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Scheme of a vortex ring
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Model based on the linear first-order solution to the
Navier−Stokes equation for the axisymmetric geometry and
arbitrary times,(Kaplanski&Rudi, PF 2005, hereinafter Model I):
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Characteristics of the vortex ring with circular core
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Distribution of the vorticity in the Model I

0.1

0.4

0.9

0.0015

0.05

ω�ωmax

10.5 11.0 11.5 12.0 12.5
0.0

0.5

1.0

1.5

x

r

Figure: Isocontours of the normalized vorticity ω/ωmax for the values θ = 3.56
, R0 = 0.783 and X0 = 11.36, that give best fit of the theoretical vortex to the
simulated vortex (Danaila&Helio PF 2008). The dashed line represents
contour for ω/ωmax = 0.0015.
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Concluding Remarks

All characteristics of vortex rings, including kinetic energy and
translational velocity , were given by the closed-form expressions
and at short and long times their asymptotic were identical to the
well-known Saffman and Rott&Cantwell formulae, respectively.
The Model I was originally developed for L =

√
2νt , i.e. a laminar

vortex ring. Later it was shown that it remain valid in a more
general case, when L is approximated as atb, where a and b are
constants 1/4 ≤ b ≤ 1/2 (Kaplanski et al.2009). This generalised
vortex ring model was successfully applied to the analysis of
vortex rings observed in petrol internal combustion engines (Begg
et al. 2009; Kaplanski et al. 2010).
The Model I, which was developed on the basis of the circular ring
core, does not take into account Reynolds-number effect and
predicts the translation velocity and normalized energy rather
roughly with a relative error of 10%.
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An unconfined vortex ring with a core of elliptical cross- section
(Kaplanski et al., PF 20012, hereinafter Model II):
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where θe = (R0/Le), with Le the new viscous length scale:
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R0
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λ
,

and parameters β > 0 and λ > 0 measure elongation and
compression along axes x and r , respectively.
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Characteristics of a vortex ring with a core of elliptical cross-
section
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Vorticity and streamfunction distributions in the Model II
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Figure: Model of a vortex ring with elliptical core for λ = 1 and θ = 3. a)
Normalised vorticity contours ω∗

VRE/(ω∗
VRE )max = 0.05. b) Isocontours of the

stream function Ψ∗
VRE/(Ψ∗

VRE )max = 0.3. β = 1.5 (dashed line), β = 1 (thick
solid line) and for β = 0.5 (thin solid line).
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Ellipticity dependence in the Model II
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Figure: Model of a vortex ring with elliptical core for λ = 1 and θ = 3. a) Time
evolution of the kinetic energy E∗

e . b) Time evolution of the translation velocity
U∗

e . β = 1.5 (dashed line), β = 1 (thick solid line) and for β = 0.5 (thin solid
line).
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The time-dependent characteristics of the Model II

Conditions related to time limits:

β = 1 + ε0θ0/θ, λ = 1 + λ0θ0/θ (θ > θ0), (small time)

β = 1 + ε0θ/θ0, λ = 1 + λ0θ/θ0 (θ ≤ θ0), (large time)

where 0 ≤ ε0 < 1 and 0 ≤ λ0 < 1.
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Finding amendments ε0 = 0.4 and λ0 = 0.16

Ed = E/(M1/2Γ3/2) = 0.276, (1)

Γd = Γ/(M1/3U2/3) = 2.128. (2)

Ed=0.276

Γd= 2.128
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Figure: Intersect of the curves described by Eq.(1) (solid curve) and Eq.(2)
(dashed curve).
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The translation velocity at small times predicted by the Model II
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Figure: The temporal evolution of the translation velocity at small times. The
dashed line is the large-Reynolds- number asymptotic by
Fukumoto&Moffatt(Physica D, 2008) and the thin solid line is the present
result with correction (β = 1 + 0.4θ0/θ;λ = 1 + 0.16θ0/θ, θ0 = 3.56). The thick
solid line corresponds to Model I.
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The translation velocity at large times predicted by the Model II
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Figure: The temporal evolution of the translation velocity at the postformation
phase. The dashed line draw predicted by the formula (Saffman,Stud. Appl.
Math. 1970) (corresponds to the experimental data by Wengand&Gharib,
Exp. in Fluids,1997) with k = 14.4 and k

′
= 7.8, and the thin solid line is the

present result with correction (β = 1 + 0.4θ/θ0, λ = 1 + 0.16θ/θ0, θ0 = 3.56).
The thick solid line corresponds to Model I.
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The improved asymptotic for the small time

New assumption for the time-dependency, which we will use further:

β = 1 + ε0, λ = 1 + λ0θ/θ0 (θ ≤ θ0), (large time)

Improved Rott&Cantwell (1988) asymptotic velocity for the large t :
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I
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M
πR2

0
,M =

I
ρ
.

This asymptotic decay is in agreement with experimental data by
Weigand&Gharib, (Exp. in Fluids,1997).
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Concluding Remarks

All characteristics of the vortex rings, including kinetic energy and
translational velocity , are obtained in the integral forms and are
more complex then an appropriate results for the Model I.

The Model II takes into account Reynolds-number effect and
predicts the translation velocity and normalized energy with
relatively good accuracy. The obtained corrections
(β = 1.4, λ = 1.2) look universal and are suitable for relatively high
Reynolds numbers.
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Viscous vortex ring in a tube
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Figure: Schematic of a vortex ring with the elliptical core’s cross section in a
tube.
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A model for a viscous vortex ring in a tube: Governing equations
(Danaila et al., JFM 2015), hereinafter Model III
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where x , r are the axes of a cylindrical coordinate system and t is time.
We consider the following boundary conditions:
symmetry at the axis:

ω (0, x) = Ψ (0, x) = 0, for r = 0,

and no flow through the tube wall:

ω → 0,
1
r
∂Ψ

∂x
= 0, for r = Rw .
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Brasseur’s approach to modelling of a confined vortex ring

Brasseur modelled a confined vortex ring assuming that in the region
r > R0 the streamfunction ΨC is equal to the sum ΨC = Ψ + Ψ0, where
Ψ is the streamfunction of a circular vortex filament in an unbounded
flow:

Ψ =
Γ0R0r

2

∫ ∞
0

exp (−xµ)J1(R0µ)J1(rµ)dµ,

and the corresponding streamfunction Ψ0 induced by the presence of
the tube:

Ψ0 =
Γ0R0r
π

∫ ∞
0

K1(µRw )

I1(µRw )
I1(R0µ)I1(rµ) cos(xµ)dµ,

where K1 is the modified Bessel function of the second kind.
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The idea behind Model III

is that the streamfuction ΨVR (from Model I) at large distances
(z = θ

√
x2 + r2 →∞ ) tends to the streamfunction of a circular vortex

filament Ψ:

ΨVR ≈
Γ0R0rθ

4

∫ ∞
0

[2 exp(−|x |θµ)+exp(−z2/2)O(
1
z2 )]J1(rθµ)J1(θµ)dµ

≈ Γ0R0rθ
2

∫ ∞
0

exp(−|x |θµ)J1(θµ)J1(r1θµ)dµ

=
Γ0R0r

2

∫ ∞
0

exp(−|x |µ)J1(R0µ)J1(rµ)dµ.
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Vortex ring with a core of circular cross- section in a tube, Model III

Resulting streamfuction:

ΨVRC =
Γ0R0σ

4

∫ ∞
0

[exp(ηµ)erfc(
µ+ η√

2
) + exp(−ηµ)erfc(
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Vortex ring with a core of circular cross- section in a tube, Model III
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Figure: (a) Isocontours of the normalised streamfunctions Ψc/(Ψc)max for a
confined ring for ε = 1/3, θ = 3 (solid curves), and ΨVR/(ΨVR)max for an
unbounded ring with θ = 3 (dashed curves). Contours are shown for
Ψc/(Ψc)max from 0.1 to 0.9 with an increment of 0.1. The vertical line at
r1 = 3 represents the tube wall for the confined ring. Profiles along the tube
wall line (r1 = 3) for ΨVR (b) and |Ψc | (c).
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Comparison between the DNS and Model III (thanks to Ionut
Danaila)
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Figure: Comparison between the DNS data (blue solid curves) and
predictions of the vortex ring model (red dashed curves). Contours of
normalised vorticity ω/ωmax (a) and corresponding normalised streamfunction
ψ/ψmax (b). Values of ω/ωmax and ψ/ψmax from 0.1 to 0.9 with increments of
0.1 are shown. Re = 1700, Dw/D = 1.75, t = 8.
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Concluding Remarks

In this case we have not ready-made formulae for the circulation,
kinetic energy and translational velocity. All characteristics of
vortex rings can be obtained by integrating of ΨVRC and ωVR.
For typical values 3 ≤ θ ≤ 4.5 most relevant to practical
applications (Danaila& Helie 2008; Fukumoto 2010), the confined
vortex ring model can be applied with negligible errors for all
confinement parameters ε ≥ 0.875, ε = R0/Rw < 1,(Danaila et al.,
JFM 2015).
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Vortex ring with a core of elliptic cross- section in a tube, Model IV

The streamfunction of the vortex ring with the elliptical shape of the
core in regular coordinates:

ΨVRE =
Γ0θr
4R0

∫ ∞
0

exp(
β2 − 1)µ2

2
[exp(µ

xθ
R0

)erfc
(
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+ exp(−µ xθ
R0

)erfc
(
µβ − xθ/(R0β)√

2

)
]J1 (θµ) J1

(
rθ
R0
µ

)
dµ,

which at the large distances for z = θ
√

x2 − r2 →∞ tends to

ΨVRE ≈ Γ0
r
2

∫ ∞
0

exp((β2 − 1)
R2

0
2θ2µ

2) exp(−|x |µ)J1(R0µ)J1(rµ)dµ.
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Finding of the streamfunction induced by the presence of the tube

The idea behind the Brasseour’s approach was to find such
streamfunction (Green function to Laplace’s equation with
Neumann boundary condition and treated as induced by the
presence of the tube) which being combined with the circular
vortex filament ( CVF) would satisfy the corresponding boundary
condition of no flow on the wall.
The streamfunction for the theoretical vortex ring with elliptical
core is different from CVF that prevents direct using of the
Brasseour’s additional streamfunction.
We use a power series of exp((β2 − 1)R2

0µ
2/(2θ2) in ε0:

ΨVRE ≈ Γ0
r
2

∫ ∞
0

(1 +
R2

0µ
2ε0

θ2 +
R2

0µ
2(θ2 + R2

0µ
2)ε20

2θ4 + ...)

×exp(−|x |µ)J1(R0µ)J1(rµ)dµ.

and find the superposition of the solutions, that correspond to the
all terms of the above expansion.
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The potential function corresponding to the latter streamfunction:

ΦVRE = −Γ0R0

2

∫ ∞
0

(1 +
R2

0µ
2ε0
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R2

0µ
2(θ2 + R2

0µ
2)ε20
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×exp(−|x |µ)J1(R0µ)J0(rµ)dµ.

Using the parameter 0 < ε < 1, which quantifies the confinement of
the vortex ring, we can transform the potential function to the outer
variables

ΦVRE = −Γ0
ε

2

∫ ∞
0
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2ε0
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R2

0µ
2(θ2 + R2

0µ
2)ε20
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×exp(−|x̃ |µ)J1(εµ)J0(r̃µ)dµ,

where
x̃ =

x
Rw

, r̃ =
r

Rw
, ε =

R0

Rw
.

Applying the expansion of J1(εµ) of ε

J1(εµ) =
εµ

2
− (εµ)3

16
+

(εµ)5

284
+ ...,
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and using that

∂n

∂xn exp(−µx) = (−µ)n exp(−µx),

we can represent the potential function in the following form

ΦVRE = Γ0
ε

2

(
ε

2
∂

∂x̃
− ε3

16
∂3

∂x̃3 +
ε5

284
∂5
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)

×[

∫ ∞
0

(1 +
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0µ
2ε0
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0µ
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0µ
2)ε20
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= Γ0
ε

2

(
ε

2
∂S
∂x̃
− ε3

16
∂3S
∂x̃3 +

ε5

284
∂5S
∂x̃5 − ...

)
It can be seen that the behavior of the potential function at the far
distances is defined by the expression S, which for ε0 = 0 represents
the point dipole. The basic idea behind the Brasseour method is to
replace the form S by other

Felix, Kaplanski (TUT, Estonia) Modelling of confined vortex rings with a core of elliptical cross- sectionWABI, Brighton, 2015 29 / 47



form Q with the aim to satisfy the boundary condition on the tube wall

∂Q
∂ r̃

= 0 at r̃ = 1

or, on the other words, to find Green function to Laplace’s equation
with the Neumann boundary condition that must satisfy:

∇2Q = 4πδ(~x).

Keeping in mind the integrals

D1 =

∫ ∞
0

exp(−|x̃ |µ)J0(r̃µ)dµ =
1√

(x̃2 + r̃2)
,

D2 =

∫ ∞
0
µ2 exp(−|x̃ |µ)J0(r̃µ)dµ =

(−r̃2 + 2x̃2)

(x̃2 + r̃2)5/2 ,

D3 =

∫ ∞
0
µ4 exp(−|x̃ |µ)J0(r̃µ)dµ =

3(3r̃4 − 24r̃2x̃2 + 8x̃4)

(x̃2 + r̃2)9/2 ,
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we can to define

S = D1 +
R2

0ε0
θ2 D2 +

R2
0ε

2
0

2θ4 (D2 + R2
0D3) + ...

and to search a sought function in the following form:

Q = [D1 +

∫ ∞
0

f1(µ)I0(r̃µ) cos(µx̃)dµ]

+[(
R2

0ε0
θ2 +

R2
0ε

2
0

2θ2 )D2 +

∫ ∞
0

f2(µ)µ2I0(r̃µ) cos(µx̃)dµ]

+[
R4

0ε
2
0

2θ4 D3 +

∫ ∞
0

f3(µ)µ4I0(r̃µ) cos(µx̃)dµ] + ....

Using other representations of the integrals D1,D2 and D3

D1 =
1√

(x̃2 + r̃2)
=

2
π

∫ ∞
0

K0(r̃µ) cos(µx̃)dµ,
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D2 =
(−r̃2 + 2x̃2)

(x̃2 + r̃2)5/2 = −2
π

∫ ∞
0
µ2K0(r̃µ) cos(µx̃)dµ,

D3 =
3(3r̃4 − 24r̃2x̃2 + 8x̃4)

(x̃2 + r̃2)9/2 =
2
π

∫ ∞
0
µ4K0(r̃µ) cos(µx̃)dµ,

we can to rewrite Q in the other form

Q =

∫ ∞
0

([
2
π

K0(r̃µ) + f1(µ)I0(r̃µ)] cos(µx̃)

+[(
R2

0ε0
θ2 +

R2
0ε

2
0

2θ2 )(−2
π

)K0(r̃µ) + f2(µ)I0(r̃µ)]µ2 cos(µx̃)

+[
R4

0ε
2
0

2θ4 (
2
π

)K0(r̃µ) + f3(µ)I0(r̃µ)]µ4 cos(µx̃) + ....)dµ.

The boundary condition requires that

f1(µ) =
2
π

K1(r̃)

I1(r̃)
,
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f2(µ) = (
R2

0ε0
θ2 +

R2
0ε

2
0

2θ2 )(−2
π

)
K1(r̃)

I1(r̃)
,

f3(µ) =
R4

0ε
2
0

2θ4
2
π

K1(r̃)

I1(r̃)
.

This allows to represent a total potential Q = Q0 + Q1 in the following
form

Q = D1 + (
R2

0ε0
θ2 +

R2
0ε

2
0

2θ2 )D2 +
R4

0ε
2
0

2θ4 D3

+
2
π

∫ ∞
0

((1− (
R2

0ε0
θ2 +

R2
0ε

2
0

2θ2 )µ2 +
R4

0ε
2
0

2θ4 µ
4 + ...)

K1(r̃)

I1(r̃)
I0(r̃µ) cos(µx̃))dµ.

Substituting Q1 into latter expression, we receive

Φ0
VREC =

εΓ0

2

(
ε

2
∂

∂x̃
− ε3

16
∂3

∂x̃3 +
ε5

284
∂5

∂x̃5 − ...
)
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×2
π

∫ ∞
0

((1− (
R2

0ε0
θ2 +

R2
0ε

2
0

2θ2 )µ2 +
R4

0ε
2
0

2θ4 µ
4 + ...)

×K1(r̃)

I1(r̃)
I0(r̃µ) cos(µx̃))dµ.

Performing the differentiation by x̃

Φ0
VREC = −εΓ0

π

∫ ∞
0

[
εµ

2
+
ε3µ3

16
+
ε5µ5

284
+ ...])

×((1− (
R2

0ε0
θ2 +

R2
0ε

2
0

2θ2 )µ2 +
R4

0ε
2
0

2θ4 µ
4 + ...)

K1(r̃)

I1(r̃)
I0(r̃µ) sin(µx̃))dµ

and recognizing the expression in the square brackets as I1(εµ), we
we can define the potential field induced by the presence of the tube
on a vortex ring with elliptical core as

Φ0
VREC = −Γ0ε

π

∫ ∞
0

(1− (
R2

0ε0
θ2 +

R2
0ε

2
0

2θ2 )µ2 +
R4

0ε
2
0

2θ4 µ
4 + ...)
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×K1(r̃)

I1(r̃)
I0(r̃µ)I1(εµ) sin(µx̃))dµ.

This result in the regular variables becomes

Φ0
VREC = −Γ0R0

π

∫ ∞
0

(1− (
R2

0ε0
θ2 +

R2
0ε

2
0

2θ2 )µ2 +
R4

0ε
2
0

2θ4 µ
4 + ...)

×K1(rRw )

I1(rRw )
I0(rµ)I1(µR0) sin(µx))dµ.

From the relations

1
r
∂Ψ

∂x
=
∂Φ

∂r
− 1

r
∂Ψ

∂r
=
∂Φ

∂x

we can also find the streamfunction induced by the presence of the
tube

Ψ0
VREC =

Γ0R0

π
r
∫ ∞

0
(1−

R2
0
θ2 µ

2ε0 + (−
R2

0
2θ2µ

2 +
R4

0
2θ4µ

4)ε20 + ...)
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×K1(rRw )

I1(rRw )
I1(rµ)I1(µR0) cos(µx))dµ

and represent it in the dimensionless form

Ψ0∗
VREC =

r1

π

∫ ∞
0

(1− 1
θ2µ

2ε0 + (− 1
2θ2µ

2 +
1

2θ4µ
4)ε20 + ...)

×K1(µ/ε)

I1(µ/ε)
I1(r1µ)I1(µ) cos(µx1))dµ.
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Rewriting the basic streamfunction Ψ∗VRE also in the dimensionless
form

Ψ∗VRE =
θ2r1

4

∫ ∞
0

exp(
β2 − 1)µ2

2
[exp(µx1θ)erfc

(
µβ + x1(θ/β)√

2

)

+ exp(−µx1θ)erfc
(
µβ − x1(θ/β)√

2

)
]J1 (θµ) J1 (r1θµ) dµ,

we find the sought streamfunction corresponding to a confined
elliptical vortex ring as

Ψ∗VREC = Ψ∗VRE −Ψ0∗
VREC

This streamfunction is identical with the Brasseour’s result for ε0 = 0.
To illustrate the difference of the streamlines for confined vortex rings
with the elliptical ring’s cores, we plot the contours predicted by the
streamfunction Ψ∗VREC for different values of ε0 in the following figure:
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Vortex ring with a core of elliptic cross- section in a tube, Model IV

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

r

x

Figure: Isocontours of the normalised streamfunctions (Ψ∗VREC/Ψ∗VREC max ) for a confined vortex ring with elliptical core
predicted by Model IV for two values of ε0: ε0 = 0.5 (red dashed curves); ε0 = −0.5 (blue solid curves). Other parameters
were taken as ε = 0.5; R0 = 0.535; L = 0.13; Γ0 = 0.714; θ = R0/L = 4.099 for both cases. Contours are shown for
(Ψ∗VREC/Ψ∗VREC max ) from 0.1 to 0.9 with an increment of 0.1.

The obtained streamfunction Ψ∗
VREC with the vorticity ω∗

VR (Model I) may serve
as an approximation of the solution of the problem of viscous vortex ring in a
tube.
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Finding of ε0 (β = 1 + ε0) and λ0 ( λ = 1 + λ0) for Re = 1700 and
Dw/D = 3

Ẽn = E/(M1/2Γ3/2),

Γ̃n = Γ/(M1/3U2/3).

Numerical
Circular

EllipticH0.2,0.4L

EllipticH0.16,0.4L

1.95 1.98 2.01 2.04 2.07
G
�

n

0.29

0.31

E
�

n

Figure: Comparison between DNS data (by I. Danaila) and model prediction
for the normalized energy and circulation
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Comparison between DNS data (by I. Danaila) and model
prediction for kinetic energy for different confinement parameters
and Re = 1700
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Figure: Time evolution of the kinetic energy E of the vortex ring for
Re = 1700 . a)Comparison between the DNS data and prediction of the
Model III, Danaila et al., JFM 2015, Fig. 10). b)Comparison between the DNS
data and prediction of different models.
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Comparison between DNS data (by I. Danaila) and model
prediction for translational velocity for different confinement
parameters and Re = 1700

a) b)
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Figure: Time evolution of the translational velocity U of the vortex ring for
Re = 1700 . a)Comparison between the DNS data and prediction of the
Model III, Danaila et al., JFM 2015, Fig. 17). b)Comparison between the DNS
data and prediction of different models.
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Comparison between DNS data (by I. Danaila) and model
prediction for kinetic energy for different confinement parameters
and Re = 3400
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Figure: Time evolution of the kinetic energy E of the vortex ring for
Re = 3400 . a)Comparison between the DNS data and prediction of the
Model III, Danaila et al., JFM 2015, Fig. 10). b)Comparison between the DNS
data and prediction of different models.
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Comparison between DNS data (by I. Danaila) and model
prediction for translational velocity for different confinement
parameters and Re = 3400
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Figure: Time evolution of the translational velocity U of the vortex ring for
Re = 3400 . a)Comparison between the DNS data and prediction of the
Model III, Danaila et al., JFM 2015, Fig. 17). b)Comparison between the DNS
data and prediction of different models.
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Circulation for the confined vortex rings

a) b)

Figure: Time evolution of the circulation Γ of the vortex ring for Re = 1700 (a)
and Re = 3400 (b).
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Concluding remarks

The circulation of the confined vortex rings very rapidly reduces with
time that leads to low-Reynolds number flow regime and allows to
successfully apply Model III. When the effect of the confinement is
small ( Dw/D > 3) we can use Model II. If not one of these effects is
not dominated the Model IV is preferable.
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Prediction of the formation number (kinematic approach,
Shusser&Gharib, PF 2000)

Criterium for the pinch-off:

U =
D2

4R2
0

Up

By introducing

B(θ) = U(θ)

√
πM

Γ(θ)3 , bs(θ) = R0

√
πΓ(θ)

2M
, M = πΓ0R2

0

we receive from the slug - flow approximation

L
D

=

√
2π

4bs(θ)2B(θ)
and α(θ) =

E(θ)√
MΓ(θ)3

, α(θ) ≥ 2B(θ)bs(θ)2
√
π
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Results and plans

The model for the unconfined vortex ring (Model I) predicts the
formation number L/D = 3.5 for νt/R2

0 ≈ 0.0213 (θ ≈ 4.85) on the
basis of the criteria by Shusser&Gharib (PF, 2000).
The model for confined vortex ring (Dw/D = 1.75) with a core of
circular cross- section (Model III) predicts the formation number
L/D = 1.8 at τ ≈ 2.22 (θ ≈ 7.2) and the model for confined vortex
ring with a core of elliptical cross- section (Model IV) predicts
L/D = 1.5 at τ ≈ 1.31 (θ ≈ 11.25) based on the same criteria.
The DNS (Danaila et al, JFM 2015) for the confined vortex ring
(Dw/D = 1.75, τ = 2.26) allows to obtain the stroke length:
Lp = 1.28. It is lower than the so-called formation number (3.5 -
4.5) and corresponds to the case when the vorticity produced by
the vortex generator is not completely engulfed by the vortex ring
(differently from the case of the "optimal" vortex ring formation).
In the future we plan to develop the predicting of the stroke length
for confined vortex ring.
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