ON THE SIMPLE GROUP OF J. TITS

BY DAVID PARROTT(¹)

In the series of simple groups ${}^{2}F_{4}(q)$, $q=2^{2m+1}$, discovered by Ree, Tits [4] showed that the group ${}^{2}F_{4}(2)$ was not simple but contained a simple subgroup \mathcal{T} of index 2. In this note we extend the characterization of \mathcal{T} obtained by the author in [3]. Namely, we prove the following result:

THEOREM. Let G be a finite group which contains an involution z such that $H = C_G(z)$ has the following properties:

(i) *H* is a $\{2, 5\}$ -group with $O_5(H)=1$

(ii) $J=O_2(H)$ is of order 2⁹ and class at least 3

(iii) H possesses an element p of order 5 such that $C_J(p) \subseteq Z(J)$.

Then $G = H \cdot O(G)$ or $G \cong \mathcal{T}$.

Throughout the rest of this paper, G will denote a finite group satisfying the assumptions of the theorem, and also we assume that $G \neq H \cdot O(G)$. Using Glauberman's theorem [1], it follows that $\langle z \rangle$ is not weakly closed in H with respect to G. The notation used in this paper is standard (see [2] for example).

LEMMA 1. We have $\langle p \rangle = P$ is a Sylow 5-group of H, $E = \Phi(J) = Z_2(J)$ is elementary abelian of order 32 and $N_G(E) = H$. Further, z is conjugate to some involution in H - E, and $Z(J) = \langle z \rangle$.

Proof. Since $\langle p \rangle = P$ acts nontrivially on $J/\Phi(J)$, $|J:\Phi(J)| \ge 16$ and so $|J'| \le |\Phi(J)| \le 32$. As J has class at least 3, $J' \supseteq J' \cap Z(J)$, and as $C_J(p) \subseteq Z(J)$, $|J':Z(J) \cap J'| \ge 16$. Hence $|J:J'| = |J':Z(J) \cap J'| = 16$, $Z(J) \subseteq J'$ so $Z(J) = \langle z \rangle$, J has class 3 and $E = J' = \Phi(J) = Z_2(J)$ has order 32. Now E' = (J')' = 1 so E is elementary abelian as $E = C_E(p) \times [p, E] = \langle z \rangle \times [p, E]$. From $O_5(H) = 1$ and $|J:\Phi(J)| = 16$ it follows that $\langle p \rangle = P$ is a Sylow 5-subgroup of H.

It is clear that $C_H(E) = E$ so $C_G(E) = E$ and $N_G(E)/E$ is isomorphic to a subgroup of GL(5, 2). As each involution in $E - \langle z \rangle$ has either 10 or 20 conjugates in H, z has either 1, 11, 21, or 31 conjugates in $N_G(E)$. However, GL(5, 2) does not possess subgroups of order $2^i \cdot 5 \cdot 11$, $2^i \cdot 3 \cdot 5 \cdot 7$ or $2^i \cdot 5 \cdot 31$ (i=4, 5, 6) so $N_G(E) = H$. Suppose z is not conjugate to any involution in H - E. Then z is conjugate to an

Received by the editors September 2, 1970 and, in revised form, August 17, 1971.

⁽¹⁾ This research was supported by the National Research Grant of Prof. H. Schwerdtfeger, McGill University.

DAVID PARROTT

involution $t \in E - \langle z \rangle$, and note that $\langle t^x | x \in H \rangle = E$; i.e., the weak closure of $\langle t \rangle$ in *H* is *E*. However, under the assumption that *z* is not conjugate to any involution in *H*-*E*, *E* is the weak closure of $\langle z \rangle$ in $C_G(t)$, which contradicts $N_G(E) = H$, as clearly $C_G(t) \supset C_H(t)$. The lemma is proved.

From Lemma 1 it follows that H/J is isomorphic to a subgroup of F_{20} , the Frobenius group of order 20. Note also that a Sylow 2-subgroup T of H is a Sylow 2-subgroup of G since $Z(T) = \langle z \rangle$.

LEMMA 2. We have that $H|J \cong F_{20}$, the Frobenius group of order twenty.

Proof. From Lemma 1 the following properties of J are derived:

(1) If $x \in J-E$ then $|C_E(x)|=16$ (as $L_3(J)=[J', J]=\langle z \rangle$ and E=J').

(2) If x is an involution in J-E then $\langle x, E \rangle' = \mho^1(\langle x, E \rangle) = \langle z \rangle$, so not every coset of E in J contains involutions.

(3) If $J \supset J_1 \supset J_2 \supset J_3 \supset E$ is any (maximal) chain of subgroups from J to E then $J'_i, Z(J_i) \subseteq E$ (i=1, 2, 3), $|Z(J_1)| = 4$, $|Z(J_2)| = 8$ and $|Z(J_3)| = 16$, and $|J'_1| \ge 8$. (This last fact may be proved by noting that we may choose $a_i \in J - E$, $i = 1, \ldots, 4$, so that $J_1 = \langle E, a_1, a_2, a_3 \rangle$, $a_4 = a_1^p$ and $J = \langle a_i \mid i = 1, \ldots, 4 \rangle$. Also $\{z, [a_i, a_j] \mid \text{ for}$ suitable $i, j \le 4\}$ is a basis for E = J'. If $|J'_1| \le 4$ then $|C_{J_1}(a_i)| \ge 2^7$, i = 1, 2, 3 whence $|C_J(a_4)| \ge 2^7$. However if $J'_2 = \langle z, t \rangle$ (of order four), it follows that $z, t, [a_1, a_4]$, $[a_2, a_4]$, $[a_3, a_4]$ are not linearly independent and so $J' \subseteq E$, a contradiction.)

(4) For $x \in J-E$, $2^5 \leq |C_J(x)| \leq 2^6$. (The last inequality follows from the fact that if $|C_J(x)| = 2^7$, $C_J(x) \cdot E$ is maximal in J and $(C_J(x) \cdot E)'$ has order at most four; while if $|C_J(x)| = 2^8$, $C_J(x) \supseteq E = \Phi(J)$ which is impossible.)

(5) If T is a Sylow 2-subgroup of H and M/E = Z(T/E) then any coset xE of E in H is conjugate to a coset of E in M, when |T/J| < 4.

The proof of the lemma is by way of contradiction, so we suppose H/J is isomorphic to a proper subgroup of F_{20} . The proof is divided into 7 steps.

(I) These are involutions in T-J, hence $H|J \cong D_{10}$, the dihedral group of order ten.

Recall that by Lemma 1, z is conjugate to some involution in H-E. We suppose that for a Sylow-2-subgroup T of H, $\Omega_1(T)=J$ so that $z \underset{G}{\sim} a$ for some involution $a \in J-E$. By (5), we may suppose $aE \subseteq Z(T/E)$ so that $\langle a, E \rangle < T$. Put $F = \langle a \rangle \times C_E(a)$ so $F \triangleleft T$ as $\langle a, E \rangle$ contains precisely two elementary subgroups of order 32, namely E and F.

By assumption, $z \underset{G}{\sim} a$ so $C_T(a) = C_H(a)$ is a proper subgroup of some Sylow 2subgroup of $C_G(a)$ whence $N_G(C_T(a)) \supset N_T(C_T(a))$. It follows that $\langle z \rangle$ is not a characteristic subgroup of $C_T(a)$. If $\Omega_1(C_T(a)) \supset F$ then $\Omega_1(C_T(a)) = C_J(a)$ by (4) and our assumption; however in this case $\langle z \rangle = C_J(a)'$ so $\langle z \rangle$ char $C_T(a)$. Thus $\Omega_1(C_T(a)) = F$ so $N_G(F) \supset N_H(F) = T$, as $F \triangleleft N_G(C_T(a))$. As $C_G(F) = F$, $N_G(F)/F$ is isomorphic to a subgroup of GL(5, 2). The structure of GL(5, 2) yields that

88

https://doi.org/10.4153/CMB-1973-018-2 Published online by Cambridge University Press

 $|T:O_2(N_G(F))| \le 2$, so if $K=O_2(N_G(F))$, $N_G(F)/K \ge S_3$ (the symmetric group on three letters) as $z \in Z(K)$ is of order at most four if $|T:K| \le 2$. Thus in this case Z(K) is of order four so $|J:K \cap J|=2$.

Now $E \subseteq K \cap J$ and as $E \lt N_G(F)$, $W = \Omega_1(K) \supseteq \langle F, E^Q \rangle$, where Q is a Sylow 3-subgroup of $N_G(F)$, is of order $\ge 2^2 |F|$. As $\Omega_1(K) \subseteq J \cap K$, either $W = J \cap K$ or |W:F| = 4. In the first case $|(J \cap K)'| \ge 8$ by (3) so that $L_3(W) = \langle z \rangle$. In the last case, each coset of E in W contains involutions so $\mathfrak{O}^1(W) = \langle z \rangle$ by (2). Thus in both cases $\langle z \rangle \triangleleft N_G(F)$ so $N_G(F) \subseteq H$, a contradiction.

(II) These are involution in J-E.

By (I) there are involutions in T-J. Suzuki's lemma ([2, p. 328, Example 2]) yields that any involution in H-J inverts an element of order 5 in H. Thus by Sylow's theorem there is an involution j in $N_H(P)$ with $jpj=p^{-1}$. Therefore, a Sylow 2-subgroup $\langle j, z \rangle$ of $N_H(P)$ is elementary abelian of order four, and any involution in H-J is conjugate in H to either j or jz (or perhaps to both).

Since j inverts P, $|C_E(j)|=8$ and $Z(T/E)=(T/E)'=\Phi(T/E)=M/E$ is elementary of order four. Further, precisely four cosets of E in T-J contain involutions so we have two possibilities: either $j_{\widetilde{H}}jz$ and $|C_H(j)|=2^5$ or $j_{\widetilde{H}}jz$ and $|C_H(j)|=2^6$. Finally, if $C_E(j)=\langle z, t, v \rangle$ then $C_T(t)$ and $C_T(v)$ are maximal subgroups of T so that $C_T(\langle v, t \rangle)/E \supseteq \Phi(T/E)$ whence $C_J(\langle t, v \rangle)=M$; i.e. $Z(M)=C_E(j)$.

Suppose there are no involutions in J-E. Then E is the only elementary subgroup of order 32 in T whence z is not conjugate to any involution in $E-\langle z \rangle$ (using the same argument as in Lemma 1). We may suppose therefore, that $z_{\widetilde{G}}j$ so that $C_T(j)$ is a proper subgroup of $C_G(j)$. It follows that $W=\Omega_1(C_T(j))=\langle j, Z(M)\rangle$ char $C_T(j)$ so $N_G(W) \supset N_T(W)=\langle M, j \rangle$. If j has 8 conjugates in $N_T(W)$ then z has 9 conjugates in $N_G(W)$ (as z is not conjugate to any element in $E-\langle z \rangle$); but now $\{Z(M)-\langle z \rangle\} \triangleleft N_G(W)$ so $Z(M) \triangleleft N_G(W)$, a contradiction. Therefore, we may assume j has only four conjugates in $N_T(W)$ and z has 5 conjugates in $N_G(W)$. It follows that $C_T(W)$ covers M/E and $N_G(W)/C_G(W)$ has order 20 (and of course is isomorphic to a subgroup of $A_8 \cong GL(4, 2)$). However $E \cdot C_G(W)/C_G(W)$ is a Sylow 2-subgroup of $N_G(W)/C_G(W)$ which contradicts the structure of A_8 .

(III) If m is an involution in M-E and $F = \langle m \rangle \times C_E(m)$, then $N_G(F) = T$.

We argue by way of contradiction, noting that T is a Sylow 2-subgroup of $N_G(F)$ and $C_G(F)=F$. Under the assumption $N_G(F)\supset T$, the structure of GL(5, 2) implies that $|O_2(N_G(F))|=2^9$ (see [3, Lemma 6] for a similar argument using the structure of GL(5, 2)). Put $K=O_2(N_G(F))$, and as $z \in Z(K)$ and Z(K) is of order at most four, $N_G(F)/K\cong S_3$ and $Z(K)=\langle z, v \rangle$ for some involution $v \in Z(M)-\langle z \rangle$. If $Z(M) \triangleleft N_G(F)$, then $N_G(F)/C_G(Z(M))$ is a subgroup of order 12 since $|K:C_K(Z(M))|=2$. However this contradicts the structure of $GL(3, 2)\cong PSL(2, 7)$ (as the group of order 12 is not 2-closed), whence $Z(M) \triangleleft N_G(F)$.

Let d be an involution in J-K (note that $J \subseteq N_G(F)$) and let R be a Sylow 3subgroup of $N_G(F)$ inverted by d. As $|C_F(d) \cap E| = 8$, we have $C_F(R) \cap E \neq 1$.

1973]

DAVID PARROTT

[March

Since $C(R) \cap Z(M) = 1$ (otherwise $Z(M) \triangleleft N_G(F)$), there is an $e \in C_F(R) \cap E$ with $e \notin Z(M)$. Now $C_K(e) = \langle F, E^R \rangle$ has order 2^7 (since $EF \triangleleft N_G(F)$) and $C_K(e)$ is *R*-invariant. However, each coset of *E* in $C_K(e)$ contains involutions, which means $\langle z \rangle = \mho^1(C_K(e))$ is *R*-invariant (see [2]). ($\langle F, E^R \rangle$ has $31 + 3 \cdot 16 = 79$ involutions; hence as $\langle F, E^R \rangle \subseteq T$ and $|\langle F, E^R \rangle : E| = 4$, each coset of *E* in $\langle F, E^R \rangle$ must contain involutions.) As $R \notin H$, we have a contradiction.

(IV) We have z is not conjugate to any involution in $E - \langle z \rangle$ in G.

Suppose z is conjugate to some involution in $E - \langle z \rangle$. Since Z(M) contains a representative of each conjugate class of involutions of E in H, we have $z_{\overline{G}}t$ for some $t \in Z(M) - \langle z \rangle$. Let $C = C_T(t)$, so that $Z(C) = \langle t, z \rangle \triangleleft T$ and $N_G(C)/C \cong S_3$. We see that (C/E)' has order two (see the remarks at the beginning of (II)) and as $C'' \subseteq \langle z \rangle$, C' is abelian for $\langle z \rangle \triangleleft |N_G(C)|$. If C' is not elementary, $\mho^1(C') = \langle v \rangle$ for some involution $v \in \langle t, z \rangle$ which is impossible. Thus $C' \subseteq \langle c \rangle \times C_E(c)$ for some involution $c \in C' - E$. Therefore $C' \subset \langle c \rangle \times C_E(c)$ by (III) and so $C' = \langle c \rangle \times Z(M)$. (We know $Z(M) \subseteq C'$ for $Z(M) = \langle z \rangle \times [j, E]$, $j \in C - J$ (see II) and obviously $z \in C'$). If C/C' is not elementary abelian then $C' \subset \mho^1(C) \subseteq \langle c, E \rangle$. This leads to a contradiction as above for $\mho^1(C) \triangleleft N_G(C)$.

Finally if C/C' is elementary (of order 32) then $|C_{C/C'}(i)| \ge 8$ and $|(T/C')'| \ge 2^4$ for any involution $i \in T-C$. This is also a contradiction as it implies $|T:T'| \ge 2^4$ while T'=M. (We know (T/E)'=M and J'=E so T'=M.)

(V) For any involution $a \in J-E$, we have $a \underset{\alpha}{\sim} z$.

If we assume $z_{\widetilde{G}}a \in J-E$ we may suppose $a \in M-E$ by (5). Since $z_{\widetilde{G}}a$, if $\Omega_1(C_T(a)) = Y$ then $N_G(Y) \supset N_T(Y)$ so $Y \supset F_1 = \langle a \rangle \times C_E(a)$ by (III). If $C_J(a) = F_1$ then $C_T(a)$ covers T/J and $Z(C_T(a)) = \langle Z(M), a \rangle = Z$. However a has 8 conjugates in $N_T(Z)$ under this assumption, whence z has 9 conjugates in $N_G(Z)$ (using (IV)). This is a contradiction as before as we now have $\{Z(M) - \langle z \rangle\} \triangleleft N_G(Z)$ and so $Z(M) \triangleleft N_G(Z)$. Further if $Y \subseteq J$ then $Y' = \langle z \rangle$ so $N_G(Y) \subseteq H$, which is also impossible. Thus $Y = C_T(a)$ has order 2⁷, so $Z(Y) = \langle z, t, a \rangle$ for some $t \in Z(M) - \langle z \rangle$. Also $\langle a_1, z \rangle \subseteq Z(Y) \cap Y'$ for some $a_1 \in Z(Y) - \langle t, z \rangle$ for otherwise $z \in Z(Y) \cap Y' \subseteq E$ which implies z is conjugate to an involution in $E - \langle z \rangle$ against (IV), or $\langle z \rangle \triangleleft N_G(Y)$. Thus $|Z(Y):Z(Y) \cap Y'| \leq 2$.

Put V=Z(Y) and note that $N_G(V) \supset N_T(V)$. Thus z has only 3 conjugates in $N_G(V)$ which implies $N_G(V)/C_G(V) \cong S_3$. (As $z \sim t$, tz by (IV), and $N_G(V) \supset N_T(V)$, z has 3 or 5 conjugates in $N_G(V)$. The latter case yields $\{zt, t\} \triangleleft N_G(V)$ and so $\langle zt, t \rangle = \langle z, t \rangle \triangleleft N_G(V)$, a contradiction.) Note that $C_G(V) = C_T(a) = Y$.

Clearly $E \subseteq N_G(V)$. Take $e \in E - C_G(V)$ and, as above, e inverts a Sylow 3subgroup Q of $N_G(V)$ by Suzuki's lemma. Now e fixes 8 cosets of V in $C_G(V)$ (all of which lie in $J \cap C_G(V)$) whence $C(Q) \cap C_G(V)$ has order 8. Put $S = V \cdot$ $(C(Q) \cap C_G(V))$ and note that $|S \cap F_1| \ge 16$, whence $|S \cap F_1| = 16$ (as |S| = 32and S could not be equal to F_1 (S is Q-invariant) by (III)). It follows that there exists $f \in (F_1 \cap C(Q)) - V$, whence $C(f) \cap C_G(V) = S \cdot F_1$ is Q-invariant. (Note that S is abelian as $S' = \langle z \rangle$.) However $|C_G(V): S \cdot F_1| = 2 \ge |V:V \cap C_G(V)'|$ so Q stabilizes the chain $C_G(V) \supseteq S \cdot F_1 \supseteq S \supseteq V \supseteq V \cap C_G(V)'$ which implies Q centralizes $C_G(V)/V \cap C_G(V)'$. Thus Q centralizes $C_G(V) = Y$ and hence $Q \subseteq C_G(Y) \subseteq H$, clearly a contradiction.

(VI) We have that z is not conjugate to any involution in T-J.

As usual the proof is by way of contradiction, so we may suppose $z_{\widetilde{G}}j$. Since $C_T(j) \subseteq \langle M, j \rangle$ and $\langle j, Z(M) \rangle \subseteq C_T(j)$ we have $\langle j, Z(M) \rangle \subseteq W = Z(\Omega_1(C_T(j)))$. Note that (IV) and (V) imply that z is not conjugate (in G) to any involution in $J - \langle z \rangle$.

If $W = \langle j, Z(M) \rangle$ then z has 5 conjugates in $N_G(W)$ (as $z_{\widetilde{G}}j$ and $N_G(W) \supset N_T(W)$), otherwise z has 9 conjugates in $N_G(W)$ which implies $\{Z(M) - \langle z \rangle\} \triangleleft N_G(W)$ and therefore $\langle z \rangle \triangleleft N_G(W)$. Since $E \cdot C_G(W)/C_G(W)$ is elementary of order 4 and $|N_G(W): C_G(W)| | 2^4 \cdot 5$, it follows from the structure of $GL(4, 2) \cong A_8$ that $N_G(W)$ is 2-closed. However $N_T(W)$ is a Sylow 2-subgroup of $N_G(W)$ and $z \in Z(N_T(W)) \subseteq E$, clearly a contradiction.

If $|W:\langle j, Z(M)\rangle|=2$ then $|T:N_T(W)|=2$ so that j has 8 or 16 conjugates in $N_G(W)$. Thus z has 9 or 17 conjugates in $N_G(W)$. Here |W|=32 so $N_G(W)/C_G(W)$ is isomorphic to a subgroup of GL(5, 2). We see that $|N_G(W)|=2^9 \cdot 9$ and $|N_G(W):C_G(W)|=2^i \cdot 9, i=3$ or 4. If x is an involution in $N_T(W)-C_T(j) \cdot E$ then $[x, E]=\langle z \rangle$ so $N_G(W)/C_G(W)$ contains an elementary abelian subgroup of order 8. The structure of GL(5, 2) (see [3, §1] for example) implies $N_G(W)$ is 2-closed. This gives a contradiction as above.

Finally if $W = C_T(j)$ (i.e. $|W:\langle j, Z(M) \rangle| = 4$) then each coset of E in M would contain involutions, against (2) and (5). We have completed the proof of (VI).

(VII) The subgroup $\langle z \rangle$ is weakly closed in H (with respect to G).

This follows immediately since (IV), (V), (VI) yield that z is not conjugate to any involution in $T - \langle z \rangle$ in G, whence $\langle z \rangle$ is weakly closed in H by Sylow's theorem.

The proof of Lemma 2 is complete as (VII) and Glauberman's theorem [1] implies that $G = H \cdot O(G)$, contradicting our assumption.

LEMMA 3. We have that $G \cong \mathscr{T}$, the simple group of J. Tits.

Proof. From Lemmas 1 and 2, *H* satisfies the following properties:

(i) $O_2(H) = J$ is of order 2⁹ and class 3

(ii) $H/J \cong F_{20}$, the Frobenius group of order 20

(iii) If P is a Sylow 5-subgroup of H, then $C_H(P) \subseteq Z(J)$.

Hence the assumptions of the theorem of [3] are satisfied, and this yields immediately that $G \cong \mathcal{T}$.

DAVID PARROTT

References

1. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403420.

2. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.

3. D. Parrott, A characterization of the Tits' simple group, Canad. J. Math. 24 (1972), 672-685.

4. J. Tits, Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329.

MCGILL UNIVERSITY, MONTREAL, QUEBEC