
J. Aust. Math. Soc. 95 (2013), 68–75
doi:10.1017/S1446788713000153

FELL BUNDLES AND IMPRIMITIVITY THEOREMS:
MANSFIELD’S AND FELL’S THEOREMS

S. KALISZEWSKI, PAUL S. MUHLY, JOHN QUIGG ˛ and DANA P. WILLIAMS

(Received 16 September 2012; accepted 5 March 2013; first published online 7 June 2013)

Communicated by G. Willis

Abstract

In the third and latest paper in this series, we recover the imprimitivity theorems of Mansfield and Fell
using our technique of Fell bundles over groupoids. Also, we apply the Rieffel surjection of the first paper
in the series to relate our version of Mansfield’s theorem to that of an Huef and Raeburn, and to give an
automatic amenability result for certain transformation Fell bundles.
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1. Introduction

This paper follows on from our earlier work [9, 10], and completes our task of
showing that all known imprimitivity theorems involving groups can be unified via
the Yamagami–Muhly–Williams equivalence theorem (to which we will refer as the
YMW theorem) [14, 17], which shows how an equivalence between Fell bundles
gives rise to a Morita equivalence between their C∗-algebras. In [9] we showed
how the YMW theorem can be used to derive Raeburn’s symmetric imprimitivity
theorem (which, as Raeburn points out, quickly implies both the Green–Takesaki
imprimitivity theorem for induced representations of C∗-dynamical systems and
Green’s imprimitivity theorem for induced actions). To this end, we first proved what
we called the symmetric action theorem for commuting free and proper actions by
automorphisms of groups on Fell bundles over groupoids. In [9] we also proved what
we called the one-sided action theorem, a special case of the symmetric action theorem
with one group trivial. We also proved a structure theorem characterizing free and
proper actions on Fell bundles: using a result perhaps due to Palais, such actions all
arise from transformation Fell bundles, which were studied in [8].

In [10] we studied the one-sided action theorem further, deriving a curious
connection with Rieffel’s imprimitivity theorem for generalized fixed-point algebras:
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the imprimitivity bimodule in Rieffel’s theorem is a quotient of the imprimitivity
bimodule in the one-sided action theorem. Consequently, it is reasonable to regard the
C∗-algebra of an orbit Fell bundle by a free and proper group action as a ‘universal’,
or ‘full’, version of a Rieffel-type generalized fixed-point algebra.

In the current paper we show how the YMW theorem can be used to prove both
Mansfield’s imprimitivity theorem, which is the dual to the Green–Takesaki theorem,
and Fell’s original imprimitivity theorem, which involves the restriction of a Fell
bundle to a subgroup.

In addition, we apply the Rieffel surjection of [10] to relate our version of
Mansfield’s theorem to that of an Huef and Raeburn in [7], and we further give an
automatic amenability result for transformation Fell bundles of the form B ×G/H,
where B→G is a Fell bundle over a group and H is an amenable subgroup of G.

2. Preliminaries

We adopt the conventions of [8, 9]. All our Banach bundles will be upper
semicontinuous and separable, all our spaces and groupoids will be locally compact
Hausdorff and second countable, and our groupoids will all have left Haar systems.
Convenient references for the various types of coactions (reduced, full, normal,
maximal) we discuss are [6] and [8, Introduction].

In order to place our version of Mansfield’s theorem in context, it is perhaps
helpful to include a short history of this imprimitivity theorem. Mansfield’s original
imprimitivity theorem [13, Theorem 27] states that, if δ is a reduced coaction of a
locally compact group G on a C∗-algebra A, and H is a closed amenable normal
subgroup of G, then δ restricts to a reduced coaction δ| of the quotient group G/H
on A, and there is a Morita equivalence

A oδ G oδ̂|,r H ∼
M

A oδ| G/H. (2.1)

Switching from reduced to full coactions, the amenability hypothesis was removed in
[11, Theorem 3.3], where (2.1) was proved under the assumption that the coaction δ is
normal.

On the other hand, if δ is maximal (and H is any closed normal subgroup of G),
[12, Theorem 5.3] gives a version of the Mansfield imprimitivity theorem for the full
crossed product by the dual action:

A oδ G oδ̂| H ∼M
A oδ| G/H. (2.2)

Here the restricted coaction δ| of G/H is also maximal, by [12, Corollary 7.2].
Theorem 3.1 of [4] says that if p : B→G is a Fell bundle over a discrete group G,

and if H is any subgroup of G, then

C∗(B) oδ G oδ̂| H ∼M
C∗(B ×G/H), (2.3)
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where δ is the canonical coaction of G on C∗(B), determined by δ(b) = b ⊗ p(b)
for b ∈ B, and B ×G/H→G ×G/H is the transformation Fell bundle (as in
[8, Section 4]) associated to the action of G on itself by left translation. When the
subgroup H is normal, (2.3) is a special case of (2.2), because by [2, Proposition 4.2]
the coaction δ of G on C∗(B) is maximal, and by [4, Corollary 2.12] we have
C∗(B ×G/H) �C∗(B) oδ| G/H.

Back to reduced coactions, but removing the hypothesis of normality (as well as the
amenability) of H, [3, Theorem 5.1] and [7, Theorem 3.1] give a version of Mansfield’s
imprimitivity theorem for homogeneous spaces:

A oδ G oδ̂|,r H ∼
M

A oδ,r G/H, (2.4)

where now A oδ,r G/H is defined as the closed span of the products jA(a) jG( f ) for
a ∈ A and f ∈C0(G/H), and where the latter is identified with its canonical image in
Cb(G) = M(C0(G)).

It is natural to ask the following question.

Q 2.1. Is there a common generalization of (2.2) and (2.4)?

Such a generalization would be a version of (2.2) for arbitrary closed subgroups
H, and also a version of (2.4) for full crossed products. More precisely, such a result
would (presumably) say that if (A, δ) is a maximal coaction of a locally compact group
G and H is a closed subgroup of G, then the full crossed product A oδ G oδ̂ H is Morita
equivalent to a ‘restricted crossed product’ A oδ| G/H. However, it is not clear how to
get an appropriate analogue of the restricted crossed product A oδ| G/H. Theorem 3.1
below will give a version of such a result in the case where A = C∗(B) for a Fell
bundle B→G. This will not completely answer Question 2.1, because, while it is
true that every maximal coaction is Morita equivalent to one of the form (C∗(B), δ),
the restricted crossed product is usually identified with a subalgebra of the multiplier
algebra M(A oδ G), and there is no mechanism for inducing arbitrary C∗-subalgebras
across imprimitivity bimodules.

3. Mansfield’s imprimitivity theorem

T 3.1. Let B→G be a Fell bundle over a locally compact group, and let H
be a closed subgroup of G. Let δ be the canonical coaction of G on C∗(B), and
let δ̂| be the restriction to H of the dual action of G on C∗(B) oδ G. Further, let
B ×G/H→G ×G/H denote the transformation Fell bundle associated to the action
of G on G/H by left translation. Then there is a Morita equivalence

C∗(B) oδ G oδ̂| H ∼M
C∗(B ×G/H).

P. By translation in the second coordinate, H acts by automorphisms on the right
of the transformation Fell bundle p : B ×G→G ×G. Applying the one-sided action
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theorem [9, Corollary 2.3] gives the Fell-bundle equivalence

(B ×G)/H ∼
M

H n (B ×G). (3.1)

Using the obvious isomorphism

(B ×G)/H � B ×G/H,

apply the YMW theorem [14, Theorem 6.4] to (3.1) to get a Morita equivalence

C∗(B ×G/H) ∼
M

C∗(H n (B ×G)).

Switching the sides and applying the isomorphism C∗(H n (B ×G)) �C∗(B ×G) o H
from [8, Theorem 7.1], where the action of H on C∗(B ×G) is associated to right-
translation in the second coordinate on the Fell bundle B ×G, gives

C∗(B ×G) o H ∼
M

C∗(B ×G/H).

Finally, [8, Theorem 5.1] gives an isomorphism C∗(B ×G) �C∗(B) oδ G, which, by
the proof of [8, Proposition 8.2], carries the action of H on C∗(B ×G) to the (restriction
to H of the) dual action on the crossed product C∗(B) oδ G, and the result follows. �

In Theorem 3.1, the right-hand C∗-algebra in the Morita-equivalent pair is the Fell-
bundle algebra C∗(B ×G/H). However, as we have seen in the introduction, in most
versions of Mansfield imprimitivity this algebra is some sort of crossed product of
C∗(B) by a restriction, δ|, of δ to G/H. In the case of Theorem 3.1, by analogy with
the notation in (2.4), it seems reasonable to regard C∗(B ×G/H) as a ‘full crossed
product’ C∗(B) oδ| G/H by the (heretofore undefined) restricted coaction δ| of the
homogeneous space G/H. On the other hand, when H is normal it seems prudent
to check whether C∗(B ×G/H) is isomorphic to the crossed product C∗(B) oδ| G/H
by the (well-defined) restricted coaction δ| of the quotient group G/H on C∗(B).
Fortunately, this is indeed the case given in the following theorem.

T 3.2. Let B→G be a Fell bundle over a locally compact group, let H be a
closed normal subgroup of G, and let δ be the canonical coaction of G on C∗(B). Then
there is an isomorphism

θ : C∗(B) oδ| G/H→C∗(B ×G/H)

such that

θ( jC∗(B)( f ) jG(g)) = (∆1/2 f ) � g for f ∈ Γc(B), g ∈Cc(G),

where ∆ is the modular function of G and (∆1/2 f ) � g denotes the element of Γc(B ×
G/H) defined by

( f � g)(s, tH) = (∆(s)1/2 f (s)g(tH), tH).
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P. [10, Proposition 2.1] gives us nondegenerate homomorphisms Φ and µ of
C∗(B) and C0(G/H), respectively, into M(C∗(B ×G/H)); we need to know that the
pair (Φ, µ) is covariant. It will then follow from [10, Proposition 2.1] that the integrated
form θ := Φ × µ is surjective, and it will remain to show that θ is injective. Luckily,
the hard work has already been done: the covariance and the injectivity can be proven
via routine adaptations of the proof of [8, Theorem 5.1] (with the proof of covariance
using a suitable routine adaptation of [8, Proposition 3.4]). �

4. Mansfield and the Rieffel surjection

Let B→G be a Fell bundle over a locally compact group, and let H be a closed
subgroup of G. Let X be the C∗(B) oδ G oδ̂| H −C∗(B ×G/H) imprimitivity bimodule
from Theorem 3.1. Then H acts freely and properly on (the right of) the Fell bundle
B ×G→G ×G, and the orbit Fell bundle is isomorphic to B ×G/H→G ×G/H, so
by [10, Theorem 3.1] we have a Rieffel surjection

(Λ, Υ, Φ) : (C∗(B ×G) oα H, X,C∗(B ×G/H))

→ (C∗(B ×G) oα,r H, XR,C
∗(B ×G)α) (4.1)

of imprimitivity bimodules, where C∗(B ×G)α denotes the generalized fixed-point
algebra. We can replace the left-hand coefficient C∗-algebra C∗(B ×G) oα H of X
by either of the isomorphic algebras

C∗(B) oδ G oδ̂| H or C∗((B ×G) o H).

Similarly, for XR we can replace the left-hand coefficient C∗-algebra C∗(B ×G) oα,r H
by either of the isomorphic algebras C∗(B) oδ G oδ̂|,r H or, by [16, Example 11],
C∗r ((B ×G) o H), and the right-hand coefficient algebra C∗(B ×G)α by either of the
isomorphic algebras (C∗(B) oδ G)δ̂| or, by [10, Corollary 3.5], C∗r (B ×G/H).

In particular, we can write the Rieffel surjection (4.1) as

(Λ, Υ, Λ) : (C∗(B ×G) oα H, X,C∗(B ×G/H))

→ (C∗(B ×G) oα,r H, XR,C
∗
r (B ×G/H)). (4.2)

When H = {e}, the following corollary generalizes [4, Remark 2.11] from the discrete
case, and is unsurprising, since for group coactions the regular representation of the
crossed product is faithful. We should also mention that the corollary below follows
from [15, Theorem 1], which is proved by different means, since the transformation
groupoid G ×G/H is amenable in the sense of [1], being groupoid-equivalent to the
amenable group H.

C 4.1. Let B→G be a Fell bundle over a locally compact group, and let
H be a closed subgroup of G. If H is amenable, then the transformation bundle
B ×G/H→G ×G/H is metrically amenable in the sense of [15], that is, the regular
representation

Λ : C∗(B ×G/H)→C∗r (B ×G/H)

is an isomorphism.
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P. This follows from (4.2), because the first regular representation Λ :C∗(B×G)oα
H→C∗(B ×G) oα,r H is an isomorphism. �

R 4.2. In [7, Theorem 3.1], an Huef and Raeburn give a Morita equivalence

C∗(B) oδ G oδ̂|,r H ∼
M

C∗(B) oδ,r G/H (4.3)

with an imprimitivity bimodule D that is a completion of Mansfield’s algebra
D [13]. They define C∗(B) oδ,r G/H as the C∗-subalgebra of C∗(B) oδ G generated by
j∗C(B)(C∗(B)) jG(C0(G/H), and they show that this coincides with Rieffel’s generalized
fixed-point algebra (C∗(B) oδ G)δ̂| associated to the action δ̂| of H. If follows from
[7, Lemma 3.2] (see also [7, Remark 3.4]) that the imprimitivity bimodules XR andD
are isomorphic. Thus, the an Huef–Raeburn Morita equivalence (4.3) is a quotient of
that in Theorem 3.1.

5. Fell’s original imprimitivity theorem

Finally, we derive one more well-known imprimitivity theorem from the YMW
theorem, namely Fell’s original imprimitivity theorem for C∗-algebraic bundles (that
is, Fell bundles) over groups. This one seems not to follow from the symmetric action
theorem.

To apply the YMW theorem [14, Theorem 6.4], we first need a Fell-bundle
equivalence as given in the following theorem.

T 5.1. LetA→G be a Fell bundle over a locally compact group, and let H be
a closed subgroup of G. Let A×G/H→G ×G/H be the transformation Fell bundle
(where G acts on G/H by left translation). LetA|H → H be the restricted Fell bundle.
ThenA gives an (A×G/H) −A|H equivalence in the following way:

(i) A×G/H acts on the left ofA by

(a, p(b)H)b = ab;

(ii) the left inner product is given by

L〈a, b〉 = (ab∗, p(b)H);

(iii) A|H acts on the right ofA by right multiplication;
(iv) the right inner product is given by

〈a, b〉R = a∗b.

P. The computations required to verify the conditions of [14, Definition 6.1] are
routine. �

We recover Fell’s imprimitivity theorem [5, Theorem XI.14.17], which can be
rephrased as follows.
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C 5.2. With the hypotheses of Theorem 5.1, Γc(A) completes to a
C∗(A×G/H) −C∗(A|H) imprimitivity bimodule.

P. This follows immediately from Theorem 5.1 and the YMW theorem. �

R 5.3. The above proof of Fell’s theorem is quite a bit shorter, and we believe
more natural, than Fell and Doran’s. Fell and Doran had to work quite hard, developing
a version of the transformation bundle over G that incorporates the left action of
G on G/H. Our job is much easier because we allow ourselves to consider the
transformation Fell bundleA×G/H over the groupoid G ×G/H; Fell and Doran did
not avail themselves of the technology of groupoids, so all their bundles had to be over
groups.
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