Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T21:51:14.128Z Has data issue: false hasContentIssue false

Chapter 5 - Radiological imaging

from Section II - Investigative techniques

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 109 - 214
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bushong, SC. Radiologic Science for Technologists: Physics, Biology, Protection. St. Louis, MO: Mosby, 2008:162176.Google Scholar
Bushong, SC. Radiologic Science for Technologists: Physics, Biology, Protection. St. Louis, MO: Mosby, 2008:597612.Google Scholar
Merritt, CRB. Physics of ultrasound. In Rumack, CM, Wilson, SR, Charboneau, JW, Levine, D, eds, Diagnostic Ultrasound, 4th edn. Philadelphia, PA: Elsevier-Mosby, 2011: 233.Google Scholar
Westbrook, C, Roth, CK, Talbot, J. Basic Principles. In Westbrook, C, Roth, CK, Talbot, J. MRI in Practice, 4th edn. Oxford: Wiley-Blackwell, 2011:120.Google Scholar
Wilson, SR, Burns, PN. Microbubble-enhanced US in body imaging: what role? Radiology 2010;257:2439.CrossRefGoogle ScholarPubMed
Stacul, F, van der Molen, AJ, Reimer, P, Webb, JA, Thomsen, HS, Morcos, SK, Almén, T, Aspelin, P, Bellin, MF, Clement, O, Heinz-Peer, G Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR). Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 2011;21:25272541.Google Scholar
Grobner, T. Gadolinium: a specific trigger for the development of nephrogenic fibrosing dermopathy and nephorgenic systemic fibrosis? Nephrol Dial Transplant 2006;21:11041108.Google Scholar

References

Monpeyssen, H, Tramalloni, J, Poiree, S, Helenon, O, Correas, JM. Elastography of the thyroid. Diagn Intervent Imaging 2013;94:535544.CrossRefGoogle ScholarPubMed
Lacout, A, Chevenet, C, Thariat, J, Figl, A, Marcy, PY. Qualitative ultrasound elastography assessment of benign thyroid nodules: Patterns and intra-observer acquisition variability. Indian J Radiol Imaging 2013;23:337341.Google Scholar
Hornung, M, Jung, EM, Georgieva, M, Schlitt, HJ, Stroszczynski, C, Agha, A. Detection of microvascularization of thyroid carcinomas using linear high resolution contrast-enhanced ultrasonography (CEUS). Clin Hemorheol Microcirc 2012;52:197203.Google Scholar

References

Prokop, M. General principles of MDCT. Eur J Radiol 2003;45(suppl 1):S4S10.Google Scholar
Rydberg, J, Buckwalter, KA, Caldemeyer, KS, Phillips, MD, Conces, DJ, Aisen, AM, et al. Multisection CT: scanning techniques and clinical applications. Radiographics 2000;20:17871806.CrossRefGoogle ScholarPubMed
Brant, WE, Helms, C. Fundamentals of Diagnostic Radiology, 4th edn. Philadelphia, PA: Lippincott Williams & Wilkins; 2012.Google Scholar
Bitar, R, Leung, G, Perng, R, Tadros, S, Moody, AR, Sarrazin, J, et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 2006;26:513537.Google Scholar
Golman, K, Olsson, LE, Axelsson, O, Månsson, S, Karlsson, M, Petersson, JS. Molecular imaging using hyperpolarized 13C. Br J Radiol 2003. pp. S118–127.CrossRefGoogle Scholar
Pooley, RA. AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging. Radiographics 2005;25:10871099.Google Scholar

References

Ozaki, O. [Anomalous development of the thyroid.] Ryoikibetsu Shokogun Shirizu 1993;(1):247249.Google Scholar
Zivic, R, Radovanovic, D, Vekic, B, Markovic, I, Dzodic, R, Zivaljevic, V. Surgical anatomy of the pyramidal lobe and its significance in thyroid surgery. S Afr J Surg 2011;49:110, 112, 114 passim.Google ScholarPubMed
Solbiati, L. La tiroide e le paratiroidi [The thyroid and parathyroid]. In Rizzatto, GSL, ed. Anatomia Ecografica:quadri normali, varianti e limiti con il patologico. Milan: Masson, 1992: 3545.Google Scholar
Lucas, KJ. Use of thyroid ultrasound volume in calculating radioactive iodine dose in hyperthyroidism. Thyroid 2000;10:151155.Google Scholar
Hong, Y, Liu, X, Li, Z, Zhang, X, Chen, M, Luo, Z. Real-time ultrasound elastography in the differential diagnosis of benign and malignant thyroid nodules. J Ultrasound Med 2009;28:861867.Google Scholar
Nemec, U, Nemec, SF, Novotny, C, Weber, M, Czerny, C, Krestan, CR. Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy. Eur Radiol 2012;22:13571365.CrossRefGoogle ScholarPubMed
Stager, J, Froesch, ER. Congenital familial thyroid aplasia. Acta Endocrinol (Copenh) 1981;96:188191.Google Scholar
Harada, T, Nishikawa, Y, Ito, K. Aplasia of one thyroid lobe. Am J Surg 1972;124:617619.Google Scholar
Harris, KB, Pass, KA. Increase in congenital hypothyroidism in New York State and in the United States. Mol Genet Metab 2007;91:268277.CrossRefGoogle ScholarPubMed
Hennemann, G. Non-toxic goitre. Clin Endocrinol Metab 1979;8:167179.CrossRefGoogle ScholarPubMed
Ahuja, AT, Griffiths, JF, Roebuck, DJ, Loftus, WK, Lau, KY, Yeung, CK, et al. The role of ultrasound and oesophagography in the management of acute suppurative thyroiditis in children associated with congenital pyriform fossa sinus. Clin Radiol 1998;53:209211.Google Scholar
Singer, PA. Thyroiditis: acute, subacute, and chronic. Med Clin North Am 1991;75:6177.CrossRefGoogle ScholarPubMed
Birchall, IW, Chow, CC, Metreweli, C. Ultrasound appearances of de Quervain's thyroiditis. Clin Radiol 1990;41:5759.Google Scholar
Brander, A. Ultrasound appearances in de Quervain's subacute thyroiditis with long-term follow-up. J Intern Med 1992;232:321325.Google Scholar
Samuels, MH. Subacute, silent, and postpartum thyroiditis. Med Clin North Am 2012;96:223233.CrossRefGoogle ScholarPubMed
Pearce, EN, Farwell, AP, Braverman, LE. Thyroiditis. N Engl J Med 2003;348:26462655.CrossRefGoogle ScholarPubMed
Yeh, HC, Futterweit, W, Gilbert, P. Micronodulation: ultrasonographic sign of Hashimoto thyroiditis. J Ultrasound Med 1996;15:813819.Google Scholar
Serres-Creixams, X, Castells-Fuste, I, Pruna-Comella, X, Yetano-Laguna, V, Garriga-Farriol, V, Gallardo-Agromayor, E. Paratracheal lymph nodes: a new sonographic finding in autoimmune thyroiditis. J Clin Ultrasound 2008;36:418421.Google Scholar
Brancato, D, Citarrella, R, Richiusa, P, Amato, MC, Vetro, C, Galluzzo, CG. Neck lymph nodes in chronic autoimmune thyroiditis: the sonographic pattern. Thyroid 2013;23:173177.Google Scholar
Raviprakash, CS, Joseph, C, Xavier, S, Raj, G. Primary non-Hodgkin's lymphoma of the thyroid with lymphocytic thyroiditis. Indian J Otolaryngol Head Neck Surg 2005;57:257259.Google Scholar
Nam, YJ, Kim, BH, Lee, SK, Jeon, YK, Kim, SS, Jung, WJ, et al. Co-occurrence of papillary thyroid carcinoma and mucosa-associated lymphoid tissue lymphoma in a patient with long-standing hashimoto thyroiditis. Endocrinol Metab 2013;28:341345.Google Scholar
Anil, C, Goksel, S, Gursoy, A. Hashimoto's thyroiditis is not associated with increased risk of thyroid cancer in patients with thyroid nodules: a single-center prospective study. Thyroid 2010;20:601606.CrossRefGoogle Scholar
Anderson, L, Middleton, WD, Teefey, SA, Reading, CC, Langer, JE, Desser, T, et al. Hashimoto thyroiditis. Part 1, sonographic analysis of the nodular form of Hashimoto thyroiditis. AJR Am J Roentgenol 2010;195:208215.Google Scholar
Fatourechi, MM, Hay, ID, McIver, B, Sebo, TJ, Fatourechi, V. Invasive fibrous thyroiditis (Riedel thyroiditis): the Mayo Clinic experience, 1976–2008. Thyroid 2011;21:765772.Google Scholar
Perez Fontan, FJ, Cordido Carballido, F, Pombo Felipe, F, Mosquera Oses, J, Villalba Martin, C. Riedel thyroiditis: US, CT, and MR evaluation. J Comput Assist Tomogr 1993;17:324325.Google Scholar
Baldini, M, Castagnone, D, Rivolta, R, Meroni, L, Pappalettera, M, Cantalamessa, L. Thyroid vascularization by color doppler ultrasonography in Graves' disease. Changes related to different phases and to the long-term outcome of the disease. Thyroid 1997;7:823828.Google Scholar
Aldasouqi, S, Sheikh, A, Klosterman, P. Doppler ultrasonography in the diagnosis of Graves disease: a non-invasive, widely under-utilized diagnostic tool. Ann Saudi Med 2009;29:323324.Google Scholar
Kumar, KV, Vamsikrishna, P, Verma, A, Muthukrishnan, J, Rayudu, BR, Modi, KD. Utility of colour Doppler sonography in patients with Graves' disease. West Ind Med J 2009;58:566570.Google ScholarPubMed
Castagnone, D, Rivolta, R, Rescalli, S, Baldini, MI, Tozzi, R, Cantalamessa, L. Color Doppler sonography in Graves' disease: value in assessing activity of disease and predicting outcome. AJR Am J Roentgenol 1996;166:203207.Google Scholar
Erbil, Y, Barbaros, U, Ozbey, N, Kapran, Y, Tukenmez, M, Bozbora, A, et al. Graves' disease, with and without nodules, and the risk of thyroid carcinoma. J Laryngol Otol 2008;122:291295.Google Scholar
Pascual Corrales, E, Principe, RM, Laguna Muro, S, Martinez Regueira, F, Alcalde Navarrete, JM, Guillen Grima, F, et al. [Incidental differentiated thyroid carcinoma is less prevalent in Graves' disease than in multinodular goiter.] Endocrinol Nutr 2012;59:169173.Google Scholar
Rojeski, MT, Gharib, H. Nodular thyroid disease. Evaluation and management. N Engl J Med 1985;313:428436.Google Scholar
Land, CE, Zhumadilov, Z, Gusev, BI, Hartshorne, MH, Wiest, PW, Woodward, PW, et al. Ultrasound-detected thyroid nodule prevalence and radiation dose from fallout. Radiat Res 2008;169:373383.CrossRefGoogle ScholarPubMed
Guth, S, Theune, U, Aberle, J, Galach, A, Bamberger, CM. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest 2009;39:699706.Google Scholar
Hegedus, L. Clinical practice. The thyroid nodule. N Engl J Med 2004;351:17641771.CrossRefGoogle ScholarPubMed
Kerr, L. High-resolution thyroid ultrasound: the value of color Doppler. Ultrasound Q 1994:21–43.CrossRefGoogle Scholar
Moon, WJ, Jung, SL, Lee, JH, Na, DG, Baek, JH, Lee, YH, et al. Benign and malignant thyroid nodules: US differentiation – multicenter retrospective study. Radiology 2008;247:762770.Google Scholar
Frates, MC, Benson, CB, Doubilet, PM, Kunreuther, E, Contreras, M, Cibas, ES, et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab 2006;91:34113417.Google Scholar
Taki, S, Terahata, S, Yamashita, R, Kinuya, K, Nobata, K, Kakuda, K, et al. Thyroid calcifications: sonographic patterns and incidence of cancer. Clin Imaging 2004;28:368371.Google Scholar
Papini, E, Guglielmi, R, Bianchini, A, Crescenzi, A, Taccogna, S, Nardi, F, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 2002;87:19411946.Google Scholar
Yu, GP, Li, JC, Branovan, D, McCormick, S, Schantz, SP. Thyroid cancer incidence and survival in the National Cancer Institute surveillance, epidemiology, and end results race/ethnicity groups. Thyroid 2010;20:465473.Google Scholar
42.Howlett, DC, Speirs, A. The thyroid incidentaloma: ignore or investigate? J Ultrasound Med 2007;26:13671371.Google Scholar
Cronan, JJ. Thyroid nodules: is it time to turn off the US machines? Radiology 2008;247:602604.CrossRefGoogle ScholarPubMed
Frates, MC, Benson, CB, Charboneau, JW, Cibas, ES, Clark, OH, Coleman, BG, et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Ultrasound Q 2006;22:231238; discussion 9–40.Google Scholar
DeGroot, LJ, Reilly, M, Pinnameneni, K, Refetoff, S. Retrospective and prospective study of radiation-induced thyroid disease. Am J Med 1983;74:852862.Google Scholar
Kim, MJ, Kim, EK, Kwak, JY, Park, CS, Chung, WY, Nam, KH, et al. Differentiation of thyroid nodules with macrocalcifications: role of suspicious sonographic findings. J Ultrasound Med 2008;27:11791184.Google Scholar
Hong, YJ, Son, EJ, Kim, EK, Kwak, JY, Hong, SW, Chang, HS. Positive predictive values of sonographic features of solid thyroid nodule. Clin Imaging 2010;34:127133.Google Scholar
Cappelli, C, Pirola, I, Cumetti, D, Micheletti, L, Tironi, A, Gandossi, E, et al. Is the anteroposterior and transverse diameter ratio of nonpalpable thyroid nodules a sonographic criteria for recommending fine-needle aspiration cytology? Clin Endocrinol (Oxf) 2005;63:689693.CrossRefGoogle ScholarPubMed
Iannuccilli, JD, Cronan, JJ, Monchik, JM. Risk for malignancy of thyroid nodules as assessed by sonographic criteria: the need for biopsy. J Ultrasound Med 2004;23:14551464.Google Scholar
Hoang, JK, Lee, WK, Lee, M, Johnson, D, Farrell, S. US Features of thyroid malignancy: pearls and pitfalls. Radiographics 2007;27:847860; discussion 61–65.Google Scholar
Jun, P, Chow, LC, Jeffrey, RB. The sonographic features of papillary thyroid carcinomas: pictorial essay. Ultrasound Q 2005;21:3945.Google ScholarPubMed
Frates, MC, Benson, CB, Doubilet, PM, Cibas, ES, Marqusee, E. Can color Doppler sonography aid in the prediction of malignancy of thyroid nodules? J Ultrasound Med 2003;22:127–31; quiz 32–34.CrossRefGoogle ScholarPubMed
Moon, HJ, Kwak, JY, Kim, MJ, Son, EJ, Kim, EK. Can vascularity at power Doppler US help predict thyroid malignancy? Radiology 2010;255:260269.Google Scholar
Grebe, SK, Hay, ID. Follicular cell-derived thyroid carcinomas. Cancer Treat Res 1997;89:91140.Google Scholar
Chen, R, Wei, T, Li, ZH, Gong, RX, Zhu, JQ. [Predictors of level V lymphatic metastasis in papillary thyroid carcinoma.]. Zhonghua wai ke za zhi 2012;50:625628.Google Scholar
Baloch, Z, LiVolsi, VA, Tondon, R. Aggressive variants of follicular cell derived thyroid carcinoma; the so called ‘real thyroid carcinomas. J Clin Pathol 2013;66:733743.Google Scholar
Matias-Guiu, X, De Lellis, R. Medullary thyroid carcinoma: a 25-year perspective. Endocr Pathol 2014;25:2129.Google Scholar
Desser, TS, Kamaya, A. Ultrasound of thyroid nodules. Neuroimaging Clin N Am 2008;18:463478, vii.CrossRefGoogle ScholarPubMed
Trimboli, P, Cremonini, N, Ceriani, L, Saggiorato, E, Guidobaldi, L, Romanelli, F, et al. Calcitonin measurement in aspiration needle washout fluids has higher sensitivity than cytology in detecting medullary thyroid cancer: a retrospective multicentre study. Clin Endocrinol (Oxf) 2014;80:135140.Google Scholar
Nel, CJ, van Heerden, JA, Goellner, JR, Gharib, H, McConahey, WM, Taylor, WF, et al. Anaplastic carcinoma of the thyroid: a clinicopathologic study of 82 cases. Mayo Clin Proc 1985;60:5158.Google Scholar
Hamburger, JI, Miller, JM, Kini, SR. Lymphoma of the thyroid. Ann Intern Med 1983;99:685693.CrossRefGoogle ScholarPubMed
Kwak, JY, Kim, EK, Ko, KH, Yang, WI, Kim, MJ, Son, EJ, et al. Primary thyroid lymphoma: role of ultrasound-guided needle biopsy. J Ultrasound Med 2007;26:17611765.Google Scholar
Solbiati, LJWC, Reading, CC, James, EM, Hay, ID. The thyroid gland. In Rumack, CM, Wilson, SR, Charboneau, JW, Levine, D eds. Diagnostic Ultrasound, 2nd edn. Philadelphia, PA:Elsevier-Mosby, 2011: 708749.Google Scholar
Cibas, ES, Alexander, EK, Benson, CB, de Agustin, PP, Doherty, GM, Faquin, WC, et al. Indications for thyroid FNA and pre-FNA requirements: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol 2008;36:390399.Google Scholar
Gharib, H, Papini, E, Paschke, R, Duick, DS, Valcavi, R, Hegedus, L, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. J Endocrinol Invest 2010;33(suppl):150.Google Scholar
American Thyroid Association Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, Kloos, RT, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:11671214.Google Scholar
Naim, C, Karam, R, Edde, D. Ultrasound-guided fine-needle aspiration biopsy of the thyroid: methods to decrease the rate of unsatisfactory biopsies in the absence of an on-site pathologist. Canadian Association of Radiologists J Can Assoc Radiol 2013;64:220225.Google Scholar
Wang, C. The anatomic basis of parathyroid surgery. Ann Surg 1976;183:271275.Google Scholar
Mansberger, AR Jr., Wei, JP. Surgical embryology and anatomy of the thyroid and parathyroid glands. Surg Clin North Am 1993;73:727746.Google Scholar
van Heerden, JA, Beahrs, OH, Woolner, LB. The pathology and surgical management of primary hyperparathyroidism. Surg Clin North Am 1977;57:557563.Google Scholar
Baloch, ZW, LiVolsi, VA. Double adenoma of the parathyroid gland: does the entity exist? Arch Pathol Lab Med 2001;125:178179.CrossRefGoogle ScholarPubMed
Perez-Monte, JE, Brown, ML, Clarke, MR, Watson, CG, Carty, SE. Parathyroid hyperplasia, thymic carcinoid and pituitary adenoma detected with technetium-99m-MIBI in MEN type I. J Nucl Med 1997;38:17671769.Google Scholar
Schaapveld, M, Jorna, FH, Aben, KK, Haak, HR, Plukker, JT, Links, TP. Incidence and prognosis of parathyroid gland carcinoma: a population-based study in The Netherlands estimating the preoperative diagnosis. Am J Surg 2011;202:590597.Google Scholar
Roe, SM, Burns, RP, Graham, LD, Brock, WB, Russell, WL. Cost-effectiveness of preoperative localization studies in primary hyperparathyroid disease. Ann Surg 1994;219:582586.Google Scholar
Casara, D, Rubello, D, Piotto, A, Pelizzo, MR. 99mTc-MIBI radio-guided minimally invasive parathyroid surgery planned on the basis of a preoperative combined 99mTc-pertechnetate/99mTc-MIBI and ultrasound imaging protocol. Eur J Nucl Med 2000;27:13001304.Google Scholar
Reading, CC, Charboneau, JW, James, EM, Karsell, PR, Purnell, DC, Grant, CS, et al. High-resolution parathyroid sonography. AJR Am J Roentgenol 1982;139:539546.Google Scholar
Gooding, GA, Duh, QY. Primary hyperparathyroidism: functioning hemorrhagic parathyroid cyst. J Clin Ultrasound 1997;25:8284.Google Scholar
Funari, M, Campos, Z, Gooding, GA, Higgins, CB. MRI and ultrasound detection of asymptomatic thyroid nodules in hyperparathyroidism. J Comput Assist Tomogr 1992;16:615619.CrossRefGoogle ScholarPubMed
Doppman, JL, Brennan, MF, Kahn, CR, Marx, SJ. Circumscribing or periadenomal vessel: a helpful angiographic finding in certain islet cell and parathyroid adenomas. AJR Am J Roentgenol 1981;136:163165.Google Scholar
Erbil, Y, Salmaslioglu, A, Kabul, E, Issever, H, Tunaci, M, Adalet, I, et al. Use of preoperative parathyroid fine-needle aspiration and parathormone assay in the primary hyperparathyroidism with concomitant thyroid nodules. Am J Surg 2007;193:665671.CrossRefGoogle ScholarPubMed
Kendrick, ML, Charboneau, JW, Curlee, KJ, van Heerden, JA, Farley, DR. Risk of parathyromatosis after fine-needle aspiration. American Surgeon 2001;67:290–3; discussion 3–4.Google Scholar
Daly, BD, Coffey, SL, Behan, M. Ultrasonographic appearances of parathyroid carcinoma. Br J Radiol 1989;62:10171019.Google Scholar

References

Parker, JJ, Waziri, A. Preoperative evaluation of pineal tumors. Neurosurg Clin North Am 2011;22:353358.Google Scholar
Inoue, Y, Saiwai, S, Miyamoto, T, Katsuyama, J. Enhanced high-resolution sagittal MRI of normal pineal glands. J Comput Assist Tomogr 1994;18:182186.Google Scholar
Choy, W, Kim, W, Spasic, M, Voth, B, Yew, A, Yang, I. Pineal cyst: a review of clinical and radiological features. Neurosurg Clin North Am 2011;22:341351.CrossRefGoogle ScholarPubMed
Sawamura, Y, Ikeda, J, Ozawa, M, Minoshima, Y, Saito, H, Abe, H. Magnetic resonance images reveal a high incidence of asymptomatic pineal cysts in young women. Neurosurgery 1995;37:1115; discussion 15–16.Google Scholar
Barboriak, DP, Lee, L, Provenzale, JM. Serial MR imaging of pineal cysts: implications for natural history and follow-up. AJR Am J Roentgenol 2001;176:737743.Google Scholar
Mandera, M, Marcol, W, Bierzynska-Macyszyn, G, Kluczewska, E. Pineal cysts in childhood. Childs Nerv Syst 2003;19:750755.Google Scholar
Osborn, AG, Preece, MT. Intracranial cysts: radiologic–pathologic correlation and imaging approach. Radiology 2006;239:650664.CrossRefGoogle ScholarPubMed
Gaillard, F, Jones, J. Masses of the pineal region: clinical presentation and radiographic features. Postgrad Med J 2010;86:597607.Google Scholar
Fain, JS, Tomlinson, FH, Scheithauer, BW, Parisi, JE, Fletcher, GP, Kelly, PJ, et al. Symptomatic glial cysts of the pineal gland. J Neurosurg 1994;80:454460.Google Scholar
Louis, DN, Ohgaki, H, Wiestler, OD, Cavenee, WK, Burger, PC, Jouvet, A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97109.Google Scholar
Engel, U, Gottschalk, S, Niehaus, L, Lehmann, R, May, C, Vogel, S, et al. Cystic lesions of the pineal region: MRI and pathology. Neuroradiology 2000;42:399402.Google Scholar
Fakhran, S, Escott, EJ. Pineocytoma mimicking a pineal cyst on imaging: true diagnostic dilemma or a case of incomplete imaging? AJNR Am J Neuroradiol 2008;29:159163.Google Scholar
Smith, AB, Rushing, EJ, Smirniotopoulos, JG. From the archives of the AFIP: lesions of the pineal region: radiologic–pathologic correlation. Radiographics 2010;30:20012020.Google Scholar
Dahiya, S, Perry, A. Pineal tumors. Adv Anat Pathol 2010;17:419427.Google Scholar
Lechapt-Zalcman, E, Chapon, F, Guillamo, JS, Khouri, S, Menegalli-Boggelli, D, Loussouarn, D, et al. Long-term clinicopathological observations on a papillary tumour of the pineal region. Neuropathol Appl Neurobiol 2011;37:431435.Google Scholar
Chang, AH, Fuller, GN, Debnam, JM, Karis, JP, Coons, SW, Ross, JS, et al. MR imaging of papillary tumor of the pineal region. AJNR Am J Neuroradiol 2008;29:187189.Google Scholar
Komakula, S, Warmuth-Metz, M, Hildenbrand, P, Loevner, L, Hewlett, R, Salzman, K, et al. Pineal parenchymal tumor of intermediate differentiation: imaging spectrum of an unusual tumor in 11 cases. Neuroradiology 2010;53:577584.CrossRefGoogle ScholarPubMed
Osborn, AG, Salzman, KL, Thurnher, MM, Rees, JH, Castillo, M. The new World Health Organization classification of central nervous system tumors: what can the neuroradiologist really say? AJNR Am J Neuroradiol 2012;33:795802.Google Scholar
Kawabata, Y, Takahashi, JA, Arakawa, Y, Shirahata, M, Hashimoto, N. Long term outcomes in patients with intracranial germinomas: a single institution experience of irradiation with or without chemotherapy. J Neurooncol 2008;88:161167.Google Scholar
Ganti, SR, Hilal, SK, Stein, BM, Silver, AJ, Mawad, M, Sane, P. CT of pineal region tumors. AJR Am J Roentgenol 1986;146:451458.Google Scholar
Liang, L, Korogi, Y, Sugahara, T, Ikushima, I, Shigematsu, Y, Okuda, T, et al. MRI of intracranial germ-cell tumours. Neuroradiology 2002;44:382388.Google Scholar
Kendi, TK, Çaglar, S, Huvaj, S, Bademci, G, Kendi, M, Alparslan, S. Suprasellar germ cell tumor with subarachnoid seeding MRI and MR spectroscopy findings. J Clin Imaging 2004;28:404407.CrossRefGoogle ScholarPubMed
Kyritsis, AP. Management of primary intracranial germ cell tumors. J Neurooncol 2010;96:143149.Google Scholar
Izumihara, A, Orita, T, Tsurutani, T, Kajiwara, K, Matsunaga, T, Hatano, M. Pineal and suprasellar metastasis of lung cancer: case report and review of the literature. Comput Med Imaging Graph 1995;19:435437.Google Scholar
Schuster, JM, Rostomily, RC, Hahn, C, Winn, HR. Two cases of esophageal carcinoma metastatic to the pineal region with a review of the literature. Surg Neurol 1998;49:100102; discussion 102–103.Google Scholar
Hirato, J, Nakazato, Y. Pathology of pineal region tumors. J Neurooncol 2001;54:239249.Google Scholar
Saleem, SN, Said, A-HM, Lee, DH. Lesions of the Hypothalamus: MR imaging diagnostic features. Radiographics 2007;27:10871108.Google Scholar
Saeki, N, Sunami, K, Kubota, M, Murai, H, Takanashi, J, Iuchi, T, et al. Heavily T2-weighted MR imaging of white matter tracts in the hypothalamus: normal and pathologic demonstrations. AJNR Am J Neuroradiol 2001;22:14681475.Google Scholar
Miller, MJ, Mark, LP, Yetkin, FZ, Ho, KC, Haughton, VM, Estkowski, L, et al. Imaging white matter tracts and nuclei of the hypothalamus: an MR-anatomic comparative study. AJNR Am J Neuroradiol 1994;15:117121.Google Scholar
Castillo, M. Pituitary gland: development, normal appearances, and magnetic resonance imaging protocols. Top Magn Reson Imaging 2005;16:259268.Google Scholar
Ouyang, T, Rothfus, WE, Ng, JM, Challinor, SM. Imaging of the pituitary. Radiol Clin North Am 2011;49:549–71–vii.Google Scholar
Hess, CP, Dillon, WP. Imaging the pituitary and parasellar region. Neurosurg Clin North Am 2012;23:529542.Google Scholar
Cox, TD, Elster, AD. Normal pituitary gland: changes in shape, size, and signal intensity during the 1st year of life at MR imaging. Radiology 1991;179:721724.Google Scholar
Elster, AD, Sanders, TG, Vines, FS, Chen, MY. Size and shape of the pituitary gland during pregnancy and post partum: measurement with MR imaging. Radiology 1991;181:531535.Google Scholar
Terano, T, Seya, A, Tamura, Y, Yoshida, S, Hirayama, T. Characteristics of the pituitary gland in elderly subjects from magnetic resonance images: relationship to pituitary hormone secretion. Clin Endocrinol (Oxf) 1996;45:273279.Google Scholar
Spampinato, MV, Castillo, M. Congenital pathology of the pituitary gland and parasellar region. Top Magn Reson Imaging 2005;16:269276.Google Scholar
Weissenberger, AA, Dell, ML, Liow, K, Theodore, W, Frattali, CM, Hernandez, D, et al. Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 2001;40:696703.Google Scholar
Nguyen, D, Singh, S, Zaatreh, M, Novotny, E, Levy, S, Testa, F, et al. Hypothalamic hamartomas: seven cases and review of the literature. Epilepsy Behav 2003;4:246258.Google Scholar
Guibaud, L, Rode, V, Saint-Pierre, G, Pracros, JP, Foray, P, Tran-Minh, VA. Giant hypothalamic hamartoma: an unusual neonatal tumor. Pediatr Radiol 1995;25:1718.Google Scholar
Freeman, JL, Coleman, LT, Wellard, RM, Kean, MJ, Rosenfeld, JV, Jackson, GD, et al. MR imaging and spectroscopic study of epileptogenic hypothalamic hamartomas: analysis of 72 cases. AJNR Am J Neuroradiol 2004;25:450462.Google Scholar
Amstutz, DR, Coons, SW, Kerrigan, JF, Rekate, HL, Heiserman, JE. Hypothalamic hamartomas: correlation of MR imaging and spectroscopic findings with tumor glial content. AJNR Am J Neuroradiol 2006;27:794798.Google Scholar
Echevarría, ME, Fangusaro, J, Goldman, S. Pediatric central nervous system germ cell tumors: a review. Oncologist 2008;13:690699.Google Scholar
Kollias, SS, Barkovich, AJ, Edwards, MS. Magnetic resonance analysis of suprasellar tumors of childhood. Pediatr Neurosurg 1991;17:284303.Google Scholar
Mootha, SL, Barkovich, AJ, Grumbach, MM, Edwards, MS, Gitelman, SE, Kaplan, SL, et al. Idiopathic hypothalamic diabetes insipidus, pituitary stalk thickening, and the occult intracranial germinoma in children and adolescents. J Clin Endocrinol Metab 1997;82:13621367.Google Scholar
Ruscalleda, J. Imaging of parasellar lesions. Eur Radiol 2005;15:549559.Google Scholar
Byun, WM, Kim, OL, Kim, D. MR imaging findings of Rathke cleft cysts: significance of intracystic nodules. AJNR Am J Neuroradiol 2000;21:485488.Google Scholar
Wenger, M, Simko, M, Markwalder, R, Taub, E. An entirely suprasellar Rathke cleft cyst: case report and review of the literature. J Clin Neurosci 2001;8:564567.Google Scholar
Rao, VJ, James, RA, Mitra, D. Imaging characteristics of common suprasellar lesions with emphasis on MRI findings. Clin Radiol 2008;63:939947.Google Scholar
Lucas, JW, Zada, G. Imaging of the pituitary and parasellar region. Semin Neurol 2012;32:320331.Google Scholar
Choi, SH, Kwon, BJ, Na, DG, Kim, JH, Han, MH, Chang, KH. Pituitary adenoma, craniopharyngioma, and Rathke cleft cyst involving both intrasellar and suprasellar regions: differentiation using MRI. Clin Radiol 2007;62:453462.Google Scholar
Hershey, BL. Suprasellar masses: diagnosis and differential diagnosis. Semin Ultrasound CT MR. 1993;14:215231.Google Scholar
Pant, I, Suri, V, Chaturvedi, S, Dua, R, Kanodia, AK. Ganglioglioma of optic chiasma: case report and review of literature. Childs Nerv Syst 2006;22:717720.Google Scholar
Johnsen, DE, Woodruff, WW, Allen, IS, Cera, PJ, Funkhouser, GR, Coleman, LL. MR imaging of the sellar and juxtasellar regions. Radiographics 1991;11:727758.CrossRefGoogle ScholarPubMed
Symonsx, SP, Montanera, WJ, Aviv, RI, Kucharczyk, W. The sella turcica and parasellar region. In Atlas, SW, ed. Magnetic Resonance Imaging of the Brain and Spine, 4th edn. Philadelphia, PA: Lippincott Williams & Wilkins, 2008: 11201192.Google Scholar
Chung, SM. Neuro-ophthalmic manifestations of pituitary tumors. Neurosurg Clin North Am 1999;10:717729.Google Scholar
Kucharczyk, W, Davis, DO, Kelly, WM, Sze, G, Norman, D, Newton, TH. Pituitary adenomas: high-resolution MR imaging at 1.5 T. Radiology 1986;161:761765.Google Scholar
Ahmadi, H, Larsson, E-M, Jinkins, JR. Normal pituitary gland: coronal MR imaging of infundibular tilt. Radiology 1990;177:389392.Google Scholar
Teramoto, A, Hirakawa, K, Sanno, N, Osamura, Y. Incidental pituitary lesions in 1000 unselected autopsy specimens. Radiology 1994;193:161164.Google Scholar
Elster, AD. Modern imaging of the pituitary. Radiology 1993;187:114.Google Scholar
Hagiwara, A, Inoue, Y, Wakasa, K, Haba, T, Tashiro, T, Miyamoto, T. Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 2003;228:533538.Google Scholar
Patronas, N. Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors. J Clin Endocrinol Metab 2003;88:15651569.Google Scholar
Tomycz, ND, Horowitz, MB. Inferior petrosal sinus sampling in the diagnosis of sellar neuropathology. Neurosurg Clin North Am 2009;20:361367.Google Scholar
Swearingen, B. Diagnostic errors after inferior petrosal sinus sampling. J Clin Endocrinol Metab 2004;89:37523763.CrossRefGoogle ScholarPubMed
Cottier, JP, Destrieux, C, Brunereau, L, Bertrand, P, Moreau, L, Jan, M, et al. Cavernous sinus invasion by pituitary adenoma: MR imaging. Radiology 2000;215:463469.Google Scholar
Vieira, JO Jr., Cukiert, A, Liberman, B. Evaluation of magnetic resonance imaging criteria for cavernous sinus invasion in patients with pituitary adenomas: logistic regression analysis and correlation with surgical findings. Surg Neurol 2006;65:130135.Google Scholar
Ragel, BT, Couldwell, WT. Pituitary carcinoma: a review of the literature. Neurosurg Focus 2004;16:E7.Google Scholar
Heaney, AP. Pituitary carcinoma: difficult diagnosis and treatment. J Clin Endocrinol Metab 2011;96:36493660.Google Scholar
Pernicone, PJ, Scheithauer, BW, Sebo, TJ, Kovacs, KT, Horvath, E, Young, WF, et al. Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer 1997;79:804812.Google Scholar
Matsuki, M, Kaji, Y, Matsuo, M, Kobashi, Y. MR findings of subarachnoid dissemination of a pituitary adenoma. Br J Radiol 2000;73:783785.Google Scholar
Demssie, YN, Joseph, J, Dawson, T, Roberts, G, Carpentier, J, Howell, S. Recurrent spindle cell oncocytoma of the pituitary, a case report and review of literature. Pituitary 2009;14:367370.Google Scholar
Kurkjian, C, Armor, JF, Kamble, R, Ozer, H, Kharfan-Dabaja, MA. Symptomatic metastases to the pituitary infundibulum resulting from primary breast cancer. Int J Clin Oncol 2005;10:191194.Google Scholar
Fassett, DR, Couldwell, WT. Metastases to the pituitary gland. Neurosurg Focus 2004;16:E8.Google Scholar
Verrees, M, Arafah, BM, Selman, WR. Pituitary tumor apoplexy: characteristics, treatment, and outcomes. Neurosurg Focus 2004;16:E6.Google Scholar
Schrager, S, Sabo, L. Sheehan syndrome: a rare complication of postpartum hemorrhage. J Am Board Fam Pract 2001;14:389391.Google Scholar
Bonneville, F, Cattin, F, Marsot-Dupuch, K, Dormont, D, Bonneville, JF, Chiras, J. T1 signal hyperintensity in the sellar region: spectrum of findings. Radiographics 2006;26:93113.Google Scholar
Piotin, M, Tampieri, D, Rüfenacht, DA, Mohr, G, Garant, M, Del Carpio, R, et al. The various MRI patterns of pituitary apoplexy. Eur Radiol 1999;9:918923.Google Scholar
Prayer, D, Grois, N, Prosch, H, Gadner, H, Barkovich, AJ. MR imaging presentation of intracranial disease associated with Langerhans cell histiocytosis. AJNR Am J Neuroradiol 2004;25:880891.Google Scholar
Spencer, TS, Campellone, JV, Maldonado, I, Huang, N, Usmani, Q, Reginato, AJ. Clinical and magnetic resonance imaging manifestations of neurosarcoidosis. Semin Arthritis Rheum 2005;34:649661.Google Scholar
Lury, KM, Smith, JK, Matheus, MG, Castillo, M. Neurosarcoidosis: review of imaging findings. Semin Roentgenol 2004;39:495504.Google Scholar
Pisaneschi, M, Kapoor, G. Imaging the sella and parasellar region. Neuroimaging Clin North Am 2005;15:203219.Google Scholar
Carmichael, JD. Update on the diagnosis and management of hypophysitis. Curr Opin Endocrinol Diabetes Obes 2012;19:314321.Google Scholar
Caturegli, P, Newschaffer, C, Olivi, A, Pomper, MG, Burger, PC, Rose, NR. Autoimmune hypophysitis. Endocr Rev 2005;26:599614.Google Scholar
Gutenberg, A, Larsen, J, Lupi, I, Rohde, V, Caturegli, P. A radiologic score to distinguish autoimmune hypophysitis from nonsecreting pituitary adenoma preoperatively. AJNR Am J Neuroradiol 2009;30:17661772.Google Scholar
Nakata, Y, Sato, N, Masumoto, T, Mori, H, Akai, H, Nobusawa, H, et al. Parasellar T2 dark sign on MR imaging in patients with lymphocytic hypophysitis. AJNR Am J Neuroradiol 2010;31:19441950.Google Scholar
Shi, J, Zhang, J-M, Wu, Q, Chen, G, Zhang, H, Bo, W-L. Granulomatous hypophysitis: two case reports and literature review. J Zhejiang Univ Sci B 2009;10:552558.Google Scholar
Niyazoglu, M, Celik, O, Bakkaloglu, DV, Oz, B, Tanriöver, N, Gazioglu, N, et al. Xanthomatous hypophysitis. J Clin Neurosci 2012;19:17421744.Google Scholar
Leporati, P, Landek-Salgado, MA, Lupi, I, Chiovato, L, Caturegli, P. IgG4-related hypophysitis: a new addition to the hypophysitis spectrum. J Clin Endocrinol Metab 2011;96:19711980.Google Scholar
Carpenter, KJ, Murtagh, RD, Lilienfeld, H, Weber, J, Murtagh, FR. Ipilimumab-induced hypophysitis: MR imaging findings. AJNR Am J Neuroradiol 2009;30:17511753.Google Scholar
Branstetter, BF, Weissman, JL. Normal anatomy of the neck with CT and MR imaging correlation. Radiol Clin North Am 2000;38:925–40–ix.Google Scholar
Loevner, LA. Thyroid and parathyroid glands: anatomy and pathology. In Som, PM, Curtin, HD, eds. Head and Neck Imaging, 4th edn. St. Louis, MO: Mosby, 2002:21342171.Google Scholar
Loevner, LA, Kaplan, SL, Cunnane, ME, Moonis, G. Cross-sectional imaging of the thyroid gland. Neuroimaging Clin North Am 2008;18:445461.Google Scholar
Sekiya, T, Tada, S, Kawakami, K, Kino, M, Fukuda, K, Watanabe, H. Clinical application of computed tomography to thyroid disease. Comput Tomogr 1979;3:185193.Google Scholar
Weber, AL, Randolph, G, Aksoy, FG. The thyroid and parathyroid glands. CT and MR imaging and correlation with pathology and clinical findings. Radiol Clin North Am 2000;38:11051129.Google Scholar
Hegedus, L. Management of simple nodular goiter: current status and future perspectives. Endocr Rev 2003;24:102132.Google Scholar
Noma, S, Kanaoka, M, Minami, S, Sagoh, T, Yamashita, K, Nishimura, K, et al. Thyroid masses: MR imaging and pathologic correlation. Radiology 1988;168:759764.Google Scholar
Sholosh, B, Borhani, AA. Thyroid ultrasound part 1: technique and diffuse disease. Radiol Clin North Am 2011;49:391416–v.Google Scholar
Kaneko, T, Matsumoto, M, Fukui, K, Hori, T, Katayama, K. Clinical evaluation of thyroid CT values in various thyroid conditions. J Comput Tomogr 1979;3:14.Google Scholar
Pearce, EN, Farwell, AP, Braverman, LE. Thyroiditis. N Engl J Med 2003;348:26462655.Google Scholar
Holm, L-E, Blomgren, H, Löwhagen, T. Cancer risks in patients with chronic lymphocytic thyroiditis. N Engl J Med 1985;312:601604.Google Scholar
Gefter, WB, Spritzer, CE, Eisenberg, B, LiVolsi, VA, Axel, L, Velchik, M, et al. Thyroid imaging with high-field-strength surface-coil MR. Radiology 1987;164:483490.Google Scholar
Jhaveri, K, Shroff, MM, Fatterpekar, GM, Som, PM. CT and MR imaging findings associated with subacute thyroiditis. AJNR Am J Neuroradiol 2003;24:143146.Google Scholar
Fujita, A, Sakai, O, Chapman, MN, Sugimoto H. IgG4-related disease of the head and neck: CT and MR imaging manifestations. Radiographics 2012;32:19451958.Google Scholar
Papi, G, LiVolsi, VA. Current concepts on Riedel thyroiditis. Pathol Pattern Rev 2004;121:5063.Google Scholar
Takai, SI, Miyauchi, A, Matsuzuka, F, Kuma, K, Kosaki, G. Internal fistula as a route of infection in acute suppurative thyroiditis. Lancet 1979;i:751752.CrossRefGoogle Scholar
Paes, JE, Burman, KD, Cohen, J, Franklyn, J, McHenry, CR, Shoham, S, et al. Acute bacterial suppurative thyroiditis: a clinical review and expert opinion. Thyroid 2010;20:247255.Google Scholar
Masuoka, H, Miyauchi, A, Tomoda, C, Inoue, H, Takamura, Y, Ito, Y, et al. Imaging studies in sixty patients with acute suppurative thyroiditis. Thyroid 2011;21:10751080.Google Scholar
Su, D-H, Huang, T-S. Acute suppurative thyroiditis caused by Salmonella typhimurium: a case report and review of the literature. Thyroid 2002;12:10231027.Google Scholar
Henrichsen, TL, Reading, CC. Thyroid ultrasonography. Part 2: nodules. Radiol Clin North Am 2011;49:417424.Google Scholar
Carcangiu, ML, Zampi, G, Pupi, A, Castagnoli, A, Rosai, J. Papillary carcinoma of the thyroid. A clinicopathologic study of 241 cases treated at the University of Florence, Italy. Cancer 1985;55:805828.Google Scholar
Som, PM, Brandwein, M, Lidov, M, Lawson, W, Biller, HF. The varied presentations of papillary thyroid carcinoma cervical nodal disease: CT and MR findings. AJNR Am J Neuroradiol 1994;15:11231128.Google Scholar
Lee, B, Cook, G, John, L, Harrington, K, Nutting, C. Follicular thyroid carcinoma metastasis to the esophagus detected by 18FDG PET/CT. Thyroid 2008;18:267271.Google Scholar
Franssila, KO, Ackerman, LV, Brown, CL, Hedinger, CE. Follicular carcinoma. Semin Diagn Pathol 1985;2:101122.Google Scholar
Pacini, F, Castagna, MG, Cipri, C, Schlumberger, M. Medullary thyroid carcinoma. Clin Oncol 2010;22:475485.Google Scholar
114.American Thyroid Association Guidelines Task Force, Kloos, RT, Eng, C, Evans, DB, Francis, GL, Gagel, RF, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009; 19:565612.Google Scholar
115.O'Neill, JP, Shaha, AR. Anaplastic thyroid cancer. Oral Oncol 2013;49:702706.Google Scholar
116.Takashima, S, Morimoto, S, Ikezoe, J, Takai, S, Kobayashi, T, Koyama, H, et al. CT evaluation of anaplastic thyroid carcinoma. AJR Am J Roentgenol 1990;154:10791085.Google Scholar
117.Graff-Baker, A, Sosa, JA, Roman, SA. Primary thyroid lymphoma: a review of recent developments in diagnosis and histology-driven treatment. Curr Opin Oncol 2010;22:1722.Google Scholar
118.Shibata, T, Noma, S, Nakano, Y, Konishi, J. Primary thyroid lymphoma: MR appearance. J Comput Assist Tomogr 1991;15:629633.Google Scholar
119.Johnson, NA, Carty, SE, Tublin, ME. Parathyroid imaging. Radiol Clin North Am 2011;49:489509, vi.Google Scholar
120.Ruda, JM, Hollenbeak, CS, Stack, BC. A systematic review of the diagnosis and treatment of primary hyperparathyroidism from 1995 to 2003. Otolaryngol Head Neck Surg 2005;132:359372.Google Scholar
Siperstein, A, Berber, E, Mackey, R, Alghoul, M, Wagner, K, Milas, M. Prospective evaluation of sestamibi scan, ultrasonography, and rapid PTH to predict the success of limited exploration for sporadic primary hyperparathyroidism. Surgery 2004;136:872880.Google Scholar
Johnson, NA, Tublin, ME, Ogilvie, JB. Parathyroid imaging: technique and role in the preoperative evaluation of primary hyperparathyroidism. AJR Am J Roentgenol 2007;188:17061715.Google Scholar
Grant, CS, Thompson, G, Farley, D, van Heerden, J. Primary hyperparathyroidism surgical management since the introduction of minimally invasive parathyroidectomy: Mayo Clinic experience. Arch Surg 2005;140:472478; discussion 478–479.Google Scholar
Suliburk, JW, Perrier, ND. Primary hyperparathyroidism. Oncologist 2007;12:644653.Google Scholar
Phillips, CD, Shatzkes DR. Imaging of the parathyroid glands. Semin Ultrasound CT MR 2012;33:123129.CrossRefGoogle ScholarPubMed
Rodgers, SE, Hunter, GJ, Hamberg, LM, Schellingerhout, D, Doherty, DB, Ayers, GD, et al. Improved preoperative planning for directed parathyroidectomy with 4-dimensional computed tomography. Surgery 2006;140:932940; discussion940–941.Google Scholar
Beland, MD, Mayo-Smith, WW, Grand, DJ, Machan, JT, Monchik, JM. Dynamic MDCT for localization of occult parathyroid adenomas in 26 patients with primary hyperparathyroidism. AJR Am J Roentgenol 2011;196:6165.Google Scholar
Chazen, JL, Gupta, A, Dunning, A, Phillips, CD. Diagnostic accuracy of 4D-CT for parathyroid adenomas and hyperplasia. AJNR Am J Neuroradiol 2012;33:429433.Google Scholar
Sillery, JC, DeLone, DR, Welker, KM. Cystic parathyroid adenomas on dynamic CT. AJNR Am J Neuroradiol 2011;32:E107E109.Google Scholar
Auffermann, W, Guis, M, Tavares, NJ, Clark, OH, Higgins, CB. MR signal intensity of parathyroid adenomas: correlation with histopathology. AJR Am J Roentgenol 1989;153:873876.Google Scholar
Seelos, KC, DeMarco, R, Clark, OH, Higgins, CB. Persistent and recurrent hyperparathyroidism: assessment with gadopentetate dimeglumine-enhanced MR imaging. Radiology 1990;177:373378.Google Scholar
Chien, D, Jacene, H. Imaging of parathyroid glands. Otolaryngol Clin North Am 2010;43:399415, x.Google Scholar
Dudney, WC, Bodenner, D, Stack, BC. Parathyroid carcinoma. Otolaryngol Clin North Am 2010;43:441453, xi.Google Scholar
Wei, CH, Harari, A. Parathyroid carcinoma: update and guidelines for management. Curr Treat Options Oncol 2012;13:1123.Google Scholar
Harari, A, Waring, A, Fernandez-Ranvier, G, Hwang, J, Suh, I, Mitmaker, E, et al. Parathyroid carcinoma: a 43-year outcome and survival analysis. J Clin Endocrinol Metab 2011;96:36793686.Google Scholar
Sidhu, PS, Talat, N, Patel, P, Mulholland, NJ, Schulte, K-M. Ultrasound features of malignancy in the preoperative diagnosis of parathyroid cancer: a retrospective analysis of parathyroid tumours larger than 15 mm. Eur Radiol 2011;21:18651873.Google Scholar
Rawat, N, Khetan, N, Williams, DW, Baxter, JN. Parathyroid carcinoma. Br J Surg 2005;92:13451353.Google Scholar
Kebebew, E, Arici, C, Duh, QY, Clark, OH. Localization and reoperation results for persistent and recurrent parathyroid carcinoma. Arch Surg 2001;136:878885.Google Scholar

References

Breatnach, E, Abbott, GC, Fraser, RG. Dimensions of the normal human trachea. AJR Am J Roentgenol 1984;142:903906.Google Scholar
Ugalde, P, Miro, S, Frechette, E, Deslauriers, J. Correlative anatomy for thoracic inlet; glottis and subglottis; trachea, carina, and main bronchi; lobes, fissures, and segments; hilum and pulmonary vascular system; bronchial arteries and lymphatics. Thorac Surg Clin 2007;17:639659.Google Scholar
Mayr, B, Ingrisch, H, Haussinger, K, Huber, RM, Sunder-Plassmann, L. Tumors of the bronchi: role of evaluation with CT. Radiology 1989;172:647652.Google Scholar
Naidich, DP, Lee, JJ, Garay, SM, McCauley, DI, Aranda, CP, Boyd, AD. Comparison of CT and fiberoptic bronchoscopy in the evaluation of bronchial disease. AJR Am J Roentgenol 1987;148:17.Google Scholar
Travis, WD. Advances in neuroendocrine lung tumors. Ann Oncol 2010;21(suppl 7): vii65vii71.Google Scholar
Rosado de Christenson, ML, Abbott, GF, Kirejczyk, WM, Galvin, JR, Travis, WD. Thoracic carcinoids: radiologic-pathologic correlation. Radiographics 1999;19:707736.Google Scholar
Fischbach, F, Knollmann, F, Griesshaber, V, Freund, T, Akkol, E, Felix, R. Detection of pulmonary nodules by multislice computed tomography: improved detection rate with reduced slice thickness. Eur Radiol 2003;13:23782383.Google Scholar
Meisinger, QC, Klein, JS, Butnor, KJ, Gentchos, G, Leavitt, BJ. CT features of peripheral pulmonary carcinoid tumors. AJR Am J Roentgenol 2011;197:10731080.Google Scholar
Nessi, R, Basso Ricci, P, Basso Ricci, S, Bosco, M, Blanc, M, Uslenghi, C. Bronchial carcinoid tumors: radiologic observations in 49 cases. J Thorac Imaging 1991;6:4753.Google Scholar
Magid, D, Siegelman, SS, Eggleston, JC, Fishman, EK, Zerhouni, EA. Pulmonary carcinoid tumors: CT assessment. J Comput Assist Tomogr 1989;13:244247.Google Scholar
Zwiebel, BR, Austin, JHM, Grimes, MM. Bronchial carcinoid tumors: assessment with CT of location and intratumoral calcification in 31 patients. Radiology 1991;179:483486.Google Scholar
Chong, S, Lee, KS, Chung, MJ, Han, J, Kwon, OJ, Kim, TS. Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Radiographics 2006;26:4157.Google Scholar
Benson, REC, Rosado de Christenson, ML, Martínez-Jiménez, S, Kunin, JR, Pettavel, PP. Spectrum of pulmonary neuroendocrine proliferations and neoplasms. Radiographics 2013;33:16311649.Google Scholar
Naidich, DP. CT/MR correlation in the evaluation of tracheobronchial neoplasia. Radiol Clin North Am 1990;28:555571.Google Scholar
Akata, S, Okada, S, Maeda, J, Jinho, P, Yoshimura, M, Saito, K, et al. Computed tomographic findings of large cell neuroendocrine carcinoma of the lung. Clin Imaging 2007;31:379384.Google Scholar
Zwirewich, CV, Vedal, S, Miller, RR, Muller, NL. Solitary pulmonary nodule: high-resolution CT and radiologic–pathologic correlation. Radiology 1991;179:469476.Google Scholar
Oshiro, Y, Kusumoto, M, Matsuno, Y, Asamura, H, Tsuchiya, R, Terasaki, H, et al. CT findings of surgically resected large cell neuroendocrine carcinoma of the lung in 38 patients. AJR Am J Roentgenol 2004;182:8791.Google Scholar
Jung, KJ, Lee, KS, Han, J, Kwon, OJ, Kim, J, Shim, YM, et al. Large cell neuroendocrine carcinoma of the lung: clinical, CT, and pathologic findings in 11 patients. J Thorac Imaging 2001;16:156162.Google Scholar
Takamochi, K, Yokose, T, Yoshida, J, Nishimura, M, Ohmatsu, H, Nagai, K, et al. Calcification in large cell neuroendocrine carcinoma of the lung. Jpn J Clin Oncol 2003;33:1013.Google Scholar
Shin, AR, Shin, BK, Choi, JA, Oh, YW, Kim, HK, Kang, EY. Large cell neuroendocrine carcinoma of the lung: radiologic and pathologic findings. J Comput Assist Tomogr 2000;24:567573.Google Scholar
Quoix, E, Fraser, R, Wolkove, N, Finkelstein, H, Kreisman, H. Small cell lung cancer presenting as a solitary pulmonary nodule. Cancer 1990;66:577582.Google Scholar
Yabuuchi, H, Murayama, S, Sakai, S, Hashiguchi, N, Murakami, J, Muranaka, T, et al. Resected peripheral small cell carcinoma of the lung: computed tomographic-histologic correlation. J Thorac Imaging 1999;14:105108.Google Scholar
Pearlberg, JL, Sandler, MA, Lewis, JW Jr., Beute, GH, Alpern, MB. Small-cell bronchogenic carcinoma:CT evaluation. AJR 1988;150:265268.Google Scholar
Chong, S, Lee, KS. Spectrum of findings and usefulness of integrated PET/CT in patients with known or suspected neuroendocrine tumors of the lung. Cancer Imaging 2007;7:195201.Google Scholar
Kazawa, N, Kitaichi, M, Hiraoka, M, Togashi, K, Mio, N, Mishima, M, et al. Small cell lung carcinoma: eight types of extension and spread on computed tomography. J Comput Assist Tomogr 2006;30:653661.Google Scholar
Cameron, CM, Roberts, F, Connell, J, Sproule, MW. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: an unusual cause of cyclical ectopic adrenocorticotrophic syndrome. Br J Radiol 2011;84:e1417.Google Scholar
Davies, SJ, Gosney, JR, Hansell, DM, Wells, AU, Du Bois, RM, Burke, MM, et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: an underrecognised spectrum of disease. Thorax 2007;62:248252.Google Scholar
De Geer, G, Webb, WR, Gamsu, G. Normal thymus: assessment with MR and CT. Radiology, 1986;158:313317.Google Scholar
Baron, RL, Lee, JKT, Sagel, SS, Peterson, RR. Computed tomography of the normal thymus. Radiology 1982;142:121125.Google Scholar
Baron, RL, Lee, JKT, Sagel, SS, Robert, JL. Computed tomography of the abnormal thymus. Radiology 1982;142:127134.Google Scholar
Nasseri, F, Eftekhari, F. Clinical and radiologic review of the normal and abnormal thymus: pearls and pitfall. Radiographics 2010;30: 413428.Google Scholar
Kissin, CM, Husband, JE, Nicholas, D, Eversman, W. Benign thymic enlargement in adults after chemotherapy: CT demonstration. Radiology 1987;163:6770.Google Scholar
Takahashi, K, Inaoka, T, Murakami, N, Hirota, H, Iwata, K, Nagasawa, K, et al. Characterization of the normal and hyperplastic thymus on chemical-shift MR imaging. AJR Am J Roentgenol 2003;180:12651269.Google Scholar
Inaoka, T, Takahashi, K, Mineta, M, Yamada, T, Shuke, N, Okizaki, A, et al. Thymic hyperplasia and thymus gland tumors: differentiation with chemical shift MR imaging. Radiology 2007;243:869876.Google Scholar
Araki, T, Sholl, LM, Gerbaudo, VH, Hatabu, H, Nishino, M. Imaging characteristics of pathologically proven thymic hyperplasia: identifying features that can differentiate true from lymphoid hyperplasia. AJR Am J Roentgenol 2014;202:471478.Google Scholar
Klemm, KM, Moran, CA. Primary neuroendocrine carcinomas of the thymus. Semin Diagn Pathol 1999;16:3241.Google Scholar
Dwivedi, AN, Goel, K, Tripathi, S, Garg, S, Rai, M. Primary neuroendocrine mediastinal tumor presenting with carcinoid syndrome and left supraclavicular lymphadenopathy: clinico-radiological and pathological features. Cancer Res Ther 2013;9:278280.Google Scholar
Strollo, DC, Rosado de Christenson, ML, Jett, JR. Primary mediastinal tumors. Part II. Tumors of the middle and posterior mediastinum. Chest 1997;112:13441357.Google Scholar
Lonergan, GJ, Schwab, CM, Suarez, ES, Carlson, CL. From the Archives of the AFIP neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics 2002;22:911934.Google Scholar
Lee, JKT, Sagel, SS, Stanley, RJ, Heiken, JP eds. Computed Body Tomography with MRI Correlation, Ch. 6. Philadelphia, PA: Lippincott Williams & Wilkins, 2006: 341342.Google Scholar

References

Fitzgerald, TL, Hickner, ZJ, Schmitz, M, Kort, EJ.Changing incidence of pancreatic neoplasms: a 16-year review of statewide tumor registry. Pancreas 2008;37:134138.Google Scholar
Pais, SA, Al-Haddad, M, Mohamadnejad, M, Leblanc, JK, Sherman, S, McHenry, L, et al. EUS for pancreatic neuroendocrine tumors: a single-center, 11-year experience. Gastrointest Endosc 2010;71:11851193.Google Scholar
Tan, EH, Tan, CH. Imaging of gastropancreatic neuroendocrine tumors. World J Clin Oncol 2011;2:2843.Google Scholar
Gallotti, A, Johnston, RP, Bonaffini, PA, Ingkakul, T, Deshpande, V, Fernández del Castillo, C, et al. Incidental neuroendocrine tumors of the pancreas: MDCT findings and features of malignancy. AJR Am J Roentgenol 2013;200:355362.Google Scholar
Lairmore, TC, Moley, JF. Endocrine pancreatic tumors. Scand J Surg 2004;93:311315.Google Scholar
Sundin, A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol 2012;26:803818.Google Scholar
Lewis, RB, Lattin, GE Jr., Paal, E. Pancreatic endocrine tumors: radiologic-clinicopathologic correlation. Radiographics 2010;30:14451464.Google Scholar
McAuley, G, Delaney, H, Colville, J, Lyburn, I, Worsley, D, Govender, P, et al. Multimodality preoperative imaging of pancreatic insulinomas. Clin Radiol 2005;60:10391050.Google Scholar
Chen, X, Cai, WY, Yang, WP, Li, HW. Pancreatic insulinomas:diagnosis and surgical treatment of 74 patients. Hepatob Pancreat Dis Int 2002;1:458461.Google Scholar
Rappeport, ED, Hansen, CP, Kjaer, A, Knigge, U. Multidetector computed tomography and neuroendocrine pancreaticoduodenal tumors. Acta Radiol 2006;47:248256.Google Scholar
Ellison, EC, Sparks, J, Verducci, JS, Johnson, JA, Muscarella, P, Bloomston, M, et al. 50-year appraisal of gastrinoma: recommendations for staging and treatment. J Am Coll Surg 2006;202:897905.Google Scholar
Ichikawa, T, Peterson, MS, Federle, MP, Baron, RL, Haradome, H, Kawamori, Y, et al. Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology 2000;216:163171.Google Scholar
Thoeni, RF, Mueller-Lisse, UG, Chan, R, Do, NK, Shyn, PB. Detection of small, functional islet cell tumors in the pancreas: selection of MR imaging sequences for optimal sensitivity. Radiology 2000;214:483490.Google Scholar
Brenner, R, Metens, T, Bali, M, Demetter, P, Matos, C. Pancreatic neuroendocrine tumor:added value of fusion of T2-weighted imaging and high b-value diffusion-weighted imaging for tumor detection. Eur J Radiol 2012;81:e746e749.Google Scholar
Bakir, B, Salmaslioglu, A, Poyanli, A, Rozanes, İ, Acunas, B. Diffusion weighted MR imaging of pancreatic islet cell tumors. Eur J Radiol 2010;74:214220.Google Scholar
Jang, KM, Kim, SH, Kim, YK, Park, MJ, Lee, MH, Hwang, J, et al. Imaging features of Samm (≤3 cm) pancreatic solid tumors on gadoxetic acid enhanced MR imaging and diffusion weighted imaging: an initial experience. Magn Reson Imaging 2012;30:916925.Google Scholar
Jang, KM, Kim, SH, Lee, SJ, Choi, D. The value of gadotexic acid-enhanced and diffusion weighted MRI for prediction of grading of pancreatic neuroendocrine tumors. Acta Radiol 2014;55:140–148.Google Scholar
Lewis, RB, Mehrotra, AK, Rodriguez, P, Levine, MS. From the radiologic pathology archives: esophageal neoplasms: radiologic-pathologic correlation. Radiographics 2013;33:10831108.Google Scholar
Montgomery, E, Field, JK, Boffetta, P, et al. Tumours of the oesophagus. In Bosman, FT, Carneiro, F, Hruban, RH, Theise, ND, eds. WHO Classification of of Tumours of the Digestive System, 4th edn. Lyon: International Agency for Research on Cancer, 2010:1537.Google Scholar
Trivers, KF, Sabatino, SA, Stewart, SL. Trends in esophageal cancer incidence by histology, United States, 1998–2003. Int J Cancer 2008;123:14221428.Google Scholar
Maru, DM, Khurana, H, Rashid, A, Correa, AM, Anandasabapathy, S, Krishnan, S, et al. Retrospective study of clinicopathologic features and prognosis of high-grade neuroendocrine carcinoma of the esophagus. Am J Surg Pathol 2008;32:14041411.Google Scholar
Chang, S, Choi, D, Lee, SJ, Lee, WJ, Park, MH, Kim, SW, et al. Neuroendocrine neoplasms of the gastrointestinal tract: classification, pathologic basis, and imaging features Radiographics 2007;27: 16671679.Google Scholar
Mulder, LD, Gardiner, GA, Weeks, DA. Primary small cell carcinoma of the esophagus: case presentation and review of the literature. Gastrointest Radiol 1991;16:510.Google Scholar
Levine, MS, Pantongrag-Brown, L, Buck, JL, Buetow, PC, Lowry, MA, Sobin, LH. Small-cell carcinoma of the esophagus: radiographic findings. Radiology 1996;199:703705.Google Scholar
Hoang, MP, Hobbs, CM, Sobin, LH, Albores-Saavedra, J. Carcinoid tumor of the esophagus: a clinicopathologic study of four cases. Am J Surg Pathol 2002;26:517522.Google Scholar
Lee, NK, Kim, S, Kim, GH, Jeon, TY, Kim, DH, Jang, HJ, et al. Hypervascular subepithelial gastrointestinal masses: CT-pathologic correlation. Radiographics 2010;30:19151934.Google Scholar
Modlin, IM, Lye, KD, Kidd, M. A 5-decade analysis of 13 715 carcinoid tumors. Cancer 2003;97:934959.Google Scholar
Sahani, DV, Bonaffini, PA, Castillo, CF, Blake, MA. Gastroenteropancreatic neuroendocrine tumors: role of imaging in diagnosis and management. Radiology 2013;266:3861.Google Scholar
Plöckinger, U, Rindi, G, Arnold, R, et al. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. A consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology 2004;80:394424.Google Scholar
Levy, AD, Sobin, LH. From the archives of the AFIP: gastrointestinal carcinoids: imaging features with clinicopathologic comparison. Radiographics 2007;27:237257.Google Scholar
Lehy, T, Cadiot, G, Mignon, M, Ruszniewski, P, Bonfils, S. Influence of multiple endocrine neoplasia type I on gastric endocrine cells in patients with the Zollinger–Ellison syndrome. Gut 1992;33:12751279.Google Scholar
Rindi, G, Azzoni, C, La Rosa, S, Klersy, C, Paolotti, D, Rappel, S, et al. ECL cell tumor and poorly differentiated endocrine carcinoma of the stomach: prognostic evaluation by pathological analysis. Gastroenterology 1999;116:532542.Google Scholar
Heller, MT, Shah, AB. Imaging of neuroendocrine tumors. Radiol Clin North Am 2011;49:529548.Google Scholar
Hofmann, JW, Fox, PS, Wilson, SD. Duodenal wall tumors and the Zollinger–Ellison syndrome. Surgical management. Arch Surg 1973;107:334339.Google Scholar
Pipeleers-Marichal, M, Somers, G, Willems, G, Foulis, A, Imrie, C, Bishop, AE, et al. Gastrinomas in the duodenums of patients with multiple endocrine neoplasia type 1 and the Zollinger–Ellison syndrome. N Engl J Med 1990;322:723727.Google Scholar
Eriksson, B, Klöppel, G, Krenning, E, Ahlman, H, Plöckinger, U, Wiedenmann, B, et al. Consensus guidelines for the management of patients with digestive neuroendocrine tumors: well differentiated jejunal-ileal tumor/carcinoma. Neuroendocrinology 2008;87:819.Google Scholar
Elayes, KM, Al-Hawary, MM, Jaqdish, J, Ganesh, HS, Platt, JF. CT enterography: principles, trends, and interpretation findings. Radiographics 2010;30:19551970.Google Scholar
Masseli, G, Gualdi, G. CT and MR enterography in evaluating small bowel diseases: when to use which modality? Abdom Imaging 2013;38:249259.Google Scholar
Masseli, G, Gualdi, G. MR imaging of the small bowel. Radiology 2012;264:333348.Google Scholar
Hoeffel, C, Crema, MD, Belkacem, A, Azizi, L, Lewin, M, Arrivé, L, et al. Multi-detector row CT: spectrum of diseases involving the ileocecal area. Radiographics 2006;26:13731390.Google Scholar
Sandor, A, Modlin, IM. A retrospective analysis of 1570 appendiceal carcinoids. Am J Gastroenterol 1998;93:422428.Google Scholar
Modlin, IM, Sandor, A. An analysis of 8305 cases of carcinoid tumors. Cancer 1997;79:813829.Google Scholar
Mandair, D, Caplin, ME. Colonic and rectal NETs. Best Pract Res Clin Gastroenterol 2012;26:775789.Google Scholar
Crittenden, JJ, Byllesby, J, Dodds, W. Carcinoid tumor presenting as annular lesion in the ascending colon. Radiology 1970;97:8586.Google Scholar
Schott, M, Klöppel, G, Raffel, A, Saleh, A, Knoefel, WT, Scherbaum, WA. Neuroendocrine neoplasms of the gastrointestinal tract. Dtsch Arztebl Int 2011;108:305312.Google Scholar
Modlin, IM, Oberg, K, Chung, DC, Jensen, RT, de Herder, WW, Thakker, RV, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008;9:6172.Google Scholar
Li, RK, Zhao, J, Rao, SX, Chen, CZ, Zeng, MS, Qiang, JW. Primary hepatic neuroendocrine carcinoma: MR imaging findings including preliminary observation on diffusion-weighted imaging. Abdom Imaging 2013;38:12691276.Google Scholar
Ulusan, S, Kizilkilic, O, Yildirim, T, Tercan, F, Bolat, F, Yildirim, S. Primary hepatic carcinoid tumor: dynamic CT findings. Abdom Imaging 2005;30:281285.Google Scholar
Lee, WJ, Kim, SH, Rhim, H, Rhim, H, Song, HJ, Park, CK. Three-phase helical computedtomographic findings of hepatic neuroendocrine tumors:pathologic correlation with revised WHO classification. J Comput Assist Tomogr 2011;35:697702.Google Scholar
van der Hoef, M, Crook, DW, Marincek, B, Weishaupt, D. Primary neuroendocrine tumors of the liver: MRI features in two cases. Abdom Imaging 2004;29:7781.Google Scholar
Takayasu, K, Muramatsu, Y, Sakamoto, M, Mizuguchi, Y, Moriyama, N, Wakao, F, et al. Findings in primary hepatic carcinoid tumor: US, CT, MRI and angiography. J Comput Assist Tomogr 1992;16:99102.Google Scholar
Bader, TR, Semelka, RC, Chiu, VC, Armao, DM, Woosley, JT. MRI of carcinoid tumors: spectrum of appearances in the gastrointestinal tract and liver. J Magn Reson Imaging 2001;14: 261269.Google Scholar
Iwen, KA, Klein, J, Hubold, C, Lehnert, H, Weitzel, JM. Maturity-onset diabetes of the young and hepatic adenomatosis: characterisation of a new mutation. Exp Clin Endocrinol Diabetes 2013;121:368371.Google Scholar
Bluteau, O, Jeannot, E, Bioulac-Sage, P, Marqués, JM, Blanc, JF, Bui, H, et al. Bi-alleic inactivation of TFC1 in hepatic adenomas. Nat Genet 2002;32:312315.Google Scholar
Chiche, L, Dao, T, Salame, E, Galais, MP, Bouvard, N, Schmutz, G, et al. Liver adenomatosis: reappraisal, diagnosis and surgical management. Eight new cases and review of the literature. Ann Surg 2000;231:7481.Google Scholar
Ichikawa, T, Federle, MP, Grazioli, L, Nalesnik, M. Hepatocellular adenoma: multiphasic CT and histopathology findings in 25 patients. Radiology 2000;214:861868.Google Scholar
Grazioli, L, Federle, MP, Brancatelli, G, Ichikawa, T, Olivetti, L, Blachar, A. Hepatic adenomas:imaging and pathologic findings. Radiographics 2001;21:877892.Google Scholar
Raman, SP, Hruban, RH, Fishman, EK. Hepatic adenomatosis: spectrum of imaging findings. Abdom Imaging 2013;38:474481.Google Scholar
Vincent, JM, Morrison, ID, Armstrong, P, Reznek, RH. The size of normal adrenal glands on computed tomography. Clin Radiol 1994;49:453455.Google Scholar
Sahdev, A, Willatt, J, Francis, IR, Reznek, RH. The indeterminate adrenal lesion. Cancer Imaging 2010;10:102113.Google Scholar
Boland, GW, Lee, MJ, Gazelle, GS, Halpern, EF, McNicholas, MM, Mueller, PR. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol 1998;171:201204.Google Scholar
Blake, MA, Cronin, CG, Boland, GW. Adrenal imaging. AJR Am J Roentgenol 2010;194:14501460.Google Scholar
Peña, CS, Boland, GW, Hahn, PF, Lee, MJ, Mueller, PR. Characterization of indeterminate (lipid-poor) adrenal masses: use of washout characteristics at contrast-enhanced CT. Radiology 2000;217:798802.Google Scholar
Blake, MA, Kalra, MK, Sweeney, AT, Lucey, BC, Maher, MM, Sahani, DV, et al. Distinguishing benign from malignant adrenal masses:multi-detector row CT protocol with 10-minute delay. Radiology 2006;238:578585.Google Scholar
Dunnick, NR, Korobkin, M. Imaging of adrenal incidentalomas:current status. AJR Am J Roentgenol 2002;179:559568.Google Scholar
Chung, JJ, Semelka, RC, Martin, DR. Adrenal adenomas: characteristic postgadolinium capillary blush on dynamic MR imaging. J Magn Reson Imaging 2001;13:242248.Google Scholar
Inan, N, Arslan, A, Akansel, G, Anik, Y, Balci, NC, Demirci, A. Dynamic contrast enhanced MRI in the differential diagnosis of adrenal adenomas and malignant adrenal masses. Eur J Radiol 2008;65:154162.Google Scholar
Korivi, BR, Elsayes, KM. Cross-sectional imaging work-up of adrenal masses. World J Radiol 2013;5:8897.Google Scholar
Szolar, DH, Korobkin, M, Reittner, P, Berghold, A, Bauernhofer, T, Trummer, H, et al. Adrenocortical carcinomas and adrenal pheochromocytomas: mass and enhancement loss evaluation at delayed contrast-enhanced CT. Radiology 2005;234:479485.Google Scholar
Gupta, P, Bhalla, A, Sharma, R. Bilateral adrenal lesions. J Med Imag Radiat Oncol 2012;:636645.Google Scholar
Linos, DA, Stylopoulos, N. How accurate is computed tomography in predicting the real size of adrenal tumors? A retrospective study. Arch Surg 1997;132:740743.Google Scholar
Blake, MA, Kalra, MK, Maher, MM, Sahani, DV, Sweeney, AT, Mueller, PR, et al. Pheochromocytoma:an imaging chameleon. Radiographics 2004;24(suppl 1):S87S99.Google Scholar
Ilias, I, Pacak, K. Diagnosis, localization and treatment of pheochromocytoma in MEN 2 syndrome. Endocr Regul 2009;43:8993.Google Scholar
Ikeda, DM, Francis, IR, Glazer, GM, Amendola, MA, Gross, MD, Aisen, AM. The detection of adrenal tumors and hyperplasia in patients with primary aldosteronism: comparison of scintigraphy CT, and MR imaging. AJR Am J Roentgenol 1989;153:301306.Google Scholar
Lumachi, F, Marzola, MC, Zucchetta, P, Tregnaghi, A, Cecchin, D, Favia, G, et al. Non-invasive adrenal imaging in primary aldosteronism: sensitivity and positive predictive value of radiocholesterol scintigraphy, CT scan and MRI. Nucl Med Commun 2003;24:683688.Google Scholar
Doppman, JL, Gill, JR Jr., Miller, DL, Chang, R, Gupta, R, Friedman, TC, et al. Distinction between hyperaldosteronism due to bilateral hyperplasia and unilateral aldosteronoma: reliability of CT. Radiology 1992;184:677682.Google Scholar
Lingam, RK, Sohaib, SA, Rockall, AG, Isidori, AM, Chew, S, Monson, JP, et al. Diagnostic performance of CT versus MR in detecting aldosterone-producing adenoma in primary hyperaldosteronism (Conn's syndrome). Eur Radiol 2004;14:17871792.Google Scholar
Patel, SM, Lingam, RK, Beaconsfield, TI, Tran, TL, Brown, B. Role of radiology in the management of primary aldosteronism. Radiographics 2007;:11451157.Google Scholar
Sohaib, SA, Hanson, JA, Newell-Price, JD, Trainer, PJ, Monson, JP, Grossman, AB, et al. CT appearance of the adrenal glands in adrenocorticotrophic hormone-dependent Cushing's syndrome. AJR Am J Roentgenol 1999;172:9971002.Google Scholar
Smals, AGH, Pieters, GFFM, van Haelst, UJG, Kloppenborg, PWC. Macronodular adrenocortical hyperplasia in long standing Cushing's disease. J Clin Endocrinol Metab 1984;58:2531. Crossref from ref 81.Google Scholar
Rockall, AG, Babar, SA, Sohaib, SAA, Isidori, AM, Diaz-Cano, S, Monson, JP, et al. CT and MR imaging of the adrenal glands in ACTH-independent Cushing syndrome. Radiographics 2004;24:435452.Google Scholar
Peppercorn, PD, Reznek, RH. State-of-the-art CT and MRI of the adrenal gland. Eur Radiol 1997;7:822836.Google Scholar
Zaarour, MG, Atallah, DM, Trak-Smayra, VE, Halaby, GH. Bilateral ovary adrenal rest tumor in a congenital adrenal hyperplasia following adrenalectomy. Endocr Pract 2014;21:126.Google Scholar
Hiorns, MP, Owens, CM. Radiology of neuroblastoma in children. Eur Radiol 2001;11:20712081.Google Scholar
Schleiermacher, G, Rubie, H, Hartmann, O, Bergeron, C, Chastagner, P, Mechinaud, F, et al. Treatment of stage 4S neuroblastoma: report of 10 years' experience of the French Society of Pediatric Oncology (SFOP). Br J Cancer 2003;89: 470476.Google Scholar
Kenney, PJ, Wagner, BJ, Rao, P, Heffess, CS. Myelolipoma:CT and pathologic features. Radiology 1998;208:8795.Google Scholar
Rhodes, RE, Gaede, JT, Meyer, GA. Hemorrhagic adrenal adenoma simulating myelolipoma: CT evaluation. J Comput Assist Tomogr 1992;16:301304.Google Scholar
Yamada, T, Ishibashi, T, Saito, H, Majima, K, Tsuda, M, Takahashi, S, et al. Non-functioning adrenocortical adenomas containing fat components. Clin Radiol 2002;57:10341043.Google Scholar
Allard, P, Yankaskas, BC, Fletcher, RH, Parker, LA, Halvorsen, RA. Sensitivity and specificity of computed tomography for the detection of adrenal metastatic lesions among 91 autopsied lung cancer patients. Cancer 1990;66:457462.Google Scholar
Lam, KY, Lo, CY. Metastatic tumours of the adrenal glands: a 30-year experience in a teaching hospital. Clin Endocrinol (Oxf) 2002;56:95101.Google Scholar
Dietrich, CF, Wehrmann, T, Hoffmann, C, Herrmann, G, Caspary, WF, Seifert, H. Detection of the adrenal glands by endoscopic or transabdominal ultrasound. Endoscopy 1997;29:859864.Google Scholar
Johnson, PT, Horton, KM, Fishman, EK. Adrenal mass imaging with multidedector CT: pathologic conditions, pearls and pitfalls. Radiographics 2009;29:13331351.Google Scholar
Falchook, S, Allard, JC. CT of primary adrenal lymphoma. J Comput Assist Tomogr 1991;15:10481050.Google Scholar
Lee, FT Jr, Thornbury, JR, Grist, TM, Kelcz, F. MR imaging of adrenal lymphoma. Abdom Imaging 1993;18:9596.Google Scholar
Kato, H, Itami, J, Shiina, T, Uno, T, Arimizu, N, Fujimoto, H, et al. A MR imaging of primary adrenal lymphoma. Clin Imaging 1996;20:126128.Google Scholar
Zhou, L, Peng, W, Wang, C, Liu, X, Shen, Y, Zhou, K. Primary adrenal lymphoma: radiological; pathological, clinical correlation. Eur J Radiol 2012;81:401405.Google Scholar

References

Paneth, F, Hevesy, G. Uber Radioelemente als Indikatoren in der analytischen Chemie. Monatschr Chem 1913;34:14011407.Google Scholar
Hevesy, G, Paneth, F. Die Lӧslichkeit des Bleisulfids und Bleichromats. Z Anorg Chem 1913;82:323328.Google Scholar
Hevesy, G. The absorption and translocation of lead by plants: a contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem J 1923;17:439445.Google Scholar
Hevesy, G. Adventures in Radioisotope Research: The Collected Papers of George Hevesy. New York: Pergamon Press, 1962.Google Scholar
Rohrer, R. Nuclear physics and radiation. In Wagner, HN, Szabo, Z, Buchanan, JW, eds. Principles of Nuclear Medicine. Philadelphia, PA: WB Saunders, 1995:7294.Google Scholar
Reiss, M, Hemphill, RE, et al. Investigations of human thyroid function with the use of small doses of radioactive iodine, and the effect of thyrotrophic hormone on 131I uptake and excretion. J Endocrinol 1949;6:235243.Google Scholar
Hofstadter, R. Alkali halide scintillation counters. Phys Rev 1948;74:100101.Google Scholar
Anger, HO. Scintillation camera. Rev Sci Instrum 1958;29:2733.Google Scholar
Weiner, RE, Thakur, ML. Radiopharmaceuticals. In Sandler, MP, Coleman, RE, Patton, JA, Wackers, FJT, Gottschalk, A, eds. Diagnostic Nuclear Medicine, 4th edn. Philadelphia, PA: Lippincott Williams & Wilkins, 2003:97–115.Google Scholar
Breeman, WA, de Blois, E, Sze Chan, H, Konijnenberg, M, Kwekkeboom, DJ, Krenning, EP. (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin Nucl Med 2011;41:314321.Google Scholar
Lang, TF, Hasegawa, BH, Liew, SC, et al. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med 1992;33:18811887.Google Scholar
Beyer, T, Townsend, DW, Brun, T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:13691379.Google Scholar
Wells, RG. CT-SPECT/CT-PET. In Farncombe, T, Iniewski, K, eds. Medical Imaging: Technology and Applications. Boca Raton, FL: CRC Press, 2014:335358.Google Scholar
Delbeke, D, Schoder, H, Martin, WH, Wahl, RL. Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med 2009;39:308340.Google Scholar
Dohan, O, De la Vieja, A, Paroder, V, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 2003;24:4877.Google Scholar
Balon, HR, Silberstein, EB, Meier, DA, Charkes, ND, Sarkar, SD, Royal, HD, et al. Society of Nuclear Medicine Procedure Guideline for Thyroid Scintigraphy. Reston, VA: Society of Nuclear Medicine and Molecular Imaging, 2006 (http://snmmi.files.cms-plus.com/docs/Thyroid_Scintigraphy_V3.pdf, accessed 4 September 2015).Google Scholar
International Commission on Radiological Protection. ICRP publication 53: radiation dose to patients from radiopharmaceuticals. Ann ICRP 1988;18.Google Scholar
Silberstein, EB, Alavi, A, Balon, HR, Becker, DB, Charkes, ND, Clarke, SEM, et al. Society of Nuclear Medicine Scintigraphy for Differentiated Papillary and Follicular Thyroid Cancer. Reston, VA: Society of Nuclear Medicine and Molecular Imaging, 2006 (http://snmmi.files.cms-plus.com/docs/Scintigraphy%20for%20Differentiated%20Thyroid%20Cancer%20V3%200%20(9-25-06).pdf, accessed 4 September 2015).Google Scholar
Hegedus, L. Clinical practice. The thyroid nodule. N Engl J Med 2004;351:17641771.Google Scholar
American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:11671214.Google Scholar
Papini, E, Guglielmi, R, Bianchini, A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 2002;87:19411946.Google Scholar
Marqusee, E, Benson, CB, Frates, MC, et al. Usefulness of ultrasonography in the management of nodular thyroid disease. Ann Intern Med 2000;133:696700.Google Scholar
Ladenson, PW, Braverman, LE, Mazzaferri, EL, et al. Comparison of administration of recombinant human thyrotropin with withdrawal of thyroid hormone for radioactive iodine scanning in patients with thyroid carcinoma. N Engl J Med 1997;337:888896.Google Scholar
Haugen, BR, Pacini, F, Reiners, C, et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab 1999;84:38773885.Google Scholar
Schroeder, PR, Haugen, BR, Pacini, F, et al. A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J Clin Endocrinol Metab 2006;91:878884.Google Scholar
Van Nostrand, D, Moreau, S, Bandaru, VV, et al. (124)I positron emission tomography versus (131)I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid 2010;20:879883.Google Scholar
de Pont, C, Halders, S, Bucerius, J, Mottaghy, F, Brans, B. (124)I PET/CT in the pretherapeutic staging of differentiated thyroid carcinoma: comparison with posttherapy (131)I SPECT/CT. Eur J Nucl Med Mol Imaging 2013;40:693700.Google Scholar
Van Nostrand, D, Khorjekar, GR, O'Neil, J, et al. Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in the identification of metastasis in differentiated thyroid cancer with 131I planar whole-body imaging and 124I PET. J Nucl Med 2012;53:359362.Google Scholar
Muratet, JP, Giraud, P, Daver, A, Minier, JF, Gamelin, E, Larra, F. Predicting the efficacy of first iodine-131 treatment in differentiated thyroid carcinoma. J Nucl Med 1997;38:13621368.Google Scholar
Leger, AF, Pellan, M, Dagousset, F, Chevalier, A, Keller, I, Clerc, J. A case of stunning of lung and bone metastases of papillary thyroid cancer after a therapeutic dose (3.7 GBq) of 131I and review of the literature: implications for sequential treatments. Br J Radiol 2005;78:428432.Google Scholar
Fatourechi, V, Hay, ID, Mullan, BP, et al. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid 2000;10:573577.Google Scholar
Sherman, SI, Tielens, ET, Sostre, S, Wharam, MD Jr., Ladenson, PW. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab 1994;78:629634.Google Scholar
Souza Rosario, PW, Barroso, AL, Rezende, LL, et al. Post I-131 therapy scanning in patients with thyroid carcinoma metastases: an unnecessary cost or a relevant contribution? Clin Nucl Med 2004;29:795798.Google Scholar
Xue, YL, Qiu, ZL, Song, HJ, Luo, QY. Value of (131)I SPECT/CT for the evaluation of differentiated thyroid cancer: a systematic review of the literature. Eur J Nucl Med Mol Imaging 2013;40:768778.Google Scholar
Spencer, CA. Challenges of serum thyroglobulin (Tg) measurement in the presence of Tg autoantibodies. J Clin Endocrinol Metab 2004;89:37023704.Google Scholar
Koh, JM, Kim, ES, Ryu, JS, Hong, SJ, Kim, WB, Shong, YK. Effects of therapeutic doses of 131I in thyroid papillary carcinoma patients with elevated thyroglobulin level and negative 131I whole-body scan: comparative study. Clin Endocrinol 2003;58:421427.Google Scholar
Mazzaferri, EL, Kloos, RT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86:14471463.CrossRefGoogle ScholarPubMed
Schlumberger, M, Mancusi, F, Baudin, E, Pacini, F. 131I therapy for elevated thyroglobulin levels. Thyroid 1997;7:273276.Google Scholar
Martin, WH, Sandler, MP. Thyroid Imaging. In Sandler, MP, Coleman, RE, Patton, JA, Wackers, FJT, Gottschalk, A, eds. Diagnostic Nuclear Medicine, 4th edn. Philadelphia, PA: Lippincott Williams & WIlkins, 2003:264–271.Google Scholar
Sandrock, D, Merino, MJ, Norton, JA, Neumann, RD. Ultrastructural histology correlates with results of thallium-201/technetium-99m parathyroid subtraction scintigraphy. J Nucl Med 1993;34:2429.Google Scholar
Crane, P, Laliberte, R, Heminway, S, Thoolen, M, Orlandi, C. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med 1993;20:2025.Google Scholar
Backus, M, Piwnica-Worms, D, Hockett, D, et al. Microprobe analysis of Tc-MIBI in heart cells: calculation of mitochondrial membrane potential. Am J Physiol 1993;265:C178187.Google Scholar
Coakley, AJ, Kettle, AG, Wells, CP, O'Doherty, MJ, Collins, RE. 99Tcm sestamibi: a new agent for parathyroid imaging. Nucl Med Commun 1989;10:791794.Google Scholar
Greenspan, BS, Dillehay, G, Intenzo, C, et al. SNM practice guideline for parathyroid scintigraphy 4.0. J Nucl Med Technol 2012;40:111118.Google Scholar
Kettle, AG, O'Doherty, MJ. Parathyroid imaging: how good is it and how should it be done? Semin Nucl Med 2006;36:206211.Google Scholar
Ruda, JM, Hollenbeak, CS, Stack, BC Jr. A systematic review of the diagnosis and treatment of primary hyperparathyroidism from 1995 to 2003. Otolaryngol Head Neck Surg 2005;132:359372.Google Scholar
Hindie, E, Zanotti-Fregonara, P, Just, PA, et al. Parathyroid scintigraphy findings in chronic kidney disease patients with recurrent hyperparathyroidism. Eur J Nucl Med Mol Imaging 2010;37:623634.Google Scholar
Avram, AM, Fig, LM, Gross, MD. Adrenal gland scintigraphy. Semin Nucl Med 2006;36:212227.Google Scholar
Bombardieri, E, Giammarile, F, Aktolun, C, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2010;37:24362446.Google Scholar
Taieb, D, Timmers, HJ, Hindie, E, et al. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2012;39:19771995.Google Scholar
Ambrosini, V, Campana, D, Tomassetti, P, Fanti, S. (68)Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging 2012;39(suppl 1):S52S60.Google Scholar
Yakemchuk, VN, Jager, PL, Chirakal, R, Reid, R, Major, P, Gulenchyn, KY. PET/CT using (18)F-FDOPA provides improved staging of carcinoid tumor patients in a Canadian setting. Nucl Med Commun 2012;33:322330.Google Scholar
Boellaard, R, O'Doherty, MJ, Weber, WA, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37:181200.Google Scholar
International Commission on Radiological Protection. Addendum to ICRP publication 53: radiation dose to patients from radiopharmaceuticals. Ann ICRP 1998;28.Google Scholar
International Commission on Radiological Protection. Addendum 3 to ICRP publication 53: radiation dose to patients from radiopharmaceuticals. Ann ICRP 2008;38.Google Scholar
Decristoforo, C, Pickett, RD, Verbruggen, A. Feasibility and availability of (68)Ga-labelled peptides. Eur J Nucl Med Mol Imaging 2012;39(suppl 1):S31S40.Google Scholar
Edge, SB, Byrd, D.R., Comptom, C.C., Fritz, A.G., Greene, F.L, Trotti, A., et al. AJCC Cancer Staging Manual. New York: Springer, 2010.Google Scholar
Asa, SL, Ezzat, S. Endocrine organs. In Allison, MR, ed. The Cancer Handbook. London: Nature Publishing, 2002:599610.Google Scholar
Koopmans, KP, Neels, ON, Kema, IP, et al. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol 2009;71:199213.Google Scholar
Bombardieri, E, Ambrosini, V, Aktolun, C, et al. 111In-Pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2010;37:14411448.Google Scholar
Pepe, G, Moncayo, R, Bombardieri, E, Chiti, A. Somatostatin receptor SPECT. Eur J Nucl Med Mol Imaging 2012;39(suppl 1):S41S51.Google Scholar
Krenning, EP, Kwekkeboom, DJ, Pauwels, S, Kvols, LK, Reubi, JC. Somatostatin receptor scintigraphy. In Freeman, LM, ed. Nuclear Medicine Annual. New York: Lippincott Williamns & Wilkins, 1995:150.Google Scholar
Chiti, A, Fanti, S, Savelli, G, et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur J Nucl Med 1998;25:13961403.Google Scholar
Gibril, F, Reynolds, JC, Doppman, JL, et al. Somatostatin receptor scintigraphy: its sensitivity compared with that of other imaging methods in detecting primary and metastatic gastrinomas. A prospective study. Ann Intern Med 1996;125:2634.Google Scholar
Krenning, EP, Kwekkeboom, DJ, Bakker, WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993;20:716731.Google Scholar
Geijer, H, Breimer, LH. Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2013;40:17701780.Google Scholar
Treglia, G, Castaldi, P, Rindi, G, Giordano, A, Rufini, V. Diagnostic performance of gallium-68 somatostatin receptor PET and PET/CT in patients with thoracic and gastroenteropancreatic neuroendocrine tumours: a meta-analysis. Endocrine 2012;42:8087.Google Scholar
Balogova, S, Talbot, JN, Nataf, V, et al. 18F-Fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging 2013;40:943966.Google Scholar
Haug, A, Auernhammer, CJ, Wangler, B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2009;36:765770.Google Scholar
Jacobson, AF, Deng, H, Lombard, J, Lessig, HJ, Black, RR. 123I-meta-Iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab 2010;95:25962606.Google Scholar
Treglia, G, Cocciolillo, F, de Waure, C, et al. Diagnostic performance of 18F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis. Eur J Nucl Med Mol Imaging 2012;39:11441153.Google Scholar
Sharp, SE, Gelfand, MJ, Shulkin, BL. Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med 2011;41:345353.Google Scholar
Treglia, G, Cocciolillo, F, Di Nardo, F, et al. Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 dihydroxyphenylalanine positron emission tomography: a meta-analysis. Acad Radiol 2012;19:12901299.Google Scholar
Fowler, JS, Wolf, AP. 2-Deoxy-2-[18F]fluoro-d-glucose for metabolic studies: current status. Int J Rad Appl Instrum A 1986;37:663668.Google Scholar
Weber, G. Enzymology of cancer cells (Part 2). N Engl J Med 1977;296:541551.Google Scholar
Som, P, Atkins, HL, Bandoypadhyay, D, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-d-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 1980;21:670675.Google Scholar
Abraham, T, Schoder, H. Thyroid cancer–indications and opportunities for positron emission tomography/computed tomography imaging. Semin Nucl Med 2011;41:121138.Google Scholar
Ma, C, Xie, J, Lou, Y, Gao, Y, Zuo, S, Wang, X. The role of TSH for 18F-FDG-PET in the diagnosis of recurrence and metastases of differentiated thyroid carcinoma with elevated thyroglobulin and negative scan: a meta-analysis. Eur J Endocrinol 2010;163:177183.Google Scholar
Palmedo, H, Bucerius, J, Joe, A, et al. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 2006;47:616624.Google Scholar
Pryma, DA, Schoder, H, Gonen, M, Robbins, RJ, Larson, SM, Yeung, HW. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hürthle cell thyroid cancer patients. J Nucl Med 2006;47:12601266.Google Scholar
Poisson, T, Deandreis, D, Leboulleux, S, et al. 18F-Fluorodeoxyglucose positron emission tomography and computed tomography in anaplastic thyroid cancer. Eur J Nucl Med Mol Imaging 2010;37:22772285.Google Scholar
Smallridge, RC, Ain, KB, Asa, SL, et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012;22:11041139.Google Scholar
American Thyroid Association Guidelines Task Force, Kloos, RT, Eng, C, Evans, DB, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009;19:565612.Google Scholar
Boland, GW, Dwamena, BA, Jagtiani Sangwaiya, M, et al. Characterization of adrenal masses by using FDG PET: a systematic review and meta-analysis of diagnostic test performance. Radiology 2011;259:117126.Google Scholar
Ansquer, C, Scigliano, S, Mirallie, E, et al. 18F-FDG PET/CT in the characterization and surgical decision concerning adrenal masses: a prospective multicentre evaluation. Eur J Nucl Med Mol Imaging 2010;37:16691678.Google Scholar
Deandreis, D, Leboulleux, S, Caramella, C, Schlumberger, M, Baudin, E. FDG PET in the management of patients with adrenal masses and adrenocortical carcinoma. Horm Cancer 2011;2:354362.Google Scholar
Kayani, I, Bomanji, JB, Groves, A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga--DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer 2008;112:24472455.Google Scholar
Kayani, I, Conry, BG, Groves, AM, et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 2009;50:19271932.Google Scholar
Binderup, T, Knigge, U, Loft, A, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med 2010;51:704712.Google Scholar
Garin, E, Le Jeune, F, Devillers, A, et al. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med 2009;50:858864.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×