Broadcast	30 ACRES OUT OF 6
I010927-015	5/2/1999	FRANKLIN	IA	3	RU	N/R	Spray	132 ACRES
1009512-007	5/3/1999	PIERCE	WI	1	RU	N/R	Broadcast	400 ACRES
I009512-011	5/10/1999	GRANT	SD	2	RU	N/R	Broadcast	ALL
I009512-009	5/10/1999	RICE	MN	2	RU	N/R	Broadcast	80 ACRES

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable.

Page 6 of 13

Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
I009512-013	5/20/1999	MORRISON	MN	2	RU	N/R	Broadcast	60 ACRES
I009512-002	6/4/1999	HOWARD	IN	3	MA	G	GROUND-BROAD	ALL
I009512-016	6/13/1999	MOWER	MN	2	MA	N/R	GOUND BROADC	600 ACRES
I009969-005	6/16/1999	CRAWFORD	WI	2	RU	N/R	Broadcast	ALL
I009512-003	6/23/1999	PEPIN	WI	3	UN	G	GROUND-BROAD	ALL
I009512-024	6/23/1999	ROCK	MN	2	MA	N/R	Broadcast	37 ACRES OUT OF 76
I009669-004	7/5/1999	JASPER	IA	1	RU	N/R	Broadcast	ALL
I009512-025	7/15/1999	LYON	MN	2	MA	N/R	Broadcast	40 ACRES
I009512-017	8/4/1999	WINONA	MN	2	RU	N/R	Broadcast	75 OF 126 ACRES
I009512-015	8/11/1999	MOWER	MN	2	MA	N/R	Broadcast	216 ACRES
I009512-014	8/11/1999	MOWER	MN	2	MA	N/R	Broadcast	214 ACRES
I009512-018	8/16/1999	CARROLL	IL	2	RU	N/R	Broadcast	ALL
I009512-019	9/8/1999	CRAWFORD	WI	2	RU	N/R	Broadcast	ALL
1009969-003	9/13/1999	FURNAS	NE	3	RU	N/R	Broadcast	ALL
I009512-020	9/15/1999	PIKE	IN	2	RU	N/R	Broadcast	ALL
I009512-021	9/22/1999	HARDIN	ОН	2	RU		Broadcast	45 ACRES OF 73 TOTAL
I009512-023	9/23/1999	DAKOTA	MN	2	MA	N/R	Broadcast	ALL
I009512-022	9/25/1999	RED WILLOW	NE	2	RU	N/R	BAND	ALL

Tuesday, August 02,

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable.

Page 7 of 13

Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
I009512-027	10/13/1999	FILLMORE	MN	3	RU	N/R	Broadcast	ALL
I009512-026	10/18/1999	DUBUQUE	IA	3	RU	N/R	Broadcast	ALL
I010927-001	5/5/2000	DUBUQUE	IA	2	RU	N/R	Soil incorporation	ALL
I010837-016	6/2/2000	LEE	IL	2	UN	N/R	N/R	ALL
I012556-001	4/26/2001	BROWN	MN	3	RU	G	Broadcast	21 acres
I012357-002	5/3/2001		MN	2	UN	N/R	Broadcast	ALL
I012357-003	5/29/2001		MN	2	UN	N/R	Broadcast	ALL
I013550-003	5/22/2002	Morgan	IL	2	RU		Spray	862 plants and tree
field								
I012366-072	5/2/2000	COLUMBIA	WI	3	RU		Broadcast	60 acres
I012366-067	5/10/2000	EDWARDS	KS	3	М		Broadcast	126 acres
I012366-066	6/2/2000	BUREAU	IL	3	RU		Broadcast	20 acres
I012366-068	3/30/2001		IL	2	RU		Broadcast	160 acres
I012366-073	4/9/2001	PIKE	IL	3	RU		Broadcast	20 acres
I012366-034	4/14/2001	CASS	IN	2	RU	G	Broadcast	65.0 acres
I012366-038	4/19/2001	ST CLAIR	IL	3	RU	G		90 acres
I013636-025	4/23/2001	DYER	TN	2	RU		Broadcast	80 acres
I012366-039	4/24/2001	TIPPECANOE	IN	3	RU	G	Broadcast	62 out of 96 acres

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable.

Page 8 of 13

Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
I012366-009	4/25/2001	HARDIN	IA	2	RU		Broadcast	105 acres
I012366-063	4/26/2001	HARDIN	IA	2	UN		Broadcast	134 acres
I012366-010	4/26/2001	HARDIN	IA	2	RU		Broadcast	134 acres
I012366-040	4/26/2001	BROWN	MN	3	RU	G	Broadcast	21 acres
I012366-008	4/27/2001	CARROLL	IA	3	RU		Broadcast	30 acres
I012366-041	4/28/2001	RICHLAND	WI	3	RU	DF	Broadcast	294 acres
I013636-032	4/28/2001	WHITE	IN	2	RU		Broadcast	313 acres
I012366-043	4/29/2001	MUSCATINE	IA	3	RU	G	Broadcast	94 acres
I012366-069	4/30/2001	WOOD	ОН	3	RU		Broadcast	7 acres
I012366-033	5/1/2001		MN	3	UN	G	Broadcast	33.70 acres
I012366-029	5/1/2001	GRANT	WI	3	RU	G	Broadcast	20 acres out of 23
I012366-030	5/1/2001	STEELE	MN	3	RU	G	Broadcast	80 acres
I012366-070	5/2/2001	DUBUQUE	IA	3	RU		Broadcast	30 acres
I012366-036	5/2/2001	DANE	WI	3	RU	G	Broadcast	40 acres
I012366-032	5/3/2001		MN	3	UN		Broadcast	47.70 acres
I012366-031	5/6/2001	MONTGOMERY	IN	3	RU	G	Broadcast	203 acres
I012366-062	5/9/2001	HARDIN	IA	2	UN	G	Broadcast	105 acres
I012366-055	5/9/2001	DUBUQUE	IA	3	RU	G	Broadcast	20 acres of 42

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable.

Page 9 of 13

Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
I012366-035	5/9/2001	DUBUQUE	IA	2	RU	G	Broadcast	20 acres out of 42
I012366-044	5/9/2001	DANE	WI	3	RU	G	Broadcast	31 acres
I012366-037	5/10/2001	LINN	IA	3	RU	G	Broadcast	99 acres out of 139
I012366-061	5/15/2001	GRANT	WI	3	RU	G	Broadcast	20 acres out of 23
I012366-071	5/24/2001	LAFAYETTE	WI	3	RU		Broadcast	60 acres
I012366-042	6/14/2001	WHITESIDE	IL	3	RU	DF	Broadcast	174 acres
I013636-001	4/15/2002	PETTIS	МО	2	RU		Broadcast	72 out of 149 acres
I013550-009	5/10/2002	LAC QUI PARLE	MN	1	RU		Spray	50 acres
I014702-014	4/28/2003	Jasper	IN	2	RU		Broadcast	46 acres
I014702-016	5/1/2003	Custer	NE	3	RU	WP	Broadcast	1607.93 acres
I015748-022	5/20/2003	Seneca	ОН	3	RU	G		36 acre affected
I016962-030	4/15/2005	Franklin	KS	2	RU	DF	Broadcast	857 acres
I016962-045	4/29/2005	Lafayette	WI	2	RU	DF		50 Acres
I016962-041	6/1/2005	Wabasha	MN	3	UN			342 Acres
I016962-048	6/9/2005	Hall	NE	2	RU			22 Acres
I016962-040	6/15/2005	Shelby	IA	3	RU	DF		265 Acres
I016962-039	6/16/2005	Winneshiek	IA	3	RU	DF		286 Acres

FIELD

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable.

'age 10 of 13

	Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
=	I006442-001	1/1/1998		WI	3	RU	N/R	N/R	ALL
	I006442-002	1/1/1998		NE	3	RU	N/R	N/R	ALL
	I006442-003	1/1/1998		IL	3	RU	N/R	N/R	ALL
	I007755-003	5/1/1998	STEELE	MN	2	RU	N/R	Broadcast	88 ACRES
Flax									
	I016962-032	6/12/2005		ND	2	RU			180 acres
Grape									
	I017837-017		San Luis Obispo	CA	3	MA		Spray	
Lettuce									
	I015748-019	6/25/2004	Yuma	AZ	2	М	EC	N/R	15 acres affected
N/R									
	I013636-008				4	RU			
	I013554-046	7/1/2002	Douglas	SD	2	М			68 acres
	I013554-048	7/22/2002	Chippewa	WI	2	М			65 acres
nursing l	home								
	I021276-010		Spokane	WA	3	UN			
Pasture									
	I013884-006	6/11/1998	Chelan	WA	3	RU			Not given
Potato									

Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
I014702-002	7/23/2003	Teton	ID	2	RU	N/R	N/R	N/R
nt-of-way, road								
I020627-031	7/10/2001	Benton	WA	2	MI			Unknown
d								
I013883-028	7/23/1997	Pierce	WA	2	RU		Spray	Not given
pean								
I004816-001	1/1/1997		IA	3	RU	N/R	N/R	ALL
I006214-012	11/3/1997		IL	3	RU	N/R	N/R	UNKNOWN
I006214-004	11/3/1997		IL	3	RU	N/R	N/R	UNKNOWN
I009512-004	6/23/1999	MOWER	MN	2	RU	G	GROUND-BROAD	50
I009507-001	7/22/1999	ROBERTS	SD	3	RU	N/R	Broadcast	10 ACRES
TCH GRASS								
I003138-001			MN	3	RU			UNKNOWN
US MEDIA								
I010743-001	6/19/2000	OTTAWA	MI	3	RU	N/R	Spray	18 ACRES
I012363-002			PA	4	RU		Broadcast, unincorp	
I010414-001	4/1/2000	Spokane	WA	3	MA	N/R		
, residential area								

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable. Legality Code: RU=Registered Use, M=Misuse, MA=Misuse (Accidental), MI=Misuse (Intentional), U=Unknown.

-	Incident #	Date	County	State	Certainty	Legal.	Form.	Appl. Method	Total Magnitude
-	I012628-003		Los Angeles	CA	3	RU			
	I012367-001	12/29/2001		CA	4	RU	N/R	Broadcast, soil incor	UNKNOWN
	I012627-002	1/22/2002	SPOKANE	WA	3	RU			Unknown
	I012628-002	3/7/2002	LOS ANGELES	CA	3	RU			
vineyard									
	1020998-029		Walla Walla	WA	3	UN			
Wheat									
	I014702-003	5/15/2003	Stutsman	ND	3	RU	N/R	Broadcast	120 acres
	I015748-017	6/6/2004	Richland	MT	3	RU	EC	Spray	36 acres
YEWS									
	I010743-002	6/19/2000	OTTAWA	MI	3	RU	N/R	SPRAY	35 ACRES
ERRES	TRIAL								
Agricultu	ıral Area								
	I011897-002	7/1/2000	SPOKANE	WA	3	MI		COMPOST	UNKNOWN
Corn									
	I003151-001	1/1/1996		MN	3	RU	N/R	N/R	ALL

Certainty Code: 0=Unrelated, 1=Unlikely, 2=Possible, 3=Probable, 4=Highly Probable. Legality Code: RU=Registered Use, M=Misuse, MA=Misuse (Accidental), MI=Misuse (Intentional), U=Unknown.

APPENDIX B – SUMMARY OF AVAILABLE AND RELEVANT TOXICITY DATA FOR CLOPYRALID APPENDIX B.1 – BIBLIOGRAPHY LIST

COMPLETE LISTING OF TOXICITY REFERENCES EVALUATED FOR Clopyralid

Barna-Lloyd T; Szabo J; Rachunek B. 1986. Dowco 290: 2-Year Rat Diet Chronic Toxicity and Oncogenicity Study: Final Report: Report No. TXT:K-038252-25. Unpublished study prepared by Dow Chemical USA. 945 p. MRID No. 00162393.

Breckenridge C; Lulham G; Araujo P; et al. 1984. A 12-month Oral Toxicity Study of 3,6-Dichloropicolinic Acid in the Beagle Dog: Project No. 81347. Unpublished study prepared by Bio Research Laboratories Ltd. 360 p. MRID No. 00158256.

Carreon R; Johnson K; Wall J. 1983. XRM-4703 Herbicide Formulation: Acute Toxicological Properties: Rats. Unpublished study received December 7, 1983 under 464-EX-81; submitted by Dow Chemical USA, Midland, MI; CDL:251919-B. Mixture with picloram. MRID No. 00132985.

Cole JH. 1974a. The Acute Contact and Oral Toxicity to Worker Honey Bees of Technical Dowco 290: DWC246/74726. Unpublished study received July 30, 1979 under 464-EX-55; prepared by Huntingdon Research Centre, England, submitted by Dow Chemical USA, Midland, MI; CDL:098875-I. MRID No. 00081595.

Cole JH. 1974b. The Acute Contact and Oral Toxicity to Worker Honey Bees of Technical Dowco 290: DWC246/74726. Unpublished study received November 12, 1980 under 464-563; prepared by Huntingdon Research Centre, England, submitted by Dow Chemical USA, Midland, MI; CDL:099724-F. MRID No. 00059971.

Dietz F; Mensik D; Rachunek B; et al. 1983. Dowco 290: Two-generation Dietary Reproduction Study in Fischer-344 Rats. Unpublished study received January 11, 1984 under 464-563; submitted by Dow Chemical USA, Midland, MI; CDL:072287-A. MRID No. 00138155.

Dill D; Milazzo D. 1985. Evaluation of the Toxicity of Lontrel T Herbicide to the Green Alga, Selenastrum capricornutum Printz: ES-746. Unpublished study prepared by Dow Chemical USA. 16 p. MRID No. 40081402.

Dow AgroSciences LLC. 1998. Submission of Residue Chemistry, Toxicity, Risk Assessment and Exposure Data in Support of the Registration of Stinger Herbicide, and the Petition for Tolerance for Clopyralid in/on Sugar Beets. Transmittal of 2 Studies. MRID No. 44698700.

Dow Chemical USA. 1980. Summary of Fish and Wildlife Data. Summary of Studies 099724-B through 099724-G. Unpublished study received Nov 12, 1980 under 464-563; CDL:099724-A. MRID No. 0059968.

Fairchild, J.F., Allert, A., Sappington, L.S., Nelson, K.J., Valle, J. 2007. Using Accelerated Lift Testing Procedures to Compare the Relative Sensitivity of Rainbow Trout and the Federally Listed Threatened Bull Trout to Three Commonly Used Rangeland Herbicides (Picloram, 2,4-D, and Clopyralid). Environ. Toxicol. Chem. 27(3): 623-630.

Forsyth DJ; Martin PA; Shaw GG. 1997. Effects of herbicides on two submersed aquatic macrophytes, Potamogeton pectinatus L. and Myriophyllum sibiricum Komarov, in a prairie wetland. Environ Pollut. 95 (2):259–268.

Gilbert K. 1995a. Lontrel TE Technical: Acute Dermal Toxicity Study in New Zealand White Rabbits: Lab Project Number: K-038252-046D. Unpublished study prepared by The Dow Chemical Co. 31 p. MRID No. 44114102.

Gilbert K. 1995b. Lontrel TE Technical: Primary Dermal Irritation Study in New Zealand White Rabbits: Lab Project Number: K-038252-046B. Unpublished study prepared by The Dow Chemical Co. 16 p. MRID No. 44114105.

Gorsline D; Smith S; Arceo RJ. 1975a. Final Report to Dow Chemical USA: Three-generation Reproduction Study with Dowco 290 in Albino Rats: IBT No. 623-03859. Unpublished study including sponsor validation, letter, Appendix 1, dated February 11, 1980 from Booz, Allen & Hamilton, Inc. to F.L. Dunn, Addendum, Exhibit I-IV and Appendix II, received March 3, 1980 under 9G2237; prepared by Industrial Bio-Test Laboratories. MRID No. 00028862.

Gorsline D; Smith S; Fischer CA. 1975b. Final Report to Dow Chemical USA: Threegeneration Reproduction Study with Dowco 290 in Albino Rats: IBT No. 623-03859. Unpublished study received July 30, 1979 under 464-EX-55; prepared by Industrial BioTest Laboratories, Inc., submitted by Dow Chemical USA, Mid land, MI; CDL:098875-A. MRID No. 00081593.

Hanley T; Berdasco N; Stebbins K; et al. 1990. Clopyralid: Oral Gavage Teratology Study in New Zealand White Rabbits: Lab Project Number: K-038252-039. Unpublished study prepared by The Dow Chemical Co. 392 p. MRID No. 41649801.

Hart ER; McConnell RF. 1975a. Final Report: 180-day Subacute Toxicity Study in Dogs: LBI Project No. 2508. Unpublished study received July 30, 1979 under 464-EX-55; prepared by Litton Bionetics, Inc., submitted by Dow Chemical USA, Midland, MI; CDL:098873-F. MRID No. 00081590.

Hart ER; McConnell RF. 1975b. Final Report: 180-day Subacute Toxicity Study in Dogs: LBI Project No. 2508. Unpublished study received November 12, 1980 under 464-563; prepared by Litton Bionetics, Inc., submitted by Dow Chemical USA, Midland, MI; CDL:099731-G. MRID No. 00061384.

Hinken C; Dingledine J; Jaber M. 1986. Lontrel 35A Herbicide Concentrate: An Acute Contact Toxicity Study with the Honey Bee: Project No.: 103-256. Unpublished study prepared by Wildlife International Ltd. 15 p. MRID No. 40151612.

Humiston CG; Jersey GC; Wade CE; et al. 1977. Dowco 290 (3,6-Dichloropicolinic Acid): Results of a Twoyear Chronic Toxicity and Oncogenicity Study in Rats by the Dietary Route. Unpublished study received November 12, 1980 under 464-563; submitted by Dow Chemical USA, Midland, MI; CDL:099732-B. MRID No. 00061376.

Humiston CG; Quast JF; Wade CE. 1976. Dowco 290 Herbicide (3,6-Dichloropicolinic Acid): Results of a Six-month Dietary Feeding Study in Beagle Dogs. Unpublished study received November 12, 1980 under 464-563; submitted by Dow Chemical USA, Midland, MI; CDL:099731-F. MRID No. 00061383.

Jeffery M. 1987a. Lontrel T Herbicidal Chemical (Penta Process): Dermal Sensitization Potential in the Hartley Albino Guinea Pig: Lab Project Number: K-038252-033E. Unpublished study prepared by Dow Chemical Co. 13 p. MRID No. 41641306.

Jeffery M. 1987b. Lontrel T Herbicidal Chemical (Penta Process): Primary Dermal Irritation Study in New Zealand White Rabbits: Lab Project Number: K-38252-033B. Unpublished study prepared by Dow Chemical Co. 12 p. MRID No. 41641305.

Jeffrey M; Schuetz D; Johnson K. 1987b. Lontrel T Herbicidal Chemical (Penta Process): Acute Oral Toxicity Study in Fischer 344 Rats: Lab Project Number: K-038252-033A. Unpublished study prepared by The Dow Chemical Co. 15 p. MRID No. 41641301.

Jersey G; Mensik B; Rachunek B; et al. 1982. Dowco 290 Herbicide: Interim Report on First Generation of a Two-generation Dietary Reproduction Study in Fischer-344 Rats. Unpublished study received April 7, 1983 under 464-563; submitted by Dow Chemical USA, Midland, MI; CDL:071510-C. MRID No. 0127277.

John J; Hayes W; Cobel-Geard S; et al. 1981. Dowco 290: Oral Teratology Study in Fischer- 344 Rats. Unpublished study received April 7, 1983 under 464-563; submitted by Dow Chemical USA, Midland, MI; CDL:071510-E. MRID No. 00127279.

McCall PJ; Jeffries TK; Swann RL; et al. 1979. Effect of 3,6-Dichloropicolinic acid on Soil Microorganisms: GH-C 1260. Unpublished study received November 12, 1980 under 464-563; submitted by Dow Chemical USA, Midland, MI; CDL:099727-B. MRID No. 00059960.

McCollister S; Eisenbrandt D; Cieszlak F; et al. 1983. Dowco 290: Results of a 13-week Dietary Toxicity Study in B6C3F1 Mice. Unpublished study received April 7, 1983 under 464-563; submitted by Dow Chemical USA, Midland, MI; CDL:071510-B. MRID No. 00127276.

Olson KJ; Humiston CG; Wade CE; et al. 1973. Dowco[®]) 290--Pesticide Results of a 90-day Dietary Feeding Study in Rats. Unpublished study received November 12, 1980 under 464-563; submitted by Dow Chemical USA, Midland, MI; CDL:099731-E. MRID No. 00061382.

Olszyk, D., Pfleeger, T., Lee, H., Plocher, M. 2009. Pea (Pisum Sativum) Seed Production as an Assay for Reproductive Effects Due to Herbicides. Environmental Toxicology and Chemistry, 28 (9), pages 1920-1929.

Rampy LW; Keeler PA; Jersey GC. 1973. Toxicological Properties and Industrial Handling Hazards of: 3,6-Dichloropicolinic Acid: File NBT35.12-38252-2. Unpublished study received November 12, 1980 under 464-563; submitted by Dow Chemical USA, Mid land, MI; CDL:099731-D. MRID No. 00061381.

Rampy LW; Keeler PA; Jersey GC. 1973. Toxicological Properties and Industrial Handling Hazards of: 3,6-Dichloropicolinic Acid: File NBT35.12-38252-2. Unpublished study received November 12, 1980 under 464-563; submitted by Dow Chemical USA, Mid land, MI; CDL:099731-D. MRID No. 00061381.

Saunders J; Carreon R; Johnson K; et al. 1983. Lontrel T: Acute Toxicological Properties and Industrial Handling Hazards. Unpublished study received April 7, 1983 under 464-563; submitted by Dow Chemical USA, Midland, MI; CDL:071510-A. MRID No. 00127275.

Smith FA; Schwetz BA; Nitschke KD; et al. 1960. The Effect of Dowco[®]) 290 (3,6-Dichloropicolinic Acid) on the Developing Embryo and Fetus of Pregnant Rabbits. Unpublished study received July 30, 1979 under 464-EX-55; submitted by Dow Chemical USA, Midland, MI; CDL:098873-G. MRID No. 00081591.

Smith FA; Schwetz BA; Nitschke KD; et al. 1974. The Effect of Dowco[®]) 290 (3,6-Dichloropicolinic acid) on the Developing Embryo and Fetus of Pregnant Rabbits: File HET K 038252-(7). Unpublished study

received November 12, 1980 under 464-563; submitted by Dow Chemical USA, Midland, MI; CDL: 099732-A. MRID No. 00061375.

USEPA (United States Environmental Protection Agency). 1973a. 14-day Toxicity Test with *Colinus virginianus* Exposed via Diet. Data Evaluation Report reviewed by R. Matheny, U.S. Environmental Protection Agency. Date Reviewed 1979. MRID ACC236656.

USEPA (United States Environmental Protection Agency). 1973b. 14-day Toxicity Test with *Anas platyrhynchos* Exposed via Diet. Data Evaluation Report reviewed by R. Matheny, U.S. Environmental Protection Agency. Date Reviewed 1979. MRID ACC236656.

USEPA (United States Environmental Protection Agency). 1974a. 48-hour Acute Contact Toxicity Test with *Apis mellifera*. Evaluation Report reviewed by A. Vaughan, U.S. Environmental Protection Agency. Date Reviewed 1979. MRID ACC236656.

USEPA (United States Environmental Protection Agency). 1974b. 48-hour Acute Contact Toxicity Test with *Apis mellifera*. Evaluation Report reviewed by A. Vaughan, U.S. Environmental Protection Agency. Date Reviewed 1979. MRID ACC236656.

USEPA (United States Environmental Protection Agency). 1978a. 96-hour Static Acute Toxicity Test with *Lepomis macrochirus*. Evaluation Report reviewed by R. Matheny, U.S. Environmental Protection Agency. Date Reviewed 1979. MRID ACC236656.

USEPA (United States Environmental Protection Agency). 1978b. 96-hour Static Acute Toxicity Test with *Oncorhynchus mykiss*. Evaluation Report reviewed by R. Matheny U.S. Environmental Protection Agency. Date Reviewed 1979. MRID ACC236656.

USEPA (United States Environmental Protection Agency). 1980a. 14-day Toxicity Test with *Anas platyrhynchos* Exposed Orally. Data Evaluation Report reviewed by A. Yamhure, U.S. Environmental Protection Agency. Date Reviewed 1980. MRID not reported.

USEPA (United States Environmental Protection Agency). 1980b. 48-hour Static Acute Toxicity Test with *Daphnia magna*. Evaluation Report reviewed by A. Yamhure, U.S. Environmental Protection Agency. Date Reviewed 1980. MRID not reported.

USEPA (United States Environmental Protection Agency). 1985. 20-week Toxicity Test with *Anas platyrhynchos* Exposed Orally. Data Evaluation Report reviewed by N. Mastrota, U.S. Environmental Protection Agency. Date Reviewed 1998. MRID 00156001.

USEPA (United States Environmental Protection Agency). 1986a. 96-hour Static Acute Toxicity Test with *Lepomis macrochirus*. Evaluation Report reviewed by H. Craven, U.S. Environmental Protection Agency. Date Reviewed 1989. MRID 40151608.

USEPA (United States Environmental Protection Agency). 1986b. 96-hour Static Acute Toxicity Test with *Oncorhynchus mykiss*. Evaluation Report reviewed by H. Craven, U.S. Environmental Protection Agency. Date Reviewed 1988. MRID 40151608.

USEPA (United States Environmental Protection Agency). 1986c. 96-hour Static Acute Toxicity Test with *Pimephales promelas.* Evaluation Report reviewed by H. Craven, U.S. Environmental Protection Agency. Date Reviewed 1989. MRID 40151608.

USEPA (United States Environmental Protection Agency). 1986d. 20-week Toxicity Test with *Anas platyrhynchos* Exposed Orally. Data Evaluation Report reviewed by H. Craven, U.S. Environmental Protection Agency. Date Reviewed 1989. MRID 40151609.

USEPA (United States Environmental Protection Agency). 1986e. 8-day Toxicity Test with *Anas platyrhynchos* Exposed via Diet. Data Evaluation Report reviewed by H. Craven, U.S. Environmental Protection Agency. Date Reviewed 1989. MRID 40151610.

USEPA (United States Environmental Protection Agency). 1986f. 8-day Toxicity Test with *Colinus virginianus* Exposed via Diet. Data Evaluation Report reviewed by H. Craven, U.S. Environmental Protection Agency. Date Reviewed 1989. MRID 40151611.

USEPA (United States Environmental Protection Agency). 1986g. 48-hour Static Acute Toxicity Test with *Daphnia magna*. Evaluation Report reviewed by H. Craven, U.S. Environmental Protection Agency. Date Reviewed 1988. MRID 40181608.

USEPA (United States Environmental Protection Agency). 1987. Multi-species Toxicity Tests with Plants Exposed via Soil and Direct Spray. Evaluation Report reviewed by K. Clark, U.S. Environmental Protection Agency. Date Reviewed 1987. MRID 40081401.

USEPA (United States Environmental Protection Agency). 2002. Pesticide tolerances for clopyralid. Federal Register. 87 (186): 60152-60161. Available at www.epa.gov/fedrgstr/EPAPEST/2002/September/Day-25/p.24232.htm.

Vedula U; Stebbins K; Stott W. 1990. Clopyralid: Probe and 21-day Dermal Toxicity Study in New Zealand White Rabbits: Lab Project Number: K-038252-044. Unpublished study prepared by The Dow Chemical Co. 164 p. MRID No. 41790701.

Weseloh J. 1987. A Summary of Three Greenhouse Trials To Determine the Effects of Clopyralid, 3,6-Dichloro-2-pyridinecarboxylic Acid, on Seed Germination, Seedling Emergence, and Vegetative Vigor of Six Dicotyledonae and Four Monocotyledonae Crop Cultivars. Unpublished study prepared by Dow Chemical USA. 158 pp. MRID No. 40081401.

West B; Willigan DA. 1976. 18-Month Mouse Oncology Study: Laboratory Reference No. A-896. Final report. Unpublished study received November 12, 1980 under 464-563; prepared by Biometric Testing, Inc. and others, submitted by Dow Chemical USA, Midland, MI; CDL:099732-C. MRID No. 00061377.

West B; Willigan DA; Stein. 1976. 18-month Mouse Oncology Study: Laboratory Reference No. A-896. Final report. Unpublished study received July 30, 1979 under 464-EX-55; prepared by Biometric Testing, Inc. in cooperation with Microscopy for Biological Research, Ltd., submitted by Dow Chemical USA, Mid land, MI; CDL:098874-B. MRID No. 00081592. Young J; Barna-Lloyd T; Davis N. 1986. Dowco 290: 2-Year Dietary Chronic Toxicityoncogenicity Study in Mice: [Including Interim Report, Histopathology Data and Individual Animal Data]: [Final Report]: Report No. TXT:K-038252-24. Unpublished study prepared by Dow Chemical Co., Lake Jackson Re. MRID No. 00157783.

APPENDIX B – SUMMARY OF AVAILABLE AND RELEVANT TOXICITY DATA FOR CLOPYRALID

 $\begin{array}{c} \mbox{Appendix B.2-Spreadsheet of Toxicity Data for} \\ \mbox{Clopyralid TRV} \end{array}$

Formulation	% purity	General Taxonomic Group	Common Name	Scientific Name	Age	Test Type	Means of Exposure	Exposure duration	Test duration	Biological Endpoint	Statistical Endpoint	Toxicity Value (tested product) ¹	Units	Toxicity Value (a.e.) ¹	Units	Lab	MRID Number	Dat
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Soybean	Glycine max	Seedling	Seedling emergence - phytotoxicity	Soil	14 d	14 d	Germination	EC50	NR		0.0100	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Soybean	Glycine max	Seedling	Seedling emergence phytotoxicity	Soil	14 d	14 d	Germination	NOEL	NR		0.0017	lbs a.e./acre	Midland Field Research Station, DOW Chemical		1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Sunflower	Helianthus annus	Seedling	Seedling emergence - phytotoxicity	Soil	14 d	14 d	Germination	EC50	NR		> 0.0415	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Sunflower	Helianthus annus	Seedling	Seedling emergence phytotoxicity	Soil	14 d	14 d	Germination	NOEL	NR		0.0415	lbs a.e./acre	Midland Field Research Station, DOW Chemical		1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Tomato	Lycopersicon esculentum	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	EC50	NR		0.0079	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Tomato	Lycopersicon esculentum	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	NOEL	NR		0.0007	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Soybean	Glycine max	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	EC50	NR		0.0145	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Soybean	Glycine max	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	NOEL	NR		0.0007	lbs a.e./acre	Midland Field Research Station, DOW Chemical		1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Wheat	Triticum aestivum	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	EC50	NR		> 0.0659	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Wheat	Triticum aestivum	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	NOEL	NR		0.0659	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Onion	Allium cepa	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	EC50	NR		> 0.0659	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Onion	Allium cepa	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	NOEL	NR		0.0659	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Sunflower	Helianthus annus	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	EC50	NR		0.0079	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Sunflower	Helianthus annus	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	NOEL	NR		0.0066	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Snapbean	Phaseolus sp.	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	EC50	NR		0.0097	lbs a.e./acre	Midland Field Research Station, DOW Chemical	40081401	1
Clopyralid, monoethanolamine salt	75 (a.i.)	Terrestrial Plant	Snapbean	Phaseolus sp.	Juvenile	Vegetative vigor - phytoxicity	Direct spray	42 d	42 d	Vegetative vigor	NOEL	NR		0.0007	lbs a.e./acre	Midland Field Research Station, DOW Chemical		1
Clopyralid, monoethanolamine salt (DOWCO 290)	Tech	Insect	Honey bee	Apis mellifera	Worker	Acute contact	Direct contact	48 hr	48 hr	Mortality	LD50	> 100	ug/bee	> 75.9	ug/bee	Dow Chemical Corporation Laboratories	ACC236656	1
Clopyralid, monoethanolamine salt	Tech	Insect	Honey bee	Apis mellifera	Worker	Oral	Direct contact	48 hr	48 hr	Mortality	LD50	> 100	ug/bee	> 75.9	ug/bee	Dow Chemical Corporation Laboratories	ACC236656	19
Clopyralid, monoethanolamine salt	35 (a.i.)	Bird	Mallard duck	Anas platyrhynchos	20 w	Oral	Oral	14 d	14 d	Mortality	LD50	> 2,000	mg/kg bw	> 1,518	mg/kg bw	Wildlife International Inc., MD	40151609	1
Clopyralid, monoethanolamine salt	35 (a.i.)	Bird	Mallard duck	Anas platyrhynchos	20 w	Oral	Oral	14 d	14 d		NOEL	1,200	mg/kg b.w.	. > 911	mg/kg bw	Wildlife International Inc., MD	40151609	1
Clopyralid, monoethanolamine salt (DOWCO 290)	95 (a.i.)	Bird	Mallard duck	Anas platyrhynchos	Not reported	Oral	Single gavage	14 d	14 d	Mortality	LD50	1,465	mg/kg bw	1,112	mg/kg bw	Wildlife International Inc. MD	' NR	1
Clopyralid, monoethanolamine salt (DOWCO 290)	95 (a.i.)	Bird	Mallard duck	Anas platyrhynchos	Not reported	Oral	Single gavage	14 d	14 d		NOEL	631	mg/kg b.w.	. 479	mg/kg bw	Wildlife International Inc., MD	NR	1
Clopyralid, monoethanolamine salt	35 (a.i.)	Bird	Bobwhite quail	Colinus virginianus	10 d	Diet	Dietary	5 d	8 d	Mortality	LC50	> 5,620	ppm	4,265 [12,878]	ppm [mg/kg bw]	Wildlife International Inc., MD	40151611	1
Clopyralid, monoethanolamine salt	35 (a.i.)	Bird	Bobwhite quail	Colinus virginianus	10 d	Diet	Dietary	5 d	8 d		NOEL	5,620	ppm	4,265 [2,576]	ppm [mg/kg bw/d]	Wildlife International Inc., MD	40151611	1
Clopyralid, monoethanolamine salt (DOWCO 290)	100 (a.i.)	Bird	Bobwhite quail	Colinus virginianus	14 d	Diet	Dietary	5 d	8 d	Mortality	LC50	> 4,640	ррт	> 3,521 [10,632]	ppm [mg/kg bw]	Truslo Farm Inc.	ACC236656	1
Clopyralid, monoethanolamine salt	35 (a.i.)	Bird	Mallard duck	Anas platyrhynchos	10 d	Diet	Dietary	5 d	8 d	Mortality	LC50	> 5,620	ppm	> 4,265 [2,133]	ppm [mg/kg bw]	Wildlife International Inc., MD	40151610	1

Data Source ²	EPA Reviewer	Date Reviewed	Used for TRV derivation
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987-	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1987 ^{3,4,5}	Ken Clark	1987	Supplemental
1974a ^{3,4}	A. Vaughan	1979	Yes
1974b ^{3,4,5}	A. Vaughan	1979	Supplemental
1986d ^{3,4}	H. Craven (KBN)	1989	Yes
1986d ^{3,4}	H. Craven (KBN)	1989	Yes
1980a ^{3,4}	A. Yamhure	1980	Yes
1980a ^{3,4}	A. Yamhure	1980	Yes
1986f ^{3,4}	H. Craven (KBN)	1989	Yes
1986f ^{3,4}	H. Craven (KBN)	1989	Yes
1973a ^{3,4}	R. Matheny	1979	Yes
1986e ^{3,4}	H. Craven (KBN)	1989	Yes

StatisticalToxicity ValueEndpoint(tested product)1 Toxicity Value (a.e.)¹ Means of Exposure Exposure Test duration Biological Endpoint Formulation % purity General Taxonomic Group Common Name Scientific Name Age Test Type Units Units Lab MRID Number ppm [mg/kg Wildlife International Inc., bw/d] MD Clopyralid, 4,265 35 (a.i.) Bird Mallard duck Anas platyrhynchos 10 d Diet Dietary 5 d 8 d NOEL 5,620 40151610 ppm monoethanolamine salt [426.5] Clopyralid, > 3,521 [1,761] monoethanolamine salt 100 (a.i.) Bird Mallard duck Anas platyrhynchos 14 d Diet Dietary 5 d 8 d Mortality LC50 > 4,640 ppm ppm [mg/kg bw] Truslo Farm Inc. ACC236656 (DOWCO 290) Clopyralid, Wildlife International Inc., ppm [mg/kg > 1,000 96.7 (a.i.) Bird Mallard duck Anas platyrhynchos Early life Oral $20 \mathrm{w}$ $20 \mathrm{w}$ Reproduction LOEL > 759 [75.9] 00156001 Reproductive ppm monoethanolamine salt bw/d1 MD (Lontrel) Clopyralid, monoethanolamine salt 96.7 (a.i.) (Lontrel) ppm [mg/kg Wildlife International Inc., bw/d] MD 759 [75.9] Bird Mallard duck Anas platyrhynchos Oral 20 w 20 w Reproduction NOEL 1,000 00156001 Early life Reproductive ppm Clopyralid, Dow Chemical Corporation 100 (a.i.) Fish Bluegill sunfish Not reported Water 96 hr 96 hr Mortality LC50 125 95 ACC236656 monoethanolamine salt Lepomis macrochirus Static ppm ppm Laboratories (DOWCO 290) Dow Chemical Corporation Clopyralid, LC50 3556 35 (a.i.) Fish Bluegill sunfish 0.1 g Static Water 96 hr 96 hr Mortality 4686 40151608 Lepomis macrochirus ppm ppm monoethanolamine salt Laboratories Clopyralid, Dow Chemical Corporation 2277 35 (a.i.) Fish Bluegill sunfish 0.1 g Water 96 hr 96 hr NOEL 3000 40151608 Lepomis macrochirus Static ppm ppm monoethanolamine salt Laboratories Clopyralid, monoethanolamine salt (DOWCO 290) Dow Chemical 100 (a.i.) Fish **Oncorhynchus** mykiss Not reported Static Water 96 hr 96 hr Mortality LC50 103.5 79 ACC236656 Rainbow trout ppm ppm Corporation Laboratories Clopyralid, nonoethanolamine salt Dow Chemical 100 (a.i.) Fish 96 hr 96 hr NOEL 61 ACC236656 Oncorhynchus mykiss Not reported Static Water 80 Rainbow trout ppm ppm Corporation Laboratories (DOWCO 290) Clopyralid, Dow Chemical Corporation 1494 35 (a.i.) Fish Oncorhynchus mykiss 0.25 g Static Water 96 hr 96 hr Mortality LC50 1968 ppm 40151608 Rainbow trout ppm monoethanolamine salt Laboratories Dow Chemical Corporation Clopyralid, 35 (a.i.) Fish Oncorhynchus mykiss 0.25 g Static Water 96 hr 96 hr NOEL 389 295 40151608 Rainbow trout ppm ppm monoethanolamine salt Laboratories Clopyralid, <24 hr EC50 350 NR 35 Water flea Static Water 96 hr 96 hr Aquatic invertebrate Daphnia magna ppm monoethanolamine salt Clopyralid, monoethanolamine salt <24 hr NR NR NOEC 23.1 NR 35 Aquatic invertebrate Water flea Daphnia magna Static Water Reproduction ppm Clopyralid, Dow Chemical Corporation 35 (a.i.) Water flea <24 hr Static Water 48 hr 48 hr EC50 1133 860 40181608 Aquatic invertebrate Daphnia magna ppm ppm monoethanolamine salt Laboratories Clopyralid, Dow Chemical Corporation NOEL 376 285 35 (a.i.) Water flea <24 hr Static Water 48 hr 48 hr 40181608 Daphnia magna ppm ppm Aquatic invertebrate monoethanolamine salt Laboratories Clopyralid, Dow Chemical Corporation 2201 35 (a.i.) Fish 0.2 g 96 hr Mortality LC50 40151608 Fathead minnow Pimephales promelas Static Water 96 hr > 2900 ppm ppm monoethanolamine salt Laboratories Clopyralid, monoethanolamine salt Dow Chemical Corporation 35 (a.i.) Fish Pimephales promelas 0.2 g Static Water 96 hr 96 hr NOEL 2900 2201 40151608 Fathead minnow ppm ppm Laboratories Clopyralid, nonoethanolamine salt (DOWCO 290) Dow Chemical 171 95 (a.i.) <24 hr Water 48 hr EC50 225 NR Water flea Static 48 hr ppm Aquatic invertebrate Daphnia magna ppm Corporation Laboratories Clopyralid, Dow Chemical Corporation NR 48 hr 48 hr NOEL 100 76 monoethanolamine salt 95 (a.i.) Aquatic invertebrate Water flea Daphnia magna <24 hr Static Water ppm ppm Laboratories (DOWCO 290) Clopyralid salt 95% a.i. free acid Fish Rainbow trout Oncorhynchus mykiss Static acute 96 hr 96 hr mortality LC5 448 mg free acid/L NR water post-swim-up 95% a.i. free acid LC10 NR Clopyralid salt Fish Rainbow trout Static acute 96 hr 96 hr mortality 476 mg free acid/L water Oncorhynchus mykiss post-swim-up 95% a.i. free acid Fish 96 hr LC20 532 mg free acid/L NR Clopyralid salt Rainbow trout Oncorhynchus mykiss post-swim-up Static acute water 96 hr mortality Clopyralid salt 95% a.i. free acid Fish Rainbow trout Oncorhynchus mykiss Static acute 96 hr 96 hr mortality LC50 700 mg free acid/L 700 mg/I NR water post-swim-up 95% a.i. free acid LC1 Clopyralid salt Fish Rainbow trout Chronic mortality 0.8 mg free acid/L NR Oncorhynchus mykiss water post-swim-up 95% a.i. free acid Fish Static acute LC5 NR Clopyralid salt Bull trout Salvelinus confluentus post-swim-up water 96 hr 96 hr mortality 458 mg free acid/L Clopyralid salt 95% a.i. free acid Fish Bull trout Salvelinus confluentus post-swim-up Static acute water 96 hr 96 hr mortality LC10 496 mg free acid/L NR

Data Source ²	EPA Reviewer	Date Reviewed	Used for TRV derivation
1986e ^{3,4}	H. Craven (KBN)	1989	Yes
1973b ^{3,4}	R. Matheny	1979	Yes
1985 ^{3,4}	N. Mastrota	1998	Yes
1985 ^{3,4}	N. Mastrota	1998	Yes
1978a ^{3,4}	R. Matheny	1979	Yes
1986a ^{3,4}	H. Craven (KBN)	1989	Yes
1986a ^{3,4}	H. Craven (KBN)	1989	Yes
1978b ^{3,4}	R. Matheny	1979	Yes
1978b ^{3,4}	R. Matheny	1979	Yes
1986b ^{3,4}	H. Craven (KBN)	1988	Yes
1986b ^{3,4}	H. Craven (KBN)	1988	Yes
DowAgroSciences 1998			Yes
DowAgroSciences 1998			Yes
1986g ^{3,4}	H. Craven (KBN)	1988	Yes
1986g ^{3,4}	H. Craven (KBN)	1988	Yes
1986c ^{3,4}	H. Craven (KBN)	1989	Yes
1986c ^{3,4}	H. Craven (KBN)	1989	Yes
1980b ^{3,4}	A. Yamhure	1980	Yes
1980b ^{3,4}	A. Yamhure	1980	Yes
Fairchild et al 2007			Yes
Fairchild et al 2007			Yes
Fairchild et al 2007			Yes
Fairchild et al 2007			Yes
Fairchild et al 2007			Yes
Fairchild et al 2007			Yes
Fairchild et al 2007			Yes

Formulation	% purity	General Taxonomic Group	Common Name	Scientific Name	Age	Test Type	Means of Exposure	Exposure duration	Test duration	Biological Endpoint	Statistical Endpoint	Toxicity Value (tested product) ¹	Units	Toxicity Value (a.e.) ¹	Units	Lab	MRID Number	Data Source ²	EPA Reviewer Date Reviewee	d Used for TRV derivation
Clopyralid salt	95% a.i. free acid	Fish	Bull trout	Salvelinus confluentus	post-swim-up	Static acute	water	96 hr	96 hr	mortality	LC20	582	mg free acid/L				NR	Fairchild et al 2007		Yes
Clopyralid salt	95% a.i. free acid	Fish	Bull trout	Salvelinus confluentus	post-swim-up	Static acute	water	96 hr	96 hr	mortality	LC50	802	mg free acid/L	802	mg/L		NR	Fairchild et al 2007		Yes
Clopyralid salt	95% a.i. free acid	Fish	Bull trout	Salvelinus confluentus	post-swim-up	Chronic	water			mortality	LC1	4.9	mg free acid/L				NR	Fairchild et al 2007		Yes
Clopyralid, monoethanolamine salt	35%	Insect	Honey bee	Apis mellifera	1-7 d	Acute		48 hr	48 hr	Mortality	LD50	> 100	ug/bee	> 100	ug/bee		40151612, 00081595, 00059971	Hinken et al 1986; Cole 1974a,b		Yes
DOWCO 290	96.9%		Terrestrial microorganism			Acute					NOEC			10	ppm		NR	McCall et al 1979		No
3,6-dichloropicolinic acid (DOWCO 290)		Fish	Rainbow trout	Salmo gairdneri Richardson		Acute	Water	96 hr	96 hr	Mortality	LC50	103	mg/L	103	mg/L		NR	Dow Chemical 1980		Yes
Monoethanolamine salt		Aquatic plant	Green algae	Selenastrum capricornutum		Acute	Water	96 hr		Growth, cell count	EC50			6.9	mg/L		NR	Dill and Milazzo 1985		Yes
Monoethanolamine salt		Mammal	Rat	Fischer 344 Rat	During gestation	Acute	Gavage	11 d		Developmental toxicity	NOAEL			75	mg/kg bw/d		NR	USEPA 2002		Yes
Monoethanolamine salt		Fish	Bluegill sunfish	Lepomis macrochirus		Acute	Water	96 hr	96 hr	Mortality	LC50	4700	mg/L	1645	mg/L		NR	Dow AgroSciences 1998		Yes
Clopyralid		Duckweed						14 d		Growth	EC50			89	mg/L		NR	DowAgroSciences 1998		
Monoethanolamine salt		Aquatic plant	Green algae Pondweed	NOS Potamogeton pectinatus		Acute	Water	72 hr		Not reported	EC50			449	mg/L		NR	DowAgroSciences 1998		Yes
Monoethanolamine salt		Aquatic plant	Common Water Milfoil	Myriophyllum sibiricum		Acute	Water	12 hr	12 hr	Growth	NOAEL			0.1	mg/L		NR	Forsyth et al. 1997		Yes
XRM-3972 (Lontrel 360)		Mammal	Rat	Fischer 344 Rat		Acute	Oral		2 w	Mortality	LD50			> 5,000	mg/kg bw		00147690	Carreon and New 1981		Yes
Clopyralid, penta process	750	Mammal	Rat Soybean, snap bean, tomato,	Fischer 344 Rat		Acute	Oral		42.4	Mortality	LD50			> 5,000	mg/kg bw		NR	DowAgroSciences 1998		Yes
potassium salt potassium salt	75%	Terrestrial plant Terrestrial plant	sunflower Barley, corn, radish, canola			Foliar exposure Foliar exposure	Direct spray Direct spray		42 d 42 d	Vegetative vigor Vegetative vigor	NOEC			0.0005	lb/acre lb/acre		NR	Weseloh 1987 Weseloh 1987		Yes
Clopyralid salt	40.9% a.i.	Terrestrial plant	pea	Pisum sativum	14-21 DAE	foliar exposure	direct spray	~14 d	~14 d	growth-seed dry weight	NOEC	NR		0.0	10/10/0		NR	Olszyk et al 2009		Yes
Clopyralid salt	40.9% a.i.	Terrestrial plant	pea	Pisum sativum	14-21 DAE	foliar exposure	direct spray	~14 d	~14 d	growth-stem dry weight	NOEC	NR		> 0.025	lbs a.e./acre		NR	Olszyk et al 2009		Yes
Clopyralid salt	40.9% a.i.	Terrestrial plant	pea	Pisum sativum	14-21 DAE	foliar exposure	direct spray	~14 d	~14 d	growth-stem dry weight	NOEC	NR		> 0.025	lbs a.e./acre		NR	Olszyk et al 2009		Yes
Clopyralid salt	40.9% a.i.	Terrestrial plant	pea	Pisum sativum	14-21 DAE	foliar exposure	direct spray	~14 d	~14 d	stem height	NOEC	NR		> 0.025	lbs a.e./acre		NR	Olszyk et al 2009		Yes
Clopyralid salt	40.9% a.i.	Terrestrial plant	pea	Pisum sativum	14-21 DAE	foliar exposure	direct spray	~14 d	~14 d	healthy leaf area	NOEC	NR		> 0.025	lbs a.e./acre		NR	Olszyk et al 2009		Yes
Clopyralid salt	40.9% a.i.	Terrestrial plant	Pea	Pisum sativum	14-21 DAE	foliar exposure	direct spray	~14 d	~14 d	growth-seed dry weight	EC25	NR		0.0027	lbs a.e./acre		NR	Olszyk et al 2009		Yes
Clopyralid salt	40.9% a.i.	Terrestrial plant	pea	Pisum sativum	14-21 DAE	foliar exposure	direct spray	~14 d	~14 d	growth-stem dry weight	EC25	NR		0.017	lbs a.e./acre		NR	Olszyk et al 2009		Yes
Clopyralid salt	40.9% a.i.	Terrestrial plant	pea	Pisum sativum	14-21 DAE	foliar exposure	direct spray	~14 d	~14 d	healthy leaf area	EC25	NR		0.015	lbs a.e./acre		NR	Olszyk et al 2009		Yes
potassium salt	75%	Terrestrial plant	Soybean		Seed	Soil exposure	Pre-emergence spray		14 d	Seedling emergence	NOEC			0.025	lb/acre		NR	Weseloh 1987		Yes
potassium salt	75%	Terrestrial plant	Sunflower		Seed	Soil exposure	Pre-emergence spray		14 d	Seedling emergence	NOEC			0.5	lb/acre		NR	Weseloh 1987		Yes

Formulation	% purity	General Taxonomic Group	Common Name	Scientific Name	Age	Test Type	Means of Exposure	Exposure duration	Test duration	Biological Endpoint	Statistical Endpoint	Toxicity Value (tested product) ¹	Units Toxicity Value (a.e.) ¹	Units	Lab	MRID Number	Data Source ²	EPA Reviewer Date Reviewed	Used for TRV derivation
Clopyralid, electrochemical process		Mammal	Rat	Fischer 344 Rat		Acute	Oral			Mortality	LD50 [m]		3,738	mg/kg bw		NR	DowAgroSciences 1998		Yes
Clopyralid, electrochemical process		Mammal	Rat	Fischer 344 Rat		Acute	Oral			Mortality	LD50 [f]		2,675	mg/kg bw		NR	DowAgroSciences 1998		Yes
Lontrel T	95%	Mammal	Rat	Fischer 344 Rat		Acute	Single gavage		14 d	Mortality	LD50		> 5,000	mg/kg		41641301	Jeffrey et al. 1987b		Yes
DOWCO 290	99%	Mammal	Rat			Acute	Oral			Mortality	LD50 [m]		> 5,000	mg/kg bw		00061381	Rampy et al. 1973		Yes
DOWCO 290	99%	Mammal	Rat			Acute	Oral			Mortality	LD50 [f]		4,300	mg/kg bw		00061381	Rampy et al. 1973		Yes
DOWCO 290		Mammal	Rat	Fischer 344 Rat		Acute	Oral		2 w	Mortality	LD50		> 5,000	mg/kg bw		00127275	Saunders et al. 1983		Yes
DOWCO 290		Mammal	Rat	Fischer 344 Rat		Acute	Oral		14 d	Mortality	NOEL		2,500	mg/kg		00127275	Saunders et al. 1983		Yes
Clopyralid		Mammal	Rat	Fischer 344 Rat		Chronic	Dietary		2 gen	Reproduction	LOEL		1,500	mg/kg bw/d		00138155	Dietz et al. 1983		Yes
Clopyralid		Mammal	Rat			Chronic	Dietary		3 gen	Reproduction	NOEL		50	mg/kg bw/d		00081593, 00028862	Gorsline et al 1975a,b		Yes
Clopyralid		Mammal	Rabbit	New Zealand white	6-7 mo.	Acute	Gavage	gestation days 7-19		Reproduction	NOEL		110	mg/kg		41649801	Hanley et al 1990		Yes
Clopyralid		Mammal	Rabbit	New Zealand white	6-7 mo.	Acute	Gavage	gestation days 7-19		Reproduction	LOEL		250	mg/kg bw/d		41649801	Hanley et al 1990		Yes
Clopyralid		Mammal	Rat	Fischer 344 Rat		Chronic	Dietary		2 gen	Reproduction	LOAEL		1,500	mg/kg bw/d		00127277	Jersey et al. 1982		Yes
Clopyralid		Mammal	Rat	Fischer 344 Rat		Chronic	Dietary		2 gen	Reproduction	NOAEL		500	mg/kg bw/d		00127277	Jersey et al. 1982		Yes
Clopyralid		Mammal	Rat	Fischer 344 Rat		Acute	Gavage	gestation days 6-15		Reproduction	NOAEL		75	mg/kg bw/d		00127279	John et al 1981		Yes
Clopyralid		Mammal	Rat	Fischer 344 Rat		Acute	Gavage	gestation days 6-15		Reproduction	LOAEL		250	mg/kg bw/d		00127279	John et al 1981		Yes
Clopyralid		Mammal	Rabbit	New Zealand white		Acute	Gavage	gestation days 6-18		Reproduction	NOAEL		250	mg/kg bw/d		00081591	Smith et al. 1960		Yes
Clopyralid	96%	Mammal	Rabbit	New Zealand white		Acute	Gavage	gestation days 6-18		Reproduction	NOAEL		250	mg/kg bw/d		00061375	Smith et al. 1974		Yes
Clopyralid		Mammal	Mouse	Swiss albino		Chronic	Dietary	18 mo		Reproduction	NOAEL		350 [64.2]	ppm [mg/kg bw/d]		00081592	West et al. 1976		Yes
Clopyralid		Mammal	Rat	Fischer 344 Rat		Subchronic	Dietary	90 d		Growth	LOAEL		2,500	mg/kg bw/d		NR	Dow AgroSciences 1998		Yes
Clopyralid		Mammal	Dog	Beagle		Subchronic	Dietary	6 mo.		Not reported	NOAEL		150	mg/kg bw/d		00081590, 00061384	Hart and McConnell 1975a,b		Yes
Clopyralid		Mammal	Dog	Beagle		Subchronic	Dietary	6 mo.		Liver weight [females]	LOAEL		150	mg/kg bw/d		00061383	Humiston et al. 1976		Yes
Clopyralid		Mammal	Rat	Sprague-Dawley		Chronic	Dietary	2 у		Growth	LOAEL [f]		150	mg/kg bw/d		00061376	Humiston et al. 1977		Yes
Clopyralid		Mammal	Rat	Sprague-Dawley		Chronic	Dietary	2 у		Growth	NOAEL		50	mg/kg bw/d		00061376	Humiston et al. 1977		Yes
Clopyralid		Mammal	Mouse	B6C3F1		Subchronic	Dietary	13 w		Growth	LOAEL		5,000	mg/kg bw/d		00127276	McCollister at al. 1983		Yes
Clopyralid		Mammal	Mouse	B6C3F1		Subchronic	Dietary	13 w		Growth	NOAEL [f]		750	mg/kg bw/d		00127276	McCollister at al. 1983		Yes
Clopyralid		Mammal	Mouse	B6C3F1		Subchronic	Dietary	13 w		Growth	NOAEL [m]		2,000	mg/kg bw/d		00127276	McCollister at al. 1983		Yes

Formulation	% purity	General Taxonomic Group	Common Name	Scientific Name	Age	Test Type	Means of Exposure	Exposure duration	Test duration	Biological Endpoint	Statistical Endpoint	Toxicity Value (tested product) ¹	Units	Toxicity Value (a.e.) ¹	Units	Lab	MRID Number	Data Source ²	EPA Reviewer Date F	eviewed Used for TRV derivation
Clopyralid		Mammal	Rat	Fischer 344 Rat		Subchronic	Dietary	90 d		Mortailty, growth	NOAEL			150	mg/kg bw/d		00061382	Olson et al. 1973		Yes
Clopyralid		Mammal	Rat	Fischer 344 Rat		Chronic	Dietary	2 у		Skin effects	LOAEL			150	mg/kg bw/d		00162393	Barna-Lloyd et al. 1986		Yes
Clopyralid		Mammal	Dog	Beagle		Chronic	Dietary	12 mo		Growth	NOAEL			100	mg/kg bw/d		00158256	Breckenridge et al. 1984		Yes
Clopyralid		Mammal	Rat	Fischer 344 Rat		Chronic	Dietary	2 у		Growth	NOAEL			15	mg/kg bw/d		00162393	Barna-Lloyd et al. 1986		Yes
Clopyralid		Mammal	Mouse	Charles River		Chronic	Dietary	18 mo		Reproduction, growth, survival	NOAEL			350 [64.2]	ppm [mg/kg bw/d]		00061377	West and Willigan 1976		Yes
Clopyralid		Mammal	Mouse	B6C3F1		Chronic	Dietary	24 mo		Growth	LOAEL			2,000	mg/kg bw/d		00157783	Young et al. 1986		Yes
Clopyralid		Mammal	Rabbit	New Zealand white		Dermal	Direct contact	24 hr	2 w	Mortality	LD50			> 5,000	mg/kg bw		01476690	Carreon and New 1981		Yes
Clopyralid	96%	Mammal	Rabbit	New Zealand white		Dermal	Direct contact	24 hr	2 w	Mortality	NOAEL			5,000 [178]	mg/kg [mg/kg bw/d]		44114102	Gilbert 1995a		Yes
Clopyralid	96%	Mammal	Rabbit	New Zealand white		Dermal	Direct contact	4 hr	72 hr	Dermal irritation, growth	NOAEL			203	mg/kg bw		44114105	Gilbert 1995b		Yes
Clopyralid		Mammal	Rabbit	New Zealand white		Dermal	Direct contact	single dose	14 d	Mortality	LD50			> 2,000	mg/kg bw		40246301	Jeffrey 1987a		Yes
Clopyralid		Mammal	Rabbit	New Zealand white		Dermal	Direct contact	single dose		Dermal irritation	NOAEL			1,695	mg/kg bw		00127275	Jeffrey 1987b		Yes
Clopyralid		Mammal	Rabbit	New Zealand white		Dermal	Direct contact	4 hr	72 hr	Mortality	LD50			> 2,000	mg/kg bw		00127275	Saunders et al. 1983		Yes
Clopyralid		Mammal	Rabbit	New Zealand white		Dermal	Direct contact		21 d	Not reported	NOAEL			> 1,000	mg/kg bw/d		41790701	Vedula et al. 1990		Yes

Notes Boldface indicates study selected for derivation of toxicity reference value (TRV) used in risk assessment. If the USEPA had reviewed the study and classified the study as "acceptable", the study's findings were considered "acceptable" for development of TRVs. "Supplemental" studies were used to fill in gaps where "Core" studies were unavailable. ¹ Toxicity values relate the dose of a compound with a potentially adverse effect. Values are reported as they were presented in the reviewed source. ² See the bibliography of this ecological risk assessment (ERA) document, Appendix A of the associated literature review document, and source footnote for complete citations. ³ As cried in USEPA 2010.

⁴ No author listed.

⁵ Supplemental study. See 'Pesticide Ecological Effects Database Guidance Manual-Updated 10/26/05' (USEPA 2005). Supplemental studies were not used for TRV derivation.

Abbreviations	Endpoints	Durations
a.e acid equivalent	EC25 - 25% effect concentration	d - days
a.i active ingredient	EC ₅₀ - 50% effect concentration	gen - generations
bw - body weight	LC1 - 1% lethal concentration, 1% mortality	hr - hours
DAE - days after emergence	LC5 - 5% lethal concentration, 10% mortality	mo - months
EPA - Environmental Protection Agency	LC10 - 10% lethal concentration, 10% mortality	w - weeks
f - female	LC20 - 20% lethal concentration, 10% mortality	y - years
g - grams	LC ₅₀ - median lethal concentration, 50% mortality	
m - male	LD ₅₀ - median lethal dose, 50% mortality	
MRID - Master Record Identification Number	LOAEL - lowest observable adverse effect level	
NR - Not reported	LOEL - lowest observable effect level	
OZA - Ounce per acre	NOAEL - no observable adverse effect level	
ppb - parts per billion	NOEC - no observable effect concentration	
ppm - parts per million	NOEL - no observable effect level	

$\begin{array}{l} \mbox{Appendix } C-Ecological Risk Assessment \\ Worksheets \end{array}$

Table B-1: Direct spray of terrestrial receptors and exposure from indirect contact with

	Pollinating		
Parameter	Insect	Small Mammal	Units
Duration of Exposure (T)	24	_ ·	hours
Body weight (W)	0.000093	0.02	кд
Surface Areas (A): cm ² = 12.3 * BW(g)^0.65			
	2.63	86.21	cm ²
Application rates (R)			
Typical	0.25	0.25	mg/cm ²
Maximum	0.5	0.5	-
Amount deposited on 1/2 receptor (Amnt): 0.5 × .	A × R		
	0.003684792	0.120785517	mg
Maximum	0.007369584	0.241571035	0
Dose Estimate Assuming 100% Dermal Adsorpt	ion		
Absorbed Dose: Amnt × Prop ÷ W			
Typical	3.96E+01	6.04E+00	mg/kg bw
Maximum	7.92E+01	1.21E+01	
Dose Estimate Assuming First Order Dermal Ads	sorption		
First-order dermal absorption rates (k)			
Central estimate (ka)	0.34657359	0.34657359	hour ⁻¹
Proportion absorbed over period T (Prop): 1-exp	(-k T)		
Typical	0.014296816	0.014296816	unitless
Maximum	0.014296816	0.014296816	
Absorbed Dose: Amnt × Prop ÷ W			
Typical	5.66E-01	8.63E-02	ma/ka bw
Maximum	1.13E+00	1.73E-01	
Maximum			

RISK QUOTIENTS - Direct Spray	Toxicity Reference Value	Typical Application	Maximum Application
Small mammal - 100% absorption	5471	8.13E-04	1.63E-03
Pollinating insect - 100% absorption	1075	3.69E-02	7.37E-02
Small mammal - 1st order dermal adsorption	5471	1.16E-05	2.33E-05
Pollinating insect - 1st order dermal adsorption	1075	5.27E-04	1.05E-03

RISK QUOTIENTS - Indirect Contact *	Toxicity Reference Value	Typical Application	Maximum Application
Small mammal - 100% absorption	5471	8.13E-05	1.63E-04
Pollinating insect - 100% absorption	1075	3.69E-03	7.37E-03
Small mammal - 1st order dermal adsorption	5471	1.16E-06	2.33E-06
Pollinating insect - 1st order dermal adsorption	1075	5.27E-05	1.05E-04

Surface area calculation for mammals from Stahl, 1967 (presented in USEPA, 1993).

No surface area calculation identified for insects. Mammalian equation used as a surrogate.

Risk Quotient = Estimated Dose/Toxicity Reference Value

* Exposure from indirect contact assumed to be 1/10 of direct spray exposure

Table B-2: Consumption of contaminated berries by a small mammal - acute exposure scenario

Parameters/Assumptions	١	/alue	Units	Notes
Body Weight (W)		0.02	kg	
Food ingestion rate (dry weight)		0.0033641	kg dw/day	[1]
Food ingestion rate (wet weight, A)		0.014626644	kg ww/day	[2]
Application rates (R)				
	Typical	0.25	lb/acre	
	Maximum	0.5		
Residue rate - berries (rr)				
	Typical	1.5	mg/kg per lk	o/acre
	Maximum	7		
Concentration on berries (C): R × rr				
	Typical	0.375	mg/kg fruit	
	Maximum	3.5		
Dose estimates (D): C × A / W				
	Typical	2.74E-01	mg/kg bw	
	Maximum	2.56E+00		

RISK QUOTIENTS - Ingestion	Toxicity	Typical	Maximum
	Reference Value	Application	Application
Small mammal - acute exposure	5471	5.01E-05	4.68E-04

Risk Quotient = Estimated Dose/Toxicity Reference Value

[1] Calculated using algorithm developed by Nagy, 1987 for rodents; where

Food Ingestion Rate (g dw/day) = 0.621*(BW g)^0.564; converted into kg dw/day

[2] Assumes fruit is 77% water (USEPA, 1993; Table 4-2 - value for fruit pulp and skin)

Parameters/Assumptions	Value	Units
Duration of exposure (T)	90) days
Body Weight (W)	0.02	
Food ingestion rate (dry weight)	0.0033641	kg dw/day [1]
Food ingestion rate (wet weight, A)	0.014626644	kg ww/day [2]
Half life on vegetation (t50)		
Herbicide specific	2 2	2 days
Application rates (R)		
Typica	l 0.25	5 lb/acre
Maximun	า 0.5	5
Residue rate - berries (rr)		
Typica	l 1.5	5 mg/kg per lb/acre
Maximun	ז ד	7
Drift (Drift)		
Typica	l 1	unitless
Maximun	า 1	
Decay Coefficient (k): In(2)/t50		
Typica	0.34657359	∂ days ⁻¹
Maximun	n 0.34657359)
Initial concentration on berries (C0): R >	rr × Drift	
Typica	l 0.375	5 mg/kg fruit
Maximun	า 3.5	5
Concentration on berries at time T: C0 *	exp(-k*T)	
Typica	l 1.06581E-14	l mg/kg fruit
Maximun		
Time-weighted Average Concentration o		
Typica		
Maximun	n 0.112209614	ŀ
Proportion of Diet Contaminated (Prop)		
Typica		unitless
Maximun		
Dose estimates (D): CTWA × A × Prop / V		
Typica	l 0.008792411	mg/kg bw
Maximun	n 0.082062502	2

Table B-3: Consumption of contaminated fruit by a small mammal - chronic exposure scenario

RISK QUOTIENTS - Ingestion	Toxicity Reference Value	Typical Application	Maximum Application
Small mammal - chronic exposure	102	8.62E-05	8.05E-04

Risk Quotient = Estimated Dose/Toxicity Reference Value

[1] Calculated using algorithm developed by Nagy, 1987 for rodents; where

Food Ingestion Rate (g dw/day) = 0.621*(BW g)^0.564; converted into kg dw/day

[2] Assumes fruit is 77% water (USEPA, 1993; Table 4-2 - value for fruit pulp and skin)

Parameters/Assumptions		Value	Units	Notes
Body Weight (W)		70	kg	
Food ingestion rate (dry weight)		1.9211536	kg dw/day	[1]
Food ingestion rate (wet weight, A)		6.4038453	kg ww/day	[2]
Duration of exposure (D) Application rates (R)		1	day	
	Typical	0.25	lb/acre	
M	laximum	0.5		
Residue rate - grass (rr)				
	Typical	92	mg/kg per lb/acre	
M	laximum	110		
Concentration on grass (C): R × rr				
	Typical	23	mg/kg grass	
M	laximum	55		
Drift (Drift)				
	Typical	1	unitless	
M	laximum	1		
Proportion of Diet Contaminated (Prop)				
	Typical	1	unitless	
M	laximum	1		
Dose estimates: Drift × Prop × C × A ÷W				
	Typical	2.10E+00	mg/kg bw	
Μ	laximum	5.03E+00		

Table B-4: Consumption of contaminated grass by a large mammal - acute exposure scenario

	Toxicity Reference Typical Maximu					
RISK QUOTIENTS - Ingestion	Value	Application	Application			
Large mammal - acute exposure	711	2.96E-03	7.08E-03			

Risk Quotient = Estimated Dose/Toxicity Reference Value

[1] Calculated using algorithm developed by Nagy, 1987 for herbivores; where

Food Ingestion Rate (g dw/day) = 0.577*(BW g)^0.727; converted into kg dw/day

[2] Assumes grass is 70% water (USEPA, 1993; Table 4-2 - lowest value for young grasses)

Table B-5: Consumption of contaminated grass by a large mammal - chronic exposure scenario

Parameters/Assumptions	Value	Units	Notes
Duration of exposure (T)	90	day	
Body Weight (W)		kg	
Food ingestion rate (dry weight)	1.921153597	•	[1]
Food ingestion rate (wet weight, A)	6.403845323	• •	[2]
Half life on vegetation (t50)		5	
Herbicide specific	; 2	days	
Application rates (R)		,	
Typica	0.25	lb/acre	
Maximum			
Residue rate - grass (rr)			
Typical	92	mg/kg per lb/acre	
Maximum		• • •	
Drift (Drift)	-		
Typica	l 1	unitless	
Maximum			
Decay Coefficient (k): In(2)/t50			
Typical	0.34657359	days ⁻¹	
Maximum		-	
Initial concentration on grass (C0): R × I	rr × Drift		
Typica	23	mg/kg grass	
Maximum	55		
Concentration on grass at time T: C0 * e	exp(-k*T)		
Typica	•••	mg/kg grass	
Maximum	1.56319E-12		
Time-weighted Average Concentration o	n vegetation (CTW	A): C0 * (1-exp(-k*	T))/(k*T)
Typica	0.737377465	mg/kg vegetation	
Maximum	1.763293939		
Proportion of Diet Contaminated (Prop)			
Typica	l 1	unitless	
Maximum	1		
Dose estimates: CTWA × A × Prop / W			
Typica	6.75E-02	mg/kg bw	
Maximum	1.61E-01		

RISK QUOTIENTS - Ingestion	Toxicity	Typical	Maximum
	Reference Value	Application	Application
Large mammal - chronic exposure	65	1.04E-03	2.48E-03

Risk Quotient = Estimated Dose/Toxicity Reference Value

[1] Calculated using algorithm developed by Nagy, 1987 for herbivores; where

Food Ingestion Rate (g dw/day) = 0.577*(BW g)^0.727; converted into kg dw/day

[2] Assumes grass is 70% water (USEPA, 1993; Table 4-2 - lowest value for young grasses)

Table B-6: Consumption of contaminated small mammals by a large mammal - acute exposure scenario

Parameters/Assumptions	Value	Units	Notes
Body Weight (W)	12	kg	
Food ingestion rate (dry weight)	0.5297168	kg dw/day	[1]
Food ingestion rate (wet weight, A)	1.6553649	kg ww/day	[2]
Duration of exposure (D) Application rates (R)	1	day	
Турі	cal 0.25	lb/acre	
Maximu	ım 0.5		
Amount deposited on small mammal prey (Amn	_mouse): 0.5 >	SurfaceArea × R	
51	cal 0.1207855	mg	
Maximu	ım 0.241571		
Drift (Drift)			
Турі	cal 1	unitless	
Maximu	ım 1		
Proportion of Diet Contaminated (Prop)			
Турі		unitless	
Maximu			
Dose estimates: Drift × Prop × Amnt_mouse/BV			
Турі		0 0	
Maximu	ım 1.67E+00		

	Toxicity				
	Reference	Typical	Maximum		
RISK QUOTIENTS - Ingestion	Value	Application	Application		
		7.54E-04	1.51E-03		

Risk Quotient = Estimated Dose/Toxicity Reference Value

[1] Calculated using algorithm developed by Nagy, 1987; where

Food Ingestion Rate (g dw/day) = 0.0687*(BW g)^0.822; converted into kg dw/day

[2] Assumes mammals are 68% water (USEPA, 1993)

Table B-7: Consumption of contaminated small mammals by a large mammal - chronic exposure scenario

Parameters/Assumptions	Value	Units	Notes
Duration of exposure (T)	90	day	
Body Weight (W)	12	kg	
Food ingestion rate (dry weight)	0.529716769	kg dw/day	[1]
Food ingestion rate (wet weight, FIR_coyote) Application rates (R)	1.655364903	kg ww/day	[2]
Typical	0.25	lb/acre	
Maximum	0.5		
Drift (Drift)			
Typical	l 1	unitless	
Maximum	ı 1		
Decay Coefficient (k): In(2)/t50			
Typical	0.34657359	days ⁻¹	
Maximum	0.34657359		
Initial concentration on mammal (C0): 0.5 × Surfa	aceArea × R/BW_s	mallmammal	
Typical	6.039275871	mg a.e./kg mammal	l
Maximum	12.07855174		
Concentration absorbed in small mammal at time	e T (C90): C0 * exp	(-k*T)	
Typical	0.086342415	mg/kg mammal	
Maximum	0.17268483		
Proportion of Diet Contaminated (Prop)			
Typical	l 1	unitless	
Maximum	ı 1		
Dose estimates: C90 × FIR_coyote × Prop / W			
Typical	1.19E-02	mg/kg bw	
Maximum	2.38E-02		

RISK QUOTIENTS - Ingestion	Toxicity	Typical	Maximum
	Reference Value	Application	Application
Large mammal - chronic exposure	101	1.18E-04	2.36E-04

Risk Quotient = Estimated Dose/Toxicity Reference Value

Г

[1] Calculated using algorithm developed by Nagy, 1987; where

Food Ingestion Rate (g dw/day) = 0.0687*(BW g)^0.822; converted into kg dw/day

[2] Assumes mammals are 68% water (USEPA, 1993)

Table B-8: Consumption of contaminated insects by a small bird - acute exposure scenario

Parameters/Assumptions	Value	Units	Notes
Body Weight (W)	0.08	kg	
Food ingestion rate (dry weight)	0.01124177	kg dw/day	[1]
Food ingestion rate (wet weight, A)	0.03626376	kg ww/day	[2]
Duration of exposure (D)	1	day	
Application rates (R)			
Typica	l 0.25	lb/acre	
Maximum	n 0.5		
Residue rate - insects (rr)			
Typica	I 33	mg/kg per lb/acre	
Maximum	n 58		
Concentration on insects (C): R × rr			
Typica	l 8.25	mg/kg insect	
Maximum	n 29		
Drift (Drift)			
Typica	l 1	unitless	
Maximum	า 1		
Proportion of Diet Contaminated (Prop)			
Typica	I 1	unitless	
Maximum	า 1		
Dose estimates: Drift × Prop × C × A ÷W			
Typica		mg/kg bw	
Maximum	1.31E+01		

	Toxicity Reference	Typical	Maximum
RISK QUOTIENTS - Ingestion	Value	Application	Application
Small bird - acute exposure	10632	3.52E-04	1.24E-03

Risk Quotient = Estimated Dose/Toxicity Reference Value

[1] Calculated using algorithm developed by Nagy, 1987 for all birds; where

Food Ingestion Rate (kg dw/day) = 0.0582*(BW)^0.651

[2] Assumes insects are 69% water (USEPA, 1993; Table 4-1 - value for grasshoppers and crickets)

Table B-9: Consumption of contaminated insects by a small bird - chronic exposure scenario

Parameters/Assumptions	Value	Units	Notes
Duration of exposure (T)	90	day	
Body Weight (W)	0.08		
Food ingestion rate (dry weight)	0.011241767	kg dw/day	[1]
Food ingestion rate (wet weight, A)	0.036263763	kg ww/day	[2]
Half life on insect (t50)		·	
Herbicide specific	2	days	
Application rates (R)			
Typical	0.25	lb/acre	
Maximum	0.5		
Residue rate - insects (rr)			
Typical	33	mg/kg per lb/a	acre
Maximum	58		
Drift (Drift)			
Typical	1	unitless	
Maximum			
Decay Coefficient (k): In(2)/t50			
Typical	0.34657359	days ⁻¹	
Maximum	0.34657359		
Initial concentration on insects (C0):	R × rr × Drift		
Typical		mg/kg insect	
Maximum	29		
Concentration on insects at time T: C	0 * exp(-k*T)		
Typical	2.34479E-13	mg/kg insect	
Maximum	8.2423E-13		
Time-weighted Average Concentration	n on insects (CTW	A): C0 * (1-e)	(p(-k*T))/(k*T)
Typical	0.264494091	mg/kg insect	
Maximum	0.929736804		
Proportion of Diet Contaminated (Pro	р)		
Typical		unitless	
Maximum			
Dose estimates (D): CTWA × A × Prop	/ W		
Typical	1.20E-01	mg/kg bw	
Maximum			

	Toxicity		Maximum
RISK QUOTIENTS - Ingestion	Reference Value	Typical Application	Application
Small bird - chronic exposure	76	1.58E-03	5.55E-03

Risk Quotient = Estimated Dose/Toxicity Reference Value

[1] Calculated using algorithm developed by Nagy, 1987 for all birds; where

Food Ingestion Rate (kg dw/day) = 0.0582*(BW)^0.651

[2] Assumes insects are 69% water (USEPA, 1993; Table 4-1 - value for grasshoppers and crickets)

Table B-10: Consumption of contaminated vegetation by a large bird - acute exposure scenario

Parameters/Assumptions	Value	Units	Notes
Body Weight (W)	3.72	kg	
Food ingestion rate (dry weight)	0.13688203	kg dw/day	[1]
Food ingestion rate (wet weight, A)	0.91254687	kg ww/day	[2]
Duration of exposure (D) Application rates (R)	1	day	
Typical	0.25	lb/acre	
Maximum	0.5		
Residue rate - vegetation (rr)			
Typical	35	mg/kg per lb/acre	
Maximum	125		
Concentration on vegetation (C): R × rr			
Typical	8.75	mg/kg veg	
Maximum	62.5		
Drift (Drift)			
Typical	1	unitless	
Maximum	1		
Proportion of Diet Contaminated (Prop)			
Typical		unitless	
Maximum	1		
Dose estimates: Drift × Prop × C × A ÷W			
Typical			
Maximum	1.53E+01		

	Toxicity		
	Reference		Maximum
RISK QUOTIENTS - Ingestion	Value	Typical Application	Application
Large bird - acute exposure	1112	1.93E-03	1.38E-02

Risk Quotient = Estimated Dose/Toxicity Reference Value

 [1] Calculated using algorithm developed by Nagy, 1987 for all birds; where Food Ingestion Rate (kg dw/day) = 0.0582*(BW)^0.651

[2] Assumes vegetation is 85% water (USEPA, 1993; Table 4-2 - value for dicots)

Table B-11: Consumption of contaminated vegetation by a large bird - chronic exposure scenario

Parameters/Assumptions	Value	Units	Notes
Duration of exposure (T)	90	day	
Body Weight (W)	3.72	kg	
Food ingestion rate (dry weight)	0.13688203	kg dw/day	[1]
Food ingestion rate (wet weight, A)	0.912546869	kg ww/day	[2]
Half life on vegetation (t50)			
Herbicide specific	2	days	
Application rates (R)			
Typica	l 0.25	lb/acre	
Maximum	n 0.5		
Residue rate - vegetation (rr)			
Туріса		mg/kg per lb/acre	
Maximum	n 125		
Drift (Drift)			
Typica		unitless	
Maximum	ı 1		
Decay Coefficient (k): In(2)/t50			
Typica			
Maximum			
Initial concentration on vegetation (C0):			
Typica		mg/kg veg	
Maximum			
Concentration on vegetation at time T: C			
Туріса		000	
Maximum			
Time-weighted Average Concentration or)/(k*T)
Typica		000	
Maximum	2.003743112		
Proportion of Diet Contaminated (Prop)			
Typica		unitless	
Maximum			
Dose estimates (D): CTWA × A × Prop / W			
Typica		mg/kg bw	
Maximum	4.92E-01		

RISK QUOTIENTS - Ingestion	Toxicity	Typical	Maximum
	Reference Value	Application	Application
Large bird - chronic exposure	76	9.05E-04	6.47E-03

Risk Quotient = Estimated Dose/Toxicity Reference Value

[1] Calculated using algorithm developed by Nagy, 1987 for all birds; where Food Ingestion Rate (kg dw/day) = 0.0582*(BW)^0.651 [2] Assumes vegetation is 85% water (USEPA, 1993; Table 4-2 - value for dicots)

Table B-12: Impact to aquatic species from accidental spray drift to pond

OFF-SITE DRIFT ·	modeled in AgDrift								
TYPICAL APPLICATION RATE			Risk Quotients - Acute			<u>I</u>	Risk Quotients - Chronic		
Mode of Application	Application Height or Type	Distance From I Receptor (ft)	Pond Concentration (mg/L)	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants
Plane	Forested	100	1.23E-03	1.55E-05	7.18E-06	1.78E-04	6.05E-05	5.31E-05	4.09E-02
Plane	Forested	300	4.58E-04	5.80E-06	2.68E-06	6.64E-05	2.26E-05	1.98E-05	1.53E-02
Plane	Forested	900	1.35E-04	1.71E-06	7.91E-07	1.96E-05	6.66E-06	5.85E-06	4.51E-03
Plane	Non-Forested	100	5.20E-04	6.58E-06	3.04E-06	7.54E-05	2.56E-05	2.25E-05	1.73E-02
Plane	Non-Forested	300	2.09E-04	2.64E-06	1.22E-06	3.02E-05	1.03E-05	9.03E-06	6.95E-03
Plane	Non-Forested	900	1.01E-04	1.28E-06	5.91E-07	1.46E-05	4.98E-06	4.37E-06	3.37E-03
Helicopter	Forested	100	7.41E-05	9.38E-07	4.33E-07	1.07E-05	3.65E-06	3.21E-06	2.47E-03
Helicopter	Forested	300	2.12E-05	2.68E-07	1.24E-07	3.07E-06	1.04E-06	9.16E-07	7.05E-04
Helicopter	Forested	900	3.39E-06	4.29E-08	1.98E-08	4.91E-07	1.67E-07	1.47E-07	1.13E-04
Helicopter	Non-Forested	100	4.39E-04	5.55E-06	2.57E-06	6.36E-05	2.16E-05	1.90E-05	1.46E-02
Helicopter	Non-Forested	300	1.64E-04	2.08E-06	9.59E-07	2.38E-05	8.08E-06	7.10E-06	5.47E-03
Helicopter	Non-Forested	900	7.55E-05	9.55E-07	4.41E-07	1.09E-05	3.72E-06	3.27E-06	2.52E-03
Ground	Low Boom	25	1.70E-04	2.16E-06	9.97E-07	2.47E-05	8.40E-06	7.38E-06	5.68E-03
Ground	Low Boom	100	9.35E-05	1.18E-06	5.46E-07	1.35E-05	4.60E-06	4.05E-06	3.12E-03
Ground	Low Boom	900	1.80E-05	2.28E-07	1.05E-07	2.61E-06	8.89E-07	7.81E-07	6.01E-04
Ground	High Boom	25	2.74E-04	3.46E-06	1.60E-06	3.97E-05	1.35E-05	1.18E-05	9.12E-03
Ground	High Boom	100	1.44E-04	1.82E-06	8.43E-07	2.09E-05	7.10E-06	6.24E-06	4.81E-03
Ground	High Boom	900	2.29E-05	2.90E-07	1.34E-07	3.32E-06	1.13E-06	9.91E-07	7.63E-04

MAXIMUM APPLIC	ATION RATE			<u>R</u>	isk Quotients - Acute	<u>!</u>	<u>R</u>	Risk Quotients - Chro	onic
Mode of Application	Application Height or Type	Distance From Receptor (ft)	Pond Concentration (mg/L)	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants
Plane	Forested	100	2.48E-03	3.14E-05	1.45E-05	3.59E-04	1.22E-04	1.07E-04	8.26E-02
Plane	Forested	300	9.28E-04	1.18E-05	5.43E-06	1.35E-04	4.57E-05	4.02E-05	3.09E-02
Plane	Forested	900	2.81E-04	3.56E-06	1.65E-06	4.08E-05	1.39E-05	1.22E-05	9.38E-03
Plane	Non-Forested	100	1.19E-03	1.50E-05	6.93E-06	1.72E-04	5.84E-05	5.13E-05	3.95E-02
Plane	Non-Forested	300	5.05E-04	6.39E-06	2.95E-06	7.31E-05	2.49E-05	2.18E-05	1.68E-02
Plane	Non-Forested	900	2.27E-04	2.87E-06	1.33E-06	3.29E-05	1.12E-05	9.82E-06	7.56E-03
Helicopter	Forested	100	1.52E-04	1.93E-06	8.90E-07	2.21E-05	7.50E-06	6.59E-06	5.07E-03
Helicopter	Forested	300	4.33E-05	5.48E-07	2.53E-07	6.28E-06	2.13E-06	1.88E-06	1.44E-03
Helicopter	Forested	900	7.33E-06	9.28E-08	4.29E-08	1.06E-06	3.61E-07	3.17E-07	2.44E-04
Helicopter	Non-Forested	100	9.72E-04	1.23E-05	5.68E-06	1.41E-04	4.79E-05	4.21E-05	3.24E-02
Helicopter	Non-Forested	300	3.84E-04	4.86E-06	2.24E-06	5.56E-05	1.89E-05	1.66E-05	1.28E-02
Helicopter	Non-Forested	900	1.93E-04	2.45E-06	1.13E-06	2.80E-05	9.52E-06	8.37E-06	6.44E-03
Ground	Low Boom	25	3.41E-04	4.31E-06	1.99E-06	4.94E-05	1.68E-05	1.48E-05	1.14E-02
Ground	Low Boom	100	1.87E-04	2.37E-06	1.09E-06	2.71E-05	9.21E-06	8.09E-06	6.23E-03
Ground	Low Boom	900	3.61E-05	4.57E-07	2.11E-07	5.23E-06	1.78E-06	1.56E-06	1.20E-03
Ground	High Boom	25	5.47E-04	6.93E-06	3.20E-06	7.93E-05	2.70E-05	2.37E-05	1.82E-02
Ground	High Boom	100	2.88E-04	3.65E-06	1.69E-06	4.18E-05	1.42E-05	1.25E-05	9.61E-03
Ground	High Boom	900	4.58E-05	5.80E-07	2.68E-07	6.64E-06	2.26E-06	1.98E-06	1.53E-03

RQ = Risk Quotient = Estimated Dose/Toxicity Reference Value

Shading and boldface indicates plant RQs greater than 1. Shading and boldface indicates acute RQs greater than 0.05 for fish and invertebrates. Shading and boldface indicates chronic RQs greater than 0.5 for fish and invertebrates.

Table B-13: Impact to aquatic species from accidental spray drift to stream

OFF-SITE DRIFT -	•	ift					_				
TYPICALAPPLICA	TION RATE			<u>F</u>	Risk Quotients - Acut	<u>te</u>	Risk Quotients - Chronic				
Mode of	Application Height or	Distance From	Stream Concentration		Aquatic	Non-Target		Aquatic	Non-Target		
Application	Туре	Receptor (ft)	(mg/L)	Fish	Invertebrates	Aquatic Plants	Fish	Invertebrates	Aquatic Plants		
Plane	Forested	100	1.76E-03	2.23E-05	1.03E-05	2.56E-04	8.69E-05	7.64E-05	5.88E-02		
Plane	Forested	300	5.25E-04	6.64E-06	3.07E-06	7.61E-05	2.59E-05	2.27E-05	1.75E-02		
Plane	Forested	900	1.42E-04	1.79E-06	8.29E-07	2.05E-05	6.98E-06	6.14E-06	4.73E-03		
Plane	Non-Forested	100	7.23E-04	9.16E-06	4.23E-06	1.05E-04	3.56E-05	3.13E-05	2.41E-02		
Plane	Non-Forested	300	2.25E-04	2.85E-06	1.32E-06	3.26E-05	1.11E-05	9.74E-06	7.50E-03		
Plane	Non-Forested	900	1.04E-04	1.32E-06	6.08E-07	1.51E-05	5.12E-06	4.50E-06	3.46E-03		
Helicopter	Forested	100	9.99E-05	1.26E-06	5.84E-07	1.45E-05	4.92E-06	4.33E-06	3.33E-03		
Helicopter	Forested	300	2.48E-05	3.14E-07	1.45E-07	3.59E-06	1.22E-06	1.07E-06	8.26E-04		
Helicopter	Forested	900	3.82E-06	4.83E-08	2.23E-08	5.53E-07	1.88E-07	1.65E-07	1.27E-04		
Helicopter	Non-Forested	100	6.16E-04	7.80E-06	3.60E-06	8.93E-05	3.03E-05	2.67E-05	2.05E-02		
Helicopter	Non-Forested	300	1.88E-04	2.38E-06	1.10E-06	2.73E-05	9.27E-06	8.15E-06	6.27E-03		
Helicopter	Non-Forested	900	7.70E-05	9.74E-07	4.50E-07	1.12E-05	3.79E-06	3.33E-06	2.57E-03		
Ground	Low Boom	25	3.07E-04	3.88E-06	1.79E-06	4.44E-05	1.51E-05	1.33E-05	1.02E-02		
Ground	Low Boom	100	8.98E-05	1.14E-06	5.25E-07	1.30E-05	4.42E-06	3.89E-06	2.99E-03		
Ground	Low Boom	900	9.30E-06	1.18E-07	5.44E-08	1.35E-06	4.58E-07	4.03E-07	3.10E-04		
Ground	High Boom	25	5.14E-04	6.50E-06	3.00E-06	7.44E-05	2.53E-05	2.22E-05	1.71E-02		
Ground	High Boom	100	1.45E-04	1.84E-06	8.51E-07	2.11E-05	7.17E-06	6.30E-06	4.85E-03		
Ground	High Boom	900	1.23E-05	1.56E-07	7.19E-08	1.78E-06	6.06E-07	5.32E-07	4.10E-04		

OFF-SITE DRIFT - MAXIMUM APPLIC	•			ļ	Risk Quotients - Acu	te	<u>R</u>	isk Quotients - Chro	onic
Mode of Application	Application Height or Type	Distance From Receptor (ft)	Stream Concentration (mg/L)	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants
Plane	Forested	100	3.56E-03	4.51E-05	2.08E-05	5.16E-04	1.75E-04	1.54E-04	1.19E-01
Plane	Forested	300	1.06E-03	1.34E-05	6.20E-06	1.54E-04	5.22E-05	4.59E-05	3.53E-02
Plane	Forested	900	2.94E-04	3.72E-06	1.72E-06	4.26E-05	1.45E-05	1.27E-05	9.80E-03
Plane	Non-Forested	100	1.62E-03	2.05E-05	9.47E-06	2.35E-04	7.98E-05	7.01E-05	5.40E-02
Plane	Non-Forested	300	5.46E-04	6.91E-06	3.19E-06	7.92E-05	2.69E-05	2.36E-05	1.82E-02
Plane	Non-Forested	900	2.36E-04	2.99E-06	1.38E-06	3.43E-05	1.16E-05	1.02E-05	7.88E-03
Helicopter	Forested	100	2.08E-04	2.64E-06	1.22E-06	3.02E-05	1.03E-05	9.01E-06	6.94E-03
Helicopter	Forested	300	5.10E-05	6.46E-07	2.98E-07	7.39E-06	2.51E-06	2.21E-06	1.70E-03
Helicopter	Forested	900	8.17E-06	1.03E-07	4.78E-08	1.18E-06	4.03E-07	3.54E-07	2.72E-04
Helicopter	Non-Forested	100	1.32E-03	1.67E-05	7.72E-06	1.91E-04	6.50E-05	5.72E-05	4.40E-02
Helicopter	Non-Forested	300	4.13E-04	5.22E-06	2.41E-06	5.98E-05	2.03E-05	1.79E-05	1.38E-02
Helicopter	Non-Forested	900	1.98E-04	2.50E-06	1.16E-06	2.86E-05	9.74E-06	8.56E-06	6.59E-03
Ground	Low Boom	25	6.13E-04	7.76E-06	3.59E-06	8.89E-05	3.02E-05	2.65E-05	2.04E-02
Ground	Low Boom	100	1.80E-04	2.27E-06	1.05E-06	2.60E-05	8.85E-06	7.78E-06	5.99E-03
Ground	Low Boom	900	1.86E-05	2.35E-07	1.09E-07	2.70E-06	9.16E-07	8.05E-07	6.20E-04
Ground	High Boom	25	1.03E-03	1.30E-05	6.01E-06	1.49E-04	5.06E-05	4.45E-05	3.42E-02
Ground	High Boom	100	2.91E-04	3.68E-06	1.70E-06	4.22E-05	1.43E-05	1.26E-05	9.70E-03
Ground	High Boom	900	2.46E-05	3.11E-07	1.44E-07	3.56E-06	1.21E-06	1.06E-06	8.20E-04

RQ = Risk Quotient = Estimated Dose/Toxicity Reference Value

Shading and boldface indicates plant RQs greater than 1. Shading and boldface indicates acute RQs greater than 0.05 for fish and invertebrates. Shading and boldface indicates chronic RQs greater than 0.5 for fish and invertebrates.

Table B-14: Impact to non-target terrrestrial plants from direct spray and spray drift

DIRECT SPRAY	Terrestrial Concentration (Ib a.e./acre)	Typical Species RQ	Threatened & Endangered Species RQ
Typical application rate	0.25	9.26E+01	3.57E+02
Maximum application rate	0.5	1.85E+02	7.14E+02

OFF-SITE DRIFT - modeled in AgDrift TYPICAL APPLICATION RATE

Mode of Application	Application Height or Type	Distance From Receptor (ft)	Soil Concentration (mg a.e./kg)	Typical Species RQ	Threatened & Endangered Species RQ
Plane	Forested	100	8.50E-03	3.15E+00	1.21E+01
Plane	Forested	300	3.50E-03	1.30E+00	5.00E+00
Plane	Forested	900	1.10E-03	4.07E-01	1.57E+00
Plane	Non-Forested	100	3.60E-03	1.33E+00	5.14E+00
Plane	Non-Forested	300	1.70E-03	6.30E-01	2.43E+00
Plane	Non-Forested	900	9.00E-04	3.33E-01	1.29E+00
Helicopter	Forested	100	5.00E-04	1.85E-01	7.14E-01
Helicopter	Forested	300	2.00E-04	7.41E-02	2.86E-01
Helicopter	Forested	900	2.67E-05	9.89E-03	3.81E-02
Helicopter	Non-Forested	100	3.00E-03	1.11E+00	4.29E+00
Helicopter	Non-Forested	300	1.30E-03	4.81E-01	1.86E+00
Helicopter	Non-Forested	900	6.00E-04	2.22E-01	8.57E-01
Ground	Low Boom	25	1.10E-03	4.07E-01	1.57E+00
Ground	Low Boom	100	7.00E-04	2.59E-01	1.00E+00
Ground	Low Boom	900	2.00E-04	7.41E-02	2.86E-01
Ground	High Boom	25	1.80E-03	6.67E-01	2.57E+00
Ground	High Boom	100	1.00E-03	3.70E-01	1.43E+00
Ground	High Boom	900	2.00E-04	7.41E-02	2.86E-01

OFF-SITE DRIFT - modeled in AgDrift MAXIMUM APPLICATION RATE

Mode of Application	Application Height or Type	Distance From Receptor (ft)	Soil Concentration (mg a.e./kg)	Typical Species RQ	Threatened & Endangered Species RQ
Plane	Forested	100	1.72E-02	6.37E+00	2.46E+01
Plane	Forested	300	7.20E-03	2.67E+00	1.03E+01
Plane	Forested	900	2.40E-03	8.89E-01	3.43E+00
Plane	Non-Forested	100	8.30E-03	3.07E+00	1.19E+01
Plane	Non-Forested	300	4.10E-03	1.52E+00	5.86E+00
Plane	Non-Forested	900	1.90E-03	7.04E-01	2.71E+00
Helicopter	Forested	100	1.00E-03	3.70E-01	1.43E+00
Helicopter	Forested	300	3.00E-04	1.11E-01	4.29E-01
Helicopter	Forested	900	5.81E-05	2.15E-02	8.30E-02
Helicopter	Non-Forested	100	6.60E-03	2.44E+00	9.43E+00
Helicopter	Non-Forested	300	3.10E-03	1.15E+00	4.43E+00
Helicopter	Non-Forested	900	1.70E-03	6.30E-01	2.43E+00
Ground	Low Boom	25	2.20E-03	8.15E-01	3.14E+00
Ground	Low Boom	100	1.40E-03	5.19E-01	2.00E+00
Ground	Low Boom	900	3.00E-04	1.11E-01	4.29E-01
Ground	High Boom	25	3.50E-03	1.30E+00	5.00E+00
Ground	High Boom	100	2.10E-03	7.78E-01	3.00E+00
Ground	High Boom	900	4.00E-04	1.48E-01	5.71E-01

RQ = Risk Quotient = Estimated Dose/Toxicity Reference Value

Shading and boldface indicates plant RQs greater than 1.

Table B-15: Consumption of contaminated fish from pond by predatory bird - one time exposure. Pond impacted by spray drift modeled in AgDrift.

Parameters/ Assumptions	Value	Units	Notes
Body Weight (W)	5.15	kg	
Food ingestion rate (dry weight)	0.101786153	kg dw/day	[1]
Food ingestion rate (wet weight, A)	0.40714461	kg ww/day	[2]
Bioconcentration factor (BCF)	1	L/kg fish	
Proportion of Diet Contaminated (Prop)	1	unitless	
Toxicity reference value (TRV)	76	mg/kg-bw/day	

TYPICAL APPLICATION RATE

Mode of Application	Application Height or Type	Distance From Receptor (ft)	Pond Concentration (mg/L)	Concentration in fish (C _{Fish}): WC × BCF	Dose estimate (D): C _{Fish} × A × Prop / W	Risk Quotient
Plane	Forested	100	1.23E-03	1.23E-03	9.71E-05	1.28E-06
Plane	Forested	300	4.58E-04	4.58E-04	3.62E-05	4.76E-07
Plane	Forested	900	1.35E-04	1.35E-04	1.07E-05	1.41E-07
Plane	Non-Forested	100	5.20E-04	5.20E-04	4.11E-05	5.41E-07
Plane	Non-Forested	300	2.09E-04	2.09E-04	1.65E-05	2.17E-07
Plane	Non-Forested	900	1.01E-04	1.01E-04	7.99E-06	1.05E-07
Helicopter	Forested	100	7.41E-05	7.41E-05	5.86E-06	7.71E-08
Helicopter	Forested	300	2.12E-05	2.12E-05	1.67E-06	2.20E-08
Helicopter	Forested	900	3.39E-06	3.39E-06	2.68E-07	3.53E-09
Helicopter	Non-Forested	100	4.39E-04	4.39E-04	3.47E-05	4.56E-07
Helicopter	Non-Forested	300	1.64E-04	1.64E-04	1.30E-05	1.71E-07
Helicopter	Non-Forested	900	7.55E-05	7.55E-05	5.97E-06	7.85E-08
Ground	Low Boom	25	1.70E-04	1.70E-04	1.35E-05	1.77E-07
Ground	Low Boom	100	9.35E-05	9.35E-05	7.39E-06	9.72E-08
Ground	Low Boom	900	1.80E-05	1.80E-05	1.43E-06	1.88E-08
Ground	High Boom	25	2.74E-04	2.74E-04	2.16E-05	2.85E-07
Ground	High Boom	100	1.44E-04	1.44E-04	1.14E-05	1.50E-07
Ground	High Boom	900	2.29E-05	2.29E-05	1.81E-06	2.38E-08

MAXIMUM APPLICATION RATE Pond Concentration in Dose estimate (D): C_{Fish} × A × Prop / Application Distance From fish (C_{Fish}): WC × Concentration Height or Type Receptor (ft) BCF w **Risk Quotient** Mode of Application (mg/L) Plane Forested 100 2.48E-03 2.48E-03 1.96E-04 2.58E-06 Plane Forested 300 9.28E-04 9.28E-04 7.34E-05 9.66E-07 Plane Forested 900 2.81E-04 2.81E-04 2.23E-05 2.93E-07 1.23E-06 5.25E-07 Plane Non-Forested 100 1.19E-03 1.19E-03 9.37E-05 5.05E-04 5.05E-04 Plane Non-Forested 300 3.99E-05 2.36E-07 1.58E-07 Non-Forested 900 2.27E-04 2.27E-04 1.79E-05 Plane 100 1.52E-04 1.52E-04 Forested 1.20E-05 Helicopter 300 4.33E-05 4.33E-05 3.42E-06 4.51E-08 Forested Helicopter Forested 900 7.33E-06 7.33E-06 5.79E-07 7.62E-09 Helicopter 9.72E-04 7.68E-05 . Helicopter Non-Forested 100 9.72E-04 1.01E-06 . Helicopter Non-Forested 300 3.84E-04 3.84E-04 3.03E-05 3.99E-07 Helicopter Non-Forested 900 1.93E-04 1.93E-04 1.53E-05 2.01E-07 Ground Low Boom 25 3.41E-04 3.41E-04 2.69E-05 3.55E-07 Ground Low Boom 100 1.87E-04 1.87E-04 1.48E-05 1.94E-07 Ground Low Boom 900 3.61E-05 3.61E-05 2.85E-06 3.75E-08 5.47E-04 4.33E-05 5.69E-07 Ground High Boom 25 5.47E-04 High Boom High Boom Ground 100 2.88E-04 2.88E-04 2.28E-05 3.00E-07 4.58E-05 3.62E-06 4.58E-05 4.76E-08 Ground 900

Risk Quotient = Estimated Dose/Toxicity Reference Value

[1] Calculated using alorithm developed by Nagy, 1987 for all birds; where

Food Ingestion Rate (kg dw/day) = 0.0582*(BW)^0.651

[2] Assumes fish are 75% water (USEPA, 1993; Table 4-1 - value for bony fishes)

Table B-16: Impact to aquatic species from surface runoff to pond

TYPICAL APPLICATION RATE			Risk Quotients - Ac	<u>sute</u>	<u>R</u>	tisk Quotients - Chro	nic
GLEAMS ID	Pond Concentration (mg/L)	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants
G BASE SAND 005 POND TYP	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_CLAY_005_POND_TYP	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_LOAM_005_POND_TYP	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_SAND_010_POND_TYP	1.04E-03	1.32E-05	6.08E-06	1.51E-04	5.12E-05	4.50E-05	3.47E-02
G_BASE_CLAY_010_POND_TYP	2.15E-08	2.72E-10	1.26E-10	3.11E-09	1.06E-09	9.30E-10	7.16E-07
G_BASE_LOAM_010_POND_TYP	7.72E-06	9.78E-08	4.52E-08	1.12E-06	3.80E-07	3.34E-07	2.57E-04
G_BASE_SAND_025_POND_TYP	2.78E-03	3.52E-05	1.62E-05	4.03E-04	1.37E-04	1.20E-04	9.26E-02
G_BASE_CLAY_025_POND_TYP	2.74E-08	3.47E-10	1.60E-10	3.97E-09	1.35E-09	1.19E-09	9.13E-07
G_BASE_LOAM_025_POND_TYP	2.05E-03	2.59E-05	1.20E-05	2.97E-04	1.01E-04	8.87E-05	6.83E-02
G_BASE_SAND_050_POND_TYP	1.65E-03	2.09E-05	9.67E-06	2.40E-04	8.14E-05	7.15E-05	9.26E-02
G_BASE_CLAY_050_POND_TYP	2.31E-06	2.92E-08	1.35E-08	3.34E-07	1.14E-07	9.99E-08	7.69E-05
G_BASE_LOAM_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_BASE_SAND_100_POND_TYP	4.02E-03	5.09E-05	2.35E-05	5.83E-04	1.98E-04	1.74E-04	1.34E-01
G_BASE_CLAY_100_POND_TYP	2.13E-04	2.69E-06	1.24E-06	3.09E-05	1.05E-05	9.22E-06	7.10E-03
G_BASE_LOAM_100_POND_TYP	1.54E-03	1.95E-05	8.99E-06	2.23E-04	7.58E-05	6.66E-05	5.13E-02
G_BASE_SAND_150_POND_TYP	4.11E-03	5.20E-05	2.40E-05	5.95E-04	2.02E-04	1.78E-04	1.37E-01
G_BASE_CLAY_150_POND_TYP	2.60E-04	3.29E-06	1.52E-06	3.76E-05	1.28E-05	1.12E-05	8.66E-03
G_BASE_LOAM_150_POND_TYP	2.69E-03	3.41E-05	1.57E-05	3.90E-04	1.33E-04	1.16E-04	8.97E-02
G_BASE_SAND_200_POND_TYP	2.58E-03	3.26E-05	1.51E-05	3.74E-04	1.27E-04	1.12E-04	8.59E-02
G_BASE_CLAY_200_POND_TYP	3.25E-04	4.11E-06	1.90E-06	4.70E-05	1.60E-05	1.40E-05	1.08E-02
G_BASE_LOAM_200_POND_TYP	2.75E-03	3.48E-05	1.61E-05	3.99E-04	1.36E-04	1.19E-04	9.18E-02
G_BASE_SAND_250_POND_TYP	1.94E-03	2.46E-05	1.13E-05	2.81E-04	9.56E-05	8.40E-05	6.47E-02
G_BASE_CLAY_250_POND_TYP	3.36E-04	4.26E-06	1.97E-06	4.87E-05	1.66E-05	1.46E-05	1.12E-02
G_BASE_LOAM_250_POND_TYP	2.30E-03	2.92E-05	1.35E-05	3.34E-04	1.13E-04	9.97E-05	7.68E-02
G_ARV1_050_POND_TYP	7.84E-04	9.92E-06	4.58E-06	1.14E-04	3.86E-05	3.39E-05	2.61E-02
G_ARV2_050_POND_TYP	9.86E-04	1.25E-05	5.77E-06	1.43E-04	4.86E-05	4.27E-05	3.29E-02
G_ARV3_050_POND_TYP	9.92E-04	1.26E-05	5.80E-06	1.44E-04	4.89E-05	4.30E-05	3.31E-02
G_ERV1_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_ERV2_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_ERV3_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_RGV1_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_RGV2_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_RGV3_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_SLV1_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_SLV2_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_SLV3_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_STV1_050_POND_TYP	8.64E-04	1.09E-05	5.05E-06	1.25E-04	4.26E-05	3.74E-05	2.88E-02
G_STV2_050_POND_TYP	7.54E-04	9.54E-06	4.41E-06	1.09E-04	3.71E-05	3.26E-05	2.51E-02
G_STV3_050_POND_TYP	9.84E-04	1.24E-05	5.75E-06	1.43E-04	4.84E-05	4.26E-05	3.28E-02
G_VGV1_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_VGV2_050_POND_TYP	9.06E-04	1.15E-05	5.30E-06	1.31E-04	4.46E-05	3.92E-05	3.02E-02
G_VGV3_050_POND_TYP	9.96E-04	1.26E-05	5.82E-06	1.44E-04	4.90E-05	4.31E-05	3.32E-02

RQ = Risk Quotient = Estimated Dose/Toxicity Reference Value

Table B-16: Impact to aquatic species from surface runoff to pond

SURFACE RUNOFF - modeled in GLEAMS MAXIMUM APPLICATION RATE			Risk Quotients - Ac	ute	R	Risk Quotients - Chro	nic
GLEAMS ID	Pond Concentration (mg/L)	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants
G BASE SAND 005 POND MAX	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G BASE CLAY 005 POND MAX	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_LOAM_005_POND_MAX	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G BASE SAND 010 POND MAX	2.08E-03	2.63E-05	1.22E-05	3.01E-04	1.02E-04	9.00E-05	6.93E-02
G BASE CLAY 010 POND MAX	4.30E-08	5.44E-10	2.51E-10	6.23E-09	2.12E-09	1.86E-09	1.43E-06
G_BASE_LOAM_010_POND_MAX	1.54E-05	1.96E-07	9.03E-08	2.24E-06	7.61E-07	6.69E-07	5.15E-04
G BASE SAND 025 POND MAX	5.56E-03	7.03E-05	3.25E-05	8.05E-04	2.74E-04	2.40E-04	1.85E-01
G_BASE_CLAY_025_POND_MAX	5.48E-08	6.94E-10	3.20E-10	7.94E-09	2.70E-09	2.37E-09	1.83E-06
G BASE LOAM 025 POND MAX	4.10E-03	5.19E-05	2.40E-05	5.94E-04	2.02E-04	1.77E-04	1.37E-01
G BASE SAND 050 POND MAX	3.31E-03	4.18E-05	1.93E-05	4.79E-04	1.63E-04	1.43E-04	1.10E-01
G_BASE_CLAY_050_POND_MAX	4.62E-06	5.84E-08	2.70E-08	6.69E-07	2.27E-07	2.00E-07	1.54E-04
G_BASE_LOAM_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G BASE SAND 100 POND MAX	8.04E-03	1.02E-04	4.70E-05	1.17E-03	3.96E-04	3.48E-04	2.68E-01
G BASE CLAY 100 POND MAX	4.26E-04	5.39E-06	2.49E-06	6.17E-05	2.10E-05	1.84E-04	1.42E-02
G BASE LOAM 100 POND MAX	4.20E-04 3.08E-03	3.89E-05	1.80E-05	4.46E-04	1.52E-04	1.33E-04	1.03E-01
	8.22E-03	1.04E-04	4.80E-05	1.19E-03	4.05E-04	3.56E-04	2.74E-01
G_BASE_SAND_150_POND_MAX	5.20E-04	6.58E-06	4.80E-05 3.04E-06	7.53E-05	4.05E-04 2.56E-05	2.25E-05	1.73E-02
G_BASE_CLAY_150_POND_MAX	5.38E-03			7.80E-04	2.56E-05 2.65E-04	2.25E-05 2.33E-04	
G_BASE_LOAM_150_POND_MAX	5.38E-03 5.16E-03	6.81E-05	3.15E-05 3.01E-05	7.80E-04 7.47E-04		2.33E-04 2.23E-04	1.79E-01 1.72E-01
G_BASE_SAND_200_POND_MAX		6.53E-05			2.54E-04		
G_BASE_CLAY_200_POND_MAX	6.49E-04	8.22E-06	3.80E-06	9.41E-05	3.20E-05	2.81E-05	2.16E-02
G_BASE_LOAM_200_POND_MAX	5.51E-03	6.97E-05	3.22E-05	7.98E-04	2.71E-04	2.38E-04	1.84E-01
G_BASE_SAND_250_POND_MAX	3.88E-03	4.91E-05	2.27E-05	5.62E-04	1.91E-04	1.68E-04	1.29E-01
G_BASE_CLAY_250_POND_MAX	6.73E-04	8.51E-06	3.93E-06	9.75E-05	3.31E-05	2.91E-05	2.24E-02
G_BASE_LOAM_250_POND_MAX	4.61E-03	5.83E-05	2.69E-05	6.68E-04	2.27E-04	1.99E-04	1.54E-01
G_ARV1_050_POND_MAX	1.57E-03	1.98E-05	9.16E-06	2.27E-04	7.72E-05	6.78E-05	5.22E-02
G_ARV2_050_POND_MAX	1.97E-03	2.50E-05	1.15E-05	2.86E-04	9.71E-05	8.54E-05	6.57E-02
G_ARV3_050_POND_MAX	1.98E-03	2.51E-05	1.16E-05	2.88E-04	9.78E-05	8.59E-05	6.62E-02
G_ERV1_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_ERV2_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_ERV3_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_RGV1_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_RGV2_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_RGV3_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_SLV1_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_SLV2_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_SLV3_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_STV1_050_POND_MAX	1.73E-03	2.19E-05	1.01E-05	2.50E-04	8.51E-05	7.48E-05	5.76E-02
G_STV2_050_POND_MAX	1.51E-03	1.91E-05	8.82E-06	2.19E-04	7.43E-05	6.53E-05	5.03E-02
G_STV3_050_POND_MAX	1.97E-03	2.49E-05	1.15E-05	2.85E-04	9.69E-05	8.52E-05	6.56E-02
G_VGV1_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_VGV2_050_POND_MAX	1.81E-03	2.29E-05	1.06E-05	2.63E-04	8.93E-05	7.84E-05	6.04E-02
G_VGV3_050_POND_MAX	1.99E-03	2.52E-05	1.16E-05	2.89E-04	9.81E-05	8.62E-05	6.64E-02

RQ = Risk Quotient = Estimated Dose/Toxicity Reference Value

Shading and boldface indicates plant RQs greater than 1. Shading and boldface indicates acute RQs greater than 0.05 for fish and invertebrates. Shading and boldface indicates chronic RQs greater than 0.5 for fish and invertebrates.

Draft_ClopyralidSpreadsheets 09192011, Runoff_pond_aq_org

Table B-17: Impact to aquatic species from surface runoff to pond

SURFACE RUNOFF - modeled in GLEAMS TYPICAL APPLICATION RATE										Risk Quotients - Acu	ite	Ē	tisk Quotients - Chro	onic
GLEAMS ID	Annual Precipitation (inches)	Application Area (acres)	Hydraulic Slope (ft/ft)	Surface Roughness	USLE Soil Erodibility Factor (ton/ac per El)	Vegetation Type	Soil Type	Stream Concentration (mg/L)	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants
G_BASE_SAND_005_STREAM_TYP	5	10	0.05	0.015	0.401	weeds (79)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_CLAY_005_STREAM_TYP	5	10	0.05	0.015	0.401	weeds (79)	Clay	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G BASE LOAM 005 STREAM TYP	5	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G BASE SAND 010 STREAM TYP	10	10	0.05	0.015	0.401	weeds (79)	Sand	8.01E-07	1.01E-08	4.68E-09	1.16E-07	3.94E-08	3.47E-08	2.67E-05
G BASE CLAY 010 STREAM TYP	10	10	0.05	0.015	0.401	weeds (79)	Clay	4.60E-11	5.82E-13	2.69E-13	6.66E-12	2.26E-12	1.99E-12	1.53E-09
G BASE LOAM 010 STREAM TYP	10	10	0.05	0.015	0.401	weeds (79)	Loam	5.64E-09	7.14E-11	3.30E-11	8.17E-10	2.78E-10	2.44E-10	1.88E-07
G BASE SAND 025 STREAM TYP	25	10	0.05	0.015	0.401	weeds (79)	Sand	1.55E-05	1.97E-07	9.09E-08	2.25E-06	7.65E-07	6.73E-07	5.18E-04
G BASE CLAY 025 STREAM TYP	25	10	0.05	0.015	0.401	weeds (79)	Clay	1.69E-10	2.14E-12	9.89E-13	2.45E-11	8.33E-12	7.32E-12	5.64E-09
G BASE LOAM 025 STREAM TYP	25	10	0.05	0.015	0.401	weeds (79)	Loam	6.73E-06	8.52E-08	3.94E-08	9.76E-07	3.32E-07	2.91E-07	2.24E-04
G BASE SAND 050 STREAM TYP	50	10	0.05	0.015	0.401	weeds (79)	Sand	2.38E-05	3.01E-07	1.39E-07	3.44E-06	1.17E-06	1.03E-06	7.92E-04
G BASE CLAY 050 STREAM TYP	50	10	0.05	0.015	0.401	weeds (79)	Clay	1.41E-08	1.79E-10	8.25E-11	2.04E-09	6.95E-10	6.11E-10	4.70E-07
G BASE LOAM 050 STREAM TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G BASE SAND 100 STREAM TYP	100	10	0.05	0.015	0.401	weeds (79)	Sand	4.23E-05	5.35E-07	2.47E-07	6.13E-06	2.08E-06	1.83E-06	1.41E-03
G BASE CLAY 100 STREAM TYP	100	10	0.05	0.015	0.401	weeds (79)	Clay	4.54E-06	5.74E-08	2.65E-08	6.58E-07	2.24E-07	1.96E-07	1.51E-04
G BASE LOAM 100 STREAM TYP	100	10	0.05	0.015	0.401	weeds (79)	Loam	2.58E-05	3.27E-07	1.51E-07	3.74E-06	1.27E-06	1.12E-06	8.61E-04
G BASE SAND 150 STREAM TYP	150	10	0.05	0.015	0.401	weeds (79)	Sand	5.60E-05	7.09E-07	3.27E-07	8.12E-06	2.76E-06	2.42E-06	1.87E-03
G BASE CLAY 150 STREAM TYP	150	10	0.05	0.015	0.401		Clay	6.31E-06	7.98E-08	3.69E-08	9.14E-07	3.11E-07	2.42E-06 2.73E-07	2.10E-04
		10	0.05	0.015	0.401	weeds (79)		3.58E-05	7.98E-08 4.53E-07	3.69E-08 2.09E-07	9.14E-07 5.19E-06	3.11E-07 1.76E-06	2.73E-07 1.55E-06	2.10E-04 1.19E-03
G_BASE_LOAM_150_STREAM_TYP	150					weeds (79)	Loam							
G_BASE_SAND_200_STREAM_TYP	200	10	0.05	0.015	0.401	weeds (79)	Sand	6.21E-05	7.86E-07	3.63E-07	9.00E-06	3.06E-06	2.69E-06	2.07E-03
G_BASE_CLAY_200_STREAM_TYP	200	10	0.05	0.015	0.401	weeds (79)	Clay	8.20E-06	1.04E-07	4.79E-08	1.19E-06	4.04E-07	3.55E-07	2.73E-04
G_BASE_LOAM_200_STREAM_TYP	200	10	0.05	0.015	0.401	weeds (79)	Loam	4.32E-05	5.47E-07	2.53E-07	6.26E-06	2.13E-06	1.87E-06	1.44E-03
G_BASE_SAND_250_STREAM_TYP	250	10	0.05	0.015	0.401	weeds (79)	Sand	6.38E-05	8.08E-07	3.73E-07	9.25E-06	3.14E-06	2.76E-06	2.13E-03
G_BASE_CLAY_250_STREAM_TYP	250	10	0.05	0.015	0.401	weeds (79)	Clay	9.07E-06	1.15E-07	5.30E-08	1.31E-06	4.47E-07	3.93E-07	3.02E-04
G_BASE_LOAM_250_STREAM_TYP	250	10	0.05	0.015	0.401	weeds (79)	Loam	4.79E-05	6.06E-07	2.80E-07	6.94E-06	2.36E-06	2.07E-06	1.60E-03
G_ARV1_050_STREAM_TYP	50	1	0.05	0.015	0.401	weeds (79)	Loam	1.67E-06	2.12E-08	9.78E-09	2.42E-07	8.24E-08	7.24E-08	5.58E-05
G_ARV2_050_STREAM_TYP	50	100	0.05	0.015	0.401	weeds (79)	Loam	7.65E-05	9.68E-07	4.47E-07	1.11E-05	3.77E-06	3.31E-06	2.55E-03
G_ARV3_050_STREAM_TYP	50	1000	0.05	0.015	0.401	weeds (79)	Loam	2.09E-04	2.64E-06	1.22E-06	3.03E-05	1.03E-05	9.04E-06	6.96E-03
G_ERV1_050_STREAM_TYP	50	10	0.05	0.015	0.05	weeds (79)	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_ERV2_050_STREAM_TYP	50	10	0.05	0.015	0.2	weeds (79)	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_ERV3_050_STREAM_TYP	50	10	0.05	0.015	0.5	weeds (79)	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_RGV1_050_STREAM_TYP	50	10	0.05	0.023	0.401	weeds (79)	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_RGV2_050_STREAM_TYP	50	10	0.05	0.046	0.401	weeds (79)	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_RGV3_050_STREAM_TYP	50	10	0.05	0.15	0.401	weeds (79)	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_SLV1_050_STREAM_TYP	50	10	0.005	0.015	0.401	weeds (79)	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_SLV2_050_STREAM_TYP	50	10	0.01	0.015	0.401	weeds (79)	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_SLV3_050_STREAM_TYP	50	10	0.1	0.015	0.401	weeds (79)	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_STV1_050_STREAM_TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	1.08E-05	1.37E-07	6.32E-08	1.57E-06	5.32E-07	4.68E-07	3.60E-04
G STV2 050 STREAM TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	1.11E-05	1.40E-07	6.48E-08	1.61E-06	5.46E-07	4.80E-07	3.70E-04
G STV3 050 STREAM TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	9.63E-06	1.22E-07	5.63E-08	1.40E-06	4.74E-07	4.17E-07	3.21E-04
G_VGV1_050_STREAM_TYP	50	10	0.05	0.015	0.401	Shrub	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_VGV2_050_STREAM_TYP	50	10	0.05	0.015	0.401	Rye Grass	Loam	1.43E-05	1.81E-07	8.37E-08	2.08E-06	7.05E-07	6.20E-07	4.77E-04
G_VGV3_050_STREAM_TYP	50	10	0.05	0.015	0.401	Conifer-Hardwood	Loam	1.65E-05	2.09E-07	9.66E-08	2.39E-06	8.14E-07	7.15E-07	5.51E-04

RQ = Risk Quotient = Estimated Dose/Toxicity Reference Value

Table B-17: Impact to aquatic species from surface runoff to pond

AXIMUM APPLICATION RATE										Risk Quotients - Acu	te	R	tisk Quotients - Chro	<u>unic</u>
GLEAMS ID	Annual Precipitation (inches)	Application Area (acres)	Hydraulic Slope (ft/ft)	Surface Roughness	USLE Soil Erodibility Factor (ton/ac per El)	Vegetation Type	Soil Type	Stream Concentration (mg/L)	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants	Fish	Aquatic Invertebrates	Non-Target Aquatic Plant
G BASE SAND 005 STREAM MAX	(1101100)	10	0.05	0.015	0.401	weeds (79)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G BASE CLAY 005 STREAM MAX	5	10	0.05	0.015	0.401	weeds (79)	Clay	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G BASE LOAM 005 STREAM MAX	5	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G BASE SAND 010 STREAM MAX	10	10	0.05	0.015	0.401	weeds (79)	Sand	1.60E-06	2.03E-08	9.37E-09	2.32E-07	7.89E-08	6.93E-08	5.34E-05
G BASE CLAY 010 STREAM MAX	10	10	0.05	0.015	0.401	weeds (79)	Clav	9.20E-11	1.16E-12	5.38E-13	1.33E-11	4.53E-12	3.98E-12	3.07E-09
G BASE LOAM 010 STREAM MAX	10	10	0.05	0.015	0.401	weeds (79)	Loam	1.13E-08	1.43E-10	6.59E-11	1.63E-09	4.55E-12	4.88E-10	3.76E-07
G BASE SAND 025 STREAM MAX	25	10	0.05	0.015	0.401	weeds (79)	Sand	3.11E-05	3.93E-07	1.82E-07	4.50E-06	1.53E-06	1.35E-06	1.04E-03
G BASE CLAY 025 STREAM MAX	25	10	0.05	0.015	0.401	weeds (79)	Clav	3.38E-10	4.28E-12	1.98E-12	4.90E-11	1.67E-11	1.46E-11	1.13E-08
G BASE LOAM 025 STREAM MAX	25	10	0.05	0.015	0.401	weeds (79)	Loam	1.35E-05	4.28E-12 1.70E-07	7.87E-08	1.95E-06	6.63E-07	5.83E-07	4.49E-04
G BASE SAND 050 STREAM MAX	25 50	10	0.05	0.015	0.401	weeds (79)	Sand	4.75E-05	6.01E-07	2.78E-07	6.88E-06	2.34E-06	2.06E-06	4.49E-04 1.58E-03
G BASE CLAY 050 STREAM MAX	50	10	0.05	0.015	0.401	weeds (79)	Clay	4.75E-05 2.82E-08	3.57E-10	2.78E-07 1.65E-10	4.09E-09	2.34E-06 1.39E-09	1.22E-09	9.41E-07
G BASE LOAM 050 STREAM MAX	50	10	0.05	0.015	0.401	weeds (79)	Loam	2.86E-05	3.62E-07	1.67E-07	4.09E-09 4.15E-06	1.41E-06	1.22E-09 1.24E-06	9.55E-04
G BASE SAND 100 STREAM MAX	100	10	0.05	0.015	0.401	weeds (79)	Sand	2.00E-05 8.46E-05	1.07E-06	4.95E-07	4.15E-06 1.23E-05	4.17E-06	3.66E-06	2.82E-03
G BASE CLAY 100 STREAM MAX	100	10	0.05	0.015	0.401	weeds (79)	Clay	9.08E-06	1.15E-07	4.95E-07 5.31E-08	1.32E-05	4.17E-06 4.47E-07	3.93E-06	2.82E-03 3.03E-04
G BASE LOAM 100 STREAM MAX	100	10	0.05	0.015	0.401	weeds (79)	Loam	5.17E-05	6.54E-07	3.02E-07	7.49E-06	2.54E-06	2.24E-06	1.72E-03
G BASE SAND 150 STREAM MAX	150	10	0.05	0.015	0.401		Sand	5.17E-05 1.12E-04	6.54E-07 1.42E-06	3.02E-07 6.55E-07	7.49E-06 1.62E-05	2.54E-06 5.52E-06	2.24E-06 4.85E-06	1.72E-03 3.73E-03
		10				weeds (79)								
G_BASE_CLAY_150_STREAM_MAX	150 150	10	0.05 0.05	0.015	0.401	weeds (79)	Clay	1.26E-05	1.60E-07	7.38E-08	1.83E-06	6.21E-07	5.46E-07	4.21E-04
G_BASE_LOAM_150_STREAM_MAX				0.015	0.401	weeds (79)	Loam	7.16E-05	9.06E-07	4.19E-07	1.04E-05	3.53E-06	3.10E-06	2.39E-03
G_BASE_SAND_200_STREAM_MAX	200	10	0.05	0.015	0.401	weeds (79)	Sand	1.24E-04	1.57E-06	7.27E-07	1.80E-05	6.12E-06	5.38E-06	4.14E-03
G_BASE_CLAY_200_STREAM_MAX	200	10	0.05	0.015	0.401	weeds (79)	Clay	1.64E-05	2.07E-07	9.58E-08	2.38E-06	8.07E-07	7.10E-07	5.46E-04
G_BASE_LOAM_200_STREAM_MAX	200	10	0.05	0.015	0.401	weeds (79)	Loam	8.64E-05	1.09E-06	5.05E-07	1.25E-05	4.26E-06	3.74E-06	2.88E-03
G_BASE_SAND_250_STREAM_MAX	250	10	0.05	0.015	0.401	weeds (79)	Sand	1.28E-04	1.62E-06	7.46E-07	1.85E-05	6.29E-06	5.52E-06	4.25E-03
G_BASE_CLAY_250_STREAM_MAX	250	10	0.05	0.015	0.401	weeds (79)	Clay	1.81E-05	2.30E-07	1.06E-07	2.63E-06	8.94E-07	7.85E-07	6.05E-04
G_BASE_LOAM_250_STREAM_MAX	250	10	0.05	0.015	0.401	weeds (79)	Loam	9.58E-05	1.21E-06	5.60E-07	1.39E-05	4.72E-06	4.15E-06	3.19E-03
G_ARV1_050_STREAM_MAX	50	1	0.05	0.015	0.401	weeds (79)	Loam	3.35E-06	4.23E-08	1.96E-08	4.85E-07	1.65E-07	1.45E-07	1.12E-04
G_ARV2_050_STREAM_MAX	50	100	0.05	0.015	0.401	weeds (79)	Loam	1.53E-04	1.94E-06	8.95E-07	2.22E-05	7.54E-06	6.62E-06	5.10E-03
G_ARV3_050_STREAM_MAX	50	1000	0.05	0.015	0.401	weeds (79)	Loam	4.18E-04	5.29E-06	2.44E-06	6.05E-05	2.06E-05	1.81E-05	1.39E-02
G_ERV1_050_STREAM_MAX	50	10	0.05	0.015	0.05	weeds (79)	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G_ERV2_050_STREAM_MAX	50	10	0.05	0.015	0.2	weeds (79)	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G_ERV3_050_STREAM_MAX	50	10	0.05	0.015	0.5	weeds (79)	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G_RGV1_050_STREAM_MAX	50	10	0.05	0.023	0.401	weeds (79)	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G_RGV2_050_STREAM_MAX	50	10	0.05	0.046	0.401	weeds (79)	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G_RGV3_050_STREAM_MAX	50	10	0.05	0.15	0.401	weeds (79)	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G_SLV1_050_STREAM_MAX	50	10	0.005	0.015	0.401	weeds (79)	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G_SLV2_050_STREAM_MAX	50	10	0.01	0.015	0.401	weeds (79)	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G_SLV3_050_STREAM_MAX	50	10	0.1	0.015	0.401	weeds (79)	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G_STV1_050_STREAM_MAX	50	10	0.05	0.015	0.401	weeds (79)	Loam	2.16E-05	2.73E-07	1.26E-07	3.13E-06	1.06E-06	9.35E-07	7.20E-04
G_STV2_050_STREAM_MAX	50	10	0.05	0.015	0.401	weeds (79)	Loam	2.22E-05	2.81E-07	1.30E-07	3.21E-06	1.09E-06	9.60E-07	7.39E-04
G_STV3_050_STREAM_MAX	50	10	0.05	0.015	0.401	weeds (79)	Loam	1.93E-05	2.44E-07	1.13E-07	2.79E-06	9.49E-07	8.34E-07	6.42E-04
G_VGV1_050_STREAM_MAX	50	10	0.05	0.015	0.401	Shrub	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G VGV2 050 STREAM MAX	50	10	0.05	0.015	0.401	Rye Grass	Loam	2.86E-05	3.62E-07	1.67E-07	4.15E-06	1.41E-06	1.24E-06	9.55E-04
G VGV3 050 STREAM MAX	50	10	0.05	0.015	0.401	Conifer-Hardwood	Loam	3.30E-05	4.18E-07	1.93E-07	4.79E-06	1.63E-06	1.43E-06	1.10E-03

RQ = Risk Quotient = Estimated Dose/Toxicity Reference Value

Shading and boldface indicates plant RQs greater than 1. Shading and boldface indicates acute RQs greater than 0.05 for fish and invertebrates. Shading and boldface indicates chronic RQs greater than 0.5 for fish and invertebrates.

Table B-18: Impact to non-target terrrestrial plants from surface runoff

SURFACE RUNOFF - modeled in GLEAMS

TYPICAL APPLICATION RATE

	Annual				USLE Soil			Terrestrial		Threatened &
	Precipitation	Application	Hydraulic Slope		Erodibility Factor			Concentration (Ib		Endangered
GLEAMS ID	(inches)	Area (acres)	(ft/ft)	Surface Roughness	(ton/ac per El)	Vegetation Type	Soil Type	a.e./acre)	RQ	Species RQ
G_BASE_SAND_005_TERR_TYP	5	10	0.05	0.015	0.401	weeds (79)	Sand	0.00E+00	0.00E+00	0.00E+00
G_BASE_CLAY_005_TERR_TYP	5	10	0.05	0.015	0.401	weeds (79)	Clay	4.84E-09	1.17E-07	2.85E-06
G_BASE_LOAM_005_TERR_TYP	5	10	0.05	0.015	0.401	weeds (79)	Loam	8.28E-09	2.00E-07	4.87E-06
G_BASE_SAND_010_TERR_TYP	10	10	0.05	0.015	0.401	weeds (79)	Sand	4.41E-07	1.06E-05	2.60E-04
G_BASE_CLAY_010_TERR_TYP	10	10	0.05	0.015	0.401	weeds (79)	Clay	1.39E-06	3.34E-05	8.16E-04
G_BASE_LOAM_010_TERR_TYP	10	10	0.05	0.015	0.401	weeds (79)	Loam	4.52E-06	1.09E-04	2.66E-03
G_BASE_SAND_025_TERR_TYP	25	10	0.05	0.015	0.401	weeds (79)	Sand	6.60E-06	1.59E-04	3.88E-03
G_BASE_CLAY_025_TERR_TYP	25	10	0.05	0.015	0.401	weeds (79)	Clay	8.65E-06	2.08E-04	5.09E-03
G_BASE_LOAM_025_TERR_TYP	25	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_BASE_SAND_050_TERR_TYP	50	10	0.05	0.015	0.401	weeds (79)	Sand	9.56E-11	2.30E-09	5.62E-08
G_BASE_CLAY_050_TERR_TYP	50	10	0.05	0.015	0.401	weeds (79)	Clay	1.27E-10	3.07E-09	7.50E-08
G_BASE_LOAM_050_TERR_TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_BASE_SAND_100_TERR_TYP	100	10	0.05	0.015	0.401	weeds (79)	Sand	2.26E-09	5.45E-08	1.33E-06
G_BASE_CLAY_100_TERR_TYP	100	10	0.05	0.015	0.401	weeds (79)	Clay	1.91E-10	4.61E-09	1.12E-07
G_BASE_LOAM_100_TERR_TYP	100	10	0.05	0.015	0.401	weeds (79)	Loam	1.98E-09	4.76E-08	1.16E-06
G_BASE_SAND_150_TERR_TYP	150	10	0.05	0.015	0.401	weeds (79)	Sand	8.00E-09	1.93E-07	4.70E-06
G_BASE_CLAY_150_TERR_TYP	150	10	0.05	0.015	0.401	weeds (79)	Clay	0.00E+00	0.00E+00	0.00E+00
G_BASE_LOAM_150_TERR_TYP	150	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_BASE_SAND_200_TERR_TYP	200	10	0.05	0.015	0.401	weeds (79)	Sand	0.00E+00	0.00E+00	0.00E+00
G_BASE_CLAY_200_TERR_TYP	200	10	0.05	0.015	0.401	weeds (79)	Clay	0.00E+00	0.00E+00	0.00E+00
G_BASE_LOAM_200_TERR_TYP	200	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_BASE_SAND_250_TERR_TYP	250	10	0.05	0.015	0.401	weeds (79)	Sand	0.00E+00	0.00E+00	0.00E+00
G_BASE_CLAY_250_TERR_TYP	250	10	0.05	0.015	0.401	weeds (79)	Clay	0.00E+00	0.00E+00	0.00E+00
G_BASE_LOAM_250_TERR_TYP	250	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_ARV1_050_TERR_TYP	50	1	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_ARV2_050_TERR_TYP	50	100	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_ARV3_050_TERR_TYP	50	1000	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_ERV1_050_TERR_TYP	50	10	0.05	0.015	0.05	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_ERV2_050_TERR_TYP	50	10	0.05	0.015	0.2	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_ERV3_050_TERR_TYP	50	10	0.05	0.015	0.5	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_RGV1_050_TERR_TYP	50	10	0.05	0.023	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_RGV2_050_TERR_TYP	50	10	0.05	0.046	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_RGV3_050_TERR_TYP	50	10	0.05	0.15	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_SLV1_050_TERR_TYP	50	10	0.005	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_SLV2_050_TERR_TYP	50	10	0.01	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_SLV3_050_TERR_TYP	50	10	0.1	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_STV1_050_TERR_TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	2.02E-07	4.87E-06	1.19E-04
G_STV2_050_TERR_TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	2.36E-07	5.68E-06	1.39E-04
G_STV3_050_TERR_TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	1.79E-06	4.32E-05	1.05E-03
G_VGV1_050_TERR_TYP	50	10	0.05	0.015	0.401	Shrub	Loam	0.00E+00	0.00E+00	0.00E+00
G_VGV2_050_TERR_TYP	50	10	0.05	0.015	0.401	Rye Grass	Loam	0.00E+00	0.00E+00	0.00E+00
G_VGV3_050_TERR_TYP	50	10	0.05	0.015	0.401	Conifer-Hardwood	Loam	0.00E+00	0.00E+00	0.00E+00

RQ = Risk Quotient = Estimated Dose/Toxicity Reference Value

Table B-18: Impact to non-target terrrestrial plants from surface runoff

SURFACE RUNOFF - modeled in GLEAMS

MAXIMUM APPLICATION RATE

GLEAMS ID	Annual Precipitation (inches)	Application Area (acres)	Hydraulic Slope (ft/ft)	Surface Roughness	USLE Soil Erodibility Factor (ton/ac per El)	Vegetation Type	Soil Type	Terrestrial Concentration (Ib a.e./acre)	Typical Species RQ	Threatened & Endangered Species RQ
G BASE SAND 005 TERR MAX	5	10	0.05	0.015	0.401	weeds (79)	Sand	0.00E+00	0.00E+00	0.00E+00
G_BASE_CLAY_005_TERR_MAX	5	10	0.05	0.015	0.401	weeds (79)	Clay	9.68E-09	2.33E-07	5.70E-06
G BASE LOAM 005 TERR MAX	5	10	0.05	0.015	0.401	weeds (79)	Loam	9.66E-09	3.99E-07	9.75E-06
G BASE SAND 010 TERR MAX	10	10	0.05	0.015	0.401	weeds (79)	Sand	8.83E-07	2.13E-05	5.19E-04
G BASE CLAY 010 TERR MAX	10	10	0.05	0.015	0.401	weeds (79)	Clay	2.78E-06	6.69E-05	1.63E-04
G_BASE_CEAT_010_TERR_MAX	10	10	0.05	0.015	0.401	weeds (79) weeds (79)	Loam	9.05E-06	2.18E-04	5.32E-03
G BASE SAND 025 TERR MAX	25	10	0.05	0.015	0.401	weeds (79)	Sand	1.32E-05	3.18E-04	7.76E-03
G_BASE_CLAY_025_TERR_MAX	25	10	0.05	0.015	0.401	weeds (79)	Clay	1.73E-05	4.17E-04	1.02E-02
G BASE LOAM 025 TERR MAX	25	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G BASE SAND 050 TERR MAX	50	10	0.05	0.015	0.401	weeds (79)	Sand	1.91E-10	4.61E-09	1.12E-07
G BASE CLAY 050 TERR MAX	50	10	0.05	0.015	0.401	weeds (79)	Clay	2.55E-10	6.14E-09	1.50E-07
G_BASE_LOAM_050_TERR_MAX	50	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G BASE SAND 100 TERR MAX	100	10	0.05	0.015	0.401	weeds (79)	Sand	4.52E-09	1.09E-07	2.66E-06
G BASE CLAY 100 TERR MAX	100	10	0.05	0.015	0.401	weeds (79)	Clay	3.82E-10	9.21E-09	2.25E-07
G BASE LOAM 100 TERR MAX	100	10	0.05	0.015	0.401	weeds (79)	Loam	3.95E-09	9.52E-08	2.32E-06
G BASE SAND 150 TERR MAX	150	10	0.05	0.015	0.401	weeds (79)	Sand	1.60E-08	3.85E-07	9.41E-06
G_BASE_CLAY_150_TERR_MAX	150	10	0.05	0.015	0.401	weeds (79)	Clay	0.00E+00	0.00E+00	0.00E+00
G BASE LOAM 150 TERR MAX	150	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G BASE SAND 200 TERR MAX	200	10	0.05	0.015	0.401	weeds (79)	Sand	0.00E+00	0.00E+00	0.00E+00
G BASE CLAY 200 TERR MAX	200	10	0.05	0.015	0.401	weeds (79)	Clay	0.00E+00	0.00E+00	0.00E+00
G BASE LOAM 200 TERR MAX	200	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G BASE SAND 250 TERR MAX	250	10	0.05	0.015	0.401	weeds (79)	Sand	0.00E+00	0.00E+00	0.00E+00
G BASE CLAY 250 TERR MAX	250	10	0.05	0.015	0.401	weeds (79)	Clay	0.00E+00	0.00E+00	0.00E+00
G BASE LOAM 250 TERR MAX	250	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G ARV1 050 TERR MAX	50	1	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G ARV2 050 TERR MAX	50	100	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G ARV3 050 TERR MAX	50	1000	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G ERV1 050 TERR MAX	50	10	0.05	0.015	0.05	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G ERV2 050 TERR MAX	50	10	0.05	0.015	0.2	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G ERV3 050 TERR MAX	50	10	0.05	0.015	0.5	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_RGV1_050_TERR_MAX	50	10	0.05	0.023	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G RGV2 050 TERR MAX	50	10	0.05	0.046	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_RGV3_050_TERR_MAX	50	10	0.05	0.15	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_SLV1_050_TERR_MAX	50	10	0.005	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_SLV2_050_TERR_MAX	50	10	0.01	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_SLV3_050_TERR_MAX	50	10	0.1	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00
G_STV1_050_TERR_MAX	50	10	0.05	0.015	0.401	weeds (79)	Loam	4.04E-07	9.73E-06	2.38E-04
G_STV2_050_TERR_MAX	50	10	0.05	0.015	0.401	weeds (79)	Loam	4.71E-07	1.14E-05	2.77E-04
G_STV3_050_TERR_MAX	50	10	0.05	0.015	0.401	weeds (79)	Loam	3.58E-06	8.63E-05	2.11E-03
G_VGV1_050_TERR_MAX	50	10	0.05	0.015	0.401	Shrub	Loam	0.00E+00	0.00E+00	0.00E+00
G_VGV2_050_TERR_MAX	50	10	0.05	0.015	0.401	Rye Grass	Loam	0.00E+00	0.00E+00	0.00E+00
G_VGV3_050_TERR_MAX	50	10	0.05	0.015	0.401	Conifer-Hardwood	Loam	0.00E+00	0.00E+00	0.00E+00

RQ = Risk Quotient = Estimated Dose/Toxicity Reference Value

Shading and boldface indicates plant RQs greater than 1.

Table B-19: Consumption of contaminated fish from pond by predatory bird - long term exposure. Pond impacted by surface runoff modeled in GLEAMS.

Parameters/ Assumptions	Value	Units	Notes			
Body Weight (W)	5.15 kg					
Food ingestion rate (dry weight)	0.101786153	kg dw/day	[1]			
Food ingestion rate (wet weight, A)	0.40714461	kg ww/day	[2]			
Bioconcentration factor (BCF)	1	L/kg fish				
Proportion of Diet Contaminated (Prop)	1	unitless				
Toxicity reference value (TRV)	76 mg/kg-bw/day					

TYPICAL APPLICATION RATE	Annual				USLE Soil			Pond	Concentrations	Dose estimates	
	Precipitation	Application Area	Hydraulic Slope	Surface	Erodibility Factor	Vegetation		Concentration	in fish (C _{Fish}):	(D): C _{Fish} × A ×	Risk
GLEAMS ID	(inches)	(acres)	(ft/ft)	Roughness	(ton/ac per El)	Туре	Soil Type	(mg/L)	WC × BCF	Prop / W	Quotient
G_BASE_SAND_005_POND_TYP	5	10	0.05	0.015	0.401	weeds (79)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_CLAY_005_POND_TYP	5	10	0.05	0.015	0.401	weeds (79)	Clay	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_LOAM_005_POND_TYP	5	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_SAND_010_POND_TYP	10	10	0.05	0.015	0.401	weeds (79)	Sand	1.04E-03	1.04E-03	8.22E-05	1.08E-06
G_BASE_CLAY_010_POND_TYP	10	10	0.05	0.015	0.401	weeds (79)	Clay	2.15E-08	2.15E-08	1.70E-09	2.23E-11
G_BASE_LOAM_010_POND_TYP	10	10	0.05	0.015	0.401	weeds (79)	Loam	7.72E-06	7.72E-06	6.11E-07	8.03E-09
G_BASE_SAND_025_POND_TYP	25	10	0.05	0.015	0.401	weeds (79)	Sand	2.78E-03	2.78E-03	2.20E-04	2.89E-06
G_BASE_CLAY_025_POND_TYP	25	10	0.05	0.015	0.401	weeds (79)	Clay	2.74E-08	2.74E-08	2.17E-09	2.85E-11
G_BASE_LOAM_025_POND_TYP	25	10	0.05	0.015	0.401	weeds (79)	Loam	2.05E-03	2.05E-03	1.62E-04	2.13E-06
G BASE SAND 050 POND TYP	50	10	0.05	0.015	0.401	weeds (79)	Sand	1.65E-03	1.65E-03	1.31E-04	1.72E-06
G BASE CLAY 050 POND TYP	50	10	0.05	0.015	0.401	weeds (79)	Clay	2.31E-06	2.31E-06	1.82E-07	2.40E-09
G BASE LOAM 050 POND TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	9.06E-04	9.06E-04	7.16E-05	9.42E-07
G BASE SAND 100 POND TYP	100	10	0.05	0.015	0.401	weeds (79)	Sand	4.02E-03	4.02E-03	3.18E-04	4.18E-06
G BASE CLAY 100 POND TYP	100	10	0.05	0.015	0.401	weeds (79)	Clay	2.13E-04	2.13E-04	1.68E-05	2.21E-07
G BASE LOAM 100 POND TYP	100	10	0.05	0.015	0.401	weeds (79)	Loam	1.54E-03	1.54E-03	1.22E-04	1.60E-06
G BASE SAND 150 POND TYP	150	10	0.05	0.015	0.401	weeds (79)	Sand	4.11E-03	4.11E-03	3.25E-04	4.27E-06
G BASE CLAY 150 POND TYP	150	10	0.05	0.015	0.401	weeds (79)	Clay	2.60E-04	2.60E-04	2.05E-05	2.70E-07
G BASE LOAM 150 POND TYP	150	10	0.05	0.015	0.401	weeds (79)	Loam	2.69E-03	2.69E-03	2.13E-04	2.80E-06
G BASE SAND 200 POND TYP	200	10	0.05	0.015	0.401	weeds (79)	Sand	2.58E-03	2.58E-03	2.04E-04	2.68E-06
G BASE CLAY 200 POND TYP	200	10	0.05	0.015	0.401	weeds (79)	Clay	3.25E-04	3.25E-04	2.57E-05	3.38E-07
G BASE LOAM 200 POND TYP	200	10	0.05	0.015	0.401	weeds (79)	Loam	2.75E-03	2.75E-03	2.18E-04	2.86E-06
G BASE SAND 250 POND TYP	250	10	0.05	0.015	0.401	weeds (79)	Sand	1.94E-03	1.94E-03	1.53E-04	2.02E-06
G BASE CLAY 250 POND TYP	250	10	0.05	0.015	0.401	weeds (79)	Clay	3.36E-04	3.36E-04	2.66E-05	3.50E-07
G BASE LOAM 250 POND TYP	250	10	0.05	0.015	0.401	weeds (79)	Loam	2.30E-03	2.30E-03	1.82E-04	2.40E-06
G ARV1 050 POND TYP	50	1	0.05	0.015	0.401	weeds (79)	Loam	7.84E-04	7.84E-04	6.19E-05	8.15E-07
G ARV2 050 POND TYP	50	100	0.05	0.015	0.401	weeds (79)	Loam	9.86E-04	9.86E-04	7.80E-05	1.03E-06
G ARV3 050 POND TYP	50	1000	0.05	0.015	0.401	weeds (79)	Loam	9.92E-04	9.92E-04	7.84E-05	1.03E-06
G ERV1 050 POND TYP	50	10	0.05	0.015	0.05	weeds (79)	Loam	9.06E-04	9.06E-04	7.16E-05	9.42E-07
G ERV2 050 POND TYP	50	10	0.05	0.015	0.03	weeds (79)	Loam	9.06E-04	9.06E-04	7.16E-05	9.42E-07
G ERV3 050 POND TYP	50	10	0.05	0.015	0.2	weeds (79)	Loam	9.06E-04	9.06E-04	7.16E-05	9.42E-07 9.42E-07
G RGV1 050 POND TYP	50	10	0.05	0.013	0.401	weeds (79) weeds (79)	Loam	9.06E-04	9.06E-04	7.16E-05	9.42E-07 9.42E-07
G RGV2 050 POND TYP	50	10	0.05	0.023	0.401	weeds (79) weeds (79)	Loam	9.06E-04	9.06E-04	7.16E-05	9.42E-07
G RGV3 050 POND TYP	50	10	0.05	0.15	0.401	weeds (79) weeds (79)	Loam	9.06E-04	9.06E-04	7.16E-05	9.42E-07 9.42E-07
G SLV1 050 POND TYP	50	10	0.005	0.15	0.401	weeds (79) weeds (79)	Loam	9.06E-04	9.06E-04	7.16E-05 7.16E-05	9.42E-07 9.42E-07
G SLV2 050 POND TYP	50	10	0.003	0.015	0.401			9.06E-04	9.06E-04	7.16E-05	9.42E-07 9.42E-07
G SLV2_050_POND_TYP						weeds (79)	Loam	9.06E-04 9.06E-04	9.06E-04 9.06E-04		9.42E-07 9.42E-07
	50	10	0.1	0.015	0.401	weeds (79)	Loam			7.16E-05	
G_STV1_050_POND_TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	8.64E-04	8.64E-04	6.83E-05	8.99E-07
G_STV2_050_POND_TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	7.54E-04	7.54E-04	5.96E-05	7.84E-07
G_STV3_050_POND_TYP	50	10	0.05	0.015	0.401	weeds (79)	Loam	9.84E-04	9.84E-04	7.78E-05	1.02E-06
G_VGV1_050_POND_TYP	50	10	0.05	0.015	0.401	Shrub	Loam	9.06E-04	9.06E-04	7.16E-05	9.42E-07
G_VGV2_050_POND_TYP	50	10	0.05	0.015	0.401	Rye Grass	Loam	9.06E-04	9.06E-04	7.16E-05	9.42E-07
G_VGV3_050_POND_TYP	50	10	0.05	0.015	0.401	Conifer-Hardwood	Loam	9.96E-04	9.96E-04	7.87E-05	1.04E-06

Table B-19: Consumption of contaminated fish from pond by predatory bird - long term exposure. Pond impacted by surface runoff modeled in GLEAMS.

Parameters/ Assumptions	Value	Units	Notes
Body Weight (W)	5.15		
Food ingestion rate (dry weight)	0.101786153	kg dw/day	[1]
Food ingestion rate (wet weight, A)	0.40714461	kg ww/day	[2]
Bioconcentration factor (BCF)	1	L/kg fish	
Proportion of Diet Contaminated (Prop)	1	unitless	
Toxicity reference value (TRV)	76	mg/kg-bw/day	

MAXIMUM APPLICATION RA	TE

MAXIMUM APPLICATION RATE											
	Annual				USLE Soil			Pond	Concentrations	Dose estimates	
	Precipitation	Application Area	Hydraulic Slope	Surface	Erodibility Factor	Vegetation		Concentration	in fish (C _{Fish}):	(D): C _{Fish} × A ×	Risk
GLEAMS ID	(inches)	(acres)	(ft/ft)	Roughness	(ton/ac per El)	Туре	Soil Type	(mg/L)	WC × BCF	Prop / W	Quotient
G_BASE_SAND_005_POND_max	5	10	0.05	0.015	0.401	weeds (79)	Sand	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_CLAY_005_POND_max	5	10	0.05	0.015	0.401	weeds (79)	Clay	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_LOAM_005_POND_max	5	10	0.05	0.015	0.401	weeds (79)	Loam	0.00E+00	0.00E+00	0.00E+00	0.00E+00
G_BASE_SAND_010_POND_max	10	10	0.05	0.015	0.401	weeds (79)	Sand	2.08E-03	2.08E-03	1.64E-04	2.16E-06
G_BASE_CLAY_010_POND_max	10	10	0.05	0.015	0.401	weeds (79)	Clay	4.30E-08	4.30E-08	3.40E-09	4.47E-11
G_BASE_LOAM_010_POND_max	10	10	0.05	0.015	0.401	weeds (79)	Loam	1.54E-05	1.54E-05	1.22E-06	1.61E-08
G_BASE_SAND_025_POND_max	25	10	0.05	0.015	0.401	weeds (79)	Sand	5.56E-03	5.56E-03	4.39E-04	5.78E-06
G_BASE_CLAY_025_POND_max	25	10	0.05	0.015	0.401	weeds (79)	Clay	5.48E-08	5.48E-08	4.33E-09	5.70E-11
G_BASE_LOAM_025_POND_max	25	10	0.05	0.015	0.401	weeds (79)	Loam	4.10E-03	4.10E-03	3.24E-04	4.26E-06
G_BASE_SAND_050_POND_max	50	10	0.05	0.015	0.401	weeds (79)	Sand	3.31E-03	3.31E-03	2.61E-04	3.44E-06
G_BASE_CLAY_050_POND_max	50	10	0.05	0.015	0.401	weeds (79)	Clay	4.62E-06	4.62E-06	3.65E-07	4.80E-09
G_BASE_LOAM_050_POND_max	50	10	0.05	0.015	0.401	weeds (79)	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G_BASE_SAND_100_POND_max	100	10	0.05	0.015	0.401	weeds (79)	Sand	8.04E-03	8.04E-03	6.36E-04	8.36E-06
G BASE CLAY 100 POND max	100	10	0.05	0.015	0.401	weeds (79)	Clay	4.26E-04	4.26E-04	3.37E-05	4.43E-07
G BASE LOAM 100 POND max	100	10	0.05	0.015	0.401	weeds (79)	Loam	3.08E-03	3.08E-03	2.43E-04	3.20E-06
G_BASE_SAND_150_POND_max	150	10	0.05	0.015	0.401	weeds (79)	Sand	8.22E-03	8.22E-03	6.49E-04	8.55E-06
G BASE CLAY 150 POND max	150	10	0.05	0.015	0.401	weeds (79)	Clay	5.20E-04	5.20E-04	4.11E-05	5.40E-07
G BASE LOAM 150 POND max	150	10	0.05	0.015	0.401	weeds (79)	Loam	5.38E-03	5.38E-03	4.25E-04	5.60E-06
G BASE SAND 200 POND max	200	10	0.05	0.015	0.401	weeds (79)	Sand	5.16E-03	5.16E-03	4.08E-04	5.36E-06
G BASE CLAY 200 POND max	200	10	0.05	0.015	0.401	weeds (79)	Clay	6.49E-04	6.49E-04	5.13E-05	6.75E-07
G BASE LOAM 200 POND max	200	10	0.05	0.015	0.401	weeds (79)	Loam	5.51E-03	5.51E-03	4.35E-04	5.73E-06
G BASE SAND 250 POND max	250	10	0.05	0.015	0.401	weeds (79)	Sand	3.88E-03	3.88E-03	3.07E-04	4.04E-06
G BASE CLAY 250 POND max	250	10	0.05	0.015	0.401	weeds (79)	Clay	6.73E-04	6.73E-04	5.32E-05	7.00E-07
G BASE LOAM 250 POND max	250	10	0.05	0.015	0.401	weeds (79)	Loam	4.61E-03	4.61E-03	3.64E-04	4.79E-06
G ARV1 050 POND max	50	1	0.05	0.015	0.401	weeds (79)	Loam	1.57E-03	1.57E-03	1.24E-04	1.63E-06
G ARV2 050 POND max	50	100	0.05	0.015	0.401	weeds (79)	Loam	1.97E-03	1.97E-03	1.56E-04	2.05E-06
G ARV3 050 POND max	50	1000	0.05	0.015	0.401	weeds (79)	Loam	1.98E-03	1.98E-03	1.57E-04	2.06E-06
G ERV1 050 POND max	50	10	0.05	0.015	0.05	weeds (79)	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G ERV2 050 POND max	50	10	0.05	0.015	0.2	weeds (79)	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G ERV3 050 POND max	50	10	0.05	0.015	0.5	weeds (79)	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G RGV1 050 POND max	50	10	0.05	0.023	0.401	weeds (79)	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G RGV2 050 POND max	50	10	0.05	0.046	0.401	weeds (79)	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G RGV3 050 POND max	50	10	0.05	0.15	0.401	weeds (79)	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G SLV1 050 POND max	50	10	0.005	0.015	0.401	weeds (79)	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G SLV2 050 POND max	50	10	0.01	0.015	0.401	weeds (79)	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G SLV3 050 POND max	50	10	0.1	0.015	0.401	weeds (79)	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G STV1 050 POND max	50	10	0.05	0.015	0.401	weeds (79)	Loam	1.73E-03	1.73E-03	1.37E-04	1.80E-06
G STV2 050 POND max	50	10	0.05	0.015	0.401	weeds (79)	Loam	1.51E-03	1.51E-03	1.19E-04	1.57E-06
G STV3 050 POND max	50	10	0.05	0.015	0.401	weeds (79)	Loam	1.97E-03	1.97E-03	1.56E-04	2.05E-06
G VGV1 050 POND max	50	10	0.05	0.015	0.401	Shrub	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G VGV2 050 POND max	50	10	0.05	0.015	0.401	Rve Grass	Loam	1.81E-03	1.81E-03	1.43E-04	1.88E-06
G VGV3 050 POND max	50	10	0.05	0.015	0.401	Conifer-Hardwood	Loam	1.99E-03	1.99E-03	1.57E-04	2.07E-06
5_7070_000_1 011D_111dx	00	10	0.00	0.010	0.401		Loan	1.552 05	1.552 05	1.07 - 04	2.01 - 00

Risk Quotient = Estimated Dose/Toxicity Reference Value [1] Calculated using alorithm developed by Nagy, 1987 for all birds; where Food Ingestion Rate (kg dw/day) = 0.0582*(BW)^0.651 [2] Assumes fish are 75% water (USEPA, 1993; Table 4-1 - value for bony fishes)

Table B-20: Impact to non-target terrrestrial plants from wind erosion

Cal Puff Scenario ID	Watershed Location	Distance From Receptor (km)	Terrestrial Concentration (Ib a.e./acre)	Typical Species TRV	Typical Species RQ	Threatened & Endangered Species TRV	Threatened & Endangered Species RQ
dust_MT_0.5_typ	MT	0.5	6.25E-05	2.70E-03	2.31E-02	7.00E-04	8.92E-02
dust_MT_5_typ	MT	5	1.83E-06	2.70E-03	6.78E-04	7.00E-04	2.62E-03
dust_MT_50_typ	MT	50	6.40E-08	2.70E-03	2.37E-05	7.00E-04	9.14E-05
dust_OR_0.5_typ	OR	0.5	7.18E-04	2.70E-03	2.66E-01	7.00E-04	1.03E+00
dust_OR_5_typ	OR	5	1.92E-05	2.70E-03	7.10E-03	7.00E-04	2.74E-02
dust_OR_50_typ	OR	50	4.69E-07	2.70E-03	1.74E-04	7.00E-04	6.70E-04
dust_WY_0.5_typ	WY	0.5	3.69E-04	2.70E-03	1.37E-01	7.00E-04	5.27E-01
dust_WY_5_typ	WY	5	1.32E-05	2.70E-03	4.89E-03	7.00E-04	1.89E-02
dust_WY_50_typ	WY	50	4.21E-07	2.70E-03	1.56E-04	7.00E-04	6.02E-04

WIND EROSION - modeled in CalPuff and AERMOD

MAXIMUM APPLICAT	ION RATE						
Cal Puff Scenario ID	Watershed Location	Distance From Receptor (km)	Terrestrial Concentration (Ib a.e./acre)	Typical Species TRV	Typical Species RQ	Threatened & Endangered Species TRV	Threatened & Endangered Species RQ
dust_MT_0.5_max	MT	0.5	1.25E-04	2.70E-03	4.63E-02	7.00E-04	1.78E-01
dust_MT_5_max	MT	5	3.66E-06	2.70E-03	1.36E-03	7.00E-04	5.23E-03
dust_MT_50_max	MT	50	1.28E-07	2.70E-03	4.74E-05	7.00E-04	1.83E-04
dust_OR_0.5_max	OR	0.5	1.44E-03	2.70E-03	5.32E-01	7.00E-04	2.05E+00
dust_OR_5_max	OR	5	3.84E-05	2.70E-03	1.42E-02	7.00E-04	5.48E-02
dust_OR_50_max	OR	50	9.37E-07	2.70E-03	3.47E-04	7.00E-04	1.34E-03
dust_WY_0.5_max	WY	0.5	7.38E-04	2.70E-03	2.73E-01	7.00E-04	1.05E+00
dust_WY_5_max	WY	5	2.64E-05	2.70E-03	9.79E-03	7.00E-04	3.77E-02
dust_WY_50_max	WY	50	8.42E-07	2.70E-03	3.12E-04	7.00E-04	1.20E-03

RQ = Risk Quotient = Estimated Dose/Toxicity Reference Value

Shading and boldface indicates plant RQs greater than 1.

Table B-21: Impact to aquatic species from accidental spill to pond

Parameters/Assumptions	Value	Units
Volume of pond (Vp)		1011715 L
Volume of spill		
Truck (Vsp	oill _t)	757 L
Helicopter(Vsp	ill _h)	529.9 L
Herbicide concentration		
Truck mixture (C	m _t)	2396.79 mg a.e./L
Helicopter mixture (C	m _h)	11983.94 mg a.e./L
		-

				Risk Quotients	
Scenario	Concentrations ir water (Cw): Cm × Vspill / Vp	-	Fish	Aquatic Invertebrates	Non-Target Aquatic Plants
Truck spill into pond Helicopter spill into pond	1.79 6.28	mg a.e./L mg a.e./L	2.27E-02 7.95E-02	1.05E-02 3.67E-02	2.60E-01 9.10E-01

Shading and boldface indicates plant RQs greater than 1. Shading and boldface indicates acute RQs greater than 0.05 for fish and invertebrates.

Table B-22: Impact to aquatic species from accidental direct spray of pond and stream

Parameters/Assumptions	,	Value		Units
Application rates (R)	- · ·			
	Typical Maximum			lb/acre lb/acre
Area of pond (Area)	IVIAAIITTUTT		0.25	
,				
Volume of pond (Vol)			1011715	L
Mass sprayed on pond (R x Area)				
	Typical		28349.5	mg
	Maximum		56699	mg
Concentration in pond water (Mass/Volum	ne)			
	Typical		0.028021231	mg/L
	Maximum		0.056042463	mg/L
				-
Width of stream			2	m
Length of stream impacted by direct spray	у		636.15	m
Area of stream impacted by spray (Area)			1272.3	m2
Depth of stream			0.2	m
Instantaneous volume of stream impacted	d by direct			
spray (Vol)			254460	L
Mass sprayed on stream (R x Area)				
	Typical		318.075	lb
	Maximum		636.150	lb
Mass sprayed on stream - converted to m	g			
	Typical		35651.765	mg
	Maximum		71303.530	mg
Concentration in stream water (Mass/Vol)				-
, , , , , , , , , , , , , , , , , , ,	Typical		0.140107541	U C
	Maximum		0.280215082	mg/L

		Concentration in		<u>Risk Quotients</u> Aquatic	Non-Target
Scena	ario	water (mg/L)	Fish	Invertebrates	Aquatic Plants
•					
Acute					
Direct spray to pond					
	Typical application	2.80E-02	3.55E-04	1.64E-04	4.06E-03
	Maximum application	5.60E-02	7.09E-04	3.28E-04	8.12E-03
Direct spray to stream					
	Typical application	1.40E-01	1.77E-03	8.19E-04	2.03E-02
	Maximum application	2.80E-01	3.55E-03	1.64E-03	4.06E-02
Chronic					
Direct spray to pond					
	Typical application	2.80E-02	1.38E-03	1.21E-03	9.34E-01
	Maximum application	5.60E-02	2.76E-03	2.43E-03	1.87E+00
Direct spray to stream					
	Typical application	1.40E-01	6.90E-03	6.07E-03	4.67E+00
	Maximum application	2.80E-01	1.38E-02	1.21E-02	9.34E+00
	maximum application	2.002-01	1.30E-02	1.2TE-02	3.34C+00

Shading and boldface indicates plant RQs greater than 1. Shading and boldface indicates acute RQs greater than 0.05 for fish and invertebrates.

APPENDIX D – SPECIES LISTED UNDER THE ENDANGERED SPECIES ACT FOR 17 BLM STATES

TABLE D-1

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
		Plants		•	1	1
Acanthomintha ilicifolia	San Diego thornmint	T^2	CA	Yes	None	No
Allium munzii	Munz's onion	Е	CA	Yes	63 acres	No
Ambrosia pumila	San Diego ambrosia	Е	СА	Yes	None	No
Amsonia kearneyana	Kearney's blue-star	Е	AZ	No		Yes
Arabis mcdonaldiana	McDonald's rock-cress	Е	CA, OR	No		Yes
Arctomecon humilis	Dwarf bear-poppy	Е	UT	No		Yes
Arctostaphylos morroensis	Morro manzanita	Т	CA	No		Yes
Arctostaphylos myrtifolia	Ione manzanita	Т	CA	No		No
Arenaria paludicola	Marsh sandwort	Е	OR	No		Yes
Argemone pleiacantha ssp. pinnatisecta	Sacramento prickly poppy	Е	NM	No		Yes
Asclepias welshii	Welsh's milkweed	Т	AZ, UT	Yes	1,760 acres (UT)	Yes
Astragalus albens	Cushenbury milk-vetch	Е	CA	Yes	839 acres	Yes
Astragalus ampullarioides	Shivwitz milk-vetch	Е	UT	Yes	819 acres	Yes
Astragalus applegatei	Applegate's milk-vetch	Е	OR	No		Yes
Astragalus brauntonii	Braunton's milk-vetch	Е	CA	Yes	None	Yes
Astragalus desereticus	Deseret milk-vetch	Т	UT	No		No
Astragalus holmgreniorum	Holmgren milk-vetch	Е	AZ, UT	Yes	362 acres (AZ); 2,447 acres (UT)	Yes
Astragalus humillimus	Mancos milk-vetch	Е	CO, NM	No		Yes
Astragalus jaegerianus	Lane Mountain milk-vetch	Е	CA	Yes	9,897 acres	No
Astragalus lentiginosus var. coachellae	Coachella Valley milk-vetch	Е	CA	Yes	3,494 acres	No
Astragalus magdalenae var. peirsonii	Peirson's milk-vetch	Т	CA	Yes	20,779 acres	No
Astragalus lentiginosus var. piscinensis	Fish Slough milk-vetch	Т	CA	Yes	5,430 acres	Yes
Astragalus montii	Heliotrope milk-vetch	Т	UT	Yes	None	Draft
Astragalus osterhoutii	Osterhout milk-vetch	Е	СО	No		Yes
Astragalus phoenix	Ash Meadows milk-vetch	Т	NV	Yes	458 acres	Yes
Astragalus tricarinatus	Triple-ribbed milk-vetch	Е	CA	No		No
Atriplex coronata var. notatior	San Jacinto Valley crownscale	Е	CA	Yes	None	No
Baccharis vanessae	Encinitis baccharis	Т	CA	No		No
Berberis nevinii	Nevin's barberry	Е	CA	Yes	5 acres	No
Brodiaea filifolia	Thread-leaved brodiaea	Т	CA	Yes	53 acres	No
Calyptridium pulchellum	Mariposa pussypaws	Т	CA	No	No	No
Calystegia stebbinsii	Stebbins' morning-glory	Е	CA	No		Yes
Camissonia benitensis	San Benito evening-primrose	Т	СА	No		Yes
Carex specuicola	Navajo sedge	Т	UT	Yes	None	Yes
Castilleja campestris ssp. succulenta	Fleshy owl's-clover	Т	CA	Yes	289 acres	Yes
Caulanthus californicus	California jewelflower	Е	CA	No		Yes

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
	·	Plants (Cont.)		•		
Ceanothus ferrisae	Coyote ceanothus	E	CA	No	No	Yes
Ceanothus roderickii	Pine Hill ceanothus	Е	CA	No		Yes
Centaurium namophilum	Spring-loving centaury	Т	CA, NV	Yes	806 acres (NV)	Yes
Chamaesyce hooveri	Hoover's spurge	Т	CA	Yes	38 acres	Yes
Chlorogalum purpureum var. purpureum	Purple amole	Т	CA	Yes	None	No
Chorizanthe howellii	Howell's spineflower	Е	CA	No		Yes
Chorizanthe orcuttiana	Orcutt's spineflower	Е	CA	No		No
Chorizanthe pungens var.pungens	Monterey spineflower	Т	CA	Yes	1,204 acres	Yes
Chorizanthe rogusta var. robusta	Robust spineflower	Е	CA	No		No
Cirsium fontinale var. obispoense	Chorro Creek bog thistle	Е	CA	No		Yes
Cirsium scariosum var. loncholepis	La Graciosa thistle	Е	CA	Yes	None	No
Clarkia springvillensis	Springville clarkia	Т	CA	No		No
Coryphantha robbinsorum	Cochise pincushion cactus	Т	AZ	No		Yes
Coryphantha scheeri var. robustispina	Pima pineapple cactus	Е	AZ	No		No
Coryphantha sneedii var. leei	Lee pincushion cactus	Т	NM	No		Yes
Coryphantha sneedii var. sneedii	Sneed pincushion cactus	Е	NM	No		Yes
Cycladenia humilis var. jonesii	Jones cycladenia	Т	CA, AZ, UT	No		Outline
Deinandra (= hemizonia) conjugens	Otay tarplant	Т	CA	Yes	None	Yes
Deinandra increscens ssp. villosa	Gaviota tarplant	Е	CA	Yes	None	No
Delphinium luteum	Yellow larkspur	Е	CA	Yes	None	No
Dodecahema leptoceras	Slender-horned spineflower	Е	CA	No		No
Dudleya cymosa ssp. marcescens	Marcescent dudleya	Т	CA	No		Yes
Echinocactus horizonthalonius var. nicholli	Nichol's Turk's head cactus	Е	AZ	No		Yes
Echinocereus fendleri var. kuenzleri	Kuenzler hedgehog cactus	Е	NM	No		Yes
Echinocereus triglochidiatus var. arizonicus	Arizona hedgehog cactus	Е	AZ	No		No (Draft)
Echinomastus erectocentrus var. acunensis	Acuna cactus	Е	AZ	Proposed		No
Enceliopsis nudicaulis var. corrugata	Ash Meadows sunray	Т	NV	Yes	773 acres	Yes
Eremalche kernensis	Kern mallow	Е	CA	No		Yes
Eriastrum densifolium ssp. sanctorum	Santa Ana River woolly-star	Е	CA	No		No
Erigeron decumbens var. decumbens	Willamette daisy	Е	OR	Yes	208 acres	Yes
Erigeron parishii	Parish's daisy	Т	CA	Yes	945 acres	Yes
Erigeron rhizomatus	Zuni fleabane	Т	AZ, NM	No		Yes
Eriodictyon altissimum	Indian Knob mountain balm	Е	CA	No		Yes
Eriodictyon capitatum	Lompoc yerba santa	Е	CA	Yes	None	No

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
	INTROD	UCTION Pla	nts (Cont.)			
Eriogonum apricum	Ione buckwheat	Е	CA	No		No
Eriogonum gypsophilum	Gypsum wild-buckwheat	Т	NM	Yes	537 acres	Yes
Eriogonum ovalifolium var. vineum	Cushenbury buckwheat	Е	CA	Yes	423 acres	Yes
Eriogonum ovalifolium var. williamsiae	Steamboat buckwheat	E	NV	No		Yes
Eriogonum pelinophilum	Clay-loving wild-buckwheat	Е	СО	Yes	None	Yes
Erysimum menziesii	Menzies' wallflower	Е	CA	No		Yes
Eutrema penlandii	Penland alpine fen mustard	Т	СО	No		No
Fremontodendron californicum ssp. decumbens	Pine Hill flannelbush	Е	СА	No		Yes
Fremontodendron mexicanum	Mexican flannelbush	Е	CA	Yes	224 acres	No
Fritillaria gentneri	Gentner's fritillary	Е	OR	No		Yes
Galium californicum ssp. sierrae	El Dorado bedstraw	Е	CA	No		Yes
Gaura neomexicana var. coloradensis	Colorado butterfly plant	Т	CO, WY	Yes	None	Outline
Gilia tenuiflora ssp. arenaria	Monterey gilia	Е	ĊA	No		Yes
Grindelia fraxino-pratensis	Ash Meadows gumplant	Т	CA, NV	Yes	292 acres (CA)	Yes
Hackelia venusta	Showy stickseed	Е	OR	No		Yes
Hedeoma todsenii	Todsen's pennyroyal	Е	NM	Yes	None	Yes
Helianthus paradoxus	Pecos sunflower	Т	NM	Yes	None	Yes
Howellia aquatilis	Water howellia	Т	CA, ID, MT, OR	No		Draft
Ipomopsis polyantha	Pagosa skyrocket	Е	СО	Yes	42 acres	Outline
Ivesia kingii var. eremica	Ash Meadows ivesia	Т	NV	Yes	335 acres	Yes
Ivesia webberi	Webber ivesia	РТ	CA, NV	Proposed	Proposed	No
Lasthenia conjugens	Contra Costa goldfields	Е	CA	Yes	None	Yes
Layia carnosa	Beach layia	Е	CA	No		Yes
Lepidium barnebyanum	Barneby ridge-cress	Е	UT	No		Yes
Lepidium papilliferum	Slickspot peppergrass	Т	ID	Proposed	57,756 acres (proposed)	No
Lesquerella congesta	Dudley Bluffs bladderpod	Т	СО	No		Yes
Lesquerella tumulosa	Kodachrome bladderpod	Е	UT	No		Outline
Lilaeopsis schaffneriana var. recurva	Huachuca water-umbel	Е	AZ	Yes	484 acres	No
Lilium occidentale	Western lily	Е	CA, OR	No		Yes
Limnanthes floccosa ssp. californica	Butte County meadowfoam	Е	CA	Yes	None	Yes
Limnanthes floccosa ssp. grandiflora	Large-flowered woolly meadowfoam	Е	OR	Yes	None	Draft
Lomatium bradshawii	Bradshaw's desert-parsley	Е	OR	No		Yes
Lomatium cookii	Cook's lomatium	Е	OR	Yes	1,621 acres	Draft
Lupinus sulphureus ssp. kincaidii	Kincaid's lupine	Т	OR, WA	Yes	34 acres (OR)	Yes

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
	Pl	ants (Cont.)		ł	•	•
Mentzelia leucophylla	Ash Meadows blazingstar	T	NV	Yes	509 acres	Yes
Mirabilis macfarlanei	MacFarlane's four-o'clock	Т	ID, OR	No		Yes
Monardella viminea	Willowy monardella	Е	ĊA	Yes	No	No
Monolopia congdonii (formerly Lembertia congdonii)	San Joaquin woolly-threads	Е	CA	No		Yes
Neostapfia colusana	Colusa grass	Т	CA	Yes	7 acres	Yes
Nitrophila mohavensis	Amargosa niterwort	Е	CA, NV	Yes	1,200 acres (CA)	Yes
Opuntia treleasei	Bakersfield cactus	Е	CA	No		Yes
Orcuttia californica	California orcutt grass	Е	CA	No		Yes
Orcuttia inaequalis	San Joaquin Valley orcutt grass	Т	CA	Yes	289 acres	Yes
Orcuttia pilosa	Hairy orcutt grass	Е	CA	Yes	18 acres	Yes
Orcuttia tenuis	Slender orcutt grass	Т	CA	Yes	17,077 acres	Yes
Oxytheca parishii var. goodmaniana	Cushenbury oxytheca	Е	CA	Yes	84 acres	Draft
Pediocactus bradyi	Brady pincushion cactus	Е	AZ	No		Yes
Pediocactus despainii	San Rafael cactus	Е	NM, UT	No		Draft
Pediocactus knowltonii	Knowlton's cactus	Е	CO, NM	No		Yes
Pediocactus peeblesianus var. fickeiseniae	Fickeisen plains cactus	Е	AZ	Proposed		No
Pediocactus peeblesianus var. peeblesianus	Peebles Navajo cactus	Е	AZ	No		Yes
Pediocactus sileri	Siler pincushion cactus	Т	AZ, UT	No		Yes
Pediocactus winkleri	Winkler cactus	Т	UT	No		Draft
Penstemon debilis	Parachute beardtongue	Т	СО	Yes	13,912 acres	Outline
Penstemon grahamii	Graham's beardtongue	РТ	CO, UT	Proposed	Proposed	No
Penstemon haydenii	Blowout penstemon	Е	WY	No		Yes
Penstemon penlandii	Penland beardtongue	Е	СО	No		Yes
Penstemon scariosus var. albifluvis	White River beardtongue	PT	CO, UT	Proposed	Proposed	No
Phacelia argillacea	Clay phacelia	Е	UT	Ño		No
Phacelia formosula	North Park phacelia	Е	СО	No		Yes
Phacelia submutica	DeBeque phacelia	Т	СО	Yes	22,013 acres	Outline
Phlox hirsuta	Yreka phlox	Е	CA	No		Yes
Physaria obcordata	Dudley Bluffs (Piceance) twinpod	Т	CO, UT	No		Yes
Piperia yadonii	Yadon's piperia	Е	CA	Yes	No	Yes
Plagiobothrys hirtus	Rough popcornflower	Е	OR	No		Yes
Plantanthera praeclara	Western prairie fringed orchid	T	MT, WY	No		Yes
Pogogyne nudiuscula	Otay mesa-mint	E	CA	No		Yes
Primula maguirei	Maguire primrose	Т	UT	No		Yes
Pseudobahia bahiifolia	Hartweg's golden sunburst	Ē	CA	No		No

Species Addressed in This Ecological Risk Assessment

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
	ŀ	lants (Cont.)	•			•
Pseudobahia peirsonii	San Joaquin adobe sunburst	T	CA	No		No
Purshia subintegra	Arizona cliff-rose	Е	AZ	No		Yes
Ranunculus aestivalis	Autumn buttercup	E	UT	No		Yes
Schoenocrambe argillacea	Clay reed-mustard	Т	NM, UT	No		Yes
Schoenocrambe barnebyi	Barneby reed-mustard	E	ID, UT	No		Yes
Schoenocrambe suffrutescens	Shrubby reed-mustard	Е	UT	No		Yes
Sclerocactus brevispinus	Pariette cactus	Т	UT	No		Outline
Sclerocactus glaucus	Colorado hookless cactus	Т	СО	No		Outline
Sclerocactus mesae-verdae	Mesa Verde cactus	Т	CO, NM, UT	No		Yes
Sclerocactus wrightiae	Wright fishhook cactus	Е	UT	No		Yes
Senecio layneae	Layne's butterweed	Т	CA	No		Yes
Sidalcea keckii	Keck's checker-mallow	Е	CA	Yes	0.2 acres	No
Sidalcea nelsoniana	Nelson's checker-mallow	Т	OR	No		Yes
Sidalcea oregana var. calva	Wenatchee Mountains checker- mallow	Е	OR	Yes	None	Yes
Silene spaldingii	Spalding's catchfly	Т	ID, MT, OR, WA	No		Yes
Sphaeralcea gierischii	Gierisch mallow	Е	AZ, UT	Yes	9,406 acres (AZ) 1,982 acres (UT)	No
Spiranthes delitescens	Canelo Hills ladies'-tresses	Е	AZ	No		No
Spiranthes diluvialis	Ute ladies'-tresses	Т	CO, ID, MT, NV, OR, UT, WY, NE, WA	No		Draft
Stephanomeria malheurensis	Malheur wire-lettuce	Е	OR	Yes	103 acres	Yes
Streptanthus albidus ssp. albidus	Metcalf Canyon jewelflower	Е	CA	No		Yes
Thelypodium howellii ssp. spectabilis	Howell's spectacular thelypody	Т	OR	No		Yes
Townsendia aprica	Last Chance townsendia	Т	UT	No		Yes
Tuctoria greenei	Greene's tuctoria	Е	CA	Yes	7.2 acres	Yes
Verbena californica	Red Hills vervain	Т	CA	No		No
Yermo xanthocephalus	Desert yellowhead	Т	WY	Yes	357 acres	Outline
		Mollusks		- -		•
Assiminea pecos	Pecos assiminea snail	Е	NM	Yes	No	No (state plan)
Helminthoglypta walkeriana	Morro shoulderband snail	Е	CA	Yes	5 acres	Yes
Juturnia kosteri	Koster's springsnail	Е	NM	Yes	No	No (state plan)
<i>Lanx</i> sp.	Banbury Springs limpet	Е	ID	No		Yes
Oxyloma haydeni kanabensis	Kanab ambersnail	Е	AZ, UT	Proposed		Yes
Physa natricina	Snake River physa snail	Е	ID	No		Yes
Pyrgulopsis bruneauensis	Bruneau Hot springsnail	Е	ID	No		Yes

BLM Vegetation Treatments ERA

March 25, 2014

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
	Mo	llusks (Cont.)				
Pyrgulopsis neomexicana	Socorro springsnail	E	NM	No		Yes
Pyrgulopsis roswellensis	Roswell springsnail	Е	NM	Yes	No	No
Taylorconcha serpenticola	Bliss Rapids snail	Т	ID	No		Yes
Tryonia alamosae	Alamosa springsnail	Е	NM	No		Yes
	A	Arthropods				
Ambrysus amargosus	Ash Meadows naucorid	Т	NV	Yes	None	Yes
Boloria acrocnema	Uncompany fritillary butterfly	Е	СО	No		Yes
Branchinecta conservatio	Conservancy fairy shrimp	Е	CA	Yes	7 acres	Yes
Branchinecta longiantenna	Longhorn fairy shrimp	Е	CA	Yes	31 acres	Yes
Branchinecta lynchi	Vernal pool fairy shrimp	Т	CA, OR	Yes	4,122 acres (CA); 423 acres (OR)	Yes
Desmocerus californicus dimorphus	Valley elderberry longhorn beetle	Т	CA	Yes	None	Yes
Euphydryas editha quino	Quino checkerspot butterfly	Е	CA	Yes	11,444 acres	Yes
Euphydryas editha taylori	Taylor's checkerspot butterfly	Е	OR	Yes	None	No
Euproserpinus euterpe	Kern primrose sphinx moth	Т	CA	No		Yes
Gammarus desperatus	Noel's amphipod	Е	NM	Yes	None	No
Hesperia leonardus montana	Pawnee montane skipper	Т	СО	No		Yes
Icaricia icarioides fenderi	Fender's blue butterfly	Е	OR	Yes	249 acres	Yes
Lepidurus packardi	Vernal pool tadpole shrimp	Е	CA	Yes	15,749 acres	Yes
Nicrophorus americanus	American burying beetle	Е	MT, WY	No		Yes
Pseudocopaeodes eunus obscurus	Carson wandering skipper	Е	CA, NV	No		Yes
Speyeria zerene hippolyta	Oregon silverspot butterfly	Т	OR	Yes	None	Yes
Thermosphaeroma thermophilus	Socorro isopod	Е	NM	No		No
		Fishes				
Acipenser transmontanus	White sturgeon (Kootenia River population)	Е	ID, MT	Yes	42 acres (ID)	Yes
Catostomus microps	Modoc sucker	Е	CA	Yes	None	No
Catostomus santaanae	Santa Ana sucker	Т	CA	Yes	26 acres	No
Catostomus warnerensis	Warner sucker	Т	CA, NV, WA	Yes	None	Yes
Chasmistes brevirostris	Shortnose sucker	Е	CA, OR	Yes	9 miles stream, 1,390 acres lake (OR)	Yes
Chasmistes cujus	Cui-ui	Е	NV	No		Yes
Chasmistes liorus	June sucker	Е	UT	Yes	None	Yes
Crenichthys baileyi baileyi	White River springfish	Е	NV	Yes	1 acre	Yes
Crenichthys baileyi grandis	Hiko White River springfish	Е	NV	Yes	None	Yes

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
	Fi	shes (Cont.)				
Crenichthys nevadae	Railroad Valley springfish	Т	NV	Yes	129 acres	Yes
Cyprinella formosa	Beautiful shiner	Т	AZ, NM	Yes	None	Yes
Cyprinodon diabolis	Devil's Hole pupfish	Е	NV	No		Yes
Cyprinodon macularius	Desert pupfish	Е	AZ, CA	Yes	485 acres (CA)	Yes
Cyprinodon nevadensis mionectes	Ash Meadows Amargosa pupfish	Е	NV	Yes	62 acres	Yes
Cyprinodon nevadensis pectoralis	Warm Springs pupfish	Е	NV	No		Yes
Cyprinodon radiosus	Owens pupfish	Е	CA	No		Yes
Deltistes luxatus	Lost River sucker	Е	CA, OR	Yes	351 acres (OR)	Yes
Empetrichthys latos	Pahrump poolfish	Е	NV	No		Yes
Eremichthys acros	Desert dace	Т	NV	Yes	1,955 acres	Yes
Eucyclogobius newberryi	Tidewater goby	Е	CA	Yes	None	Yes
Gambusia nobilis	Pecos gambusia	Е	NM	No		Yes
Gasterosteus aculeatus williamsoni	Unarmored threespine stickleback	Е	CA	No		Yes
Gila bicolor mohavensis	Mohave tui chub	Е	CA	No		Yes
Gila bicolor snyderi	Owens tui chub	Е	CA	Yes	None	Yes
<i>Gila bicolor</i> ssp.	Hutton tui chub	Т	OR	No		Yes
Gila boraxobius	Borax Lake chub	Е	OR	Yes	320 acres	Yes
Gila cypha	Humpback chub	Е	AZ, CO, UT, WY	Yes	1,953 acres (UT); 323 acres (CO)	Yes
Gila elegans	Bonytail chub	Е	AZ, CA, CO, NV, UT, WY	Yes	6,214 acres (AZ); 1,480 acres (CA); 323 acres (CO); 1,953 acres (UT)	Yes
Gila intermedia	Gila chub	Е	AZ, NM	Yes	1,911 acres (AZ)	No
Gila robusta jordani	Pahranagat roundtail chub	Е	NV	No		Yes
Gila seminuda	Virgin River chub	Е	AZ, NV, UT	Yes	879 acres (AZ); 818 acres (NV); 420 acres (UT)	Yes
Hybognathus amarus	Rio Grande silvery minnow	Е	NM	Yes	96 acres	Yes
Hypomesus transpacificus	Delta smelt	Т	CA	Yes	1,752 acres	Yes
Lepidomeda albivallis	White River spinedace	Е	NV	Yes	None	Yes
Lepidomeda mollispinis pratensis	Big Spring spinedace	Т	NV	Yes	32 acres	Yes
Lepidomeda vittata	Little Colorado spinedace	Т	AZ	Yes	None	Yes
Meda fulgida	Spikedace	Е	AZ, NM	Yes	41 miles (AZ); 12 miles (NM)	Yes
Moapa coriacea	Moapa dace	Е	NV	No		Yes
Notropis girardi	Arkansas River shiner	Т	NM	Yes	None	No

Species Addressed in This Ecological Risk Assessment

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
	Fis	hes (Cont.)				
Notropis simus pecosensis	Pecos bluntnose shiner	Т	NM	Yes	293 acres	Yes
Oncorhynchus clarki ssp. henshawi	Lahontan cutthroat trout	Т	CA, CO, NV, OR, UT	No		Yes
Oncorhynchus clarki ssp. stomias	Greenback cutthroat trout	Т	СО	No		Yes
Oncorhynchus gilae	Gila trout	Т	AZ, NM	No		Yes
	Chum salmon					
Oncorhynchus keta	Columbia River ESU ³	Т	OR	Yes	<1 mile (WA)	No
	Hood Canal Summer-run ESU	Т	OR	Yes	None	Yes
	Coho salmon					
	Central California Coast ESU	Е	CA, OR	Yes	NA	Yes
On contracting high tot	Oregon Coast ESU	Т	OR	Yes	688 miles	No
Oncorhynchus kisutch	Southern Oregon/Northern California Coasts ESU	Т	CA, OR	Yes	NA	No
	Lower Columbia River ESU	Т	OR	Proposed		Yes
	Steelhead	11				1
	Southern California DPS ⁴	Е	СА	Yes	1 mile	Yes
	South Central California Coast DPS	Т	CA	Yes	9 miles	Yes (Draft)
	California Central Valley DPS	Т	CA	Yes	56 miles	No
	Northern California DPS	Т	СА	Yes	125 miles	No
	Central California Coast DPS	Т	CA	Yes	4 miles	No
Oncorhynchus mykiss	Snake River Basin DPS	Т	ID, OR	Yes	147 miles (ID); 24 miles (OR); 7 miles (WA)	No
	Upper Willamette River DPS	Т	OR	Yes	42 miles (OR)	Yes
	Upper Columbia River DPS	Т	OR	Yes	4 miles (WA)	Yes
	Lower Columbia River DPS	Т	OR	Yes	16 miles (OR); 2 miles (WA)	Yes
	Middle Columbia River DPS	Т	OR	Yes	324 miles (OR); 21 miles (WA)	Yes
Ou contraction a surface	Sockeye salmon					
Oncorhynchus nerka	Snake River, Idaho ESU	Е	ID, OR	Yes	None	No
	Chinook salmon					
	California Coastal ESU	Т	CA	Yes	63 miles	No
Oncorhynchus tshawytscha	Central Valley Spring-run ESU	Т	CA	Yes	32 miles	No
	Sacramento River Winter-run ESU	Е	CA, OR	Yes	NA	No
	Snake River Fall-run ESU	Т	ID, OR	Yes	NA	No

BLM Vegetation Treatments ERA

D-8

Species Addressed in This Ecological Risk Assessment

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan			
		hes (Cont.)							
Oncorhynchus tshawytscha (cont.)	Chinook salmon (Cont.)								
	Snake River Spring/Summer-run ESU	Т	ID, OR	Yes	NA	No			
	Lower Columbia River ESU	Т	OR	Yes	8 miles (OR/WA)	Yes			
	Upper Willamette River ESU	Т	OR	Yes	37 miles (OR)	Yes			
	Upper Columbia River Spring-run ESU	Е	OR	Yes	1 mile (WA)	Yes			
Oregonichythys crameri	Oregon chub	Т	OR	Yes	None	Yes			
Plagopterus argentissimus	Woundfin	Е	AZ, NV, NM, UT	Yes	879 acres (AZ); 420 acres (UT)	Yes			
Poeciliopsis occidentalis	Gila topminnow	E	AZ, NM	No		Yes (Draft)			
Ptychocheilus lucius	Colorado pikeminnow	E, XN	AZ, CA, CO, NM, UT, WY	Yes	2,644 acres (CO); 67 acres NM; 5,119 acres (UT)	Yes			
Rhinichthys osculus lethoporus	Independence Valley speckled dace	E	NV	No		Yes			
Rhinichthys osculus nevadensis	Ash Meadows speckled dace	Е	NV	Yes	60 acres	Yes			
Rhinichthys osculus oligoporus	Clover Valley speckled dace	Е	NV	No		Yes			
Rhinichthys osculus ssp.	Foskett speckled dace	Т	OR	No		Yes			
Rhinichthys osculus thermalis	Kendall Warm Springs dace	Е	WY	No		Yes			
Salvelinus confluentus	Bull trout	T, XN	ID, MT, NV, OR	Yes	7,669 acres, 907 miles (ID); 2,048 acres, 210 miles (OR); 25 miles (MT); 12 miles (NV)	Yes			
Scaphirhynchus albus	Pallid sturgeon	Е	CO, MT, WY	No		Yes			
Tiaroga cobitis	Loach minnow	Е	AZ, NM	Yes	41 miles (AZ); 13 miles (NM)	Yes			
Xyrauchen texanus	Razorback sucker	E	AZ, CA, CO, NM, NV, UT, WY	Yes	822 acres (AZ); 1,076 acres (CA); 1,996 acres (CO); 4,734 acres (UT)	Yes			
		mphibians							
Ambystoma californiense	California tiger salamander	Τ, Ε	CA	Yes	38 acres	No			
Ambystoma tigrinum stebbinsi	Sonora tiger salamander	Е	AZ	No		Yes			
Anaxyrus canorus	Yosemite toad	PT	CA	Proposed	Proposed	No			
Batrachoseps aridus	Desert slender salamander	E	CA	No		Yes			

BLM Vegetation Treatments ERA

D-9

March 25, 2014

Species Addressed in This Ecological Risk Assessment

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
	Amph	ibians (Con	t.)	•		
Bufo baxteri	Wyoming toad	E	WY	No		Yes
Bufo californicus (= microscaphus)	Arroyo toad	Е	CA	Yes	453 acres	Yes
Rana chiricahuensis	Chiricahua leopard frog	Т	AZ, NM	Yes	1,364 acres (AZ) 27 acres (NM)	Yes
Rana draytonii	California red-legged frog	Т	CA	Yes	5,207 acres	Yes
Rana muscosa	Mountain yellow-legged frog (Northern DPS)	PE	CA	Proposed	None	No
Rana pretiosa	Oregon spotted frog	PT	OR	Proposed	Proposed	No
Rana sierrae	Sierra Nevada yellow-legged frog	PE	CA	Proposed	None	No
]	Reptiles				
Crotalus willardi obscurus	New Mexican ridge-nosed rattlesnake	Т	AZ, NM	Yes	None	Yes
Gambelia silus	Blunt-nosed leopard lizard	Е	CA	No		Yes
Gopherus agassizii	Desert tortoise (Mojave population)	Т	AZ, CA, NV, UT	Yes	288,069 acres (AZ); 2,720,438 acres (CA); 1,024,579 acres (NV); 96,002 acres (UT)	Yes
Thamnophis eques megalops	Northern Mexican garter snake	РТ	AZ	Proposed	Proposed	No
Thamnophis gigas	Giant garter snake	Т	CA	No		Yes (Draft)
Thamnophis rufipunctatus	Narrow-headed garter snake	PT	AZ, NM	Proposed	Proposed	No
Uma inornata	Coachella Valley fringe-toed lizard	Т	CA	Yes	2,358 acres	Yes
		Birds				
Brachyramphus marmoratus	Marbled murrelet	Т	CA, OR	Yes	85,495 acres (CA); 483,018 acres (OR)	Yes
Centrocercus minimus	Gunnison sage-grouse	PE	CO, UT	Proposed	Proposed	No
Centrocercus urophasianus	Greater sage-grouse (Bi-State DPS)	PT	CA	Proposed	Proposed	No
Charadrius melodus	Piping plover	Т	CO, MT, NM, WY	Yes	1,758 acres (MT)	Yes
Charadrius nivosus nivosus	Western snowy plover (Pacific population)	Т	CA, OR	Yes	67 acres (CA); 273 acres (OR)	Yes
Coccyzus americanus	Yellow-billed cuckoo (Western DPS)	РТ	AZ, CA, CO, ID, MT, NM, NV, OR, WY, UT	No		No

BLM Vegetation Treatments ERA

Species Addressed in This Ecological Risk Assessment

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
	Bir	ds (Cont.)			•	
Empidonax traillii extimus	Southwestern willow flycatcher	Е	AZ, CA, CO, NV, NM, UT	Yes	96 miles (AZ); 9.4 miles (CA); 20.6 miles (CO); 22 miles (NM); 19 miles (NV); 25 miles (UT)	Yes
Eremophila alpestris strigata	Streaked horned lark	Т	OR	Yes	None	No
Falco femoralis ssp. septentrionalis	Northern aplomado falcon	E, XN	AZ, NM	No		Yes
Grus americana	Whooping crane	E, XN	CO, ID, MT, WY	Yes	35 acres (CO); 379 acres (ID)	Yes
Gymnogyps californianus	California condor	E, XN	E = CA XN = UT, AZ	Yes	3,964 acres (CA)	Yes
Pipilo crissalis eremophilus	Inyo California towhee	Т	CA	Yes	695 acres	Yes
Polioptila californica californica	Coastal California gnatcatcher	Т	CA	Yes	8,862 acres	No
Polysticta stelleri	Steller's eider	Т	AK	Yes	597 acres	Yes
Rallus longirostris yumanensis	Yuma clapper rail	Е	AZ, CA, NV	No		Yes (Draft)
Somateria fischeri	Spectacled eider	Т	AK	Yes	1 acre	Yes
Sterna antillarum	Least (interior) tern	Е	CO, MT, NM, WY	No		Yes
Strix occidentalis caurina	Northern spotted owl	Т	CA, OR	Yes	1,328,612 acres	Yes
Strix occidentalis lucida	Mexican spotted owl	Т	AZ, CA, CO, NM, UT	Yes	795 acres (AZ); 61,994 acres (CO); 2,341 acres (NM); 1,456,144 acres (UT)	Yes (Draft)
Tympanachus pallidicinctus	Lesser prairie-chicken	PT	CO, NM, OK	No		No
Vireo bellii pusillus	Least Bell's vireo	Е	CA	Yes	None	Yes (Draft)
		lammals				
Antilocapra americana sonoriensis	Sonoran pronghorn	E, XN	AZ	No		Yes
Brachylagus idahoensis	Pygmy rabbit	Е	OR	No		Yes (Draft)
Canis lupus	Gray wolf	E, XN	AZ, CO, ID, NM, NV, MT, OR, UT, WY	Yes	None	Yes
Cynomys parvidens	Utah prairie dog	Т	UT	No		Yes
Dipodomys heermanni morroensis	Morro Bay kangaroo rat	Е	CA	Yes	None	Yes (Draft)
Dipodomys ingens	Giant kangaroo rat	Е	CA	No		Yes
Dipodomys merriami parvus	San Bernardino Merriam's kangaroo rat	Е	СА	Yes	1,030 acres	No

BLM Vegetation Treatments ERA

D-11

March 25, 2014

Species Addressed in This Ecological Risk Assessment

Scientific Name	Common Name	Status	State ¹	Critical Habitat	Critical Habitat on BLM Lands	USFWS/NMFS Recovery Plan
	Man	mals (Cont	.)		•	
Dipodomys nitratoides exilis	Fresno kangaroo rat	Ē	CA	Yes	None	Yes
Dipodomys nitratoides nitratoides	Tipton kangaroo rat	Е	CA	No		Yes
Dipodomys stephensi	Stephens' kangaroo rat	E	CA	No		Yes (Draft)
Gulo gulo luscus	North American wolverine	PT	ID, MT, WY	No		No
Leopardus pardalis	Ocelot	Е	AZ	No		Yes
Leptonycteris curosoae yerbabuenae	Lesser long-nosed bat	Е	AZ, NM	No		Yes
Leptonycteris nivalis	Mexican long-nosed bat	Е	NM	No		Yes
Lynx canadensis	Canada lynx	T, PT	AK, CO, ID, MT, NM, OR, UT, WY	Yes	3 acres (ID); 103,475 acres (MT); 2,531 acres (OR); 1,426 acres (WY)	(Recovery Outline)
Microtus californicus scirpensis	Amargosa vole	E	CA	Yes	3,847 acres	Yes
Microtus mexicanus hualpaiensis	Hualapai Mexican vole	E	AZ	No		Yes
Mustela nigripes	Black-footed ferret	E, XN	E = AZ, CO, MT, UT, WY XN = AZ, CO, MT, UT, WY	No		Yes
Neotoma fuscipes riparia	Riparian woodrat	Е	CA	No		Yes
Odocoileus virginianus leucurus	Columbian white-tailed deer	Е	OR	No		Yes
Ovis canadensis ssp. nelsoni	Peninsular bighorn sheep	Е	CA	Yes	102,686 acres	Yes
Ovis canadensis ssp. sierrae	Sierra Nevada bighorn sheep	Е	CA	Yes	990 acres	Yes
Panthera onca	Jaguar	Е	AZ, NM	Proposed	Proposed	Yes
Rangifer tarandus caribou	Woodland caribou	Е	OR	Proposed	None	Yes
Sorex ornatus relictus	Buena Vista Lake ornate shrew	Е	CA	Yes	None	Yes
Spermophilus brunneus brunneus	Northern Idaho ground squirrel	Т	ID	No		Yes
Ursus arctos horribilis	Grizzly bear	Т	ID, MT, OR, WY	No		Yes
Vulpes macrotis mutica	San Joaquin kit fox	Е	CA	No		Yes
Zapus hudsonius luteus	New Mexico meadow jumping mouse	PE	AZ, CO, NM	Proposed	None	No
Zapus hudsonius preblei	Preble's meadow jumping mouse	Т	CO, WY	Yes	6 acres (CO)	No

BLM Vegetation Treatments ERA

¹State refers to the administrative jurisdiction of the BLM state office for the state listed. Therefore, MT indicates that the species may occur in Montana, North Dakota, and/or South Dakota; NM indicates that the species may occur in New Mexico, Texas, and/or Kansas; OR indicates that the species may occur in Oregon and/or Washington; and WY indicates that the species may occur in Wyoming and/or Nebraska. Some aquatic species do occur in all the states listed, but could still be affected by activities in those states if aquatic systems were altered.

 ^{2}E = Federally listed as endangered; T = federally listed as threatened; PE = proposed for listing as endangered; PT = proposed for listing as threatened; and XN = experimental, non-essential population.

 ${}^{3}ESU = Evolutionarily Significant Unit.$

⁴DPS = Distinct Population Segment.

NA = Due to incomplete information, recent listing, or recent change in the status of critical habitat, number of acres of critical habitat on BLM-administered lands is unknown at this time. Note: Some estimates of critical habitat are based on digital information downloaded from the USFWS critical habitat data portal (http://ecos.fws.gov/crithab/). Therefore, they may not reflect additional critical habitat that was not digitized at the time the data were downloaded.