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Abstract. We show that the pseudo-Anosov diffeomorphisms have a kind of stability
even outside their own homotopy class, this generalizes some results of Lewowicz
and Handel. As a corollary, we show that two pseudo-Anosov maps, with the same
dilatation coefficient, which are semi-conjugate on the T:X level are also semi-
conjugate as dynamical systems by a map which is a ramified cover.

Our main interest in this work is to find when a dynamical system g: N -> N on a
compact connected space can be semi-conjugated onto a pseudo-Anosov map. This
is reminiscent of J. Franks work [F], it is also related to work of J. Lewowicz [L]
and M. Handel [HI, H2].

A pseudo-Anosov diffeomorphism / of a surface M is a homeomorphism, for
which there exists a pair of transverse measured foliations (9\ /us), (8FU, fi") and
A>1 such that f*(9s,fi

s) = (&s,\-1ns) and /*(&", (*.") = (&", A/A") - see [FLP]
for Thurston's theory of measured foliations and pseudo-Anosov diffeomorphisms.
In the beginning, our work was motivated by an attempt to classify pseudo-Anosov
maps up to ramified covers, because we wanted to find out the smallest surface on
which a given pseudo-Anosov diffeomorphism was 'living' naturally. Our Theorem
2 below shows that this can be reduced to an algebraic semi-conjugacy problem on
the fundamental group level. When M. Handel's paper [HI] appeared, it was clear
that this problem was related to a form of dynamical 'stability' for pseudo-Anosov
diffeomorphisms which is the content of our Theorem 1 below. In fact, the proof
of Theorem 1 produces more than its statement, we find a natural hyperbolic
extension of the pseudo-Anosov map in which the surface sits naturally as the
smallest non-trivial invariant compact connected subset. The space on which the
hyperbolic extension exists has a universal cover which is the product of the two
trees obtained from the stable and unstable foliations.

The following theorem generalizes some work of J. Lewowicz [L] and M. Handel
[HI].

THEOREM 1. Let / : M-» M be a pseudo-Anosov map of the closed connected surface
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M. Let g: N -* N be a homeomorphism of the compact connected space N. Suppose
that a: N-* M is a continuous map such that the diagram:

N — — * N

M > M

commutes up to homotopy. If a is not homotopic to a constant, then there exists a
closed subset Ya N, which is g invariant, and a continuous surjective map /3 : Y-* M
such that f3 is homotopic to a | Y and the following diagram commutes:

g| v

I'
M — — • M.

The second theorem is a generalization of the fact that two homotopic pseudo-
Anosov maps are conjugate, it should also be compared with [H2].

THEOREM 2. Let f-.M^M and g:N-*Nbe pseudo-Anosov maps, with the same
dilatation coefficient on the closed connected surfaces M and N. Suppose that
a#: IT\{M) -* Vi(N) is a non constant algebraic homomorphism such that the following
diagram commutes:

ir,(AD

ir.(Af) — ^ Vl(M),

where f% and g% are respectively representatives of the action of f and g on the
fundamental groups. Then there exists a ramified cover a: N-* M which semi-conjugates
gtof, and whose action on fundamental groups can be represented by a*.

1. Some facts about trees and measured foliations
Let M be a closed connected surface and let & be a minimal measured foliation
on M. Call M the universal cover of M. Denote by # the pullback of 9 to M. We
call a leaf of # either a regular leaf which does not contain a separatrix or the
union of a singularity and all separatrices ending in that singularity. Since 9 is
minimal, any such leaf is a closed subset of M. We call & the set of leaves Ml 9.
If we define the distance between two leaves of 9 as the minimum of the transverse
measures of arcs joining the two leaves, we obtain a distance on 2F which turns J"
into a tree - see Morgan and Shalen [MS, § 2]. If the genus of M is ^2, then ST is
not complete for this distance. We will denote by & its completion, it is also a tree,
see [MS, proof of Theorem 2.1.9]. To simplify notations, we will denote by Y the
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fundamental group of M the group T acts in a natural way as a group of isometries
of ST and hence it also acts as a group of isometries of &.

LEMMA 1.1. If a is a closed arc contained in §~ then a minus its endpoints is contained
in ST. Iffe ST, the set # \ r / i s totally disconnected.

In order to prove 1.1, we need a couple of sublemmas.

SUBLEMMA 1.2. Let a (resp. a') be an arc between x and y (resp. x' and y') in a tree.
The intersection ana' is an arc of length l(a na') satisfying:

l(ana')>l(a)-d(x,x')-d(y,y').

The proof of this sublemma can be found in [MS, proof of Corollary 2.1.7].

SUBLEMMA 1.3. Let 9~ be the completion of the tree ST. If a is an arc in §~, then a
minus its extremities is contained in ST.

Proof. Call x and y the extremities of a. Choose xn -*x and yn-*y with xn,yne ST.
Call an c 5" the arc between xn and yn. We have a nanc 9~ and l(a n an)-»l(a)
by 1.2. The sublemma follows easily. •

Proof of 1.1. Since the foliation & is minimal and any non trivial arc in ST contains
the image under the map M -> ST of a non trivial arc transverse to 2F, we obtain that
any non trivial arc of 2T contains a point of Tf By 1.2, the same is true for any non
trivial arc in 5". Lemma 1.1 follows from this last fact. •

2. Embedding a pseudo-Anosov map in a hyperbolic dynamical system
Let / : M-> M be a pseudo-Anosov map. Let A > 1 be its dilatation coefficient and
let &s and 9U be its stable and unstable foliations. Call (2T",du) and {STs,ds) the
trees M / # s and M/&" with their respective metrics. Fix a lift / of / to M. This /
induces actions F" and Fs on the trees ST" and STS which satisfy:

Va, a'e ST", du(F"(a), Fu(a')) = \du(a, a')

Vfe, b'e ?TS, ds(Fs(b), Fs(b')) = \-1ds(b, b').

This implies that these actions extend to the completions STU and §~s and that these
extensions verify the same equalities.

If we look at the product action F = F* xp" on Z = &s x &" with the product
metric d = ds + d" we obtain what we can call a metrically split hyperbolic homeo-
morphism - generalizing to arbitrary metric spaces [F, Definition on p. 67].

There is an inclusion M ^ Z, which is obtained by sending a point in M to the
pair of leaves - one from §>s and the other from SFU - that contain it. It is well
known that the metric d induces on M the usual topology.

The action of F= TT\{M) on M induces isometries on Z in a natural way. The
inclusion M •-* Z is equivariant with respect to these actions of F.

If we write fy = /#(y) / for y e T, we also have Fy =/#('y)F.
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LEMMA 2.1. There exists e > 0 such that:

Vyer\{Id}, VzeZ, d(yz, z)>e.

Proof. If z = (a", a s ) e # " x # s then yz = (yau, yas). This implies:

It is well known that there exists e > 0 such that:

Vyer\{ld},i(y,&") + i(y,&s)>e. •

COROLLARY 2.2. 77ie action of T on Z is properly discontinuous.

If we call Z = Z/T, we obtain a metric space since d is F equivariant. The map
Z-*Z appears as the universal cover of Z since Z is contractible and locally
contractible. The inclusion M <-+ Z gives an inclusion M •-* Z which is an
isomorphism on the fundamental group. The map F gives a map F:Z-*Z which
is a hyperbolic homeomorphism whose universal cover is metrically split. The images
of the foliations {#5 x b\b e #"} and {a x #" | a E # S } under the map Z^Z give
the stable and unstable foliations of F. The restriction of F to M is /

LEMMA 2.3. In the situation described above, two continuous maps g!, g2: X -» M are
homotopic as maps with values in M if and only if they are homotopic as maps with
values in Z.

Proof. Since the genus of the surface M is s i , we can endow M with a Riemannian
metric such that any pair of points in the universal cover M can be connected by
a unique geodesic. Given any path a c Z connecting the two points x, y e M, a lift
a to Z connects two points x,yeM, call a' the image in M of the unique geodesic
connecting x, y in M. The map ai-»a' is well denned and continuous in the compact
open topology. The lemma follows routinely from this fact. •

LEMMA 2.4. IfxeM, then Z\(Ws(x, F)v W(x, F)) is totally disconnected.

Proof. Choose a point (f,f')eZ above x We have f&ST\ f'&STu. It follows
from 1.1 that ( # s \ r / ) x (#" \ r / ' ) is totally disconnected. But this product is
precisely the inverse image of Z\( Ws(x, F )u Wu(x, F)) under the covering map
Z-*Z. •

PROPOSITION 2.5. IfX is a closed connected non empty subset ofZ which is F invariant
then either it is reduced to a point or it contains M.

Proof. Suppose that X is not reduced to a point. Since the periodic points of/= F\ M
are dense in M and X is closed, it suffices to show that X contains these periodic
points. Fix such a periodic point p. Since X is closed and invariant under F, it
suffices to show that either Ws(p,F) or W(p,F) intersects X. But this follows
clearly from 2.4, since X is connected and not reduced to a point. •

The next theorem is a generalization of Theorem 1.
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THEOREM 2.6. Suppose that we have a diagram:

N —'—+ N

commutative up to homotopy, where g is a homeomorphism of the compact connected
space N. Then there exists a continuous map @:N^> Z, homotopic to a, and such that
the diagram:

commutes. Moreover, if a is not homotopic to a constant, then the image fi{N) contains
M. It follows that Y = fi~l{M) is invariant under g and that /3| Y is a continuous
surjection onto M, which is a semi-conjugacy between g | Yandf. Moreover, if a (Y)ci M
then a \ Y and /31 Y are homotopic as maps with values in M.

Proof. Since Z has a universal cover on which F has a hyperbolic metrically split
lift with a complete metric. It is easy to see that the machinery developed by J.
Franks in [F, § 4] can be applied to give /3: N -» Z, homotopic to a which gives a
semi-conjugacy:

N — — • TV

,1 U
Z > Z.

If a is not homotopic to a constant, by 2.3, the image P(N) is a compact connected
F invariant subset of Z which is not reduced to a point. By 2.5, we have M <= /3(N).
The last assertion follows from 2.3. •

3. Pseudo-Anosov diffeomorphisms with the same dilatation coefficient
The following lemma is certainly well known.

LEMMA 3.1. Let g:N-+ N be a pseudo-Anosov diffeomorphism on a closed connected
surface, with dilatation coefficient A > 1. Suppose that Y<= N is a compact g-invariant
subset, if the topological entropy of g | Y is log A, then Y= N.

Proof. From [FLP, Expose 10 § IV and § VI], there exists an irreducible subshift of
finite type (SA, o-A), whose topological entropy is log A, and a surjective semi-
conjugacy 0:1A-*N between o-A and g. The closed subset 0~x(Y) is ovinvariant
and the topological entropy of aA restricted to that subset is log A, it follows
from [CP, Theorem 3.3] that d~\Y) = 1A. The surjectivity of 6 implies that
Y=N. •
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Let f:M->M and g:N-* N be pseudo-Anosov maps, with the same dilatation
coefficient A on the closed connected surfaces M and N. Suppose that a^: TT^TV)-*

TTI(M) is a non constant algebraic homomorphism such that the following diagram
commutes:

where /,. and g* respectively represent / and g on the fundamental group.
The first remark is that there exists a map a:N-*M, which can be represented

by a* on TTX and such that the diagram:

N —*—* N

M > M

commutes up to homotopy. These are standard facts from algebraic topology. By
Theorem 2.6, there exists Y <= N a g-invariant subset and a surjective semi-conjugacy
a: Y-*M, between g\ Y and /, with a homotopic to d\Y. Since the topological
entropy of both / and g is log A, the topological entropy of g | Y is also log A. By
3.1, we have Y= N and, in fact, the map a is a surjective semi-conjugacy between
g and / which is homotopic to a. The following lemma finishes the proof of
Theorem 2.

LEMMA 3.2. Any non constant semi-conjugacy between two pseudo-Anosov maps, with
the same dilatation coefficient on closed connected surfaces is a ramified cover..

Proof. Let us denote by tp: N -> M a non constant semi-conjugacy between the two
pseudo-Anosov diffeomorphisms g: N-* N and/ : M-* M with the same dilatation
coefficient A. We denote by (^P, fis), (&",fiu) the invariant stable and unstable
measured foliations of/ and by (^s, vs), (8", v") those of g. Since <p is a semi-
conjugacy it takes a leaf of & (resp. <8") to a leaf of &s (resp. &").

What we mean by a segment contained in a 'S" leaf is a subset of a <S" leaf which
is homeomorphic to [0,1] and if it contains a singularity then it must be entirely
contained in the union of the singularity and of two separatrices adjacent to the
same sector. Remark that the holonomy along W is always defined on one side of
such a segment. If a is a segment in a W leaf, we denote by vs(a) its v* measure
and by jls{a) the measure of the 2FU segment which has the same extremities as
<p(a). It is clear that jls is continuous on its domain of definition endowed with
the compact open topology. Since g and / have the same dilatation coefficient A,
we have:

Va«u-segmentMs(/(a)) = A/2s(a). (1)

If y is a segment of a &" leaf which is the union of the two subsegments a and f3
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then we have:

p). (2)
If we move a segment in a "S" leaf by holonomy along & leaves to another segment
in a $" leaf, the two segments will have the same value under fls.

Our goal is to show that there exists p > 0 such that for any segment a in a ^"
leaf /Zs(a) = pvs(a). We will use the fact that g has a Markov partition 0? =
{/?,,...,/?„} - see [FLP, Expose 10 § IV, §V and § VI] for the definition and
properties of Markov partitions.

Denote by S"<= Rt any segment in a 'S" leaf which goes across /?,. The values
a, = vs(S") and bi = fis(S") do not depend on the choice of S" because any two
such choices differ by holonomy along W leaves. Call xtj the number of times
g~l(Rj) crosses the interior of Rt. This gives a positive matrix X = (x , } ) l s y s B . From
[FLP, Expose 10 Lemma 1 p. 205], the matrix X has power which is strictly positive.
Moreover, if X'= (x\J))1^u^n, then {x\P)lsiJsn is the number of times that f~'(Rj)
crosses Rt. It follows from this remark and (2) above that, if we define A (resp. B)
as the vector with components ait...,an (resp. b , , . . . , fcn), then we have:

V/>1,A'A = X'A and x'B^X'B. (3)

Call a,,..., dn the components of the eigenvector with eigenvalue A of the transpose
of X normalized by the relation £"=1 a^ = 1. From Perron-Frobenius theory, it is
well known that a, > 0 and l im/^ A ~'X'B = pA, with p = £"=, a,fe,. It follows from
(3) that B < pA. If one of the components of the last inequality was strict multiplying
the /-component by the strictly positive a, and summing would give p =X"=1 a A <
p Y.1=\ Q<ai = P which is impossible. So we have:

V» = l , . . . , « , bl = Pal. (4)

Suppose now that a is a segment in a $" leaf. For each j — l,...,n and each / > 1,
call a] the number of ^" segments intersecting a which are contained in /"'(/?,)
and go across it. Using (1) through (4), we obtain:

This shows the inequality (is(a)< pv"{a). Note now that p cannot be zero, because
that would imply that the image of <p(N) would be contained in one leaf of &s and
hence, by the g invariance, it would be reduced to one point. Suppose that some
segment /3 in a ^" leaf verifies fis(P)<pvs(P). Choose a point x in the interior of
/? and call *«, an accumulation point of the sequence g~'{x), />0. It is clear that
the unstable leaf through xx contains arbitrarily small segments a, containing x^,
and such that fis(a)<pvs{a). The density of the stable leaf through x^ and the
invariance by holonomy show that the same strict inequality is true for any segment
in a ^u leaf. This is absurd, since we have equality for any segment in a c@u leaf
contained in a R, and going across it.

By rescaling vs, we can assume that p = 1. This allows us to interpret what we
obtained in the following way: the map <p is an isometry of any non singular leaf
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of $" endowed with the metric denned by v* onto the corresponding leaf of &>u

endowed with the metric denned by /**. Of course, the same result can be obtained
with stable foliations. It is now easy to finish the proof of the lemma. •
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