Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-04-30T10:41:39.626Z Has data issue: false hasContentIssue false

Coiraite, (Pb,Sn2+)12.5As3Fe2+Sn4+5 S28: a franckeite-type new mineral species from Jujuy Province, NW Argentina

Published online by Cambridge University Press:  05 July 2018

W. H. Paar*
Affiliation:
Department of Materials Engineering and Physics (Division of Mineralogy), University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
Y. Moëlo
Affiliation:
Institut des Matériaux J.Rouxel (IMN), Université de Nantes, CNRS, 2, rue de la Houssinière, F-44322 Nantes Cedex 3, France
N. N. Mozgova
Affiliation:
IGEM RAS, Staromonetny 35, Moscow 119017, Russia
N. I. Organova
Affiliation:
IGEM RAS, Staromonetny 35, Moscow 119017, Russia
C. J. Stanley
Affiliation:
The Natural History Museum, Cromwell Road, London SW7 5BD, England UK
A. C. Roberts
Affiliation:
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A OE8, Canada
F. J. Culetto
Affiliation:
KELAG-Kärntner Elektrizitäts-Aktiengesellschaft, Arnulfplatz 2, A-9020 Klagenfurt, Austria
H. S. Effenberger
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Vienna, Austria
D. Topa
Affiliation:
Department of Materials Engineering and Physics (Division of Mineralogy), University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
H. Putz
Affiliation:
Department of Materials Engineering and Physics (Division of Mineralogy), University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
R. J. Sureda
Affiliation:
Cátedra de Mineralogía, Facultad de Ciencias Naturales, Universidad Nacional de Salta, 4400 Salta, Argentina
M. K. de Brodtkorb
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Paso 258-9°, 1640 Martinez, Argentina

Abstract

Coiraite, ideally (Pb,Sn2+)12.5As3Fe2+Sn4+S28, occurs as an economically important tin ore in the large Ag-Sn-Zn polymetallic Pirquitas deposit, Jujuy Province, NW-Argentina. The new mineral species is the As derivative of franckeite and belongs to the cylindrite group of complex Pb sulphosalts with incommensurate composite-layered structures. It is a primary mineral, frequently found in colloform textures, and formed from hydrothermal solutions at low temperature. Associated minerals are franckeite, cylindrite, pyrite-marcasite, as well as minor amounts of hocartite, Ag-rich rhodostannite. arsenopyrite and galena. Laminae of coiraite consist of extremely thin bent platy crystals up to 50 urn long. Electron microprobe analysis (n = 31) gave an empirical formula Pb11.21As2.99Ag0.13Fe1.10Sn6.13S28.0 close to the ideal formula (Pb11.3Sn2+1.2)Σ=12.5As3Fe2+Sn4+S28. Coiraite has two monoclinic sub-cells, Q (pseudotetragonal) and H (pseudohexagonal). Q: a 5.84(1) Å, b 5.86(1) Å, c 17.32(1) Å, β 94.14(1)°, F 590.05(3) Å3, Z = 4, a:b:c = 0.997:1:2.955; H (orthogonal setting): a 6.28(1) Å, b 3.66(1) Å, c 17.33(1) Å, β 91.46(1)°, V398.01(6) Å3, Z = 2, a∶b∶c = 1.716∶1∶4.735. The strongest Debye-Scherrer camera X-ray powder-diffraction lines [d in Å, (I), (hkl)] are: 5.78, (20), (Q and H 003); 4.34, (40), (Q 004); 3.46, (30), (Q and H 005); 3.339, (20), (Q 104); 2.876, (100), (Q and H 006); 2.068, (60), (Q 220).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlfeld, F. and Schneider-Scherbina, A. (1964) Los yacimientos minerales y de hidrocarbu-ros de Bolivia. Departamento National de Geologia, La Paz, Bolivia, Boletin Especial, 5.Google Scholar
Amann, G. and Paar, W.H. (2001) Structural control of Ag-Sn Vein-Type Mineralisation at the Pirquitas Mine (Prov. Jujuy, NW-Argentina) — Ore Precipitation during Fold and Thrust Belt Evolution. EUG XI, Abstract Volume 6/1, 266.Google Scholar
Amthauer, G. (1986) Crystal chemistry and valencies of iron, antimony, and tin in franckeites. Neues Jahrbuch fur Mineralogie Abhandlungen, 153, 245324.Google Scholar
Barton, P.B. and Skinner, BJ. (1979) Sulfide mineral stabilities. Pp. 278403 in: Geochemistry of Hydrothermal Ore Deposits(Barnes, H.L., editor). 2nd edition, Wiley, New-York. 798 pp.Google Scholar
Bernhardt, H.-J. (1984) The composition of natural franckeites. Neues Jahrbuch fur Mineralogie Abhandlungen, 150, 2564.Google Scholar
Coira, B.L. and de Brodtkorb, M.K. (1995) Polymetallic mineralization associated with Cenozoic volcanism in Northern Puna, Argentina. Pacrim ‘, 95, d+–d+.Google Scholar
Cordier, G. and Schäfer, H. (1981) Ca2Sb2S5, ein neues Erdalkalithioantimonat (III) mit Sb2S4-Viererringen. Revue de Chimie Minérale, 18, 218223.Google Scholar
Criddle, A.J. and Stanley, CJ. (1993) The Quantitative Data File for Ore Minerals. The Commission on Ore Mineralogy, International Mineralogical Association. Chapman & Hall, London, UK.CrossRefGoogle Scholar
Effenberger, H., Paar, W.H., Topa, D., Culetto, FJ. and Giester, G. (1999) Toward the crystal structure of nágyagite, [Pb(Pb,Sb)S2][(Au,Te)]. American Mineralogist, 84, 669676.CrossRefGoogle Scholar
Effenberger, H., Culetto, F.J., Topa, D. and Paar, W.H. (2000) The crystal structure of synthetic buckhornite, [Pb2BiS3][AuTe2]. Zeitschrift für Kristallographie, 215, 1016.Google Scholar
Ericksen, G.E. and Cunningham, C.G. (1993) Precious-metal deposits in the Neogene-Quaternary volcanic complex of the Central Andes. Investigation de metales preciosos en los Andes Centrales. Proyecto BID/TC-88—02-35—5, d+–d+.Google Scholar
Evain, M., Petřiček, V., Moëlo, Y. and Maurel, C. (2006) First (3+2)-dimensional superspace approach of the structure of levyclaudite-(Sb), a member of the cylindrite-type minerals. Ada Crystallographica, B62, 775789.Google Scholar
Lafond, A., Nader, A., Moelo, Y., Meerschaut, A., Briggs, A., Perrin, S., Monceau, P. and Rouxel, J. (1997) X-ray structure determination and superconductivity of a new layered misfit compound with a franckeite-like stacking, [(Pb,Sb)S]2.28NbS2 . Journal of Alloys and Compounds, 261, 114122.CrossRefGoogle Scholar
Li, J. (1984) Franckeite syntheses and heating experiments. Neues Jahrbuch für Mineralogie Abhandlungen, 150, 4550.Google Scholar
Li, J. (1986) Cylindrite syntheses and relations to franckeite. Neues Jahrbuch fur Mineralogie Abhandlungen, 153, 283285.Google Scholar
Makovicky, E. (1974) Mineralogical data on cylindrite and incaite. Neues Jahrbuch fur Mineralogie Monatshefte, 235, d+–d+.Google Scholar
Makovicky, E. and Hyde, B.G. (1992) Incommensurate, two-layer structures with complex crystal chemistry: Minerals and related synthetics. Materials Science Forum, 100 and 101, 1100.CrossRefGoogle Scholar
Makovicky, E., Petřiček, V., Duček, M. and Topa, D. (2008) Crystal structure of a synthetic tin-selenium cylindrite. American Mineralogist, 93, 17871798.CrossRefGoogle Scholar
Malvicini, L. (1978) Las vetas de estaño y plata de mina Pirquitas (Pircas), prov.de Jujuy, Republica Argentina. Revista de la Asociación Argentina de Mineralogía, Petrología y Sedimentologia, Rev. 9, d+–d+.Google Scholar
Meerschaut, A., Moelo, Y., Cario, L., Lafond, A. and Deudon, C. (2000) Charge transfer in misfit layer chalcogenides, [(MX)n) 1+x(TX2)m: A key for understanding their stability and properties. Molecular Crystals and Liquid Crystals, 341, 18.CrossRefGoogle Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W.H., Nickel, E.H., Graeser, S., Karup-Moller, S., Balic-Zunic, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulphosalt systematics: a review. Report of the sulphosalt subcommittee of the IMA Commission on Ore Mineralogy. European Journal Mineralogy, 20, 746.CrossRefGoogle Scholar
Mottana, A., Fiori, S. and Parodi, G.C. (1992) Improved X-ray powder diffraction data for franckeite. Powder Diffraction, 7, 112 (PDF No 43—1480).CrossRefGoogle Scholar
Organova, N.I. (1989) Crystallochemistry of incommensurate and modulated mixed-layer minerals. Moscow, Nauka, 144 (In Russian).Google Scholar
Paar, W.H., de Brodtkorb, M.K., Topa, D. and Sureda, RJ. (1996) Caracterización mineralógica y química de algunas especies metaliferas de yacimiento Pirquitas, Provincia de Jujuy, Republica Argentina: Parte 1. XIII Congreso Geologico y III Congreso de Exploracion de Hidrocarburos. Adas III, d+–d+.Google Scholar
Paar, W.H., de Brodtkorb, M.K., Sureda, RJ. and Topa, D. (1998) A microprobe study of complex Ag-Sn ores from Pirquitas, Jujuy Province, Argentina. 17th General Meeting of the International Mineralogical Association, Toronto, Canada. Abstract Volume, p. A 118.Google Scholar
Paar, W.H., Miletich, R., Topa, D., Criddle, A.J., de Brodtkorb, M.K., Amthauer, G. and Tippelt, G. (2000) Suredaite, PbSnS3, a new mineral species, from the Pirquitas Ag-Sn deposit, NW-Argentina: Mineralogy and Crystal Structure. American Mineralogist, 85, 10661075.CrossRefGoogle Scholar
Paar, W.H., de Brodtkorb, M.K., Sureda, R.J. and Topa, D. (2001) Mineralógia y quimismo de sulphuros y sulfosales de estano y plomo en las vetas de Mina Pirquitas, Jujuy, Argentina (22°41's - 66°28'W). Revista Geologica de Chile, 28, 259268.Google Scholar
Paar, W.H., Putz, H., Topa, D., Sureda, R.J., de Brodtkorb, M.K. and Liiders, V. (2006a) Breccias with high-grade Ag-Sn mineralization at Pirquitas, Argentina. 19th General Meeting of the International Mineralogical Association, Kobe, Japan. Abstract Volume, p. 193.Google Scholar
Paar, W.H., Putz, H., Sureda, R.J., Ebner, F. and Iradi, P. (2006b) Ore deposit mineralogy of high-grade silver-tin-zinc mineralization at the Oploca vein- and breccias system, Pirquitas, province of Jujuy, Argentina. Unpublished report, 18 pp.Google Scholar
Shimizu, M., Moh, G.H. and Kato, A. (1992) Potosiite and incaite from the Hoei Mine, Japan. Mineralogy and Petrology, 46, 155161.CrossRefGoogle Scholar
Sillitoe, R.H., Steele, G.B., Thompson, J.F.H. and Lang, J.R. (1998) Advanced argillic lithocaps in the Bolivian tin-silver belt. Mineralium Deposita, 33, 539546.CrossRefGoogle Scholar
Sureda, R.J., Galliski, M.A., Argañaraz, P. and Daroca, J. (1986) Aspectos metalogenicos del noroeste argentino (provincias Salta y Jujuy). Capricornio, 1, 3996.Google Scholar
Toulmin, P. and Barton, P.B. (1964) A thermodynamic study of pyrite and pyrrhotite. Geochimica Cosmochimica Acta, 28, 641671.CrossRefGoogle Scholar
Wiegers, G.A. and Meerschaut, A. (1992) Misfit layer compounds (MS)nTS2 (M = Sn, Pb, Bi, Rare Earth metals; T = Nb, Ta, Ti, V, Cr; 1.08 < n > 1.23): Structures and physical properties. Materials Science Forum, 100 and 101, 101172.CrossRefGoogle Scholar
Williams, T.B. and Hyde, B.G. (1988) Electron microscopy of cylindrite and franckeite. Physics and Chemistry of Minerals, 15, 521544.CrossRefGoogle Scholar
Williams, T.B. and Pring, A. (1988) Structure of lengenbachite: A high-resolution transmission electron microscope study. American Mineralogist, 73, 14261433.Google Scholar
Wolf, M., Hunger, H.-J. and Bewilogua, K. (1981) Potosiit - ein neues Mineral der Kylindrit-Franckeit-Gruppe. Freiberger Forschungshefte, C 364, 113133.Google Scholar