Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:34:19.328Z Has data issue: false hasContentIssue false

NOTES ON CYRTANDRA (GESNERIACEAE) FROM JAPAN, TAIWAN AND BATAN ISLAND (PHILIPPINES)

Published online by Cambridge University Press:  20 May 2019

K. Nishii
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail for correspondence: HAtkins@rbge.org.uk
G. Kokubugata
Affiliation:
Department of Botany, National Museum of Nature and Science, Amakubo Tsukuba, Ibaraki 305-0005, Japan.
M. Möller
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail for correspondence: HAtkins@rbge.org.uk
H. J. Atkins*
Affiliation:
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail for correspondence: HAtkins@rbge.org.uk
Get access

Abstract

As part of ongoing molecular phylogenetic work on the large Gesneriaceae genus Cyrtandra, new insights into the taxonomy and relationships of the Cyrtandra of Japan, Taiwan and Batan Island in the northern Philippines have emerged. Cyrtandra umbellifera is confirmed as a species with a distribution that includes both Taiwan and Batan Island. Cyrtandra yaeyamae is found to be distinct from the widespread C. cumingii, with a distribution that includes both the Ryukyu Islands in Japan and Batan Island.

Type
Articles
Copyright
© Trustees of the Royal Botanic Garden Edinburgh (2019) 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, H. J., Bramley, G. L. C. & Clark, J. R. (2013). Current knowledge and future directions in the taxonomy of Cyrtandra (Gesneriaceae), with a new estimate of species number. Selbyana 31(2): 157165.Google Scholar
Clarke, C. B. (1883). Cyrtandreae. In: Candolle, A. de & Candolle, C. de (eds) Monographiae Phanerogamarum, vol. I, pp. 130. Paris: G. Masson.Google Scholar
Doyle, J. J. & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. Bot. Soc. Amer. 19: 1115.Google Scholar
Elmer, A. D. E. (1908). Gesneriaceae from the Cuernos Mts. Leafl. Philipp. Bot. 2: 553567.Google Scholar
Gillett, G. W. (1973). The genus Cyrtandra in the Ryukyu and Caroline Islands. J. Arnold Arbor. 54(1): 105110.Google Scholar
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 9598. Online. Available: http://jwbrown.mbio.ncsu.edu/JWB/papers/1999Hall1.pdfGoogle Scholar
Hatusima, S. (1956). New and noteworthy plants from the Ryukyu Islands and Formosa. Sci. Bull. Agric. Div. Univ. Ryukyus 3: 1933.Google Scholar
Hatusima, S. (1971). Flora of the Ryukyus (Including Amami Islands, Okinawa Islands, and Sakishima Archipelago). Naha, Okinawa: Okinawa Association for Biological Education.Google Scholar
Hosokawa, T. (1935). On the generic distribution of Cyrtandra (Gesneriaceae) with the description of a new species from Botal Tobago. Trans. Nat. Hist. Soc. Formosa 25: 410413.Google Scholar
Inoue, K., Katsuyama, T., Takahashi, H. & Akiyama, M. (1998). Recently rediscovered type materials of orchids described by Dr Fukuyama and Dr Masamune. J. Jap. Bot. 73: 199230.Google Scholar
Kao, M.-T. & DeVol, C. E. (1972). The Gesneriaceae of Taiwan. Taiwania 17: 142169.Google Scholar
Kokubugata, G. & Madulid, D. A. (2000). Comparative study of chromosome number and karyotype of Cyrtandra cumingii var. yaeyamana (Gesneriaceae) from Batan Island, the Philippines and Iriomote Island, Japan. Biol. Mag. 38: 17.Google Scholar
Li, Z.-Y. & Kao, M.-T. (1998). Gesneriaceae. In: Huang, T.-C. (ed.) Flora of Taiwan, vol. 4, pp. 688712. Taipei: Editorial Committee of the Flora of Taiwan.Google Scholar
Luna, J. A., Richardson, J. E., Nishii, K., Clark, J. L. & Möller, M. (in press). The family placement of Cyrtandromoea. Syst. Bot. 44(3).Google Scholar
Masamune, G. (1937). Espece nouvelle de Cyrtandra du Japon. Notul. Syst. (Paris) 6: 3839.Google Scholar
Merrill, E. (1907). The flora of Mount Halcon, Mindoro. Philipp. J. Sci. 2: 251309.Google Scholar
Merrill, E. (1908). On a collection of plants from the Batanes and Babuyanes Islands. Philipp. J. Sci. 3: 385442.Google Scholar
Merrill, E. (1923). An Enumeration of Philippine Flowering Plants, vol. 3. Manila: Bureau of Printing.Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Miller, M. A., Pfeiffer, W. & Schwartz, T. (eds) Proceedings of the Gateway Computing Environments Workshop (GCE) 14 Nov 2010, pp. 18. New Orleans: Institute of Electrical and Electronics Engineers.Google Scholar
Möller, M. & Cronk, Q. C. B. (1997). Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Amer. J. Bot. 84(7): 956965.CrossRefGoogle ScholarPubMed
Nylander, J. A. A. (2004). MrModeltest v2. Program Distributed by the Author. Uppsala: Evolutionary Biology Centre, University of Uppsala. Online. Available: https://github.com/nylander/MrModeltest2.Google Scholar
Ohwi, J. (1937). Plantae novae Japonicae (IV). J. Jap. Bot. 13: 339Google Scholar
Ralser, M., Querfurth, R., Warnatz, H.-J., Lehrach, H., Yaspo, M.-L. & Krobitsch, S. (2006). An efficient and economic enhancer mix for PCR. Biochem. Biophys. Res. Commun. 347(3): 747751.CrossRefGoogle ScholarPubMed
Rambaut, A. (2007). FigTree. Online. Available: http://tree.bio.ed.ac.uk/software/figtree/Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5): 901904.CrossRefGoogle ScholarPubMed
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenback, J. P. (2012). Software for Systematics and Evolution MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3): 539542.CrossRefGoogle ScholarPubMed
Sang, T., Crawford, D. J. & Stuessy, T. F. (1997). Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer. J. Bot. 84(8): 11201136.CrossRefGoogle Scholar
Shaw, J., Lickey, E. B., Schilling, E. E. & Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer. J. Bot. 94(3): 275288.CrossRefGoogle ScholarPubMed
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 13121313.CrossRefGoogle ScholarPubMed
Swofford, D. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Taberlet, P., Gielly, L., Pauatou, G. & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17(5): 11051109.CrossRefGoogle ScholarPubMed
Walker, E. H. (1976). Flora of Okinawa and the Southern Ryukyu Islands. Washington, D.C.: Smithsonian Institution Press.Google Scholar
Yamazaki, T. (1993). Gesneriaceae. In: Iwatsuki, K., Yamazaki, T., Boufford, D. E. & Ohba, H. (eds) Flora of Japan, Volume IIIa. Angiospermae Dicotyledoneae Sympetalae (a), p. 376. Tokyo: Kodansha.Google Scholar