
Canad. Math. Bull. Vol. 16 (1), 1973 

ON THE SIMPLE GROUP OF J. TITS 

BY 

DAVID PARROTTO 

In the series of simple groups 2F^(q), ^=2 2 m + 1 , discovered by Ree, Tits [4] 
showed that the group 2F±(2) was not simple but contained a simple subgroup &* 
of index 2. In this note we extend the characterization of F obtained by the 
author in [3]. Namely, we prove the following result: 

THEOREM. Let G be a finite group which contains an involution z such that H= 
CG(z) has the following properties: 

(i) H is a {2, 5}-group with <95(#)=1 
(ii) Jz=02(H) is of order 29 and class at least 3 

(iii) H possesses an element p of order 5 such that Cj(p) £ Z(J). 
Then G=H- 0(G) or Gg^ST. 

Throughout the rest of this paper, G will denote a finite group satisfying the 
assumptions of the theorem, and also we assume that G^H * 0(G). Using 
Glauberman's theorem [1], it follows that (z) is not weakly closed in H with 
respect to G. The notation used in this paper is standard (see [2] for example). 

LEMMA 1. We have (p)=P is a Sylow 5-group of H, £ ,=0(J)=Z 2(J) is elemen­
tary abelian of order 32 and NG(E)=H. Further, z is conjugate to some involution 
in H—E, andZ(J)=(z). 

Proof. Since (p)=P acts nontrivially on / /0(J ) , | / :0(J ) |>16 and so | / ' | ^ 
|0(J) |<32. As / has class at least 3, / '=>/ ' nZ(J), and as Cj(p)^Z(J), 
\J':Z(J) nf\>\6. Hence \J:J'\ = \J':Z(J) n / ' | = 16, Z(J) <= J' So Z(J)=(z), / 
has class 3 and E=Jf=<S>(J)=Z2(J) has order 32. Now £ ' = ( J ' ) ' = 1 so E is ele­
mentary abelian as E=CE(p) x [p, E]=(z) x [/?, E]. From 0 5 ( # ) = 1 and | / :0 ( J ) | = 
16 it follows that (p)=P is a Sylow 5-subgroup of H. 

It is clear that CH(E)=E so CG(E)=E and N0(E)\E is isomorphic to a subgroup 
of GL(5, 2). As each involution in E—{z) has either 10 or 20 conjugates in H, z has 
either 1, 11, 21, or 31 conjugates in NG(E). However, GX(5, 2) does not possess 
subgroups of order 2* • 5 • 11, 2i • 3 • 5 • 7 or 2* • 5 • 31 (z=4, 5, 6) so NG(E)=H. 
Suppose z is not conjugate to any involution in H—E. Then z is conjugate to an 
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involution t e E—(z), and note that (tx\x e H)=E; i.e., the weak closure of (t) 
in H is E. However, under the assumption that z is not conjugate to any involution 
in H—E, E is the weak closure of (z) in CG(t), which contradicts NG(E)=H, as 
clearly CG(t) ^ CH(t). The lemma is proved. 

From Lemma 1 it follows that HjJ is isomorphic to a subgroup of F20, the 
Frobenius group of order 20. Note also that a Sylow 2-subgroup T of H is a 
Sylow 2-subgroup of G since Z(T)=(z). 

LEMMA 2. We have that / / / / ^ F 2 0 , the Frobenius group of order twenty. 

Proof. From Lemma 1 the following properties of «/are derived: 
(1) If xeJ-E then |C s(x)| = 16 (as L3(J) ==[/',/]== <z> and E=f). 
(2) If x is an involution in J—E then (x, EY—U1^, £})=(z), so not every 

coset of E in J contains involutions. 
(3) If J^J^J^pJ^E is any (maximal) chain of subgroups from J to E 

then/ ; , Z ( J , ) ç=£( /= l ,2 ,3 ) , |Z(/1) |=4, |Z(/2) |=8 and |Z(J3)| = 16, and | / ; | > 8 . 
(This last fact may be proved by noting that we may choose a{ e J—E, / = 1, . . . , 4, 
so that J± = (E, al9 a2, <z3>, a^a® and J=(a{ | / = 1 , . . . , 4). Also {z, [ai9 a5] | for 
suitable /,y<4} is a basis for E=J'. If | / i l<4 then {Cj^a^>27, z = l , 2, 3 whence 
|C t7(a4)|>27. However if / 2 = ( z , t) (of order four), it follows that z, t, [al9 #4], 
[a2, <24], [tf3, tf4] are not linearly independent and so J'^E, a contradiction.) 

(4) For xeJ-E, 2 5 <|C / (x) |<2 6 . (The last inequality follows from the fact 
that if |Cj(x)|=27 , Cj(x) • E is maximal in J and (Cj(x) • E)' has order at most 
four; while if \Cj(x)\=2s, Cj(x) 3 E=<$(J) which is impossible.) 

(5) If T is a Sylow 2-subgroup of H and M\E=Z(T\E) then any coset xE of E 
in i7 is conjugate to a coset of E in Af, when \T\J\<\. 

The proof of the lemma is by way of contradiction, so we suppose HjJ is iso­
morphic to a proper subgroup of F20. The proof is divided into 7 steps. 

(I) These are involutions in T—J, hence HlJ^D1Q, the dihedral group of order 
ten. 

Recall that by Lemma 1, z is conjugate to some involution in H—E. We suppose 
that for a Sylow-2-subgroup T of H, Q1(T)=J so that z ~ # for some involution 

aeJ-E. By (5), we may suppose aE Ç Z(T\E) so that (a,E)<T. Put F= 
(a) x CE(a) so F<] Tas (a, E) contains precisely two elementary subgroups of order 
32, namely E and F. 

By assumption, z^a so CT(d)=CH{a) is a proper subgroup of some Sylow 2-

subgroup of CG(a) whence NG(CT(a)) => NT(CT(a)). It follows that (z) is not a 
characteristic subgroup of CT{a). If £2i(CT(ûr)) => F then û1(C r(û)) = CJ(a) by 
(4) and our assumption; however in this case (z) = Cj(a)' so (z) char CT{a). Thus 
^i(CT(tf))=Fso NG(F) z> NH(F)=T9 as F<A^(CT(a)) . As CG(F)=F, NG(F)jF 
is isomorphic to a subgroup of GX(5, 2). The structure of GL(5, 2) yields that 
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\T:02(NG(F))\<2, so if K=02(NG(F))f NG(F)IK^S3 (the symmetric group on 
three letters) as z eZ(K) is of order at most four if \T:K\<2. Thus in this case 
Z(K) is of order four so \J:K n / | = 2 . 

Now E ç # n / and as E<\NG(F), W^Q^K) 3 (F, £ Q ) , where g is a Sylow 
3-subgroup of NG(F), is of order >22 |F| . As Q^K) ^ J n K, either W=J n X 
or |fF:F|=4. In the first case | ( / n iQ' |>8 by (3) so that L 3 (^)=(z) . In the last 
case, eachcoset of £ in W contains involutions so X31(W)=(z) by (2). Thus in 
both cases (z)<\NG(F) so NG(F)^H, a contradiction. 

(II) These are involution in J—E. 
By (I) there are involutions in T—/. Suzuki's lemma ([2, p. 328, Example 2]) 

yields that any involution in H—J inverts an element of order 5 in H. Thus 
by Sylow's theorem there is an involution j in NH(P) with jpj=p~1» Therefore, 
a Sylow 2-subgroup (y, z) of NH{P) is elementary abelian of order four, and any 
involution in H—J is conjugate in H to either y oryz (or perhaps to both). 

Since y inverts P, \CE(j)\=S and Z ( r / £ ) = ( r / £ ) ' = 0 ( r / £ ) = M / £ is elementary 
of order four. Further, precisely four cosets of E in T—J contain involutions so 
we have two possibilities: either y^yz and |C£r(y)|=26 ory^yz and |Cjgr(y)|=26. 

IT H 

Finally, if CE(j)=(z, f, v) then CT(t) and CT(v) are maximal subgroups of Tso 
that CT((v, t))\E^<b(TlE) whence Cj((t, v))=M; i.e. Z(M)=CE(j). 

Suppose there are no involutions in /—E, Then E is the only elementary sub­
group of order 32 in T whence z is not conjugate to any involution in £—(z) 
(using the same argument as in Lemma 1). We may suppose therefore, that z~j 
so that CT(j) is a proper subgroup of CG(j). It follows that W /=^i(CT(j))= 
(j\Z(M)) char CT(j) so NG(W)^NT(W)=-(MJ). Ifyhas 8 conjugates in NT(W) 
then z has 9 conjugates in NG{W) (as z is not conjugate to any element in E—(z)); 
but now {Z(M)-{z)}<]N0(W) so Z(M)<\NG(W)9 a contradiction. Therefore, we 
may assumey has only four conjugates in NT{W) and z has 5 conjugates in NG(W). 
It follows that CT{W) covers M\E and NG{W)\CG{W) has order 20 (and of course 
is isomorphic to a subgroup of AS^.GL(4, 2)). However E- CG(W)ICG(W) is a 
Sylow 2-subgroup of NG(W)JCG{W) which contradicts the structure of A8. 

(III) If m is an involution in M—E and F=(m) X CE(m), then NG(F)=T. 
We argue by way of contradiction, noting that T is a Sylow 2-subgroup of 

A^(F)and CG(F)=F. Under the assumption NG(F)=>T, the structure of GL(5, 2) 
implies that \02(NG(F))\=29 (see [3, Lemma 6] for a similar argument using the 
structure of GL(5, 2)). Put K=02(NG(F))9 and as zeZ(K) and Z(K) is of order 
at most four, NG{F)lK^S3 and Z(K)=(z, v) for some involution v eZ(M) — (z). 
If Z(M)<N0(F)9 then NG(F)[CG(Z(M)) is a subgroup of order 12 since 
\K:CK(Z(M))\=2. However this contradicts the structure of GL(3, 2)^PSL(2, 7) 
(as the group of order 12 is not 2-closed), whence Z(A/) <| JVG(F). 

Let d be an involution in J—K (note that J^NG(F)) and let R be a Sylow 3-
subgroup of NG(F) inverted by d. As \CF(d) n F | = 8, we have CF(iO n F ^ l . 
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Since C(R) n Z(M)=1 (otherwise Z(M)<]NG(F))9 there is an e e CF(R) n £ with 
e$Z(M). Now CK(e)=(F,ER) has order 27 (since EF<£\NG(F)) and C^(e) is 
2?-invariant. However, each coset of Ein CK(e) contains involutions, which means 
(z)=X31(CK(e)) is ^-invariant (see [2]). «F , ER) has 31+3 • 16=79 involutions; 
hence as (F, ER)<^ T and |<F, £ B ) : £ | = 4 , each coset of E in (F, ER) must con­
tain involutions.) As R $ / / , we have a contradiction. 

(IV) We have z is not conjugate to any involution in E—{z) in G. 
Suppose z is conjugate to some involution in E—(z). Since Z{M) contains a 

representative of each conjugate class of involutions of E in H, we have z ~ / for 

some teZ(M)—(z). Let C = C r ( 0 , so thatZ(C)=(f, z ) < T a n d NG(C)jC^S3. We 
see that (C\E)' has order two (see the remarks at the beginning of (II)) and as 
C 'g ( z ) , C is abelian for <z)<|A^(C). If C is not elementary, U1(C ,)=(^> for 
some involution ve(t,z) which is impossible. Thus C'^(c)xCE(c) for some 
involution c e C'-E. Therefore C ' c ( c > x Q ( c ) by (III) and so C'=(c>xZ(M)-
(We know Z(M) s c" for Z(M)=(z)x [;, £ ] , jeC-J (see II) and obviously 
z e C"). If C /C is not elementary abelian then C" <= U^C) ç <c, £>. This leads 
to a contradiction as above for X51{C)<]NG{C). 

Finally if C\C is elementary (of order 32) then |C c / o - (0l>8 and |(77C")'|>2* 
for any involution / e T— C. This is also a contradiction as it implies \T: J " |>2 4 

while r '=Af. (We know {TjE)'^M and / ' = £ so r = A f . ) 
(V) For a/y; involution a eJ—E, we have a^z. 

If we assume z~a e J—E we may suppose a e M—E by (5). Since z~a, if 

Q 1 (C r ( f l ) )=r then NG(Y)=>NT(Y) so y=>F1=<fl>xC2Z.(fl) by (III). If C ^ ) ^ 
then CT(#) covers 7)7 and Z(CT(a)) = (Z(M), a)=Z, However a has 8 conjugates 
in NT(Z) under this assumption, whence z has 9 conjugates in NG(Z) (using (IV)). 
This is a contradiction as before as we now have {Z(M) — {z)}<\NG(Z) and so 
Z(M)<\NG(Z). Further if Y^J then Y' = (z) so A^(7) c # , which is also im­
possible. Thus Y=CT(a) has order 27, so Z(Y)=(z, t, a) for some t eZ(M) — (z). 
Also (ax, z> <^Z(Y) C\ Y' for some ^ eZ(Y)-(t, z) for otherwise z eZ(Y) n 
f ç £ which implies z is conjugate to an involution in E—{z) against (IV), or 
(z)<NG(Y). Thus \Z(Y):Z(Y) n 7 ' |<2 . 

Put F = Z ( 7 ) and note that NG(V)^NT{V). Thus z has only 3 conjugates in 
NG(V) which implies NG(V)lCG(V)ç±Sz. (As z ~ / , te by (IV), and ^ ( ^ ^ ( K ) , 
z has 3 or 5 conjugates in NG(V). The latter case yields {zt, t}<^]NG{V) and so 
(zt, t) = (z, t)<\NG(V), a contradiction.) Note that CG(V)=CT{a)= Y. 

Clearly E^NG(V). Take e e E—CG(V) and, as above, e inverts a Sylow 3-
subgroup Q of NG{V) by Suzuki's lemma. Now e fixes 8 cosets of V in CG(V) (all 
of which lie in J n Co(*0) whence C ( 0 n Q ( K ) has order 8. Put S=V-
(C(Q) n Q(K)) and note that \S n F^lô, whence \S n / i | = 16 (as |5 |=32 
and S could not be equal to Fx (S is g-invariant) by (III)). It follows that there 
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exists/G (Fx n C(Q))-V, whence C(f) n CG(V)=S- F± is g-invariant. (Note 
that S is abelian as S'=(z>.) However \CG(V):S- F1\=2>\V:V n CG(V)'\ 
so g stabilizes the chain CG(V)^S-F^S^V^V n CG(VY which implies g 
centralizes CG(V)\V C\ CG(V)'. Thus g centralizes CG(V)=*Y and hence g ç 
C^( 7) c i / , clearly a contradiction. 

(VI) FPe have that z is not conjugate to any involution in T—J. 
As usual the proof is by way of contradiction, so we may suppose z~y. Since 

CT(j)cz(MJ) and (j\Z(M))^CT(j) we have (j,Z(M))^ W^Z^^C^j))). 
Note that (IV) and (V) imply that z is not conjugate (in G) to any involution in 
/-<z>. 

If W=(j,Z(M)) then z has 5 conjugates in NQ{W) (as z~j and NG(W)=> 

NT(W)), otherwise z has 9 conjugates in NQ{W) which implies (Z(M)—(z)}<\ 
NG(W) and therefore <z>< JVG(»0- S i n c e E ' CG(W)ICG(W) ™ elementary of order 
4 and \NQ{W):CQ{W)\ | 24 • 5, it follows from the structure of 6X(4, 2 ) ^ 4 8 that 
NG{W) is 2-closed. However NT{W) is a Sylow 2-subgroup of NG{W) and z G 
Z(NT(W))^E, clearly a contradiction. 

If |^ :<y,Z(A0) |=2 then \T\NT(W)\=2 so t h a t ; has 8 or 16 conjugates in 
NG(W). Thus z has 9 or 17 conjugates in tfG(»0. Here | R^|=32 so NG(W)jCG(W) 
is isomorphic to a subgroup of GX(5,2). We see that \NG(W)\=29 • 9 and 
M ? W : C G ( 0 9 1 = 2 * • 9, z=3 or 4. If JC is an involution in NT(W)-CT(j) • £ then 
[x, E] = (z) so NG(W)jCG(W) contains an elementary abelian subgroup of order 8. 
The structure of GL(5, 2) (see [3, §1] for example) implies NG(W) is 2-closed. This 
gives a contradiction as above. 

Finally if W=CT(j) (i.e. \W:(j,Z(M))\=4) then each coset of E in M would 
contain involutions, against (2) and (5). We have completed the proof of (VI). 

(VII) The subgroup (z) is weakly closed in H (with respect to G). 
This follows immediately since (IV), (V), (VI) yield that z is not conjugate to 

any involution in T—(z) in G, whence (z) is weakly closed in H by Sylow's theorem. 
The proof of Lemma 2 is complete as (VII) and Glauberman's theorem [1] 

implies that G=H- 0(G), contradicting our assumption. 

LEMMA 3. We have that G^<3^, the simple group of J. Tits. 

Proof. From Lemmas 1 and 2, H satisfies the following properties: 
(i) 02(H)=J is of order 29 and class 3 

(ii) HlJ^F2(h the Frobenius group of order 20 
(iii) If P is a Sylow 5-subgroup of//, then CH(P)^Z(J). 
Hence the assumptions of the theorem of [3] are satisfied, and this yields 

immediately that G^JF, 
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