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Abstract Let h(4>) be the topological entropy of a real continuous flow ^ on a
compact metric space X Introducing an equivalent definition for the topological
entropy on an expansive real flow enables us to investigate the topological entropies
of mutually conjugate expansive flows and estimate the periodic orbits of an
expansive flow which has the pseudo-orbit tracing property

Introduction
In this paper we assume that the spaces are compact metric spaces, and (X, <j>)
denotes a continuous real flow [le <f> X x R - > X continuous and <f>(x, t + s) =
4>(<j){x, t), s)] Write <f>, for the homeomorphism of X defined by $,(x) = (/>(x, t)
<{> is called h-expanswe if there is an e > 0 so that the set

(t>Ax) = {yeX,d{<t>sy,<j>sx)<E for all s>0}

has zero topological entropy for each x e X It is obvious that every expansive flow
is /i-expansive [4]

For E, F c X we say that E (t, S)-spans F (with respect to <t>), if for each xe F,
there is an e e E so that d{<f>se, <j>sx) < 5 for all 0< 5< t Let rt(F, 8) = r,(F, 8, <f>)
denote the minimum cardinality of a set which (t, 5)-spans F If F is compact, then
the continuity of <j> guarantees r,(F, 8)<<x> We define

r^F, 8) =hmsup-log rt(F, 8)
f-*oo '

For E, F<= X we say also that £ is a (t, 8)-separate subset of F (with respect to
</>), if for every x, y e E with x ^ y w e have maxO s s s , d(<t>sx, <f>sy) > 8 Let s,(F, 8) =
s,(F, 8, <f>) denote the maximum cardinality of a set which is a (t, 5)-separated subset
of F If F is compact, then Theorem 6 4 in [10] shows that s,(F, 8) <oo We define

and topological entropy by

= hmsup-logi , (F , 8)
f-»ao t

By Lemma 1 in [2] these limits exist and are equal
In fact the topological entropy of a flow 4> equals the topological entropy of the

homeomorphism <j>l, and more generally h((f>t) = |f|/i(</>,) For more details see [2]
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612 R F Thomas

(0 1) Standing hypothesis We shall assume throughout the remainder of the paper
that <f> is a continuous real flow on a compact metric space X without fixed points

Let / be any interval of real numbers containing the origin A reparametnzation
of / is an orientation-preserving homeomorphism (increasing) from / onto its image
fixing the origin Define Rep (/) to be the set of all reparametnzations of /

Given a continuous real flow (X, <j>) and e > 0 For x e X and y > e define

U(t, x, y) = {yeX, d(<f>aMy, <£sx)<y for some aeRep( / ) and all 0 < s < f}

Let

U(t,x,e)= H U(t,x,y)

We will show later that U(t, x,e) is closed in X
For E c X and 5 > 0 we say that E {t, S)-weakly spans X (with respect to </>), if

for each x e X, there exist e e E and a £ Rep [0, t] such that

d((f>a{S)X,(f>se)<S forallO<s<f

Let R,(X, 8) = R,(X, 8, <j>) be the smallest cardinality of any (t, 5)-weakly spanning
set for X Compactness of X guarantees R,{X, 8) <oo Define

R+(X, 8) = hm sup - log R,(X, 8)
r->oo t

(notice that R<t,(X, S) increases as 5 decreases)
For E c X and S > 0 we say that E is a {t, S)-strongly separated set in X if for

every x, y e E, x ̂  y and for every a, j8 e Rep [0, t]

d(<l>a(s)X, <f>sy) > ̂  for some s e [0, t]

or

d(<t>{s(s)y, <t>sx)>8 for some se[0, t]

Let S,(X, 8) = S,(X, 5, cf>) be the largest cardinality of any (t, 5)-strongly separated
subset of X We will show later that S,(X, 8)<<x> Define

5^(X,5) = hmsup-logS,(X,5)
t-*cc *

We now define

H{<j>) = hm R^X, 8) = hm S^X, 8)
50 50
5->0

Later we will show also that these limits exist and are equal Note that H(4>)<h(4>)
We would like to raise the following

Conjecture If (X, <f>) is a continuous real flow (without fixed points), then H(cj>) =

In this paper (§ 2) we will use an adaptation of work by Bowen [4] involving certain
complications to prove this conjecture under certain additional assumptions

A flow (X, <j>) is said to be strongly h-expanswe if there is an e>0 called the
h-expanswe constant, so that for every xeX the set £E(x) = 0 ^ 0 O(t, x, e) has zero
topological entropy (l e h(<f>, £s(x))=0)
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Entropy of expansive flows 613

THEOREM A If<j> is a strongly h-expansive flow on a compact metric space X (without
fixed points), then H{<f>) = h{<j>)

Using this theorem we can investigate the topological entropies of mutually conjugate
expansive flows as Theorem B in § 3

A flow (X, 4>) is said to be expansive if for every e > 0 there exists 5 > 0 with the
property that if d(<j>sx, 4>aMy) < 5 for all s e R = (-oo, oo) and a pair of points x, y e X
and a continuous map a U->U with a(0) = 0, then y = <f>sx, where \s\< e

Lemma 1 in [5] shows that the study of flows with the expansive property can
be reduced to those without fixed points

Let (X, <f>) be a continuous real flow Given 5, a > 0, a (5, a)-chain is a collection
of sequences ({*,},{*,}) so that t,>a and d{<j>tx,, xl+l)<8 for all integer i. The
definition of a (<£, a)-pseudo-orbit is the same as that of a (5, a)-chain [8], [9]

Let ({x,}, {<,}) be a (5, a)-pseudo orbit The following notation will be standard
throughout this paper so = 0, sn=Y."Iot' anc* 5 - n

= Z 7 = - n ' - We always assume
I*-, ( ). = 0 if k <j In particular £ „ ' t, = 0

A (S, a)-pseudo orbit ({xn}, {<„}) is e-traced by an orbit (</>,z)(eR if there exists an
a e Rep (R) such that

d(<f>a(t)Z, <t>,-snxn)< e whenever sn<t<sn+l for n =0 ,1 ,2 ,
and

d(<f>aU)z, 4>t+s_nx-.n) < e whenever - s _ n < < < s_n+1 for n = 1,2,3,

We say that a flow (X, </>) has the pseudo-orbit tracing property (POTP) if for all
£>0 , there exists 5 > 0 such that every (S, l)-pseudo orbit is e-traced by an orbit
o f <j>

Now using Theorem A we can show

THEOREM C / / (X, <j>) is an expansive flow and has the POTP, then

where v(t) is the number of closed orbits in X with period <f

This result is known if <f> is a continuous flow on a compact manifold M which
satisfies Axiom A [3]

1 Preparatory lemmas
Let (X, <{>) be a continuous real flow (no fixed points)

LEMMA 1 1 (cf [5, Lemma 2]) There exists To>0 such that for all A satisfying
0 < A < To there exists y>0 with d(<j>Kx,y)> yprovided thatx,yeXandd(x,y)<y

Now let us introduce our basic lemma

LEMMA 1 2 For all A > 0, there exists e > 0 such that for every x,yeX and for every
[ 7*i, T2] containing the origin and for every a € Rep [ 7\, T2], if d(4>aMx, <f>sy) < e for
a//se[T,, 72], then \a(s)-s\<\for\s\<l m[T,, T2] and \a{s)-s\<\s\\for\s\>l
in[TuT2]

https://doi.org/10.1017/S0143385700004235 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004235


614 R F Thomas

Proof Suppose A > 0 Without loss of generality let A < To (see Lemma 1 1) and
also take 8' small enough that it satisfies Lemma 1 1 with respect to A Let 0< e < 8'
with the property that d{<t>sx, <j>sy)<8' for 0 < s < 2 whenever d(x,y)<e Suppose
for x, y £ X, d(<f>ais)x, fay) < e f o r 0 < s < 2 Then d(<t>aU)-s<j>sx, 4>sy) < e for 0 < x < 2

Thus by the continuity of a and by Lemma 1 1, \a(s) - s\ < A for 0< s < 2 For the
case 2 < j < 4 , let d(<f>a{s)x, <k>>) < e for some a Then letting u = s - 2, we get

d(<l>alu+ux, <t>u<t>xy) = d(<f>aU)x, &_,<£,.>') < e for 0 < u < 2

Let y(w) = a(w + l ) - a ( l ) Then -y is increasing continuous with y(0) = 0 and

d(<t>yiu)<t>au)X,<t>u<t>iy)<e forO<M<2

Thus \y(u)-u\<\ forO<u<2, and so |a(« + l ) - a ( l ) - ( M + l) + l |< A It follows
that |a (s) -s |<2A for 2 < s < 4 Using a similar argument one can show inductively
that for 2 « - 2 < s < 2 n ,

|a(s)-s |<«A forn=2,3,4,

since n / ( 2 n - 2 ) < l for « = 2,3, Thus for all s > l in [T,, T2] we have

|a(s) —s|< ne =~s\ £ sA
s

For negative s we can use a similar process and the proof is finished

LEMMA 13 (l) For all A >0, there exists 5 > 0 such that S(1_A),(X, S)<
R,(X, 8/2) < co

(n) i?,(X,5)<S,(X,5)
(in) For 5,<82, ^ ( X , 82)<Rt(X, S,) awcf S^(X, 52)<S^(X, 5,)

JVoo/ Given A > 0, choose 5 > 0 satisfying Lemma 1 2 with respect to A Let E be
a ((1 - \ ) t , S)-strongly separated set in X with the largest cardinality and let F be
a (t, 8/2)-weakly spanning set of X Define / E -> F by choosing for each x e £
some point /(x) e F and some a e Rep [0, t] such that

d(4>a(s)x,<k/(x))<5/2 for all 0 < s < (

If/(x) =/(x') for x, x'e E, the triangle inequality implies that

d(<t>ais)x,4>y(s)x')i£8

for some a, -yeRep[0, t] and for all 0 < s < f By taking u = y(s), we get

d(<t>ay^u)x,<j>ux')^8 fora l lO<M<(l-A)r ,

and by taking u = a(s), we get

d(0ux,<A>a-.(u)x')s5 fo ra l lOs M <( l -A) r

As £ is a ((1 -\)t,8)- strongly separated set, we clearly have x = x' Thus cardinality
of E is less than or equal to the cardinality of F, and so 5(I_A),(X, 5) < R,(X, 5/2)

Since this lemma is a version of Lemma 1 in [2], the rest follows by a slightly
modified version of the proof of that lemma

This lemma shows these limits

H((j>) = hm R+(x, 8) = hm S^X, 5)
8^0 5-*0

exist and are equal
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PROPOSITION 1 For small e > 0, U(t, x, e) is a closed subset of Xfor every xeX and

Proof Given A > 0 choose y satisfying Lemma 1 2 with respect to A Take any
0 < e < y Now for / > 0 and x e X we want to show U(t, x, e) is a closed subset of
X Let {yn} be any sequence in U(t, x, e) and assume {yn} converges to y in X
Then there exists a sequence {an} of reparametnzations on [0, t] such that

rf(<Aa,,(S)>'n,<M)s>' f o r a l l O < i < r , and e < A < y

Using Lemma 1 2 we know that ( 1 - A ) s < a n ( s ) < ( l + A)S Therefore for any £ > 0 ,
there exists a positive integer M such that

d(0am(s>;>'m,<Aam(S)}')sf fo ra l lO<s<f , and m > M
Hence

«*(*«,„(.)* < k * ) - y + f f o r a11 O s s - ( . y > e > a n d £ > 0

This means that yeU(t,x,e)
For x € X and y > 0, define

W(t, x, y) = {yeX, d(4>aU)y, <t>sx)s y for some a e R e p [ - f , t)

and for all - f < s < t},
and let

W(t,x,e)=n W(t,x,y)

Using a similar argument as above (Proposition 1) one can show thaf W(t, x, e) is
a closed subset of X This means that

rE(x) = n W(t,x,e)
120

is also a closed subset of X
The following lemma is also essentially Theorem 3 of [5]

LEMMA 1 4 (cf [9, Lemma 8]) Let 4> be an expansive flow on X Then for all e > 0,
there exists 8>0 with the property that for all e0 > 0, there exists T > 0 such that for
every x, ye X and for every continuous and increasing real valued function s on a
closed interval [-T, T] with 5(0) = 0 if d(4>sil)x,<j>,y)<8 for all te[-T, T], then
d(<f>rx,y)< e0 for some re [ —e, e]

Using this lemma one can show the following

LEMMA 15 If {X, <$>) is an expansive flow, then there exists A > 0 such that
h{4>, TA(x)) = 0 for every xeX
Proof For e > 0, take S satisfying the above lemma Let A = 5/2 If y e juA(x), then
ye W{t, x, A) for all ( > 0 This means that ye W(t,x, y) for some y, A < y < 5 and
for all r > 0 Given eo=\/n Lemma 14 implies that d{<j>rny,x)<l/n for some
rne[ — e, e] Compactness of [ —e, e] implies that there exists re[ — e, e] such that
4>ry = x This means that FA(x)c: ^ _ [ E ] J ; Therefore h(<j>, TA(x)) = 0

2 Strongly H-expanswe flows
This section is an adaptation of work by Bowen [4] involving certain technical
complications
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LEMMA 2 1 For e>0 , let a = supxeX/i(0, £E(x)), and suppose 8, /3>O are giuen
Then there exist t, T>0, t < T suc/i f/iaf /or euery x e X, ffcere exis/s a set Ex which
(t, S)-spans U(s, x, e) for every s > T and

card Ex< Exp [{a + f3)t]

Proof For y e X, let ty > 0 with the property that for every t > fv there is a set Fv

which (f, 5/2)-spans gE(y) and

- log card Ey < a + /3

Let

7V(>») = {w£X, there exists ze£ v such that d{<j>5x, <f>sz)< 8 for 0< s< f}

Then JV(y) is a neighbourhood of £c{y) and £y is a (f, 5)-spanning set of N(y)
Since 0(20 C (̂', y, e) = ^(y). we may choose a real number Tv such that U(s, y,e)^
N(y) for all s>Tv For y > e we have (~)y>e U(s, y, y) = U(s, y, e) Thus
t/(5, j , 7) <= N(y) for some y > e Let

v(y) = {u € X, d((f>ru, <t>ry)<y-e for O==r<s}

Then V(y) is a neighbourhood of y and [7(s, u, e ) c U(s,y, y ) c N(y) for every
we V(y) Let V(y,), V(y2), , V(yn) cover the compact space X and take 7">
max{TVi, TV2, , TYn, tVl, (v,, , ^ } This finishes the proof of this lemma

LEMMA 2 2 For e > 0, let a = supxex h{4>, r e (x) ) , and suppose 8, j3 > 0 are giuen
77ien t/iere exist t, T>0, / s T such that for every xeX, there exists a set Ex which
(t, S)-spans W(s, x, e) for every s> T and

card £x<Exp[(a + /3)t]

Proof Exactly similar to the proof of Lemma 2 1

LEMMA 2 3 (cf [4, Lemma 2 1] Suppose Ex (tt, S)-spans Fand E, (t,,S)-spans <j>Si ,F
for i = 2 , 3 , , n Then there exists a set Q which {sn,28)-spans F and card Q s

LEMMA 2 4 For a// A > 0, there exists e > 0, swc/i f/iaf i/_y e t/(s, x, e), f/ien rfte
distance between y and U(s — t, <f>,x, e) is between t — \t and t + At for every t< s

Proof Given A >0, choose e satisfying Lemma 1 2 and take ye U(s, x, e) Then
there exists a e Rep [0, s] such that

d(<t>a(u)y, <t>ux) s= y

for 0 < M < s, and y > e Therefore

f o r 0 < M < s Now let w = w-f and y(w) = a(w+ t)-a(t) It is obvious that ye
Rep [0, s — t] and for 0 ̂  w < s — t we have

This means that ^ o ( , , j e t / (s-f , (/>,x, e) Using Lemma 1 2 we know that (1 — A)f <
and this finishes the proof of this lemma
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The above lemma is also true for the case when we have W(s,x,s) and
W(s -1, <t>,x, e) instead of 0{s, x, e) and U(s - 1 , (f>,x, e) respectively

LEMMA 2 5 Given A >0 , there exists e > 0 such that if E, is a (t + kt, 8)-spanning set
of U(s-it, <f),,x, e) for i = l ,2, ,m-\ and Em is any (T, S)-spanning set of
U(s-mt, <i>mlx, e), then there exists a set Q which [m{t-kt) + T, 2S]-spans U(s, x, e)
and

m

card Q < [] c a rd E,
1 = 1

Proof Choose e satisfying Lemma 1 2 with respect to A Lemma 2 4 implies that
the arc <j>[i-\tt+k,]y meets U(s-it,(j>,,x, e) for every point y in U(s-{i-l)t,
<£(,_,),x, e) So the rest of the proof of this lemma is just exactly as the proof of
Lemma 2 1 in [4]

The above lemma is also true when we have W(s — it, <f>ux, e) instead of
U{s — it, 4>,tX, e) for i = 1, 2, , m

PROPOSITION 2 For all A > 0, there exists e > 0 such that if a =

sup {h(cf>, £;e(x)), x > X} and 8, /3 > 0 are given, then there exists T> 0 such that for

every ss: Tandxe X, there exists a set Q which [(s— T ) ( l — A)+ T, 8]-spans U(s, x, e)

and

cardQ<c exp [(a + j8)s(l + A)]

Proof For A > 0, choose e satisfying Lemma 1 2 and t, T satisfying Lemma 2 1 with
respect to 5, /3 Without loss of generality fix T large enough such that for every
s> T, U(s,x, e) is {t + \t, 5/2)-spanned by a set E with

card £

Also without loss of generality assume s = mt+T for some positive integer m It is
obvious that each U{s - it, <f>,,x, e) is (t + kt, 5/2)-spanned by a set, say £,, with

card £ , s e x p [ ( a

for i = 1, 2, , m -1 Let Em be any (T, 5/2)-spanning set of X with minimum
cardinality Then Em is a (T, 8/2)-spanning set of U(s-mt, 4>m,x, e)^X Using
the above lemma there exists a set Q which [mt(l — k)+T, 5]-spans U(s, x, e) and

cardQ<card£ m exp[(a+/3)mt(l + A)]

But mt = s-T, so Q is a set which [ ( s - T)(l - A)+ T, 8]-spans U(s, x, e) and

card Q<ca rd£ m exp[(a + /3)(s- T)(l + A)]
Taking

c = card£m exp [(a + /3)(-T)(l + A)],

finishes the proof of this proposition

PROPOSITION 3 For all A > 0, there exists e > 0 such that if a =
sup {h((j>, FE(x)), x 6 X) and 8, /? > 0 are giuen, f/ien f/tere exists T>0 such that for
every s > Tandx e X, there exists a set Q which [ ( s - T ) ( l - A ) + 7", 5]-spa«i l¥(s, x, e)
and

c a r d Q s c
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Proof Using Lemma 2 2 we can obtain an exactly similar proof of the above
proposition

LEMMA 2 6 For all A > 0, there exists e > 0 such that for large s and x E X

<k+AS(k(*))c <hoa>~s]W(s, <j>sx, e)

Proof For A > 0, choose e satisfying Lemma 1 2 Let z be an element in £f (x) Then
z is an element in U(2s, x, e) for every s > 0 In other words

d(<f>a{r)z, </>rx)<y,

for 0 < r < s and for all y > e and for some a e Rep [0,2s] Now assume u = r - s
and )3(u) = a{u + s)-a(s) Then )3 e Rep [-s, s] and

Thus ^ ( j j z is an element of w(s, <f>sx, y), so 4>a{s)-s<t>sz = $a(s)z is an element of
W(s, </>sx, e) Lemma 1 2 implies that <j>sz is an element of <A[- A 5 A S ]^(^ <i>sx, e) It
follows that

Therefore

LEMMA 2 7 If E (t, 8)-spans W, then there exists 8'>0 (depending only on 8) such
that for every A, S '<A<f, there is a set Q which (t-\, 28)-spans <j>[0MWand

card Q < ( — I card E

Proof Given 8 > 0, choose S'> 0 small enough such that d(<p,x, 4>,y) < 5 for all t e U
whenever x = 4>cy, where |e| < 5' For x e X define a set

where m is the largest integer less than A/8' Take

Then Q is a (f, 5)-spanning set of W and

card Q < I — I card E

In order to prove that Q is a (f — A, 25)-spanning set of </>[O,A] W> let x be any element
in <£[O,A] W If x is an element of W or an element of </>[OA]£> then the rest follows
easily If <t>-,x is an element of W for 0 < r < A, then there exists a point e in E
such that

d(<ps<f>_rx, c/>se)<5 f o r 0 s s < f

Let u = s - r Then

,4>u(f)re)<8 f o r O < « < f - r

Pick a point z in Sx so that
d(4>u<t>re,<t>uz)<8 f o r a l l u e
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Then
d((t>ux, 4>uz)< d(<t>ux, <t>u<f>re) + d(<t>u<t>re, (f>uz)<28

for all 0 < u < t - r and this finishes the proof of this lemma

In order to show that an expansive flow is strongly /i-expansive we need the following
which is a version of corollary 2 3 in [4]

PROPOSITION 4 Every expansive flow (X, (/>) is strongly h-expanswe

Proof For A > 0, choose e > 0 satisfying Lemma 1 2 and let

a = sup {h(<j>, rE(x)),xeX}

Then there exists T>0 satisfying Proposition 3 For s>T, let Ex be an
(5 +As, 5/2)-spanning set of £,(*) For @ > 0, Proposition 3 implies that there is a
set Q which [(s-T)( l - A)+T, S/4]-spans W(s, <psx, e) and

card Q<c exp[(a + /3)s(l + A)]

Using the above lemma, there exists 5'>0 and a set E2 which [ ( s - T ) ( l - A ) + T -
2As, 5/2]-spans (f>l0Ms] W(s, </>sx, e) and

Using Lemma 2 6 we have

<t>s+x^e(x)c 0 [ o 2 A s ] W(s, (f>sx, e)

Therefore the set E2 is a [s-3As + AT, 5/2]-spanning set of <f>s+As^F(x) Lemma 2 3
implies that there exists a set X which [2s(l -A)+ TA, 5]-spans £,(*) and card 2 <
card £, card E2 This implies that

— log card 2. < — log card £, H log card E2

is is 2s
Since (l/2s) log (2Asc/5')^0 as s->oo, then it is obvious that

Hence

for every A, /S > 0 Expansiveness and Lemma 1 5 imply that a = 0 Since (i > 0 is

arbitrarily small, therefore fc(</>, &(*)) = 0 for all x s X This completes the proof

PROPOSITION 5 For all A > 0, there exists e > 0 suc/i that

(l + A) sup h(d>,

Proof For A > 0, choose e > 0 satisfying Lemma 1 2 and let T > 0 satisfy Proposition
2 For s> T, let £ be any (s, e)-weakly spanning set of X For /3, 8>0 and for
every xe E there exists a set £x which [ ( s - T)(l -A)+ T, 5]-spans L/(s, x, e) and

card£x<c exp [(a + /3)s(l + A)],
where

a = sup {/.(<£, &(*)), *eX}
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Since

U{O(s,x,e),xeE} =

take

W = {J{Ex,xeE}

Therefore W [ ( s - T)(l -A)+ T, 5]-spans X and

cardWscardE c exp [(a

Therefore

-log card W<-log card £+ - log c + (a + /3)(l
s s s

As J -» oo we have

(1 -\)h(<f>)< R^x, e) + (a + p)(l + \)

Using Lemma 1 3(m) we have R^{X, e) <//(</>) This implies that

for every /3 > 0 and the proof is completed

Proof of Theorem A If (X, <j>) is a strongly /i-expansive flow, then
supxeXh(<f>, £,(*)) = 0 Proposition 5 implies that (1 -A)/i(<£)< H ( $ ) for every
A > 0 This means that h(cf>)s H($ ) and the proof is finished using the fact that

3 Entropy and conjugacy
In [7] Ohno investigated topological entropies of mutually conjugate flows as
Theorem 1 This theorem is proved in [7] using a measure theoretical point of view
As an application of Theorem A one can introduce a different and easier proof for
the following theorem which is stronger than Theorem 1 in [7], but under an extra
assumption

We recall that the flows (X, $) and (Y, ij/) are conjugate (topological conjugate)
if there is a homeomorphism y from X onto Y mapping orbits of <j> onto orbits of
i/> with preserved orientation

LEMMA 3 1 (cf [8, Lemma 4]) If (X, <j>) and (Y, </<) are conjugate flows with a
conjugate homeomorphism y X -* Y and have no fixed points, then there exists a
unique continuous function a X xM-> X and a unique continuous function /3 YxR->
Y such that

(1) crx(O) = O and ax R -> IR is a strictly increasing homeomorphism for every x in X
(2) ycj>,x = iACTx(I)yx for every xe X, and t eR
(3) <rx(s + t) = (r^x)(s) + (rx(t) for every s , teU and xe X
(4 ) Py{0) = 0 and /3y U -* U is a strictly increasing homeomorphism for every y in Y
(5) p y ( s + t) = P t M ( s ) + p y { t ) for every s , t e U a n d y e Y
( 6 ) Py = o-~1 whenever yx = y

(7) 7~1(</',.y) = 4>/3v«)y~1>' = 4w1(ox for yx = y andteU
cr and p are called the cocycles of 4> and ip with values in U respectively
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LEMMA 3 2 If a is the cocycle of the flow (X, cf>) with values in U, then there exist
m,M>0 such that

mt<ax(t)<Mt for all |f |> 1 and xeX

Proof Continuity of a and compactness of X imply that there exist m', M'> 0 such
that m'<o-x(r)< M' for all I < f s 2 and x e X Since (X,4>) has no fixed points
(standing hypothesis), Property 3 of Lemma 3 1 implies that mt < o-x{t) < Mt for
all t> 1 and xeX, where m = m'/2 and M = M' Similar arguments can be used
for the case when / s - 1

We will call m and M the lower and upper bounds of a respectively

THEOREM B Suppose a flow (X, <£) is topologically conjugate to an expansive flow
(Y, <p) with a conjugate homeomorphism y X -* Y and the cocycle a of the flow {X, cf>)
with values in U Then

where m and M are the lower and upper bounds of a
Proof As expansiveness is a conjugacy invariant [5], clearly (X, <f>) and (Y, ip) are
strongly /i-expansive flows Given e > 0 smaller than the strongly /j-expansive
constant of ip, choose 5 > 0 which is also smaller than the strongly h-expansive
constant of $ and with the property that d(ya, yb) < e whenever d(a, b) < 8 in X
For large t, let £ be a set which is (t, 5)-weakly spanning set of X with minimum
cardinality Thus for every y in Y with yx = y there exist a point e e £ and
a £ Rep [0, t] such that

d(<t>a(s)x,4>se)<8 fora l lO<sssf

so

for 0 < s < t Now taking u = ae(s) and ji{u) = o-xao-~l{u), we have

Thus yE is a (mt, e)-weakly spanning set of Y, and this means Rm,( Y, e) s R,(X, 8)
which implies that mh(ip)< h(4>) Since t/M< ax'(/) for every t e U and xe X and
suppose E (t, 8)-weakly spans Y with minimum cardinality Then clearly y~lE is
(t/M, e)-weakly spanning set of X Hence RI/M{X, e )< R,(X, 8) which implies
that h(<j>) < Mh(tp)

The following is a direct consequence of Theorem B and Lemma 1 in [6]

COROLLARY 1 If tp is a flow obtained from an expansive flow <j> on X by a positive
continuous change of velocity A X -> R, then

where m = inf {1/A(x), xeX} and M = sup{1/A(x)f xeX}
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COROLLARY 2 If (Y, 4>) is the suspension flow of an expansive homeomorphism
T X -» X under a positive continuous function f X -» R, then

m

vv/iere m = inf {/(x), xe X} and M = sup {f(x), xe X}
Proof Let (1, ip) be the suspension flow of (X, T) under the constant 1 Then it is
obvious that h(i]/) = h( T) and (Y, <j>) is conjugate to (2, i/>) with the cocycle ax(s) =
s/f(x) for every xeX Let m = inf {/(x), x e X } and M = sup {/(x), x e X} Then
it is obvious that (l/M)t<o-x(t)<(l/m)t for every feR and xeX Theorem B
finishes the proof

4 Entropy and chain recurrence
Let <j> be an expansive flow which has the POTP on a compact metric space X
Given x, y e X, a (8, a)-chain from x to y is a collection

{x = xo,x, , ,xk=y,t0,ti, , fk_J

so that t, > a and d(4>,x,, xI+1) < 5
A point x is chain equivalent to y (written x~y if for every 5, a > 0 , there is a

(5, a)-chain from x to y and from y to x The chain recurrent set of 4> is

CR(0) = { x e X , x ~ x }

In this section we give some standard results as Lemma 4 1

LEMMA 4 1 (a) ft = CR

(b) For all r > 0, x ~ <f>rx for every x e ft
(c) The set of periodic points is dense in ft
(d) Let ftA be an equivalence class of ft under the relation ~ Then ftA is invariant,

closed, and open in ft

Proof Is an easy exercise for the reader

Since ft is compact, therefore ft is uniquely expressed as a disjoint union ft = U ^ i fti
where ft, (1 < i< m) is an equivalence class under ~ (note that there are no fixed
points) Moreover one can show easily that (ft,, <j>) is topologically transitive for
all i (l e ft, contains a dense orbit)

LEMMA 4 2 For all S > 0, there exists L > 0 such that for every x, y e ft ifx ~ y, then
there exists w eft so that d(w,x)< 8 and d(4>sw, y)< 8 for some 0 s s < L

Proof x~y implies x ,ye( l , for some i, 1 < i< m Take {Us}"=\ to be a finite cover
for ft, of open sets each of diameter less than 8 Topologically transitive implies
that there exists rsk>0 ( l<fc<n, l < s < n ) such that 4>r,kUs n Uk^0 Take L, =
maxs k rsk and L = max, L, This finishes the proof

LEMMA 4 3 For all A > 0, there exists e > 0 and there exists B > 0 SUC/J that for every
r > 0 andxeft , there exists a periodic point z of period < (1 + X)r+ Banda e Rep [0, r]
so fhar

d{(j>aU)z, < A , x ) s e for all Q< t a r
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Proof For A > 0, choose e > 0 satisfying Lemma 1 2 Take 5 > 0 satisfying the
definition of POTP with respect to e and 8 < e For x e il, we have x ~ xr Lemma
4 2 implies that there exist L> 0 and w e 0, so that d{w, $rx) < 8 and d(<j>sw, x) < 8
for some s, 0 < s < L Take B = (l + A)L, and consider the periodic 5-pseudo-orbit
{x, w, x, r, s} Expansiveness and POTP imply that there is a periodic point z and
a e Rep [0, r + s] such that

d{<f>ail)z,ct>lx)<e foral lO<f<r,

and

d(<t>a(,)Z, <A,w)< e for all r < (< r+s

Using Lemma 1 2, we have

for all 0 < f < r + 5 Therefore the period o f z s ( l + A)r+B and the proof is finished

We fix some notation p is the set of all periodic orbits of <f>, p(t) those with period
r<( , and pF(t) those with period T in the interval [f — e, f+e] Let i>(t) and uE(<)
be the number of closed orbits with period T^ t and T E [ ( - e, f+e] respectively Set

0 ( 0 = I T(y)= I period of y
•yep(t) ysp(')

It is obvious that D(t) < tv(t)

PROPOSITION 6 Let (X, (j>) be an expansive flow which has the POTP Then

/i((/>)£hminf-log v(t)
f-*oo /

Proof Given A > 0, choose /3 satisfying expansiveness with respect to A Take
8 <min {l(i, A} and satisfying the above lemma and Lemma 1 2 with respect to A
Let E be a (/, j3) - strongly separated set of O, Take r= ( ( l + A)/(l-A))finthe above
lemma Then for x ̂  y in E, there exist zx and zy periodic points each of period
==(1 + A)r+B (for some B) with ax, ayeRep[0, r] and

(0 d(<t>axU)zx,<t>sx)^8 forall 0 < s < r ,
and

(n) d(4>aAs)zy,(j)sy)<8 forallO<s=sr
Choose e > 0 small enough such that

sup{d(z, <f>uz), zex, |u |<3e}<5

Now assume zx e (f^^^^Zy This means that

d(<t>szx,4>szy)<8 fora l l seR

Take u = ax(s) in (l) and u = av(s) in (n) Therefore

d((Auzx,<Ao:.(u)x)<5 for all 0 < u < ( l - A ) r = ( l

and

d(4>uZy, 0 a - ' ( s ) y )s5 for all 0

The triangle inequality implies that

i«)X,4>a?lu)y)^28 forallO<M<(l
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Now again let v = a~\u) Then we have

d(<t>vx,<t>h(v)y)<28 forallO<t><f,

where h(v) = a~lax(v)
Also if we take v = a~*(u), then we have

d(<f>y(v)x, (j>vy)<28 for all 0 < u < f ,

where y(v) = aZxay(v) This contradicts the fact that E is a (t, )3)-strongly separated
set of ft Hence zxg <£[-3e>3<!]Z,,, and so

Using the fact that D(t)<tv(t), we get

Therefore

This means that

As A -» 0, we have

H(<f>, fl) <hm inf- log v(t)
( O O f

Using Theorem A we have,

h(4>, 0 ) < h m i n f - l o g v(t)

Theorem 2 4 in [1] implies that

h{(j>)<hminf- log v(t)

Proof of Theorem C Using a similar argument to the proof of the second part of
Lemma 4 10 in [3] we can show that for any e > 0 , there exists A > 0 such that
vx(t)<S,(x,e) As

(there are at most f/2A terms), and S,(X, e )<S , (X, e) for t< t', we have

and so

hm sup- log u(0 — h(<f>)
t-*CO t

Proposition 6 finishes the proof of this theorem

https://doi.org/10.1017/S0143385700004235 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004235


Entropy of expansive flows 625

R E F E R E N C E S

[1] R Bowen Topological entropy and Axiom A Proc Symp Pure Math 14 (1970) 23-41
[2] R Bowen Entropy for group endomorphisms and homogeneous spaces Trans Amer Math Soc

153 (1970), 401-414
[3] R Bowen Periodic orbits for hyperbolic flows Amer J Math 94 (1972), 1-30
[4] R Bowen Entropy-expansive maps Trans Amer Math Soc 164 (1972), 323-331
[5] R Bowen & P Walters Expansive one parameter flows J Diff Eq 12 (1972), 180-193
[6] P D Humphries Change of velocity in dynamical systems J London Math Soc (2), 7 (1974),

747-757
[7] T Ohno A weak equivalence and topological entropy Publ RIMS Kyoto Umv 16 (1980), 289-298
[8] R Thomas Stability properties of one parameter flows Proc London Math Soc (3), 45 (1982),

479-505
[9] R Thomas Topological stability some fundamental properties J Diff Eq 59 (1985), 103-122

[10] P Walters Ergodic Theory Introductory Lectures Sponger Lecture Notes in Maths 458 (1975)

https://doi.org/10.1017/S0143385700004235 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004235

