ON THE SIMPLE GROUP OF J. TITS

BY
DAVID PARROTT ${ }^{1}$)

In the series of simple groups ${ }^{2} F_{4}(q), q=2^{2 m+1}$, discovered by Ree, Tits [4] showed that the group ${ }^{2} F_{4}(2)$ was not simple but contained a simple subgroup \mathscr{T} of index 2 . In this note we extend the characterization of \mathscr{T} obtained by the author in [3]. Namely, we prove the following result:

Theorem. Let G be a finite group which contains an involution z such that $H=$ $C_{G}(z)$ has the following properties:
(i) H is a $\{2,5\}$-group with $O_{5}(H)=1$
(ii) $\mathrm{J}=\mathrm{O}_{2}(H)$ is of order 2^{9} and class at least 3
(iii) H possesses an element p of order 5 such that $C_{J}(p) \subseteq Z(J)$.

Then $G=H \cdot O(G)$ or $G \cong \mathscr{T}$.
Throughout the rest of this paper, G will denote a finite group satisfying the assumptions of the theorem, and also we assume that $G \neq H \cdot O(G)$. Using Glauberman's theorem [1], it follows that $\langle z\rangle$ is not weakly closed in H with respect to G. The notation used in this paper is standard (see [2] for example).

Lemma 1. We have $\langle p\rangle=P$ is a Sylow 5-group of $H, E=\Phi(J)=Z_{2}(J)$ is elementary abelian of order 32 and $N_{G}(E)=H$. Further, z is conjugate to some involution in $H-E$, and $Z(J)=\langle z\rangle$.

Proof. Since $\langle p\rangle=P$ acts nontrivially on $J / \Phi(J),|J: \Phi(J)| \geq 16$ and so $\left|J^{\prime}\right| \leq$ $|\Phi(J)| \leq 32$. As J has class at least $3, J^{\prime} \supset J^{\prime} \cap Z(J)$, and as $C_{J}(p) \subseteq Z(J)$, $\left|J^{\prime}: Z(J) \cap J^{\prime}\right| \geq 16$. Hence $\left|J: J^{\prime}\right|=\left|J^{\prime}: Z(J) \cap J^{\prime}\right|=16, Z(J) \subset J^{\prime}$ so $Z(J)=\langle z\rangle, J$ has class 3 and $E=J^{\prime}=\Phi(J)=Z_{2}(J)$ has order 32. Now $E^{\prime}=\left(J^{\prime}\right)^{\prime}=1$ so E is elementary abelian as $E=C_{E}(p) \times[p, E]=\langle z\rangle \times[p, E]$. From $O_{5}(H)=1$ and $|J: \Phi(J)|=$ 16 it follows that $\langle p\rangle=P$ is a Sylow 5 -subgroup of H.

It is clear that $C_{H}(E)=E$ so $C_{G}(E)=E$ and $N_{G}(E) / E$ is isomorphic to a subgroup of $G L(5,2)$. As each involution in $E-\langle z\rangle$ has either 10 or 20 conjugates in H, z has either $1,11,21$, or 31 conjugates in $N_{G}(E)$. However, $G L(5,2)$ does not possess subgroups of order $2^{i} \cdot 5 \cdot 11,2^{i} \cdot 3 \cdot 5 \cdot 7$ or $2^{i} \cdot 5 \cdot 31(i=4,5,6)$ so $N_{G}(E)=H$. Suppose z is not conjugate to any involution in $H-E$. Then z is conjugate to an

[^0]involution $t \in E-\langle z\rangle$, and note that $\left\langle t^{x} \mid x \in H\right\rangle=E$; i.e., the weak closure of $\langle t\rangle$ in H is E. However, under the assumption that z is not conjugate to any involution in $H-E, E$ is the weak closure of $\langle z\rangle$ in $C_{G}(t)$, which contradicts $N_{G}(E)=H$, as clearly $C_{G}(t) \supset C_{H}(t)$. The lemma is proved.

From Lemma 1 it follows that H / J is isomorphic to a subgroup of F_{20}, the Frobenius group of order 20. Note also that a Sylow 2-subgroup T of H is a Sylow 2-subgroup of G since $Z(T)=\langle z\rangle$.

Lemma 2. We have that $H \mid J \cong F_{20}$, the Frobenius group of order twenty.

Proof. From Lemma 1 the following properties of J are derived:
(1) If $x \in J-E$ then $\left|C_{E}(x)\right|=16$ (as $L_{3}(J)=\left[J^{\prime}, J\right]=\langle z\rangle$ and $E=J^{\prime}$).
(2) If x is an involution in $J-E$ then $\langle x, E\rangle^{\prime}=\mho^{1}\left(\left\langle x, E_{\rangle}\right)=\langle z\rangle\right.$, so not every coset of E in J contains involutions.
(3) If $J \supset J_{1} \supset J_{2} \supset J_{3} \supset E$ is any (maximal) chain of subgroups from J to E then $J_{i}^{\prime}, Z\left(J_{i}\right) \subseteq E(i=1,2,3),\left|Z\left(J_{1}\right)\right|=4,\left|Z\left(J_{2}\right)\right|=8$ and $\left|Z\left(J_{3}\right)\right|=16$, and $\left|J_{1}^{\prime}\right| \geq 8$. (This last fact may be proved by noting that we may choose $a_{i} \in J-E, i=1, \ldots, 4$, so that $J_{1}=\left\langle E, a_{1}, a_{2}, a_{3}\right\rangle, a_{4}=a_{1}^{p}$ and $J=\left\langle a_{i} \mid i=1, \ldots, 4\right\rangle$. Also $\left\{z,\left[a_{i}, a_{j}\right] \mid\right.$ for suitable $i, j \leq 4\}$ is a basis for $E=J^{\prime}$. If $\left|J_{1}^{\prime}\right| \leq 4$ then $\left|C_{J_{1}}\left(a_{i}\right)\right| \geq 2^{7}, i=1,2,3$ whence $\left|C_{J}\left(a_{4}\right)\right| \geq 2^{7}$. However if $J_{2}^{\prime}=\langle z, t\rangle$ (of order four), it follows that $z, t,\left[a_{1}, a_{4}\right]$, $\left[a_{2}, a_{4}\right],\left[a_{3}, a_{4}\right]$ are not linearly independent and so $J^{\prime} \subset E$, a contradiction.)
(4) For $x \in J-E, 2^{5} \leq\left|C_{J}(x)\right| \leq 2^{6}$. (The last inequality follows from the fact that if $\left|C_{J}(x)\right|=2^{7}, C_{J}(x) \cdot E$ is maximal in J and $\left(C_{J}(x) \cdot E\right)^{\prime}$ has order at most four; while if $\left|C_{J}(x)\right|=2^{8}, C_{J}(x) \supseteq E=\Phi(J)$ which is impossible.)
(5) If T is a Sylow 2-subgroup of H and $M \mid E=Z(T \mid E)$ then any coset $x E$ of E in H is conjugate to a coset of E in M, when $|T| J \mid<4$.

The proof of the lemma is by way of contradiction, so we suppose H / J is isomorphic to a proper subgroup of F_{20}. The proof is divided into 7 steps.
(I) These are involutions in $T-J$, hence $H \mid J \cong D_{10}$, the dihedral group of order ten.

Recall that by Lemma $1, z$ is conjugate to some involution in $H-E$. We suppose that for a Sylow-2-subgroup T of $H, \Omega_{1}(T)=J$ so that $z_{\mathrm{G}} a$ for some involution $a \in J-E$. By (5), we may suppose $a E \subseteq Z(T \mid E)$ so that $\langle a, E\rangle<T$. Put $F=$ $\langle a\rangle \times C_{E}(a)$ so $F \triangleleft T$ as $\langle a, E\rangle$ contains precisely two elementary subgroups of order 32, namely E and F.

By assumption, $z \underset{\mathrm{G}}{\sim} a$ so $C_{T}(a)=C_{H}(a)$ is a proper subgroup of some Sylow 2subgroup of $C_{G}(a)$ whence $N_{G}\left(C_{T}(a)\right) \supset N_{T}\left(C_{T}(a)\right)$. It follows that $\langle z\rangle$ is not a characteristic subgroup of $C_{T}(a)$. If $\Omega_{1}\left(C_{T}(a)\right) \supset F$ then $\Omega_{1}\left(C_{T}(a)\right)=C_{J}(a)$ by (4) and our assumption; however in this case $\langle z\rangle=C_{J}(a)^{\prime}$ so $\langle z\rangle$ char $C_{T}(a)$. Thus $\Omega_{1}\left(C_{T}(a)\right)=F$ so $N_{G}(F) \supset N_{H}(F)=T$, as $F \triangleleft N_{G}\left(C_{T}(a)\right)$. As $C_{G}(F)=F, N_{G}(F) / F$ is isomorphic to a subgroup of $G L(5,2)$. The structure of $G L(5,2)$ yields that
$\left|T: O_{2}\left(N_{G}(F)\right)\right| \leq 2$, so if $K=O_{2}\left(N_{G}(F)\right), N_{G}(F) \mid K \cong S_{3}$ (the symmetric group on three letters) as $z \in Z(K)$ is of order at most four if $|T: K| \leq 2$. Thus in this case $Z(K)$ is of order four so $|J: K \cap J|=2$.

Now $E \subseteq K \cap J$ and as $E \nless \mid N_{G}(F), W=\Omega_{1}(K) \supseteq\left\langle F, E^{Q}\right\rangle$, where Q is a Sylow 3-subgroup of $N_{G}(F)$, is of order $\geq 2^{2}|F|$. As $\Omega_{1}(K) \subseteq J \cap K$, either $W=J \cap K$ or $|W: F|=4$. In the first case $\left|(J \cap K)^{\prime}\right| \geq 8$ by (3) so that $L_{3}(W)=\langle z\rangle$. In the last case, each coset of E in W contains involutions so $\mho^{1}(W)=\langle z\rangle$ by (2). Thus in both cases $\langle z\rangle \triangleleft N_{G}(F)$ so $N_{G}(F) \subseteq H$, a contradiction.
(II) These are involution in $J-E$.

By (I) there are involutions in $T-J$. Suzuki's lemma ([2, p. 328, Example 2]) yields that any involution in $H-J$ inverts an element of order 5 in H. Thus by Sylow's theorem there is an involution j in $N_{H}(P)$ with $j p j=p^{-1}$. Therefore, a Sylow 2-subgroup $\langle j, z\rangle$ of $N_{H}(P)$ is elementary abelian of order four, and any involution in $H-J$ is conjugate in H to either j or $j z$ (or perhaps to both).

Since j inverts $P,\left|C_{E}(j)\right|=8$ and $Z(T \mid E)=(T \mid E)^{\prime}=\Phi(T \mid E)=M \mid E$ is elementary of order four. Further, precisely four cosets of E in $T-J$ contain involutions so we have two possibilities: either ${\underset{\sim}{H}}^{\sim} j z$ and $\left|C_{H}(j)\right|=2^{5}$ or $j_{H}^{\sim} j z$ and $\left|C_{H}(j)\right|=2^{6}$. Finally, if $C_{E}(j)=\langle z, t, v\rangle$ then $C_{T}(t)$ and $C_{T}(v)$ are maximal subgroups of T so that $C_{T}(\langle v, t\rangle) / E \supseteq \Phi(T \mid E)$ whence $C_{J}(\langle t, v\rangle)=M$; i.e. $Z(M)=C_{E}(j)$.

Suppose there are no involutions in $J-E$. Then E is the only elementary subgroup of order 32 in T whence z is not conjugate to any involution in $E-\langle z\rangle$ (using the same argument as in Lemma 1). We may suppose therefore, that $z_{\mathbb{G}} j$ so that $C_{T}(j)$ is a proper subgroup of $C_{G}(j)$. It follows that $W=\Omega_{1}\left(C_{T}(j)\right)=$ $\langle j, Z(M)\rangle$ char $C_{T}(j)$ so $N_{G}(W) \supset N_{T}(W)=\langle M, j\rangle$. If j has 8 conjugates in $N_{T}(W)$ then z has 9 conjugates in $N_{G}(W)$ (as z is not conjugate to any element in $E-\langle z\rangle$); but now $\{Z(M)-\langle z\rangle\} \triangleleft N_{G}(W)$ so $Z(M) \triangleleft N_{G}(W)$, a contradiction. Therefore, we may assume j has only four conjugates in $N_{T}(W)$ and z has 5 conjugates in $N_{G}(W)$. It follows that $C_{T}(W)$ covers M / E and $N_{G}(W) / C_{G}(W)$ has order 20 (and of course is isomorphic to a subgroup of $A_{8} \cong G L(4,2)$). However $E \cdot C_{G}(W) / C_{G}(W)$ is a Sylow 2-subgroup of $N_{G}(W) / C_{G}(W)$ which contradicts the structure of A_{8}.
(III) If m is an involution in $M-E$ and $F=\langle m\rangle \times C_{E}(m)$, then $N_{G}(F)=T$.

We argue by way of contradiction, noting that T is a Sylow 2-subgroup of $N_{G}(F)$ and $C_{G}(F)=F$. Under the assumption $N_{G}(F) \supset T$, the structure of $G L(5,2)$ implies that $\left|O_{2}\left(N_{G}(F)\right)\right|=2^{9}$ (see [3, Lemma 6] for a similar argument using the structure of $G L(5,2)$). Put $K=O_{2}\left(N_{G}(F)\right)$, and as $z \in Z(K)$ and $Z(K)$ is of order at most four, $N_{G}(F) \mid K \cong S_{3}$ and $Z(K)=\langle z, v\rangle$ for some involution $v \in Z(M)-\langle z\rangle$. If $Z(M) \triangleleft N_{G}(F)$, then $N_{G}(F) / C_{G}(Z(M))$ is a subgroup of order 12 since $\left|K: C_{K}(Z(M))\right|=2$. However this contradicts the structure of $G L(3,2) \cong P S L(2,7)$ (as the group of order 12 is not 2 -closed), whence $Z(M) \Varangle \mid N_{G}(F)$.

Let d be an involution in $J-K$ (note that $J \subseteq N_{G}(F)$) and let R be a Sylow 3subgroup of $N_{G}(F)$ inverted by d. As $\left|C_{F}(d) \cap E\right|=8$, we have $C_{F}(R) \cap E \neq 1$.

Since $C(R) \cap Z(M)=1$ (otherwise $Z(M) \triangleleft N_{G}(F)$), there is an $e \in C_{F}(R) \cap E$ with $e \notin Z(M)$. Now $C_{K}(e)=\left\langle F, E^{R}\right\rangle$ has order 2^{7} (since $E F \nless \mid N_{G}(F)$) and $C_{K}(e)$ is R-invariant. However, each coset of E in $C_{K}(e)$ contains involutions, which means $\langle z\rangle=\mathrm{J}^{1}\left(C_{K}(e)\right)$ is R-invariant (see [2]). ($\left\langle F, E^{R}\right\rangle$ has $31+3 \cdot 16=79$ involutions; hence as $\left\langle F, E^{R}\right\rangle \subseteq T$ and $\left|\left\langle F, E^{R}\right\rangle: E\right|=4$, each coset of E in $\left\langle F, E^{R}\right\rangle$ must contain involutions.) As $R \nsubseteq H$, we have a contradiction.
(IV) We have z is not conjugate to any involution in $E-\langle z\rangle$ in G.

Suppose z is conjugate to some involution in $E-\langle z\rangle$. Since $Z(M)$ contains a representative of each conjugate class of involutions of E in H, we have $z \underset{G}{ } t$ for some $t \in Z(M)-\langle z\rangle$. Let $C=C_{T}(t)$, so that $Z(C)=\langle t, z\rangle\left\langle T\right.$ and $N_{G}(C) / C \cong S_{3}$. We see that $(C / E)^{\prime}$ has order two (see the remarks at the beginning of (II)) and as $C^{\prime \prime} \subseteq\langle z\rangle, C^{\prime}$ is abelian for $\langle z\rangle \nless \mid N_{G}(C)$. If C^{\prime} is not elementary, $\mho^{1}\left(C^{\prime}\right)=\langle v\rangle$ for some involution $v \in\langle t, z\rangle$ which is impossible. Thus $C^{\prime} \subseteq\langle c\rangle \times C_{E}(c)$ for some involution $c \in C^{\prime}-E$. Therefore $C^{\prime} \subset\langle c\rangle \times C_{E}(c)$ by (III) and so $C^{\prime}=\langle c\rangle \times Z(M)$. (We know $Z(M) \subseteq C^{\prime}$ for $Z(M)=\langle z\rangle \times[j, E], j \in C-J$ (see II) and obviously $z \in C^{\prime}$). If C / C^{\prime} is not elementary abelian then $C^{\prime} \subset \mho^{1}(C) \subseteq\langle c, E\rangle$. This leads to a contradiction as above for $\mho^{1}(C) \triangleleft N_{G}(C)$.

Finally if C / C^{\prime} is elementary (of order 32) then $\left|C_{C / C^{\prime}}(i)\right| \geq 8$ and $\left|\left(T / C^{\prime}\right)^{\prime}\right| \geq 2^{4}$ for any involution $i \in T-C$. This is also a contradiction as it implies $\left|T: T^{\prime}\right| \geq 2^{4}$ while $T^{\prime}=M$. (We know $(T / E)^{\prime}=M$ and $J^{\prime}=E$ so $T^{\prime}=M$.)
(V) For any involution $a \in J-E$, we have $a_{\widetilde{G}} z$.

If we assume $z_{G} a \in J-E$ we may suppose $a \in M-E$ by (5). Since $z \widetilde{G} a$, if $\Omega_{1}\left(C_{T}(a)\right)=Y$ then $N_{G}(Y) \supset N_{T}(Y)$ so $Y \supset F_{1}=\langle a\rangle \times C_{E}(a)$ by (III). If $C_{J}(a)=F_{1}$ then $C_{T}(a)$ covers T / J and $Z\left(C_{T}(a)\right)=\langle Z(M), a\rangle=Z$. However a has 8 conjugates in $N_{T}(Z)$ under this assumption, whence z has 9 conjugates in $N_{G}(Z)$ (using (IV)). This is a contradiction as before as we now have $\{Z(M)-\langle z\rangle\} \triangleleft N_{G}(Z)$ and so $Z(M) \triangleleft N_{G}(Z)$. Further if $Y \subset J$ then $Y^{\prime}=\langle z\rangle$ so $N_{G}(Y) \subseteq H$, which is also impossible. Thus $Y=C_{T}(a)$ has order 2^{7}, so $Z(Y)=\langle z, t, a\rangle$ for some $t \in Z(M)-\langle z\rangle$. Also $\left\langle a_{1}, z\right\rangle \subseteq Z(Y) \cap Y^{\prime}$ for some $a_{1} \in Z(Y)-\langle t, z\rangle$ for otherwise $z \in Z(Y) \cap$ $Y^{\prime} \subseteq E$ which implies z is conjugate to an involution in $E-\langle z\rangle$ against (IV), or $\langle z\rangle \triangleleft N_{G}(Y)$. Thus $\left|Z(Y): Z(Y) \cap Y^{\prime}\right| \leq 2$.

Put $V=Z(Y)$ and note that $N_{G}(V) \supset N_{T}(V)$. Thus z has only 3 conjugates in $N_{G}(V)$ which implies $N_{G}(V) / C_{G}(V) \cong S_{3}$. (As $z \sim t, t z$ by (IV), and $N_{G}(V) \supset N_{T}(V)$, z has 3 or 5 conjugates in $N_{G}(V)$. The latter case yields $\{z t, t\} \triangleleft N_{G}(V)$ and so $\langle z t, t\rangle=\langle z, t\rangle\left\langle N_{G}(V)\right.$, a contradiction.) Note that $C_{G}(V)=C_{T}(a)=Y$.

Clearly $E \subseteq N_{G}(V)$. Take $e \in E-C_{G}(V)$ and, as above, e inverts a Sylow 3subgroup Q of $N_{G}(V)$ by Suzuki's lemma. Now e fixes 8 cosets of V in $C_{G}(V)$ (all of which lie in $J \cap C_{G}(V)$) whence $C(Q) \cap C_{G}(V)$ has order 8. Put $S=V$. $\left(C(Q) \cap C_{G}(V)\right)$ and note that $\left|S \cap F_{1}\right| \geq 16$, whence $\left|S \cap F_{1}\right|=16$ (as $|S|=32$ and S could not be equal to F_{1} (S is Q-invariant) by (III)). It follows that there
exists $f \in\left(F_{1} \cap C(Q)\right)-V$, whence $C(f) \cap C_{G}(V)=S \cdot F_{1}$ is Q-invariant. (Note that S is abelian as $S^{\prime}=\langle z\rangle$.) However $\left|C_{G}(V): S \cdot F_{1}\right|=2 \geq\left|V: V \cap C_{G}(V)^{\prime}\right|$ so Q stabilizes the chain $C_{G}(V) \supset S \cdot F_{1} \supset S \supset V \supset V \cap C_{G}(V)^{\prime}$ which implies Q centralizes $C_{G}(V) / V \cap C_{G}(V)^{\prime}$. Thus Q centralizes $C_{G}(V)=Y$ and hence $Q \subseteq$ $C_{G}(Y) \subseteq H$, clearly a contradiction.
(VI) We have that z is not conjugate to any involution in $T-J$.

As usual the proof is by way of contradiction, so we may suppose $z_{\widetilde{G}} j$. Since $C_{T}(j) \subseteq\langle M, j\rangle$ and $\langle j, Z(M)\rangle \subseteq C_{T}(j)$ we have $\langle j, Z(M)\rangle \subseteq W=Z\left(\Omega_{1}\left(C_{T}(j)\right)\right.$). Note that (IV) and (V) imply that z is not conjugate (in G) to any involution in $J-\langle z\rangle$.

If $W=\langle j, Z(M)\rangle$ then z has 5 conjugates in $N_{G}(W)$ (as $z_{G} j$ and $N_{G}(W) \supset$ $N_{T}(W)$), otherwise z has 9 conjugates in $N_{G}(W)$ which implies $\{Z(M)-\langle z\rangle\} \triangleleft$ $N_{G}(W)$ and therefore $\langle z\rangle \triangleleft N_{G}(W)$. Since $E \cdot C_{G}(W) / C_{G}(W)$ is elementary of order 4 and $\left|N_{G}(W): C_{G}(W)\right| \mid 2^{4} \cdot 5$, it follows from the structure of $G L(4,2) \cong A_{8}$ that $N_{G}(W)$ is 2-closed. However $N_{T}(W)$ is a Sylow 2-subgroup of $N_{G}(W)$ and $z \in$ $Z\left(N_{T}(W)\right) \subseteq E$, clearly a contradiction.
If $|W:\langle j, Z(M)\rangle|=2$ then $\left|T: N_{T}(W)\right|=2$ so that j has 8 or 16 conjugates in $N_{G}(W)$. Thus z has 9 or 17 conjugates in $N_{G}(W)$. Here $|W|=32$ so $N_{G}(W) / C_{G}(W)$ is isomorphic to a subgroup of $G L(5,2)$. We see that $\left|N_{G}(W)\right|=2^{9} \cdot 9$ and $\left|N_{G}(W): C_{G}(W)\right|=2^{i} \cdot 9, i=3$ or 4. If x is an involution in $N_{T}(W)-C_{T}(j) \cdot E$ then $[x, E]=\langle z\rangle$ so $N_{G}(W) / C_{G}(W)$ contains an elementary abelian subgroup of order 8. The structure of $G L(5,2)$ (see $[3, \S 1]$ for example) implies $N_{G}(W)$ is 2-closed. This gives a contradiction as above.

Finally if $W=C_{T}(j)$ (i.e. $\left.\mid W:\langle j, Z(M)|=4\right)$ then each coset of E in M would contain involutions, against (2) and (5). We have completed the proof of (VI).
(VII) The subgroup $\langle z\rangle$ is weakly closed in H (with respect to G).

This follows immediately since (IV), (V), (VI) yield that z is not conjugate to any involution in $T-\langle z\rangle$ in G, whence $\langle z\rangle$ is weakly closed in H by Sylow's theorem.

The proof of Lemma 2 is complete as (VII) and Glauberman's theorem [1] implies that $G=H \cdot O(G)$, contradicting our assumption.

Lemma 3. We have that $G \cong \mathscr{T}$, the simple group of J. Tits.

Proof. From Lemmas 1 and 2, H satisfies the following properties:
(i) $O_{2}(H)=J$ is of order 2^{9} and class 3
(ii) $H / J \cong F_{20}$, the Frobenius group of order 20
(iii) If P is a Sylow 5-subgroup of H, then $C_{H}(P) \subseteq Z(J)$.

Hence the assumptions of the theorem of [3] are satisfied, and this yields immediately that $G \cong \mathscr{T}$.

References

1. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403420.
2. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
3. D. Parrott, A characterization of the Tits' simple group, Canad. J. Math. 24 (1972), 672-685.
4. J. Tits, Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329.

McGill University,
Montreal, Quebec

[^0]: Received by the editors September 2, 1970 and, in revised form, August 17, 1971.
 ${ }^{(1)}$ This research was supported by the National Research Grant of Prof. H. Schwerdtfeger, McGill University.

