

Kohler Illumination and Conjugate Planes

Lai Ding BWH NeuroTechnology Studio

The two cone structure is the key to increase contrast

Halogen lamp

Incandescent Tungsten and Halogen Light Sources

bright
convenient
constant intensity
inexpensive

Ion arc lamp

bright
constant intensity
not convenient
expensive (shorter life time ~200 hours)

10-100 times brighter than halogen lamp

Microscope Image Formation

Zebra-fish

not just focus light onto the sample

the field should be homogeneously bright

position of the lamp

focus lamp on sample

lamp on condenser (front) focal point

Lamp Filament

uniform illumination

light from each point of the filament uniformly distributed on sample stage

---- conjugated planes

uniform illumination

each point of the sample is illuminated by whole (or same) filament region

---- conjugated planes

Conjugate aperture planes

Conjugate field planes

m

③ Intermediate image

Retina

② Object plane

Field stop diaphragm

Eye

Eyepiece

Field stop of eyepiece

Objective lens Stage Condenser lens

Collector lens

Lamp

Kohler illumination.

August Köhler 1866-1948

step1: focus sample by 10x objective

---- fixed plane

fix stage position

Step2: focus condenser

Step3: centering condenser diaphragm

Step5: open field diaphragm adjust aperture diaphragm

Conjugated Planes

"Fundamentals of Light Microscopy and Electronic Imaging"

Douglas B. Murphy

Köhler Illumination Illumination Image-Forming **Light Path Light Path** - Film Plane Film Plane Eyepoint Lens in camera system Eyepiece Eyepiece Fixed Diaphragm Image formed by objective Objective (intermediate back focal image plane) plane Objective Specimen - Slide -Specimen Aperture Diaphragm -Substage Condenser - Field Diaphragm

Function of Diaphragm

Field Diaphragm

limit field of view

Aperture Diaphragm

change light intensity

resolution

Take off the eyepiece, what will you see?

Remember?

*0th " order light

→ diffracted light

Will this work?

0th order light

Diffracted light

Phase Contrast

Only block the 0th order with ~70%

Phase Contrast Microscope Optical Train

Phase Contrast Microscope Configuration

Phase Contrast Optical Components

Phase Contrast Objective

Differential Interference Contrast Optical Train

Universal Condenser Turret DIC Configuration

polarizer

Birefringence crystal

Confocal Pinhole Plane

Insert many pinholes here

