

U. S. Department of the Interior Bureau of Land Management BLM-Alaska Open File Report 90 BLM/AK/ST-03/010+6700+025 July 2003

Alaska State Office 222 West 7th Avenue Anchorage, Alaska 99513

# Toolik Lake Research Natural Area / ACEC Rare Plant Inventory, 2002

Amy Breen Carroll, Carolyn Parker, Tim Craig



#### **Cover Photo**

Claytoniella bostockii (A. E. Pors.) Jurtz (photo by M. Tachibana).

#### Authors

Amy Breen Carroll works with the Institute of Arctic Biology as well as the Biology and Wildlife Departments at the University of Alaska, Fairbanks. Carolyn Parker is a research associate at the University of Alaska Museum Herbarium in Fairbanks. Tim Craig is a Wildlife Biologist in the BLM-Alaska Northern Field Office.

#### The BLM Mission

The Bureau of Land Management sustains the health, diversity and productivity of the public lands for the use and enjoyment of present and future generations.

#### Disclaimer

The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the federal government.

#### **Open File Reports**

Open File Reports issued by the Bureau of Land Management-Alaska present the results of inventories or other investigations on a variety of scientific and technical subjects that are made available to the public outside the formal BLM-Alaska technical publication series. These reports can include preliminary or incomplete data and are not published or distributed in quantity.

The reports are available while supplies last from BLM External Affairs, 222 West 7th Avenue #13, Anchorage, Alaska 99513, telephone (907) 271-3318; and from the Juneau Minerals Information Center, 100 Savikko Road, Mayflower Island, Douglas, AK 99824, (907) 364-1553. Copies are also available for inspection at the Alaska Resource Library and Information Service (Anchorage), the USDI Resources Library in Washington, D. C., various libraries of the University of Alaska, the BLM National Business Center Library (Denver) and other selected locations.

A complete bibliography of all BLM-Alaska scientific reports can be found on the Internet at: http:// www.ak.blm.gov/affairs/sci rpts.html. Related publications are also listed at http://juneau.ak.blm.gov.

## Toolik Lake Research Natural Area / ACEC Rare Plant Inventory, 2002

Amy Breen Carroll, Carolyn Parker, Tim Craig

BLM-Alaska Open File Report 90 July 2003

U. S. Department of the Interior Bureau of Land Management

#### Abstract

The Bureau of Land Management-Alaska Northern Field Office and the University of Alaska Museum Herbarium entered into an agreement to search for rare plants in the Toolik and Galbraith Lake Areas of Environmental Concern (ACEC) in the northern foothills of Alaska's Brooks Range. The information gathered in this project will enable the Bureau of Land Management to address management issues concerning the conservation of rare plant species that occur on these lands.

*Claytoniella bostockii* (A. E. Pors.) Jurtz (Portulaceae) [ = *Montia bostockii* (A. E. Pors.) Welsh] was found during the inventory in the Toolik Lake ACEC. In addition, the inventory revealed that this plant is more common in the area than previously thought. *C. bostockii* was found in several vegetation complexes, but most frequently in the Moist and Dry Nonacidic Tundra complexes.

### Acknowledgements

This work is the result of an agreement between the U.S. Department of the Interior, Bureau of Land Management, Northern Field Office and the University of Alaska Museum Herbarium. Tim Craig of the Bureau of Land Management's Northern Field Office initiated and secured the funding for this project.

We are grateful to Dave Murray, Curator Emeritus of the University of Alaska Museum Herbarium, for his assistance with the nomenclature of *Claytoniella bostockii*. We also wish to thank Marilyn and Skip Walker for sharing their Toolik Lake vegetation data and Anne-Lillian Schell and the Alaska Natural Heritage Program for sharing their line drawing of *Claytoniella bostockii*. Lastly, we thank Andrew Balser, Toolik Field Station GIS and Remote Sensing Manager, for providing maps of the Toolik Lake region and for assisting with the construction of inventory maps.

## **Table of Contents**

| Abstract               | i   |
|------------------------|-----|
| Acknowledgments        | i   |
| ntroduction            |     |
| Methods                | . 1 |
| Results and Conclusion |     |
| _iterature Cited       |     |

# Figures

| Figure 1. | Map of Alaska showing the location of the Toolik Lake Field Station | 10 |
|-----------|---------------------------------------------------------------------|----|
| Figure 2. | Toolik Lake RNA and General Land Status Map                         | 11 |
| Figure 3. | Map of the 2002 Rare Plant Survey Area around Toolik Lake           | 12 |
| Figure 4. | Line drawing of Claytoniella bostockii                              | 13 |
| Figure 5. | Aerial photograph map of Claytoniella bostockii occurences          |    |
|           | within the 2002 Toolik Lake ACEC Survey Area                        | 14 |
| Figure 6. | Vegetation map showing Claytoniella bostockii occurences            |    |
|           | within the 2002 Toolik Lake ACEC Survey Area                        | 15 |

## Tables

| Table 1. | List of possible rare plants within the Toolik Lake ACEC                                | . 4 |
|----------|-----------------------------------------------------------------------------------------|-----|
| Table 2. | Definitions of rare species ranks used by the Alaska Natural Heritage Program           | . 5 |
| Table 3. | One mile <sup>2</sup> sections surveyed for rare plants in the Toolik Lake ACEC in 2002 | . 6 |
| Table 4. | Claytoniella bostockii occurences within the 2002 Toolik Lake ACEC Survey Area          | . 7 |

## Introduction

Nearly 140,000 acres managed by the Bureau of Land Management in the vicinity of Toolik and Galbraith Lakes, located in the northern foothills of Alaska's Brooks Range, were identified as Areas of Critical Environmental Concern in 1991. These lands include the Toolik Lake Research Natural Area (RNA) and the Galbraith Lake Outstanding Natural Area (Figs. 1 and 2). The Toolik Field Station, which is administered by the University of Alaska Fairbanks, is located in the Toolik Lake RNA. Currently, 88 different Long-term Ecological Research (LTER) sites are permitted within the Toolik RNA. These projects and other future development may affect the native vegetation within these Areas of Critical Environmental Concern (ACEC).

The Dalton Highway Utility Corridor Management Plan (USDI 1989) and a subsequent report (Lipkin and Parker 1995) indicate two rare plants, *Claytoniella bostockii* (A. E. Pors.) Jurtz. (Portulacaceae) [= *Montia bostockii* (A. E. Pors.) Welsh] (Fig. 4) and *Erigeron muirii* Gray (Asteraceae), occur in the Toolik Lake ACEC. In addition, the management plan indicates a high probability of the occurrence of rare plants in the Galbraith Lake ACEC. This document directs the Bureau of Land Management to "inventory ACECs to delineate crucial habitat for *Montia bostockii*.." and to monitor crucial plant habitats and populations in the Galbraith Lake ACEC.

To this end, the U. S. Department of the Interior, Bureau of Land Management, Northern Field Office and the University of Alaska Museum Herbarium entered into an agreement to search at least 3,000 acres/year for rare plants; in the vicinity of Toolik and Galbraith Lakes. In addition to those plants previously encountered in the vicinity of Toolik Lake (*Claytoniella bostockii* and *Erigeron muirii*), we searched for other rare plants that we suspected to occur as well, within the survey area (Lipkin 2000, Carolyn Parker, personal communication; Tables 1 and 2). The inventory began in 2002 and will occur over the next 5 years, as funding is available. This project will enable the Bureau of Land Management to address management issues concerning the conservation of rare plant species that occur on these lands. This report outlines the work accomplished during the 2002 field season.

## Methods

In July and August 2002, we inventoried lands in the vicinity of the Toolik Field Station, including all high use research areas and the lake perimeter. To accomplish this, we surveyed a 3 x 3 mile area  $(5.760 \text{ acres or } 23.31 \text{ km}^2)$  with Toolik Lake at its center. These dimensions were selected to coincide with section lines that provided a clear boundary for the survey area (Fig. 3). We further divided the study area into square mile sections and then searched each of these sections for rare plants. We walked line transects that were no more than 400 m apart within each of these sections and oriented transects either north to south or east to west. Search areas were recorded on 1 mile<sup>2</sup> aerial photographs of the area and for each rare population encountered we recorded:

1. the approximate location on the map using a GeoExplorer 3 GPS unit (Trimble Navigation Limited, Sunnyvale, CA) for populations covering more than  $5000 \text{ m}^2$  and

**2.** the exact location via a GPS point for populations covering less than or equal to  $5000 \text{ m}^2$ .

In addition, a rough estimate of the population size and associated vegetation complex was recorded, following the classification established by Walker (2000) and Walker *et al* (In prep). The inventory began July 11 and concluded July 21, 2002. We also conducted a brief search on August 29 for *Erigeron muirii* on the rocky southeast-facing slope of "Jade Mountain," a 3,057 ft peak southwest of the Toolik Field Station. After the inventory was complete, we mapped the occurrences of all rare plants encountered with ArcView GIS 3.2 (Environmental Sciences Research Institute, Inc., Redlands, CA). Field maps were deposited at the University of Alaska Museum Herbarium.

## **Results and Conclusion**

We found one rare plant species during the 2002 inventory, *Claytoniella bostockii* (Table 4, Fig. 5). This species was first documented by T. Jorgenson at Toolik Lake in 1978 and four more specimens have been collected over the years at Toolik Lake, the last by D. A. Walker in July 1988, all were deposited at the University of Alaska Museum Herbarium (Lipkin and Parker 1995). These previous specimens of *Claytoniella bostockii* were collected from the north shore of Toolik Lake "on the peninsula that juts toward the center of the lake" (Lipkin and Parker 1995).

*Claytoniella bostockii* is endemic to eastern Beringia including several disjunct populations at Toolik Lake and in the Wrangell-St. Elias Mountains, Tetlin Hills, Nutzotin Mountains and eastern Yukon-Tanana Uplands. The state rank for this species is S3 (Lipkin 2000). However, Lipkin and Parker (1995) indicate that "although not yet documented from more than 20 locations, it has been found at an increasing number of sites and almost certainly will be found at additional sites."

Our inventory revealed *Claytoniella bostockii* is more common in the Toolik Lake ACEC than previously thought. Not only is the species well established north of Toolik Lake, it also occurs to the west and south of the lake (Fig. 5) where we located populations adjacent to boardwalk trails and research sites. We do not know if these populations have increased or decreased since they were first discovered in 1978. We found this species was easiest to locate during its most conspicuous stage - flowering. Future inventories should search for *Claytoniella bostockii* at the height of flowering (mid-July in the Toolik Lake region).

The vegetation of the Toolik Lake area is well documented (Walker et al. 1994: Walker and Walker 1996; Walker 2000; Walker et al. In prep). As a result, we are able to describe the habitat where Claytoniella bostockii was most prolific (Table 4 and Fig. 6). Previously, this habitat was described as "wet meadows on ridge tops, alpine slopes and by lake shores, as well as frost boils, and wet ridge crest gravels" (Lipkin and Parker 1995). We found Claytoniella bostockii occurred most frequently within the Moist and Dry Nonacidic Tundra Complexes. These vegetation complexes are dominated by Carex membranacea and by Astragalus umbellatus and Dryas integrifolia, respectively (Walker 2000; Walker et al In prep). However, Claytoniella bostockii also occurs within several other vegetation complexes to a lesser extent including Rich Fen, Snowbed and Moist and Dry Acidic Tundra. Therefore, future inventories for Claytoniella bostockii should broaden their search efforts to include a range of vegetation complexes.

## **Literature Cited**

Lipkin, R. 2000. Alaska Botanical Biodiversity: AKNHP Vascular Plant Tracking List. <u>http://www.uaa.alaska.edu/enri/aknhp\_web/</u> <u>biodiversity/botanical/vascular\_species\_concern/</u> <u>species\_table/listall.html</u> (April 4, 2000).

Lipkin, R. and C. Parker. 1995. *Rare vascular plants of the BLM Dalton Highway Corridor*. Alaska Natural Heritage Program, University of Alaska Anchorage and University of Alaska Museum Fairbanks. 79 pp.

USDI. 1989. Utility Corridor Proposed Resource Management Plan and Final Environmental Impact Statement. Bureau of Land Management, Northern Field Office, Fairbanks, Alaska.

Walker, D. A. and M. D. Walker. 1996. Terrain and vegetation of the Imnavait Creek Research Site. In: Reynolds, J. F. and J. D. Tenhunen (eds.). *Landscape function:* implications for ecosystem response to disturbance, a case study in arctic tundra. Springer-Verlag Ecological Studies 120:73-108.

Walker, D. A. 2000. The Hierarchical Geobotanical Atlas of the Toolik Lake/Kuparuk River region in Northern Alaska. <u>http://www.geobotany.uaf.edu/arcticgeobot/</u> <u>tlrveg.html</u> (December 16, 2000)

Walker, D. A., M. D. Walker, M. K. Raynolds, A. W. Balser, H. A. Maier. In prep. Terrain and vegetation of the Toolik Lake Research Site. *In*: Hobbie, J. (ed.). Long-term ecological research in the Arctic. Oxford University Press, Inc.

Walker, M. D., D. A. Walker, and N. A. Auerbach. 1994. Plant communities of a tussock tundra landscape in the Brooks Range Foothills, Alaska. Journal of Vegetation Science 5:843-866.

# TABLE 1. List of rare plants that potentially could occur within the Toolik Lake ACEC. Global and state species ranks are defined in Table 2.

| Scientific Name                                                               | Global Rank | State Rank |
|-------------------------------------------------------------------------------|-------------|------------|
| Aster pygmaeus<br>Beckwithia glacialis ssp. alaskensis [=Ranunculus glacialis | G3          | S1S2       |
| ssp. 1]                                                                       | G4T2        | S2         |
| Claytonia arctica                                                             | G3          | <b>S</b> 1 |
| Draba micropetala                                                             | G4          | S1S2       |
| Erigeron muirii                                                               | G2          | S2         |
| Montia bostockii                                                              | G3          | <b>S</b> 3 |
| Oxytropis arctica var. barnebyana                                             | G4T2        | S2         |
| Pedicularis hirsuta                                                           | G5?         | <b>S</b> 1 |
| Potentilla stipularis                                                         | G5          | S1         |

| Species Global Ra        | ankinge                                                             |
|--------------------------|---------------------------------------------------------------------|
| <u>G1:</u>               | Critically imperiled globally                                       |
| G2:                      | Imperiled globally                                                  |
| G3:                      | Rare or uncommon globally                                           |
| G4:                      | Apparently secure globally, but cause long-term concern             |
| G5:                      | Demonstrated secure globally                                        |
| G?:                      | Unranked                                                            |
| G#G#:                    | Global rank of species uncertain, best described as a range between |
|                          | the two ranks                                                       |
| G#Q:                     | Taxonomically questionable                                          |
| G#T#:                    | Global rank of species and global rank of the described variety or  |
| GU:                      | subspecies of the species<br>Unrankable                             |
| GU:<br>GH:               | Historical occurrence                                               |
| GX:                      | Extinct                                                             |
| HYB:                     | Hybrid                                                              |
| <u>Species State Ran</u> |                                                                     |
| Species state Ran<br>S1: | Critically imperiled in state                                       |
| S1:<br>S2:               | Imperiled in state                                                  |
| S3:                      | Rare or uncommon in state                                           |
| S4:                      | Apparently secure in state, but with cause for long-term concern    |
| S5:                      | Demonstrably secure in state                                        |
| S#S#:                    | State rank of species uncertain, best described as a range between  |
|                          | the two ranks                                                       |
| S?:                      | Unranked                                                            |
| SU:                      | Unrankable                                                          |
| SA:                      | Accidental                                                          |
| SR:                      | Reported from the state, but not yet verified                       |
| SRF:                     | Reported falsely                                                    |
| SP:                      | Potential to occur in the state                                     |
| HYB:                     | Hybrid                                                              |
| SSYN:                    | Synonym                                                             |
| <u>Qualifiers</u>        |                                                                     |
| B:                       | Breeding status                                                     |
| N:                       | Non-breeding status                                                 |
| ?:                       | Inexact                                                             |
| <br>Q:                   | Questionable taxonomy                                               |
| <u>×</u> ·               |                                                                     |

TABLE 2. Definitions of rare species ranks used by the Alaska Natural Heritage Program (Lipkin 2002).

| Meridian    | Township | Range | Section | Date Surveyed                  |
|-------------|----------|-------|---------|--------------------------------|
|             |          |       |         |                                |
| Umiat       | T9S      | R11E  | 19      | Jul-20-02                      |
| Umiat       | T9S      | R11E  | 20      | Jul-19-02                      |
| Umiat       | T9S      | R11E  | 21      | Jul-18-02                      |
| Umiat       | T9S      | R11E  | 30      | North: Jul-11-02               |
|             |          |       |         | South: Jul-16-02               |
| Umiat       | T9S      | R11E  | 29      | North: Jul-19-02               |
|             |          |       |         | South: Jul-13-02               |
| Umiat       | T9S      | R11E  | 28      | West: Jul-15-02                |
|             |          |       |         | East: Jul-18-02                |
| Umiat       | T9S      | R11E  | 31      | North: Jul-16-02 and Aug-29-02 |
|             | - / 2    |       |         | C                              |
| <b>TT T</b> | mag      | DITE  | 22      | South: Jul-20-02               |
| Umiat       | T9S      | R11E  | 32      | North: Jul-13-02               |
|             |          |       |         | South: Jul-21-02               |
| Umiat       | T9S      | R11E  | 33      | Jul-17-02                      |

TABLE 3. One mile<sup>2</sup> sections surveyed for rare plants in the Toolik Lake ACEC in 2002.

TABLE 4. *Claytoniella bostockii* occurrences within the 2002 Toolik Lake ACEC Survey Area. Vegetation complexes follow the nomenclature of Walker (2000) and Walker *et al.* (In prep). "Primary vegetation complex" is defined as the most common vegetation type within a polygon, while "Other Vegetation Complex" refers to any additional vegetation type overlapped by a polygon.

| ID   | SHAPE   | DATE        | COLLECTOR            | # OF<br>INDIVIDUALS | ABUNDANCE  | STAGE  | AREA (m <sup>2</sup> ) | PRIMARY VEGETATION COMPLEX | OTHER VEGETATION COMPLEX         |
|------|---------|-------------|----------------------|---------------------|------------|--------|------------------------|----------------------------|----------------------------------|
|      |         |             |                      |                     |            |        |                        |                            |                                  |
| 1 F  | POLYGON | Jul-20-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 79358                  | MOIST NONACIDIC TUNDRA     | RICH FEN, DRY ACIDIC TUNDRA      |
|      |         |             | CARROLL              |                     |            |        |                        |                            |                                  |
| 2    | POLYGON | Jul-20-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 5757                   | DRY ACIDIC TUNDRA          | MOIST NONACIDIC TUNDRA           |
| 3 F  | POLYGON | Jul-20-02   | CARROLL<br>AMY BREEN | 100+                | COMMON     | FLOWER | 1406                   | SNOWBED                    | RICH FEN                         |
| Ŭ    |         | 501 20 02   | CARROLL              | 1001                | o on more  | LOWER  |                        |                            |                                  |
| 4 F  | POLYGON | Jul-20-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 16905                  | MOIST NONACIDIC TUNDRA     | RICH FEN, DRY ACIDIC TUNDRA      |
|      |         |             | CARROLL              |                     |            |        |                        |                            |                                  |
| 5 F  | POLYGON | Jul-20-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 5015                   | MOIST NONACIDIC TUNDRA     |                                  |
| 7    | POLYGON | 1           | CARROLL              | 100+                | COMMON     |        | 6957                   |                            |                                  |
| 0    |         | Jui-20-02   | AMY BREEN<br>CARROLL | 100+                | COMMON     | FLOWER | 0737                   | DRY ACIDIC TUNDRA          | MOIST NONACIDIC TUNDRA           |
| 7 F  | POLYGON | Jul-20-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 3083                   | DRY ACIDIC TUNDRA          |                                  |
|      |         |             | CARROLL              |                     |            |        |                        |                            |                                  |
| 8 F  | POLYGON | Jul-20-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 6528                   | RICH FEN                   | MOIST ACIDIC TUNDRA              |
|      |         |             | CARROLL              |                     |            |        |                        |                            |                                  |
| 9 F  | POLYGON | Jul-20-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 284588                 | MOIST NONACIDIC TUNDRA     | MOIST ACIDIC TUNDRA, SHRUB       |
|      |         |             | CARROLL              |                     |            |        |                        |                            | TUNDRA, SNOWBED                  |
| 10 F | POLYGON | Jul-20-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 27383                  | MOIST ACIDIC TUNDRA        | SNOWBED                          |
|      |         |             | CARROLL              | 100                 | 0.01.01.01 |        | 1.00                   |                            |                                  |
| 11 P | POLYGON | Jul-20-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 1495                   | MOIST NONACIDIC TUNDRA     |                                  |
| 12 F | POLYGON | Jul-20-02   | CARROLL<br>AMY BREEN | 100+                | COMMON     | FLOWER | 5483                   | SHRUB TUNDRA               | MOIST NONACIDIC TUNDRA           |
| 12   |         | 501 20 02   | CARROLL              | 1001                |            | LOWER  |                        |                            |                                  |
| 13 F | POLYGON | Jul-19-02   | AMY BREEN            | 100+                | FREQUENT   | FLOWER | 920195                 | MOIST NONACIDIC TUNDRA     | DRY NONACIDIC TUNDRA, DRY ACIDIC |
|      |         |             | CARROLL              |                     |            |        |                        |                            | TUNDRA, MOIST ACIDIC TUNDRA,     |
|      |         |             |                      |                     |            |        |                        |                            | SNOWBED, RICH FEN, RIPARIAN      |
|      |         |             |                      |                     |            |        |                        |                            | SHRUNLAND                        |
| 14 F | POLYGON | Jul-19-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 1591                   | MOIST NONACIDIC TUNDRA     | DRY NONACIDIC TUNDRA             |
| 15 5 | POLYGON | Jul 10 02   | CARROLL<br>AMY BREEN | 100+                | FREQUENT   | FLOWER | 294105                 | MOIST NONACIDIC TUNDRA     | SNOWBED                          |
| 151  | OLIGON  | Jui-19-02   | CARROLL              | 100+                |            | LOWER  | 274105                 |                            | SNOWBED                          |
| 16 F | POLYGON | Jul-19-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 2984                   | MOIST NONACIDIC TUNDRA     | SNOWBED                          |
|      |         |             | CARROLL              |                     |            |        |                        |                            |                                  |
| 17 F | POLYGON | Jul-19-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 1534                   | MOIST NONACIDIC TUNDRA     |                                  |
| 10   |         | 1 1 4 0 0 0 | CARROLL              | 100                 | 0.01.01.01 |        | 1022                   |                            |                                  |
| 181  | POLYGON | Jui- 19-02  | AMY BREEN            | 100+                | COMMON     | FLOWER | 4033                   | MOIST NONACIDIC TUNDRA     |                                  |
| 19 F | POLYGON | Jul-19-02   | CARROLL<br>AMY BREEN | 100+                | COMMON     | FLOWER | 27774                  | MOIST NONACIDIC TUNDRA     | DRY ACIDIC TUNDRA                |
|      | 0210011 | 501 17 02   | CARROLL              | 1001                | oon nor    | LOWER  |                        |                            |                                  |
| 20 F | POLYGON | Jul-19-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 4846                   | MOIST NONACIDIC TUNDRA     |                                  |
|      |         |             | CARROLL              |                     |            |        |                        |                            |                                  |
| 21 F | POLYGON | Jul-19-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 1207                   | MOIST NONACIDIC TUNDRA     |                                  |
| 22 E | POLYGON | Jul 10.02   | CARROLL<br>AMY BREEN | 100+                | COMMON     | FLOWER | 17947                  | MOIST NONACIDIC TUNDRA     |                                  |
| 22   |         | Jui-19-02   | CARROLL              | 100+                | CONNUCIN   | LOWER  |                        |                            |                                  |
| 23 F | POLYGON | Jul-19-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 10888                  | MOIST NONACIDIC TUNDRA     |                                  |
|      |         |             | CARROLL              |                     |            |        |                        |                            |                                  |
| 24 F | POLYGON | Jul-19-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 7084                   | MOIST NONACIDIC TUNDRA     |                                  |
|      |         | 1.1 10 00   | CARROLL              | 100                 | COMMON     |        | 2452                   |                            |                                  |
| 25   | POLYGON | JUI-19-02   | AMY BREEN            | 100+                | COMMON     | FLOWER | 2452                   | MOIST NONACIDIC TUNDRA     |                                  |
|      |         |             | CARROLL              |                     |            |        |                        |                            |                                  |

| ID SHAPE   | DATE      | COLLECTOR                       | NUMBER OF | ABUNDANCI | E STAGE | AREA (m <sup>2</sup> | PRIMARY VEGETATION     | OTHER VEGETATION COMPLEX                                                    |
|------------|-----------|---------------------------------|-----------|-----------|---------|----------------------|------------------------|-----------------------------------------------------------------------------|
| 26 POLYGON | Jul-19-02 | AMY BREEN                       | 100+      | COMMON    | FLOWER  | 5442                 | DRY ACIDIC TUNDRA      |                                                                             |
| 27 POLYGON | Jul-18-02 | CARROLL<br>AMY BREEN            | 100+      | COMMON    | FLOWER  | 3873                 | RIPARIAN SHRUBLAND     | MOIST ACIDIC TUNDRA                                                         |
| 28 POLYGON | Jul-11-02 | CARROLL<br>AMY BREEN            | 100+      | COMMON    | FLOWER  | 11073                | DRY ACIDIC TUNDRA      |                                                                             |
| 29 POLYGON | Jul-11-02 | CARROLL<br>AMY BREEN            | 100+      | COMMON    | FLOWER  | 1276                 | DRY ACIDIC TUNDRA      |                                                                             |
| 30 POLYGON | Jul-11-02 | CARROLL<br>AMY BREEN            | 100+      | COMMON    | FLOWER  | 61581                | DRY ACIDIC TUNDRA      | SNOWBED                                                                     |
| 31 POLYGON | Jul-16-02 | CARROLL<br>AMY BREEN            | 100+      | COMMON    | FLOWER  | 21204                | DRY ACIDIC TUNDRA      |                                                                             |
| 32 POLYGON | Jul-16-02 | CARROLL<br>AMY BREEN            | 100+      | COMMON    | FLOWER  | 7904                 | DRY ACIDIC TUNDRA      |                                                                             |
| 33 POLYGON | Jul-16-02 | CARROLL<br>AMY BREEN            | 100+      | COMMON    | FLOWER  | 14476                | DRY ACIDIC TUNDRA      | MOIST NONACIDIC TUNDRA                                                      |
| 34 POLYGON | Jul-16-02 | CARROLL<br>AMY BREEN            | 100+      | COMMON    | FLOWER  | 3500                 | DRY ACIDIC TUNDRA      | SNOWBED                                                                     |
| 35 POLYGON | Jul-11-02 | CARROLL<br>AMY BREEN<br>CARROLL | 100+      | COMMON    | FLOWER  | 516282               | MOIST NONACIDIC TUNDRA | SNOWBED, DRY ACIDIC TUNDRA                                                  |
| 36 POLYGON | Jul-11-02 | AMY BREEN                       | 100+      | COMMON    | FLOWER  | 1599                 | DRY ACIDIC TUNDRA      |                                                                             |
| 37 POLYGON | Jul-16-02 | AMY BREEN                       | 100+      | COMMON    | FLOWER  | 5970                 | MOIST NONACIDIC TUNDRA | DRY ACIDIC TUNDRA, MOIST NONACIDIC<br>TUNDRA                                |
| 38 POLYGON | Jul-16-02 | AMY BREEN<br>CARROLL            | 100+      | COMMON    | FLOWER  | 5674                 | DRY ACIDIC TUNDRA      | MOIST NONACIDIC TUNDRA, MOIST<br>ACIDIC TUNDRA                              |
| 39 POLYGON | Jul-16-02 | AMY BREEN                       | 100+      | COMMON    | FLOWER  | 3738                 | MOIST NONACIDIC TUNDRA | SNOWBED                                                                     |
| 40 POLYGON | Jul-11-02 | CARROLL<br>AMY BREEN<br>CARROLL | 100+      | COMMON    | FLOWER  | 7983                 | MOIST NONACIDIC TUNDRA | DRY NONACIDIC TUNDRA                                                        |
| 41 POLYGON | Jul-11-02 | AMY BREEN<br>CARROLL            | 100+      | COMMON    | FLOWER  | 20170                | MOIST ACIDIC TUNDRA    | MOIST NONACIDIC TUNDRA, DRY<br>NONACIDIC TUNDRA, RICH FEN                   |
| 42 POLYGON | Jul-11-02 | AMY BREEN                       | 100+      | FREQUENT  | FLOWER  | 21682                | MOIST ACIDIC TUNDRA    |                                                                             |
| 43 POLYGON | Jul-19-02 | CARROLL<br>AMY BREEN<br>CARROLL | 100+      | COMMON    | FLOWER  | 219714               | MOIST NONACIDIC TUNDRA | SNOWBED, MOIST ACIDIC TUNDRA, DRY<br>NONACIDIC TUNDRA, DRY ACIDIC<br>TUNDRA |
| 44 POLYGON | Jul-19-02 | AMY BREEN                       | 100+      | COMMON    | FLOWER  | 2324                 | MOIST NONACIDIC TUNDRA |                                                                             |
| 45 POLYGON | Jul-19-02 | CARROLL<br>AMY BREEN<br>CARROLL | 100+      | COMMON    | FLOWER  | 1261                 | MOIST NONACIDIC TUNDRA |                                                                             |
| 46 POLYGON | Jul-21-02 | AMY BREEN                       | 100+      | COMMON    | FLOWER  | 106750               | MOIST NONACIDIC TUNDRA | DRY ACIDIC TUNDRA, RIPARIAN<br>SHRUBLAND, MOIST ACIDIC TUNDRA               |
| 47 POLYGON | Jul-21-02 | AMY BREEN                       | 100+      | COMMON    | FLOWER  | 2917                 | DRY ACIDIC TUNDRA      |                                                                             |
| 48 POLYGON | Jul-21-02 | CARROLL<br>AMY BREEN            | 100+      | COMMON    | FLOWER  | 7463                 | DRY ACIDIC TUNDRA      | MOIST ACIDIC TUNDRA                                                         |
| 49 POLYGON | Jul-21-02 | CARROLL<br>AMY BREEN            | 100+      | COMMON    | FLOWER  | 5498                 | MOIST ACIDIC TUNDRA    | DRY ACIDIC TUNDRA                                                           |
| 50 POLYGON | Jul-13-02 | CARROLL<br>AMY BREEN<br>CARROLL | 100+      | FREQUENT  | FLOWER  | 41776                | DRY ACIDIC TUNDRA      | MOIST NONACIDIC TUNDRA, SHRUB<br>TUNDRA                                     |
| 51 POLYGON | Jul-13-02 | AMY BREEN<br>CARROLL            | 100+      | FREQUENT  | FLOWER  | 41758                | DRY ACIDIC TUNDRA      | MOIST NONACIDIC TUNDRA, SNOWBED                                             |
| 52 POLYGON | Jul-21-02 | AMY BREEN<br>CARROLL            | 100+      | COMMON    | FLOWER  | 41814                | MOIST ACIDIC TUNDRA    | DRY ACIDIC TUNDRA                                                           |

| ID SHAPE   | DATE      | COLLECTOR            | NUMBER OF   | ABUNDANCI | E STAGE |         | PRIMARY VEGETATION       | OTHER VEGETATION COMPLEX                          |  |
|------------|-----------|----------------------|-------------|-----------|---------|---------|--------------------------|---------------------------------------------------|--|
|            |           |                      | INDIVIDUALS | 5         |         | AREA (n | n <sup>2</sup> ) COMPLEX |                                                   |  |
|            |           |                      |             |           |         |         | · /                      |                                                   |  |
| 53 POLYGON | Jul-21-02 | AMY BREEN<br>CARROLL | 100+        | COMMON    | FLOWER  | 10132   | RIPARIAN SHRUBLAND       | MOIST NONACIDIC TUNDRA, RICH FEN,<br>SHRUB TUNDRA |  |
| 54 POLYGON | Jul-21-02 | AMY BREEN            | 100+        | COMMON    | FLOWER  | 1145    | DRY ACIDIC TUNDRA        | MOIST NONACIDIC TUNDRA                            |  |
| 55 POLYGON | Jul-21-02 | AMY BREEN            | 100+        | COMMON    | FLOWER  | 2151    | RIPARIAN SHRUBLAND       | SHRUB TUNDRA                                      |  |
| 56 POLYGON | Jul-13-02 | AMY BREEN<br>CARROLL | 100+        | COMMON    | FLOWER  | 52858   | MOIST ACIDIC TUNDRA      | MOIST NONACIDIC TUNDRA                            |  |
| 57 POLYGON | Jul-21-02 | AMY BREEN<br>CARROLL | 100+        | COMMON    | FLOWER  | 4803    | MOIST ACIDIC TUNDRA      | SHRUB TUNDRA, MOIST NONACIDIC<br>TUNDRA           |  |
| 58 POLYGON |           | AMY BREEN<br>CARROLL | 100+        | COMMON    | FLOWER  | 3863    | DRY ACIDIC TUNDRA        | RIPARIAN SHRUBLAND                                |  |
| 59 POLYGON | Jul-21-02 | AMY BREEN<br>CARROLL | 100+        | COMMON    | FLOWER  | 4430    | MOIST NONACIDIC TUNDRA   | RICH FEN                                          |  |
| 60 POINT   | Jul-16-02 | AMY BREEN<br>CARROLL | 100+        | COMMON    | FLOWER  | 600     | MOIST NONACIDIC TUNDRA   |                                                   |  |
| 61 POINT   | Jul-16-02 | AMY BREEN<br>CARROLL | >50         | COMMON    | FLOWER  | 300     | DRY ACIDIC TUNDRA        |                                                   |  |
| 62 POINT   | Jul-16-02 | AMY BREEN<br>CARROLL | >50         | COMMON    | FLOWER  | 150     | DRY ACIDIC TUNDRA        |                                                   |  |
| 63 POINT   | Jul-16-02 | AMY BREEN<br>CARROLL | <50         | COMMON    | FLOWER  | 500     | MOIST NONACIDIC TUNDRA   |                                                   |  |
| 64 POINT   | Jul-16-02 | AMY BREEN<br>CARROLL | <50         | COMMON    | FLOWER  | 150     | SNOWBED                  |                                                   |  |
| 65 POINT   | Jul-13-02 | AMY BREEN<br>CARROLL | <100        | FREQUENT  | FLOWER  | 200     | MOIST NONACIDIC TUNDRA   |                                                   |  |
| 66 POINT   | Jul-13-02 | AMY BREEN<br>CARROLL | 100+        | COMMON    | FLOWER  | 5000    | MOIST NONACIDIC TUNDRA   |                                                   |  |
| 67 POINT   | Jul-21-02 | AMY BREEN<br>CARROLL | >10         | COMMON    | FLOWER  | 50      | MOIST NONACIDIC TUNDRA   |                                                   |  |

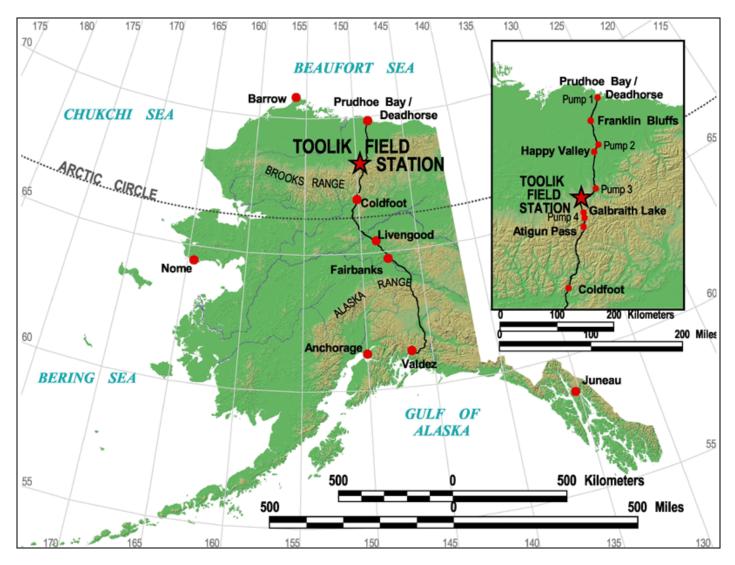



FIGURE 1. Map of Alaska showing the location of the Toolik Field Station. *Map courtesy of Andrew Balser, Toolik Field Station GIS and Remote Sensing Manager.* 

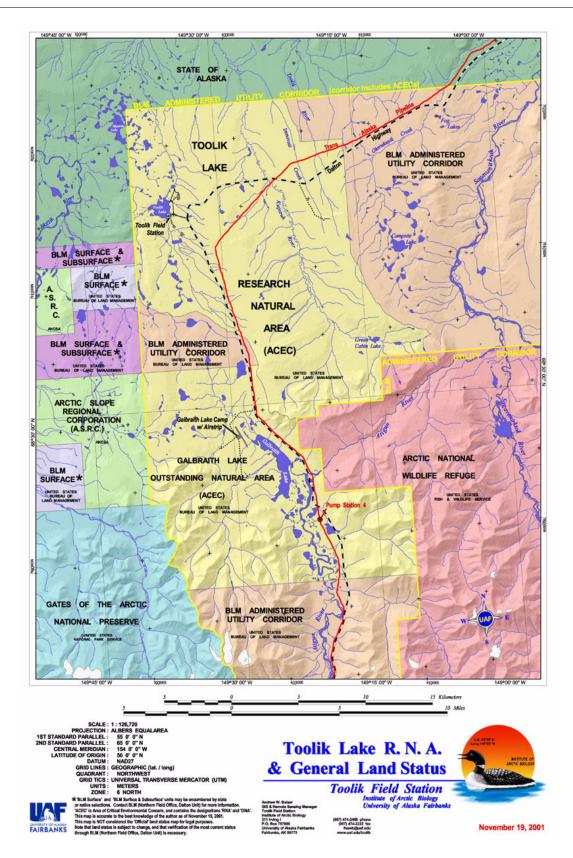
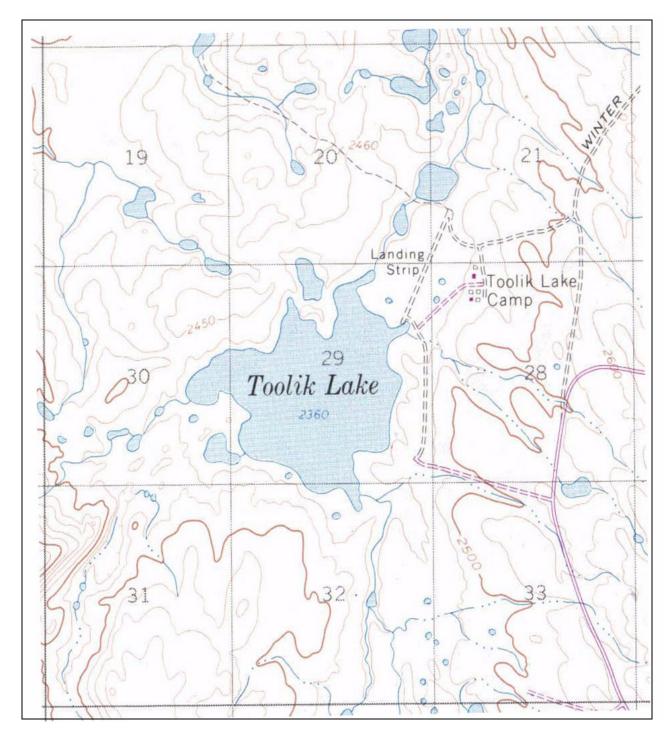
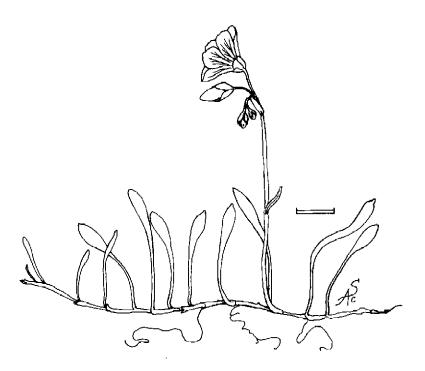





FIGURE 2. Toolik Lake Research Natural Area and General Land Status. Map courtesy of Andrew Balser, Toolik Lake Field Station GIS and Remote Sensing Manager



**FIGURE 3.** Map of the 2002 Rare Plant Survey Area around Toolik Lake. Each square represents a one mile<sup>2</sup> section within the Umiat Meridian's T9S and R11E. Numbers in the center of each square identify the section.



**FIGURE 4.** Line drawing of *Claytoniella bostockii* (A. E. Pors.) Jurtz. Synonyms for this species include: *Claytonia bostockii* A. E. Pors., *Montia bostockii* (A. E. Pors.) Welsh, and *Montiastrum bostockii* (A. E. Pors.) O. Nilsson. This species was placed in the *Claytoniella* genus due to its pollen and seed morphology and its leaf arrangement (Boris Yurtzev, personal communication). *Drawing reproduced with permission of the illustrator, Anne-Lillian Schell and the Alaska Natural Heritage Program*.

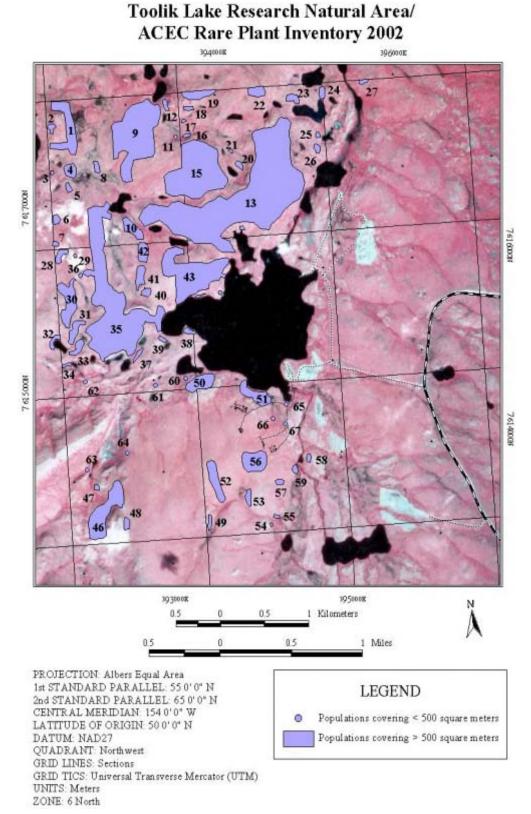



FIGURE 5. Aerial photograph map of *Claytoniella bostockii* occurrences within the 2002 Toolik Lake ACEC Survey Area (aerial photograph, August 1982).

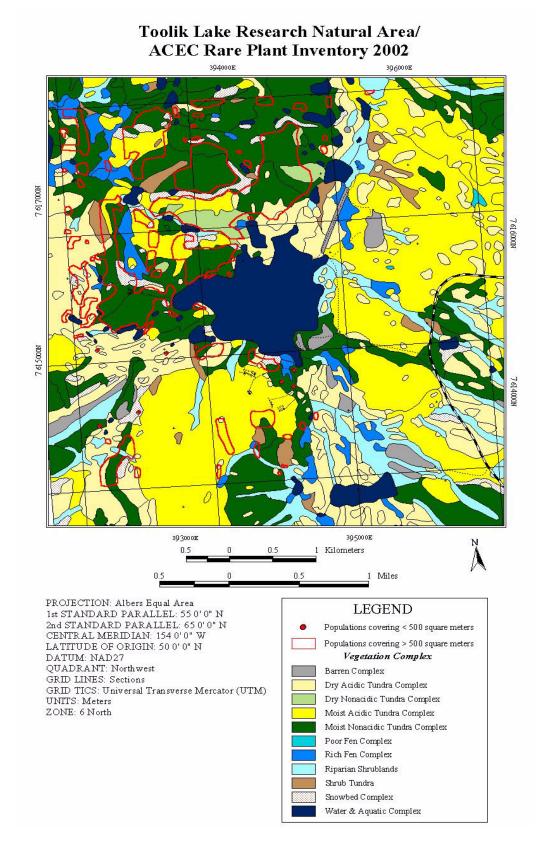



FIGURE 6. Vegetation map showing *Claytoniella bostockii* occurrences within the 2002 Toolik Lake ACEC Survey Area. Vegetation complex nomenclature follows the classification established by Walker (2000) and Walker *et al* (In Prep).