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ON THE SIMPLE GROUP OF J. TITS

BY
DAVID PARROTT()

In the series of simple groups 2Fy(q), g=2*"*1, discovered by Ree, Tits [4]
showed that the group ?F,(2) was not simple but contained a simple subgroup J~
of index 2. In this note we extend the characterization of J obtained by the
author in [3]. Namely, we prove the following result:

THEOREM. Let G be a finite group which contains an involution z such that H=
Cg(2) has the following properties:
(i) His a {2, 5}-group with O;(H)=1
(ii) J=0(H) is of order 2° and class at least 3
(iil) H possesses an element p of order 5 such that C;(p) = Z(J).
Then G=H - O(G) or G=T .

Throughout the rest of this paper, G will denote a finite group satisfying the
assumptions of the theorem, and also we assume that G#H - O(G). Using
Glauberman’s theorem [1], it follows that (z) is not weakly closed in H with
respect to G. The notation used in this paper is standard (see [2] for example).

LemMA 1. We have (p)=P is a Sylow 5-group of H, E=®(J)=2Z,(J) is elemen-
tary abelian of order 32 and Ng(E)=H. Further, z is conjugate to some involution
in H—E, and Z(J)=(z).

Proof. Since (p)=P acts nontrivially on J/®(J), |J:®(J)|>16 and so |J'|<
|®()|<32. As J has class at least 3, J'>J' N Z(J), and as C,(p)<Z(J),
[J':Z(J) NJ'|>16. Hence |J:J'|=|J":Z(J) NJ'|=16, ZJ) < J’ so Z()=(z), J
has class 3 and E=J'=®(J)=Z,(J) has order 32. Now E'=(J')'=1 so E is ele-
mentary abelian as E=Cy(p) X [p, E]={z) X [p, E]. From Oz(H)=1 and |J: ®(J)|=
16 it follows that (p)=_P is a Sylow 5-subgroup of H.

It is clear that Cy(E)=E so C(E)=E and Ng(E)/E is isomorphic to a subgroup
of GL(S, 2). As each involution in E—(z) has either 10 or 20 conjugates in H, z has
either 1, 11, 21, or 31 conjugates in Ng(E). However, GL(S, 2) does not possess
subgroups of order 2¢-5-11,2¢-3-5-7 or 2¢-5- 31 (i=4, 5, 6) so Ng(E)=H.
Suppose z is not conjugate to any involution in H—E. Then z is conjugate to an
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involution ¢t € E—(z), and note that (¢* | x € H)=E; i.e., the weak closure of (¢)
in H is E. However, under the assumption that z is not conjugate to any involution
in H—E, E is the weak closure of (z) in Cg(#), which contradicts Ng(E)=H, as
clearly Cy(t) © Cg(t). The lemma is proved.

From Lemma 1 it follows that H/J is isomorphic to a subgroup of F,,, the
Frobenius group of order 20. Note also that a Sylow 2-subgroup T of H is a
Sylow 2-subgroup of G since Z(T)=(z).

LEMMA 2. We have that H|J=2F,, the Frobenius group of order twenty.

Proof. From Lemma 1 the following properties of J are derived:

(1) If x e J—E then |Cg(x)|=16 (as Ly(J)=[J',J]=(z) and E=J").

(2) If x is an involution in J—E then (x, E)'=0((x, E,)=(z), so not every
coset of E in J contains involutions.

(3) If J2J,2J,2J;2F is any (maximal) chain of subgroups from J to E
then J;, Z(J)S E (i=1, 2, 3), |Z(J)|=4, |Z(J,)|=8 and |Z(Js)|=16, and |J;|>8.
(This last fact may be proved by noting that we may choose a; e J—E, i=1, ..., 4,
so that J;=(E, a;, a3, a3), ay=aj and J=(q; | i=1,...,4). Also {z, [a;, a,] | for
suitable 7, j<4} is a basis for E=J". If |J;| <4 then |Cy (@)l =27, i=1, 2, 3 whence
|Cs(a)|>27. However if J,=(z, t) (of order four), it follows that z, ¢, [ay, a,],
[as, a4], [as, a] are not linearly independent and so J'< E, a contradiction.)

(4) For x e J—E, 25<|C;(x)| <25 (The last inequality follows from the fact
that if |C,(x)|=27, C;(x) - E is maximal in J and (C;(x) - E)’ has order at most
four; while if |C;(x)|=28, C;(x) 2 E=®(J) which is impossible.)

(5) If T is a Sylow 2-subgroup of H and M/E=Z(T/E) then any coset xE of E
in H is conjugate to a coset of E in M, when |T]J|<4.

The proof of the lemma is by way of contradiction, so we suppose H/J is iso-
morphic to a proper subgroup of Fy,. The proof is divided into 7 steps.

(1) These are involutions in T—J, hence H|J==D,, the dihedral group of order
ten.

Recall that by Lemma 1, z is conjugate to some involution in H—E. We suppose
that for a Sylow-2-subgroup T  of H, Q,(T)=J so that z>a for some involution
acJ—E. By (5), we may suppose aE < Z(T|E) so that (a, E)<T. Put F=
(@) x Cyla)so F]T as {a, E) contains precisely two elementary subgroups of order
32, namely E and F.

By assumption, 2~ s0 Cr(a)=Cg(a) is a proper subgroup of some Sylow 2-
subgroup of Cq(a) whence Ng(Cr(a)) @ Np(Crp(a)). It follows that (z) is not a
characteristic subgroup of Cy(a). If Q,(Cr(a)) = F then Q,(Cr(a))=C,(a) by
(4) and our assumption; however in this case (z)=C;(a)’ so (z) char Cp(a). Thus
Q,(Cr(@)=F 50 N(F) > Np(F)=T, as FIN(Cy(a)). As Co(F)=F, No(F)|F
is isomorphic to a subgroup of GL(S, 2). The structure of GL(5, 2) yields that

https://doi.org/10.4153/CMB-1973-018-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1973-018-2

1973] ON THE SIMPLE GROUP OF J. TITS 89

|T: 0(No(F))| <2, s0 if K=04(N(F)), No(F)/K=<S, (the symmetric group on
three letters) as z € Z(K) is of order at most four if |7:K|<2. Thus in this case
Z(K) is of order four so [J:K N J[=2.

Now E = K N J and as E<INg(F), W=Q,(K) 2 (F, E?), where Q is a Sylow
3-subgroup of Ng(F), is of order >2%|F|. As Q,(K) € J N K, either W=J N K
or |W:F|=4. In the first case |(J N K)'|>8 by (3) so that Ly(#)=(z). In the last
case, each coset of E in W contains involutions so U(W)=(z) by (2). Thus in
both cases (z) <INg(F) so Ng(F)< H, a contradiction.

(II) These are involution in J—E.

By (I) there are involutions in T—J. Suzuki’s lemma ([2, p. 328, Example 2])
yields that any involution in H—J inverts an element of order 5 in H. Thus
by Sylow’s theorem there is an involution j in Ny(P) with jpj=p~. Therefore,
a Sylow 2-subgroup (j, z) of Ny(P) is elementary abelian of order four, and any
involution in H—J is conjugate in H to either j or jz (or perhaps to both).

Since j inverts P, |Cg(j)|=8 and Z(T|E)=(T|E)'=®(T/E)=M|E is elementary
of order four. Further, precisely four cosets of E in T—J contain involutions so
we have two possibilities: either jfﬁ jz and |Cy(j)|=2°% or j % jz and |Cx(j)l=28
Finally, if Cg(j)=/(z, t, v) then Cp(¢) and Cp(v) are maximal subgroups of T so
that Cp((v, 1))/ E2 ®(T/E) whence C;({t, v))=M; i.e. Z(M)=Cg(}).

Suppose there are no involutions in J—E. Then E is the only elementary sub-
group of order 32 in T whence z is not conjugate to any involution in E—(z)
(using the same argument as in Lemma 1). We may suppose therefore, that z2%yj

so that Cp(j) is a proper subgroup of Cg(j). It follows that W=0Q,(Cr(j))=
(J, Z(M)) char Cp(j) so Ng(W)> Np(W)=(M,j). If j has 8 conjugates in Nn(W)
then z has 9 conjugates in Ng(W) (as z is not conjugate to any element in E—(z));
but now {Z(M)—(z)} INg(W)so Z(M)<|Ngz(W), a contradiction. Therefore, we
may assume j has only four conjugates in Np(W)and z has 5 conjugates in Ng(W).
It follows that C(W) covers M/E and Ng(W)[Cq(W) has order 20 (and of course
is isomorphic to a subgroup of 4;~GL(4,2)). However E- Co(W)/Ce(W) is a
Sylow 2-subgroup of Ng(W)/Cg(W) which contradicts the structure of Ag.

(ID) If m is an involution in M —E and F={(m) X Cg(m), then No(F)=T.

We argue by way of contradiction, noting that T is a Sylow 2-subgroup of
Ng(F)and Cy(F)=F. Under the assumption Ng(F)=T, the structure of GL(S, 2)
implies that |Ox(Ng(F))|=2° (see [3, Lemma 6] for a similar argument using the
structure of GL(5, 2)). Put K=0,(NgF)), and as z € Z(K) and Z(K) is of order
at most four, Ng(F)/K==S; and Z(K)=/(z, v) for some involution v € Z(M)—{(z).
If Z(M)<INg(F), then Ng(F)[Ce(Z(M)) is a subgroup of order 12 since
|K:Cx(Z(M))|=2. However this contradicts the structure of GL(3, 2)~PSL(2, 7)
(as the group of order 12 is not 2-closed), whence Z(M) <| Ng(F).

Let d be an involution in J—K (note that J= Ng(F)) and let R be a Sylow 3-
subgroup of Ng(F) inverted by d. As |Cr(d) N E|=8, we have Cx(R) N E>#1.

https://doi.org/10.4153/CMB-1973-018-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1973-018-2

90 DAVID PARROTT [March

Since C(R) N Z(M)=1 (otherwise Z(M) <] N4(F)), there is an e € Cx(R) N E with
e ¢ Z(M). Now Cx(e)=(F, E®) has order 27 (since EF{|Ng(F)) and Cg(e) is
R-invariant. However, each coset of E in Cx(e) contains involutions, which means
(z)=0YCx(e)) is R-invariant (see [2]). ((F, EF) has 3143 - 16=79 involutions;
hence as (F, E®y= T and |(F, ER>:E|=4, each coset of E in (F, ER) must con-
tain involutions.) As R & H, we have a contradiction.

(IV) We have z is not conjugate to any involution in E—(z) in G.

Suppose z is conjugate to some involution in E—(z). Since Z(M) contains a
representative of each conjugate class of involutions of E in H, we have zt for
some t € Z(M)—(z). Let C=Cy(t), so that Z(C)=(t, z) AT and Ng4(C)/C=S;. We
see that (C/E)" has order two (see the remarks at the beginning of (II)) and as
C"<=(z), C'is abelian for (z) <INg(C). If C’ is not elementary, U(C")=(v) for
some involution v € (¢, z) which is impossible. Thus C'< (c) X Cg(c) for some
involution ¢ € C'—E. Therefore C’'< (c) X Cx(c) by (III) and so C'={(c)xZ(M).
(We know Z(M) = C’ for Z(M)=(z)x [}, E], j€ C—J (see II) and obviously
ze C'). If C/C’' is not elementary abelian then C’' < UOY(C) < (¢, E). This leads
to a contradiction as above for U'(C) <INg4(C).

Finally if C/C’ is elementary (of order 32) then |Cy,(i)|>8 and |[(T/C')'|>2¢
for any involution i € T—C. This is also a contradiction as it implies |7: 7’| >24
while T'=M. (We know (T/E)'=M and J'=E so T'=M.)

(V) For any involution a € J—E, we have agz.

If we assume z—~a €J—E we may suppose a € M—E by (5). Since za, if
Q;(Cr(@))=7Y then Ng(Y)> Nyp(Y) so Y2 Fi=(a)x Cg(a) by (III). If C,(a)=F,
then Cy(a) covers T]J and Z(Crp(a))=(Z(M), a)=Z. However a has 8 conjugates
in Np(Z) under this assumption, whence z has 9 conjugates in Ng(Z) (using (IV)).
This is a contradiction as before as we now have {Z(M)—(z)}<IN4(Z) and so
Z(M)<]Ng(Z). Further if Y<J then Y'=(z) so Ng(Y) < H, which is also im-
possible. Thus Y=Cg(a) has order 27, so Z(Y)=(z, ¢, a) for some ¢t € Z(M)—(z).
Also (ay,z) < Z(Y) N Y’ for some a, € Z(Y)—(t, z) for otherwise z € Z(Y) N
Y’'< E which implies z is conjugate to an involution in E—(z) against (IV), or
{(z)<INg(Y). Thus |Z(Y):Z(Y) N Y'|L2.

Put V=Z(Y) and note that Ng(V)>Np(V). Thus z has only 3 conjugates in
Ng(V) which implies Ng(V)/Cq(V)==Ss. (As z~t, tz by (IV), and Ng(V)>Np(V),
z has 3 or 5 conjugates in Ng(V). The latter case yields {zt, t}<INg(V) and so
(zt, ty={(z, t)<|Ng(V), a contradiction.) Note that Cy(V)=Cr(a)=Y.

Clearly ES Ng(V). Take e € E—Cg(V) and, as above, e inverts a Sylow 3-
subgroup Q of Ng(¥) by Suzuki’s lemma. Now e fixes 8 cosets of ¥ in Cg(V) (all
of which lie in J N Cg(V)) whence C(Q) N Cyx(V) has order 8. Put S=V-
(C(Q) N Cx(V)) and note that |S N F|>16, whence |S N F|=16 (as |S|=32
and S could not be equal to F; (S is Q-invariant) by (ILI)). It follows that there
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exists fe (F; N C(Q))—V, whence C(f) N Ca(V)=S- F, is Q-invariant. (Note
that S is abelian as S'=(z).) However |Cgx(V):S: F|=2>|V:V N Cx(V)'|
so Q stabilizes the chain Cyx(V)>S-F,2S2V>V N Cyx(V) which implies Q
centralizes Cg(V)/V N Cgx(V)'. Thus Q centralizes Cy(V)=Y and hence Q<
Cq(Y) € H, clearly a contradiction.

(VI) We have that z is not conjugate to any involution in T—J.

As usual the proof is by way of contradiction, so we may suppose z75y. Since
Cr()S(M.j) and (j, Z(M)< Cp(j) we have (j, Z(M))S W=Z(Q(Cr(j)).
Note that (IV) and (V) imply that z is not conjugate (in G) to any involution in
J—{(z).

If W=(j, Z(M)) then z has 5 conjugates in Ng(W) (as z:-;j and Ng(W)>
Ny (W)), otherwise z has 9 conjugates in Ng(W) which implies {Z(M)—{(z)}<]
Ng(W) and therefore (z) <I Ng(W). Since E - Co(W)|Cq(W) is elementary of order
4 and |Ng(W):Ca(W)) [ 24. 5, it follows from the structure of GL(4, 2)~~ A, that
Ng(W) is 2-closed. However Np(W) is a Sylow 2-subgroup of Ng(W) and z €
Z(Np(W))<S E, clearly a contradiction.

If |W:(j, Z(M))|=2 then |T:N,(W)|=2 so that j has 8 or 16 conjugates in
Ng(W). Thus z has 9 or 17 conjugates in Ngy(W). Here |W|=32 so Ng(W)[Ce(W)
is isomorphic to a subgroup of GL(5,2). We see that |Ng(W)|=2°-9 and
[Ng(W):Cy(W)|=2¢-9, i=3 or 4. If x is an involution in Np(W)—Cy(j) - E then
[x, E]=(z) so Ng(W)|/Cx(W) contains an elementary abelian subgroup of order 8.
The structure of GL(5, 2) (see [3, §1] for example) implies Ng(W) is 2-closed. This
gives a contradiction as above.

Finally if W=Cr(j) (ie. |W:{j, Z(M):|=4) then each coset of E in M would
contain involutions, against (2) and (5). We have completed the proof of (VI).

(VII) The subgroup (z) is weakly closed in H (with respect to G).

This follows immediately since (IV), (V), (VI) yield that z is not conjugate to
any involution in T—(z) in G, whence (z) is weakly closed in H by Sylow’s theorem.

The proof of Lemma 2 is complete as (VII) and Glauberman’s theorem [1]
implies that G=H + O(G), contradicting our assumption.

LEMMA 3. We have that G==7, the simple group of J. Tits.

Proof. From Lemmas 1 and 2, H satisfies the following properties:
(i) O,(H)=J is of order 2° and class 3
(ii) H|J=¢F,, the Frobenius group of order 20
(iii) If P is a Sylow 5-subgroup of H, then Cy(P)<=Z(J).
Hence the assumptions of the theorem of [3] are satisfied, and this yields
immediately that G~7 .
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