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ABSTRACT

This paper presents a framework for stochastically mod-
eling the path of the ultimate loss ratio estimate through
time from the inception of exposure to the payment of all
claims. The framework is illustrated using Hayne’s log-
normal loss development model, but the approach can be
used with other stochastic loss development models. The
behavior of chain ladder and Bornhuetter-Ferguson esti-
mates consistent with the assumptions of Hayne’s model
is examined. The general framework has application to the
quantification of the uncertainty in loss ratio estimates used
in reserving and pricing as well as to the evaluation of risk-
based capital requirements for solvency and underwriting
analysis.
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1. Introduction

Ultimate loss ratio estimates change over time.
The initial loss ratio estimate that emerges from
the pricing analysis for a tranche of policies soon
gives way to a new estimate as time passes and
claims begin to emerge (or not). By the time all
claims have been paid, the loss ratio is likely to
have been re-estimated many times. The focus
of this paper is on how to model the future re-
visions of these ultimate loss ratio estimates. We
illustrate the approach using loss ratio estimates
based on chain ladder and Bornhuetter-Ferguson
methods underpinned by a simple stochastic
model described by Hayne [4].
There appears to be little, if any, actuarial lit-

erature on the subject of behavior of an ultimate
loss ratio estimate between the time when it is
made and the time when its final value becomes
known, i.e., the point at which all claims have
been paid. Various authors have sought to ad-
dress uncertainty in the ultimate loss ratio es-
timate, but generally from the perspective of a
single point in time.
For example, Hayne [4] proposed a lognormal

model of loss development that supports the con-
struction of confidence intervals around the ul-
timate loss ratio estimate.1 Kelly [7] and Kreps
[9] also used a lognormal framework to explore
issues of parameter estimation and parameter un-
certainty, respectively. Hodes, Feldblum, and
Blumsohn [5] used a slightly different lognormal
development model to quantify the uncertainty
in workers compensation reserves. Mack, Ven-
ter, and Zehnwirth have all written extensively
about stochastic modeling of the loss develop-
ment process.2 Others, including Van Kampen
[12], Wacek [15], and the American Academy
of Actuaries Property and Casualty Risk-Based

1Conscious that the confidence intervals he derived were dependent
on the lognormal model being the correct choice, he cautiously
described his results as providing a “range of reasonableness.”
2For example, see Mack [10], [11], Venter [13], [14], and Zehn-
wirth [16], [2] (the last co-authored with Barnett).

Capital Task Force [1], have sought to quantify
the uncertainty in the ultimate loss ratio estimate
used in pricing and reserving applications di-
rectly, without reference to the loss development
process. The question on which all of these au-
thors focused their attention is the potential vari-
ation in the final loss ratio at ultimate compared
to the current ultimate loss ratio estimate, with no
reference to how the ultimate loss ratio estimate
might vary at intermediate points in time.
In contrast, in his acclaimed paper on solvency

measurement, Butsic [3] observed that loss esti-
mates change in their march through time. He
recognized that they, like stock prices, are gov-
erned by a diffusion process, a type of contin-
uous stochastic process with a time-dependent
probability structure. However, he did not pro-
pose a model of this stochastic process.
How ultimate loss ratio estimates change in

the future depends in part on the method used
to make the estimates. In this paper we assume
that loss ratio estimates are derived from a con-
sistently applied estimation process with mini-
mal subjective overriding of the indicated result.
We model the behavior of loss ratio estimates
using stochastic versions of two loss develop-
ment methods: the chain ladder method and the
Bornhuetter-Ferguson method, both using paid
development data. To model chain ladder esti-
mates, we combine Hayne’s and Butsic’s ideas
to synthesize a lognormal diffusion model for the
path of the ultimate loss ratio. Then we adapt that
model to the Bornhuetter-Ferguson method.
This conceptual framework, which could eas-

ily be adapted to handle other loss development
models, provides actuaries with the means to give
their clients more information about how much
their loss ratio or reserve estimates may fluctu-
ate from period to period. As such, it can be a
useful tool for managing expectations about the
variability of loss reserve estimates. It also has
potential application in a number of other areas
of actuarial analysis, as we will discuss later.
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The paper comprises six sections, the first be-
ing this introduction. In Section 2 we outline
Hayne’s lognormal model of chain ladder loss
development and illustrate its application using
industry Private Passenger Auto Liability data
from the 2004 Schedule P. We illustrate the main
benefit of a stochastic model for loss develop-
ment, namely, the ability to measure the uncer-
tainty in loss development factors and in the ul-
timate loss ratio estimate.
In Section 3 we discuss the effect of future

loss emergence on future ultimate loss ratio esti-
mates. We show how to use information implicit
in Hayne’s model to determine the distribution
of future estimates derived from our stochastic
versions of the chain ladder and Bornhuetter-
Ferguson methods, with particular attention to
the loss ratio estimate one year out. We again use
industry Private Passenger Auto Liability data to
illustrate the process.
In Section 4 we adjust Hayne’s model to al-

low for parameter uncertainty and illustrate the
effect. Because the adjusted distribution does not
have the multiplicative properties of the lognor-
mal, we illustrate the use of Monte Carlo simula-
tion to model the distribution of future ultimate
loss ratio estimates.
In Section 5 we conclude with an outline of

potential applications of the framework for future
ultimate loss ratio estimates in loss reserving and
risk-based capital applications.

2. Hayne’s lognormal loss
development model

Hayne presented two models of chain ladder
loss development: one that assumed that devel-
opment is independent from one period to the
next, and a second one that relaxed the indepen-
dence assumption. We will adopt the first model
(and henceforth refer to it simply as “Hayne’s
model”). Kelly [7] argued that independence is
more plausible for paid loss development than
for case-incurred development. We will use paid

losses to illustrate our framework, but a good
case can also be made for its application to ulti-
mate loss ratio estimates based on case-incurred
losses, even if all of the underlying assumptions
are not always met.
Hayne’s model is quite simple. He assumed

that age-to-age development factors are lognor-
mally distributed. The product of independent
lognormal random variables is also lognormal,
which implies that age-to-ultimate loss develop-
ment factors are lognormal. Because the product
of a constant and a lognormal random variable is
lognormal, if we are given the cumulative paid
loss ratio at any age and the estimated param-
eters of the matching age-to-ultimate factor, we
can determine the parameter estimates of the ul-
timate loss ratio. Using these parameters we can
estimate the expected loss ratio (which we will
take as the “best” estimate) as well as confidence
intervals around that estimate.
The lognormal parameters ¹ and ¾ of the age-

to-age factors can be estimated by a variety of
methods. Hayne used (and we also prefer) the
unbiased estimators

ȳ =
1
n

nX
i=1

yi =
1
n

nX
i=1

ln(xi) and

s2 =
nX
i=1

(yi¡ ȳ)2
n¡ 1

for ¹ and ¾2, respectively, where x1,x2,x3, : : : ,xn
are the observed age-to-age factors.3 ȳ is also a
maximum likelihood estimator.

2.1. Illustration of model parameter
estimation

We illustrate the parameter estimation for
Hayne’s model using the real loss development
data presented in Tables 1 and 2. Table 1 shows

3We used unweighted unbiased estimators for ¹ and ¾ throughout
this paper. For formulas for estimators using unequal weights for
the observations, see Section 5.5 of [15].
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Table 1. Annual Statement for the year 2004 of the industry aggregate Schedule P, Part 3B, private passenger auto
liability/medical

Cumulative paid net losses and defense and cost containment expenses reported at annual intervals ($000,000 omitted)

AY 1 2 3 4 5 6 7 8 9 10

1995 17,674 32,062 38,619 42,035 43,829 44,723 45,162 45,375 45,483 45,540
1996 18,315 32,791 39,271 42,933 44,950 45,917 46,392 46,600 46,753
1997 18,606 32,942 39,634 43,411 45,428 46,357 46,681 46,921
1998 18,816 33,667 40,575 44,446 46,476 47,350 47,809
1999 20,649 36,515 43,724 47,684 49,753 50,716
2000 22,327 39,312 46,848 51,065 53,242
2001 23,141 40,527 48,284 52,661
2002 24,301 42,168 50,356
2003 24,210 41,640
2004 24,468

Paid age-to-age loss development factors

1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10
AY Loss Ratio LDF LDF LDF LDF LDF LDF LDF LDF LDF

1995 28.0% 1.814 1.205 1.088 1.043 1.020 1.010 1.005 1.002 1.001
1996 27.7% 1.790 1.198 1.093 1.047 1.022 1.010 1.004 1.003
1997 27.1% 1.771 1.203 1.095 1.046 1.020 1.007 1.005
1998 27.1% 1.789 1.205 1.095 1.046 1.019 1.010
1999 29.8% 1.768 1.197 1.091 1.043 1.019
2000 32.2% 1.761 1.192 1.090 1.043
2001 31.6% 1.751 1.191 1.091
2002 30.4% 1.735 1.194
2003 27.7% 1.720
2004 26.6%

Mean 28.8% 1.767 1.198 1.092 1.045 1.020 1.009 1.005 1.003 1.001
S.D. 2.0% 0.029 0.006 0.003 0.002 0.001 0.002 0.000 0.001 0.000
C.V. 7.0% 0.016 0.005 0.002 0.002 0.001 0.002 0.000 0.001 0.000
Cum. Mean 2.508 1.420 1.185 1.085 1.039 1.018 1.009 1.004 1.001

Source: Highline Data LLC as reported in the statutory filings (OneSource)

industry aggregate Schedule P net paid loss
development data for Private Passenger Auto
Liability for accident years 1995 through 2004
from the 2004 Annual Statement4 together with
the associated paid loss age-to-age development
factors. The paid loss ratios at age one year are
also included in the development factor table. Ta-
ble 2 shows the natural logarithms of the age-to-
age factors and the age one year paid loss ratios.
The rows labeled “Mean” and “S.D.” in Table 2
show the unbiased estimators for ¹ and ¾, re-
spectively, given the data in the body of the
column.5

4Source: Highline Data LLC as reported in the statutory filings
(OneSource).
5Note that the standard deviation for the age 9 to 10 development
factor, which is undefined, has been selected to be equal to that of
the age 8 to 9 development factor in both Table 1 and Table 2.

For example, in Table 2 the mean and standard
deviation of the natural logarithms of the ob-
served age 1 to 2 development factors are 0.569
and 0.016, respectively. If we set ¹= 0:569 and
¾ = 0:016,6 these parameter estimates for pro-
spective age 1 to 2 development imply a log-
normal mean, defined as E(x) = exp[¹+0:5¾2],
of 1.767, which matches the mean loss develop-
ment factor calculated by the traditional method
in Table 1. The same is true for all of the other
age-to-age factors. Similarly, the parameter esti-
mates for the age one paid loss ratio are ¡1:246
and 0.069 for ¹ and ¾, respectively, which imply
a lognormal mean of 28.8%. This, too, matches

6These parameters define the lognormal distribution that best fits
the data, using unbiasedness as the criterion for “best.” However,
there is uncertainty about whether those parameters are correct. We
address the issue of parameter uncertainty later in the paper.
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Table 2. Annual Statement for the year 2004 of the industry aggregate Schedule P, Part 3B, private passenger auto
liability/medical

Natural logarithms of paid age-to-age loss development factors in Table 1

Loss Ratio Loss Development Factors

AY 1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10

1995 ¡1:274 0.596 0.186 0.085 0.042 0.020 0.010 0.005 0.002 0.001
1996 ¡1:282 0.582 0.180 0.089 0.046 0.021 0.010 0.004 0.003
1997 ¡1:307 0.571 0.185 0.091 0.045 0.020 0.007 0.005
1998 ¡1:304 0.582 0.187 0.091 0.045 0.019 0.010
1999 ¡1:210 0.570 0.180 0.087 0.042 0.019
2000 ¡1:135 0.566 0.175 0.086 0.042
2001 ¡1:151 0.560 0.175 0.087
2002 ¡1:191 0.551 0.177
2003 ¡1:282 0.542
2004 ¡1:325

Mean ¡1:246 0.569 0.181 0.088 0.044 0.020 0.009 0.005 0.003 0.001
S.D. 0.069 0.016 0.005 0.002 0.002 0.001 0.002 0.000 0.001 0.001
LN Fit LDFs 28.8% 1.767 1.198 1.092 1.045 1.020 1.009 1.005 1.003 1.001

Cum. Mean ¡0:327 0.919 0.350 0.170 0.082 0.038 0.018 0.009 0.004 0.001
Cum. S.D. 0.071 0.018 0.006 0.004 0.003 0.002 0.002 0.001 0.001 0.001
LN Fit LDFs 72.3% 2.508 1.420 1.185 1.085 1.039 1.018 1.009 1.004 1.001

Source: Highline Data LLC as reported in the statutory filings (OneSource)

the mean age one paid loss ratio shown in Ta-
ble 1.7

The parameter estimates for the prospective
age-to-age factors can be combined using the
multiplicative property of lognormal distribu-
tions to determine parameter estimates for pro-
spective age-to-ultimate factors. The product of n
lognormal random variables with respective pa-
rameter sets (¹1,¾1), (¹2,¾2), (¹3,¾3), : : : , (¹n,¾n)
is a lognormal random variable with parameters

¹=
nX
i=1

¹i and

¾ =

Ã
nX
i=1

¾2i

!1=2
:

For example, treating age 10 as ultimate, in Ta-
ble 2 the ¹ parameter estimate for the age 7 to ul-
timate development factor is the sum of the mean
age-to-age factor natural logarithms for ages 7 to
8, 8 to 9, and 9 to 10: 0:005+0:003+0:001 =
0:009. The corresponding ¾ parameter estimate

7We point this out to emphasize that the lognormal model appears
to fit this data well. However, it is important to note that the mean
of the fitted lognormal does not necessarily equal the mean of the
sample.

Table 3. Summary of estimated ultimate loss ratios from
paid loss development analysis: private passenger auto
liability, based on industry aggregate experience as of
December 2004

Net Estimated
Accident Earned Net Paid Net Paid Age-to-Ult Ultimate
Year Premiums Losses Loss Ratio Factor Loss Ratio

1995 63,183 45,540 72.1% 1.000 72.1%
1996 66,006 46,753 70.8% 1.001 70.9%
1997 68,764 46,921 68.2% 1.004 68.5%
1998 69,343 47,809 68.9% 1.009 69.6%
1999 69,231 50,716 73.3% 1.018 74.6%
2000 69,444 53,242 76.7% 1.039 79.6%
2001 73,143 52,661 72.0% 1.085 78.1%
2002 79,922 50,356 63.0% 1.185 74.6%
2003 87,242 41,640 47.7% 1.420 67.8%
2004 92,064 24,468 26.6% 2.508 66.7%

is the square root of the sum of the variances
of the natural logarithms of the same age-to-
age factors:

p
0:0002 +0:0012 +0:0012 = 0:001.

Note that the lognormal means (labeled “LN Fit
LDFs” in Table 2) implied by these age-to-ulti-
mate parameters match the age-to-ultimate de-
velopment factors shown in Table 1.
The ultimate chain ladder loss ratio estimates

indicated by this analysis as of the end of 2004
for accident years 1995 through 2004 are sum-
marized in Table 3. In this example, the lognor-
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Table 4. Summary of paid loss development factors with
associated lognormal 95% confidence intervals: private
passenger auto liability based on industry aggregate
experience through December 2004

Age-to-age factors

Lognormal
95% Confidence

Paid Loss
Development Est ¹ for Est ¾ for Mean LDF Lower LDF Upper
Period LDF LDF LDF Bound Bound

9–Ult* 0.001 0.001 1.001 1.000 1.002
8–9 0.003 0.001 1.003 1.002 1.004
7–8 0.005 0.000 1.005 1.004 1.005
6–7 0.009 0.002 1.009 1.006 1.012
5–6 0.020 0.001 1.020 1.018 1.022
4–5 0.044 0.002 1.045 1.041 1.048
3–4 0.088 0.002 1.092 1.087 1.097
2–3 0.181 0.005 1.198 1.187 1.209
1–2 0.569 0.016 1.767 1.710 1.824

Age-to-ultimate factors

Lognormal
95% Confidence

Paid Loss
Development Est ¹ for Est ¾ for Mean LDF Lower LDF Upper
Period LDF LDF LDF Bound Bound

9–Ult* 0.001 0.001 1.001 1.000 1.002
8–Ult 0.004 0.001 1.004 1.002 1.006
7–Ult 0.009 0.001 1.009 1.007 1.011
6–Ult 0.018 0.002 1.018 1.015 1.022
5–Ult 0.038 0.002 1.039 1.034 1.043
4–Ult 0.082 0.003 1.085 1.079 1.091
3–Ult 0.170 0.004 1.185 1.176 1.193
2–Ult 0.350 0.006 1.420 1.403 1.436
1–Ult 0.919 0.018 2.508 2.423 2.595

*Age 10 deemed to be ultimate

mal loss development model produces the same
loss ratio estimates as the traditional determinis-
tic chain ladder loss development method. If we
were interested only in these mean estimates, the
traditional approach would suffice. However, we
also want to measure the uncertainty in the loss
ratio estimates, and for that purpose the richer
lognormal model is superior.

2.2. Measurement of loss development
uncertainty

If we assume ¹= ȳ and ¾ = s based on the data
for each age-to-age development period, we can
calculate the lower and upper bounds of a two-
sided 95% confidence interval for prospective
age-to-age factors as exp[ȳ¡N¡1(97:5%) ¢ s]

and exp[ȳ+N¡1(97:5%) ¢ s], respectively, where
N¡1(97:5%) is the value of the standard normal
cdf corresponding to a cumulative probability of
97.5%.8 Similarly, using the parameter estimates
for the age-to-ultimate factors, we can also de-
termine confidence intervals for age-to-ultimate
factors. We have tabulated these 95% confidence
intervals based on the industry Private Passenger
Auto Liability Schedule P data as of the end of
2004 in Table 4.9

Table 4 indicates that the age 1 to 2 devel-
opment factor, which has an estimated mean of
1.767, should fall within a range of 1.710 to
1.824 95% of the time. The age 1 to ultimate de-
velopment factor, which has an estimated mean
of 2.508, can be expected to fall within a range
of 2.423 to 2.595 95% of the time. Given the ac-
cident year 2004 paid loss ratio of 26.6% at age
1, these confidence intervals imply a paid loss ra-
tio range at age 2 of 45.5% to 48.5% (47:0%§
1:5%) and an ultimate loss ratio range of 64.4%
to 69.0% (66:7%§ 2:3%).10
As we would expect, the development factors

for more mature accident years have tighter con-
fidence intervals. For example, the age 5 to 6
factor, which in a year end 2004 analysis would
be applicable to accident year 2000, has an es-
timated mean of 1.020 and a 95% confidence
range of 1.018 to 1.022, implying that 95% of
the time the accident year 2000 paid loss ratio
of 76.7% as of the end of 2004 will develop to
a paid loss ratio of 78.1% to 78.4% by the end
of 2005, a range of 0.3 points. The 95% con-
fidence interval for the age 5 to ultimate factor,

8N¡1(97:5%) is replicated in Excel by NORMSINV(0.975).
9Bear in mind that these confidence intervals are premised on the
parameter estimates being correct and are narrower than confidence
intervals that incorporate parameter uncertainty.
10While the lognormal is a skewed distribution, the skewness is im-
perceptible for small values of ¾, and in those cases the confidence
intervals are, for most practical purposes, symmetrical. In this ex-
ample where the age 1 to 2 factor has an estimated ¾ = 0:016, the
skewness coefficient is 0.05. In contrast, in the case of ¾ = 1 the
skewness coefficient is 6.18 and the confidence interval is highly
asymmetrical!
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which has an estimated mean of 1.039, is a range
of 1.034 to 1.043. That implies an ultimate loss
ratio range of 79.3% to 80.0%, or 0.7 points.
All of these development factor, loss ratio, and

confidence interval estimates are as of the end of
2004. They are all subject to change as new in-
formation in the form of actual future loss emer-
gence becomes available. In the next section we
will show how to use information implicit in
Hayne’s approach to model the effect of future
loss emergence on these estimates.

3. A model for future ultimate loss
ratio estimates

Any estimate of the ultimate loss ratio for a
particular accident year is quickly made obsolete
by subsequent actual loss emergence. Because
of this rapid obsolescence, the ultimate loss ratio
must be re-estimated periodically in light of the
loss development in the period since the previ-
ous evaluation. That loss development affects the
new estimate in two ways.

3.1. Sources of variation in future loss
ratio estimates

First, the actual accident year loss emergence
replaces the expected emergence in the loss ratio
projection. For example, in Table 3 the Private
Passenger Auto Liability accident year 2004 ul-
timate loss ratio of 66.7%, estimated as of the
end of 2004, was determined by applying an age-
to-ultimate factor of 2.508 to the paid loss ratio
of 26.6%. That age-to-ultimate factor reflected
an expected age 1 to 2 development factor of
1.767 combined with an age 2 to ultimate fac-
tor of 1.420.
It is likely that actual age 1 to 2 loss devel-

opment will vary from the expected. If, for ex-
ample, the actual accident year 2004 emergence
during 2005 (from age 1 to 2) corresponds to a
development factor of 1.75, then in the ultimate
loss ratio analysis conducted at the end of 2005
this actual development factor will replace the

expected development factor of 1.767. If the age
2 to ultimate factor remains unchanged at 1.420,
the chain ladder estimate of the ultimate loss ratio
will become 26:6%£ 1:75£ 1:42 = 66:1%. As-
suming an expected ultimate loss ratio of 66.7%,
the Bornhuetter-Ferguson loss ratio estimate will
become 26:6%£ (1:75¡ 1:767)+26:6%£ 1:767
£1:42 = 66:1%.11,12
Of course, loss emergence with respect to older

accident years might cause a revision in the pro-
spective age 2 to ultimate factor. This potential
for tail factor revision is a second source of un-
certainty. For example, suppose the actual age 2
to 3 development on accident year 2003 during
2005 corresponds to a factor of 1.210. If that
factor is averaged with the previous eight-point
mean of 1.198 determined in Table 1 (using loss
development data through 2004), the result is a
revised age 2 to 3 development factor of 1.199.
Assuming the same process is repeated for the
other development periods, a revised age 2 to
ultimate factor will be obtained. If the result-
ing age 2 to ultimate factor is 1.425, the revised
chain ladder ultimate loss ratio estimate is given
by 26:6%£ 1:75£ 1:425 = 66:3%, a reduction of
0.4% from the year end 2004 ultimate loss ra-
tio estimate of 66.7%. The revised Bornhuetter-
Ferguson estimate in this case is given by
26:6%£ (1:75¡ 1:767)+26:6%£ 1:767£ 1:425
= 66:5%.
The foregoing is an illustration of just one sce-

nario of the loss development that might occur
in 2005 and its effect on the ultimate loss ratio
estimate. We can use information developed in

11This is algebraically equivalent to the conventional statement of
the B-F estimate as Emerged LR + Expected Ultimate LR £ (1¡ 1/
Ultimate LDF), which in this example would be expressed as 26:6%
£1:75+26:6£ 1:767£ 1:42£ (1¡ 1=1:42). For the December
2005 valuation we will assume a B-F Expected Ultimate LR for
each accident year equal to the corresponding chain ladder ulti-
mate estimate as of December 2004 shown in Table 3. There are
various ways to choose B-F Expected Ultimate LRs and ours may
not be the one most commonly used in practice.
12Note that it is merely a coincidence that the chain ladder and B-F
estimates in this example are both 66.1%.
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Table 5. Summary of revised mean paid loss development factors one year out: private passenger auto liability, based on
industry aggregate experience through December 2004

Lognormal
95% Confidence

Paid Loss Est ¾ for Actual Est ¾ for Est ¹ for Revised Revised
Development Actual LDF Revised Revised Revised Mean LDF Mean LDF
Period LDF Weight Mean LDF Mean LDF Mean LDF (Lower Bound) (Upper Bound)

Mean age-to-age factors one year out

9–Ult* 0.001 1/2 0.000 0.001 1.001 1.001 1.002
8–9 0.001 1/3 0.000 0.003 1.003 1.002 1.003
7–8 0.000 1/4 0.000 0.005 1.005 1.005 1.005
6–7 0.002 1/5 0.000 0.009 1.009 1.009 1.010
5–6 0.001 1/6 0.000 0.020 1.020 1.020 1.020
4–5 0.002 1/7 0.000 0.044 1.045 1.044 1.045
3–4 0.002 1/8 0.000 0.088 1.092 1.091 1.093
2–3 0.005 1/9 0.001 0.181 1.198 1.197 1.199
1–2 0.016 1/10 0.002 0.569 1.767 1.761 1.772

Mean age-to-ultimate factors one year out

9–Ult* 0.000 0.001 1.001 1.001 1.002
8–Ult 0.000 0.004 1.004 1.003 1.005
7–Ult 0.000 0.009 1.009 1.008 1.010
6–Ult 0.000 0.018 1.018 1.017 1.019
5–Ult 0.001 0.038 1.039 1.038 1.040
4–Ult 0.001 0.082 1.085 1.084 1.086
3–Ult 0.001 0.170 1.185 1.183 1.186
2–Ult 0.001 0.350 1.420 1.417 1.422
1–Ult 0.002 0.919 2.508 2.499 2.517

*Age 10 deemed to be ultimate

Hayne’s framework to model these two effects
generally.

3.2. Modeling the first source of
variation—Accident year development

The first effect is captured by the lognormal
random variable estimated for the next year of
development with respect to the accident year
under review. For example, for accident year
2004, which at the end of 2004 is age 1, the
lognormal distribution with ¹= 0:569 and ¾ =
0:016 models age 1 to 2 paid development. Then,
since the age 1 paid loss ratio is 26.6%, the paid
loss ratio distribution at age 2 is lognormal with
parameters ¹= ln26:6%+0:569 =¡0:756 and
¾ = 0:016, implying a mean of 47.0%.
If the mean age 2 to ultimate factor (the tail

factor) of 1.42 does not change, then the distribu-
tion of the revised chain ladder ultimate loss ratio
estimate at age 2 (i.e., one year out) has lognor-

mal parameters ¹= ln26:6%+0:569+ ln1:42 =
¡0:406 and ¾ = 0:016. The random variable for
this chain ladder estimate xCL can be expressed
as a function of the paid loss ratio random vari-
able xP and the expected value of the mean tail
factor:

xCL = xP ¢E(tail) (3.1)

The random variable xBF for the comparable
Bornhuetter-Ferguson estimate is a shifted ver-
sion of the random variable for the age 2 paid
loss ratio:

xBF = xP ¡E(xP) +E(xP) ¢E(tail) (3.2)

As defined by Formulas 3.1 and 3.2, both xCL
and xBF reflect the uncertain impact of accident
year 2004 development during 2005 on the up-
dated ultimate loss ratio estimate that will be
made at the end of 2005, but do not reflect the
potential impact of tail factor revision.
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3.3. Modeling the second source of
variation—Tail factor revision

The second effect, due to tail factor revision,
is captured by measuring the effect of the log-
normal loss development modeled for the next
year on the existing mean age-to-age and age-to-
ultimate factors. For example, the mean age 2 to
3 development factor shown in Table 1 is 1.198.
This is a mean of eight data points. What will
be the effect on the mean of adding a ninth data
point (representing 2005 development on acci-
dent year 2003), given that it will arise from a
lognormal distribution with parameters ¹= 0:181
and ¾ = 0:005 (and mean of 1.198)? The uncer-
tain ninth data point will contribute one-ninth
weight to the revised mean age-to-age factor.
There is no uncertainty about the existing mean
age 2 to 3 factor–it is a constant. Therefore,
the ¾ parameter of the distribution of the revised
mean age 2 to 3 factor one year out, given an
additional year of actual development, is given

by
q
( 89 ¢ 0)2 + (19 ¢ 0:005)2 = 0:001. The ¹ param-

eter is given by ln1:198¡ 0:5 ¢ 0:0012 = 0:181.
We can use the same process to estimate ¹ and
¾ parameters for the comparable distributions of
mean age-to-age factors one year out for all such
factors comprising the development tail.13 We
can then combine the revised mean age-to-age
factor parameters to determine the parameters of
the revised mean age-to-ultimate factor distribu-
tions. See Table 5 for a tabulation of the parame-
ters of these revised mean age-to-age and age-to-
ultimate distributions for all ages. The ¾ of the
distributions of revised factors for age 3 to 4 and
beyond is less than 0.0005 (and thus displayed
as 0.000 in Table 5), indicating that for Private
Passenger Auto Liability, the uncertainty arising
from the potential for tail factor revision is very

13Bear in mind that these parameters refer to distributions of the
mean age-to-age development factor one year out and not to dis-
tributions of the development factor itself. We are interested in the
distribution of the mean development factor because changes in the
mean directly affect the ultimate loss ratio estimate (which is also
a mean).

small. This is confirmed by the very narrow con-
fidences intervals.

3.4. Modeling the revised loss ratio
estimate one year out

We can now combine these two effects to de-
termine the distribution of the revised ultimate
loss ratio estimate that will be determined in one
year’s time based on the updated loss develop-
ment experience that will then be available.
To determine the distribution of the revised

chain ladder estimate, we start with the actual
accident year paid loss ratio, which we then mul-
tiply by the lognormal random variables for (1)
the age-to-age factor for the next year of devel-
opment (obtaining the random variable xP of the
paid loss ratio one year out) and (2) the revised
age-to-ultimate factor beyond the next year of
development. Using accident year 2004 as an ex-
ample, as of the end of 2004 the ultimate loss ra-
tio estimate is 66.7%, which has been determined
by multiplying the paid loss ratio of 26.6% first
by an age 1 to 2 factor of 1.767 and then by
an age 2 to ultimate factor of 1.420. In order to
model the ultimate loss ratio estimate one year
later, at the end of 2005, we replace the con-
stant age 1 to 2 factor of 1.767 with the lognor-
mal random variable with parameters ¹1 = 0:569
and ¾1 = 0:016. In addition, we replace the con-
stant age-to-ultimate factor of 1.420 with the log-
normal random variable with parameters ¹2 =
0:350 and ¾2 = 0:001. The expected values of
these two lognormal random variables are 1.767
and 1.420, respectively. The product of the
paid loss ratio (a constant) and these two log-
normal random variables is lognormal with pa-

rameters ¹= lnP+¹1 +¹2 and ¾ =
q
¾21 +¾

2
2,

where P represents the actual paid loss ratio at
the end of 2004, which, in this example, implies
¹=¡1:325+0:569+0:350 =¡0:406 and ¾ =p
1:0162 +0:0012 = 0:017.
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Table 6. Analysis of estimated ultimate loss ratios (chain ladder) one year out: private passenger auto liability, based on industry
aggregate experience through December 2004

Lognormal
First Effect Second Effect 95% Confidence

Accident Year Devt Tail Factor Revision
Estimated Est L/R Est L/R

Est ¹ for Est ¾ for Est ¹ for Est ¾ for Est ¹ for Est ¾ for Ultimate 1 Yr Out 1 Yr Out
Accident Devt Net Paid Actual 1-Yr Actual 1-Yr Revised Revised Est Ult L/R Est Ult L/R Loss Ratio (Lower (Upper
Year Age Loss Ratio LDF LDF Mean LDF Mean LDF 1 Yr Out 1 Yr Out 1 Yr Out Bound) Bound)

1995 10 72.1% 0.000 0.000 0.000 0.000 ¡0:327 0.000 72.1% 72.1% 72.1%
1996 9 70.8% 0.001 0.001 0.000 0.000 ¡0:344 0.001 70.9% 70.8% 71.0%
1997 8 68.2% 0.003 0.001 0.001 0.000 ¡0:378 0.001 68.5% 68.4% 68.6%
1998 7 68.9% 0.005 0.000 0.004 0.000 ¡0:363 0.001 69.6% 69.5% 69.6%
1999 6 73.3% 0.009 0.002 0.009 0.000 ¡0:293 0.002 74.6% 74.4% 74.8%
2000 5 76.7% 0.020 0.001 0.018 0.000 ¡0:228 0.001 79.6% 79.5% 79.8%
2001 4 72.0% 0.044 0.002 0.038 0.001 ¡0:247 0.002 78.1% 77.8% 78.4%
2002 3 63.0% 0.088 0.002 0.082 0.001 ¡0:292 0.003 74.6% 74.3% 75.0%
2003 2 47.7% 0.181 0.005 0.170 0.001 ¡0:389 0.005 67.8% 67.1% 68.4%
2004 1 26.6% 0.569 0.016 0.350 0.001 ¡0:406 0.017 66.7% 64.5% 68.8%
2005 0 0.0% ¡1:246 0.069 0.919 0.002 ¡0:327 0.069 72.3% 63.0% 82.6%

Generally, we can express the random variable
xCL as the product of the two lognormal random
variables xP and tail, representing the paid loss
ratio one year out and the mean tail factor:

xCL = xP ¢ tail (3.3)

Now we are in a position to determine confi-
dence intervals for the revised chain ladder ulti-
mate loss ratio estimate at the end of 2005. The
endpoints of the two-sided 95% confidence in-
terval are given by exp[¹¡N¡1(97:5%) ¢¾] and
exp[¹+N¡1(97:5%) ¢¾], which imply an esti-
mated loss ratio range one year out for accident
year 2004 of 64.5% to 68.8%, or approximately
66:7%§ 2:1%. Confidence intervals for ultimate
loss ratio estimates one year out for the other
accident years can be estimated in the same way
and are tabulated together with those for accident
year 2004 in Table 6.
To determine the distribution of the compa-

rable revised Bornhuetter-Ferguson estimate, we
replace the constant E(tail) in Formula 3.2 with
the random variable tail:

xBF = xP ¡E(xP)+E(xP) ¢ tail (3.4)

We can also determine confidence intervals for
the revised Bornhuetter-Ferguson loss ratio esti-
mate at the end of 2005. However, because the

sum of two lognormal random variables, in this
case xP and tail, is not expressible in closed dis-
tributional form, the confidence intervals must
be estimated using Monte Carlo simulation. The
results of a simulation involving 10,000 trials
are shown in Table 7. For each of the trials we
randomly selected observations from the distri-
butions of xP and tail, assuming independence,

and combined them according to Formula 3.4 to
arrive at a simulated Bornhuetter-Ferguson esti-
mate. After tabulating the results of 10,000 such
trials, we determined the lower and upper bounds
of the 95% confidence interval of the loss ra-
tio estimate by identifying the 2.5 percentile and
the 97.5 percentile of the trial values. Not sur-
prisingly, the 95% confidence intervals for the
revised Bornhuetter-Ferguson estimates are nar-
rower in every case than the revised chain ladder

estimates.

3.5. Modeling the revised loss ratio
estimate—Other time horizons

We can extend this process to longer time hori-
zons and determine the distribution of the ulti-
mate loss ratio estimate two years out, three years
out, and so on, until the time horizon encom-
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Table 7. Analysis of estimated ultimate loss ratios (Bornhuetter-Ferguson) one year out: private passenger auto liability, based
on industry aggregate experience through December 2004

Lognormal
First Effect Second Effect 95% Confidence*

Accident Year Devt Tail Factor Revision
Estimated Est L/R Est L/R

Est ¹ for Est ¾ for Expected Est ¹ for Est ¾ for Expected Ultimate 1 Yr Out 1 Yr Out
Accident Devt Net Paid Actual 1-Yr Actual 1-Yr Paid L/R Revised Revised Mean Tail Loss Ratio (Lower (Upper
Year Age Loss Ratio LDF LDF 1 Yr Out Mean LDF Mean LDF 1 Yr Out 1 Yr Out Bound) Bound)

1995 10 72.1% 0.000 0.000 72.1% 0.000 0.000 1.000 72.1% 72.1% 72.1%
1996 9 70.8% 0.001 0.001 70.9% 0.000 0.000 1.000 70.9% 70.8% 71.0%
1997 8 68.2% 0.003 0.001 68.4% 0.001 0.000 1.001 68.5% 68.4% 68.6%
1998 7 68.9% 0.005 0.000 69.3% 0.004 0.000 1.004 69.6% 69.5% 69.6%
1999 6 73.3% 0.009 0.002 73.9% 0.009 0.000 1.009 74.6% 74.4% 74.8%
2000 5 76.7% 0.020 0.001 78.2% 0.018 0.000 1.018 79.6% 79.5% 79.8%
2001 4 72.0% 0.044 0.002 75.2% 0.038 0.001 1.039 78.1% 77.8% 78.4%
2002 3 63.0% 0.088 0.002 68.8% 0.082 0.001 1.085 74.6% 74.3% 75.0%
2003 2 47.7% 0.181 0.005 57.2% 0.170 0.001 1.185 67.8% 67.2% 68.3%
2004 1 26.6% 0.569 0.016 47.0% 0.350 0.001 1.420 66.7% 65.1% 68.2%
2005 0 0.0% ¡1:246 0.069 28.8% 0.919 0.002 2.508 72.3% 68.6% 76.3%

*Based on Monte Carlo simulation of xBF = xp¡E(xp) +E(xp) ¢ tail

passes the point when all claims are expected to
have been settled. The modeling is conducted in
essentially the same way as for the one-year time
horizon. For example, in the case of a two-year
horizon, the first source of uncertainty (accident
year development) is modeled using the distri-
bution of the age j to j+2 development factor,
where j is the age in years of the accident year
under review. The second source of uncertainty
(potential tail factor revision) is modeled by ref-
erence to the potential effect of two additional
development data points on the mean tail fac-
tor for age j+2 to ultimate development. The
analysis of a three-year time horizon focuses on
accident year development from age j to j+3
and the tail factor from j+3 to ultimate, but is
otherwise identical to that for the one-year and
two-year time horizons. The analysis of the ul-
timate loss ratio estimate at points further in the
future proceeds in the same way.
Alternatively, we can model the path of the

ultimate loss ratio estimate as a succession of
annual revaluations. Figure 1 illustrates this by
plotting the results of one simulation of the path
of the accident year 2004 loss ratio estimates
through time for estimates determined from both

chain ladder and Bornhuetter-Ferguson methods.
It represents just one path among many possibili-
ties. The simulation was performed from the van-
tage point of the end of 2004. As such, it incor-
porates everything we know about actual loss de-
velopment through that time as well as what we
can infer about the structure of future develop-
ment. We started with the accident year 2004 loss
ratio estimate as of the end of 2004, which was
66.7%. Then, based on one random simulation
of loss development during calendar year 2005,
we made new chain ladder and Bornhuetter-
Ferguson estimates of the ultimate loss ratio as
of the end of 2005. We repeated the process for
calendar years 2006 through 2013, using the sim-
ulated cumulative loss development through each
valuation date. Figure 1 is a plot of the results. A
complete description of the probability structure
of the path can be built up from a simulation in-
volving a large number of random trials, or, in
the chain ladder case, directly from the properties
of the lognormal distribution.
In practice, there might not be much benefit in

determining the distribution of the chain ladder
ultimate loss ratio estimate for time horizons be-
tween one year and the ultimate horizon (when
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Figure 1. One path of the accident year 2004 ultimate loss ratio estimate.

all claims have been settled), at least for Private
Passenger Auto Liability.14 We see this in Ta-
ble 8, the top half of which compares the 95%
confidence intervals for the accident year 1995
through 2004 chain ladder loss ratio estimates
one year out with confidence intervals for the ac-
cident year loss ratio estimates over the ultimate
time horizon. If we contrast the 95% confidence
interval for accident year 2004 for the one-year
horizon with the 95% confidence interval for the
chain ladder loss ratio estimate over the ultimate
time horizon, we can see that the contribution
from the out years is dwarfed by the contribution
from the next 12 months. The 95% confidence
interval for the ultimate time horizon indicates
a range for the accident year 2004 loss ratio of
66:7%§ 2:3%, which is barely wider than the
range for just one year out. This is true not only
for accident year 2004, but also holds for acci-
dent years 1995 through 2003.

For example, the accident year 2003 confi-

dence interval of approximately 67:8%§ 0:7%

14There might be value in doing so for other lines that display more
loss development variability.

Table 8. Lognormal confidence intervals—ultimate loss
ratios for one year vs. ultimate time horizons: private
passenger auto liability, based on industry aggregate
experience through December 2004

95% Confidence Intervals—
Chain Ladder Estimates

Accident
Year Dec 2004 One-Year Horizon Ultimate Horizon

1995 72.1% 72.1% 72.1% 72.1% 72.1%
1996 70.9% 70.8% 71.0% 70.8% 71.0%
1997 68.5% 68.4% 68.6% 68.4% 68.6%
1998 69.6% 69.5% 69.6% 69.4% 69.7%
1999 74.6% 74.4% 74.8% 74.3% 74.8%
2000 79.6% 79.5% 79.8% 79.3% 80.0%
2001 78.1% 77.8% 78.4% 77.7% 78.5%
2002 74.6% 74.3% 75.0% 74.1% 75.2%
2003 67.8% 67.1% 68.4% 67.0% 68.6%
2004 66.7% 64.5% 68.8% 64.4% 69.0%

95% Confidence Intervals—
B-F Estimates

Accident
Year Dec 2004 One-Year Horizon Ultimate Horizon

1995 72.1% 72.1% 72.1% 72.1% 72.1%
1996 70.9% 70.8% 71.0% 70.8% 71.0%
1997 68.5% 68.4% 68.6% 68.4% 68.6%
1998 69.6% 69.5% 69.6% 69.4% 69.7%
1999 74.6% 74.4% 74.8% 74.3% 74.8%
2000 79.6% 79.5% 79.8% 79.3% 80.0%
2001 78.1% 77.8% 78.4% 77.7% 78.5%
2002 74.6% 74.3% 75.0% 74.1% 75.2%
2003 67.8% 67.2% 68.3% 67.0% 68.6%
2004 66.7% 65.1% 68.2% 64.4% 69.0%
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for a one-year time horizon is almost as wide as
that for the time horizon to ultimate of 67:8%§
0:8%. For all of the older accident years, the first
year of future development accounts for more
than half of the variation associated with the ul-
timate time horizon.
This phenomenon is not confined to loss ra-

tio estimates over short vs. longer time horizons.
The same effect is also seen in other situations
not related to insurance, where variability is a
function of time. For example, given the common
assumption that future stock price movements
are lognormally distributed and independent, the
95% confidence interval for a stock price one
year out, given constant annualized volatility of
¾ = 20% and an expected value of $66.70, is
$45.07 to $98.71, a range of $53.64. Assum-
ing the same expected value of $66.70, the 95%
confidence interval for the stock price two years
out is $38.22 to $116.11, a range of $77.80. The
confidence interval range for the one-year time
horizon stock price is 69% of the price range for
the two-year time horizon. The reason for the dis-
proportionate impact of the first period is that the
confidence interval is not a linear function of ¾
but rather of ¾

p
t, where t represents the time lag

in years. In the case of chain ladder ultimate loss
ratio estimation, where the age-to-age ¾ typically
declines as the accident year ages, this effect can
be even more pronounced.
Turning now to the Bornhuetter-Ferguson esti-

mates, which are inherently less variable, the ef-
fect is smaller but still evident. The bottom half
of Table 8 compares the 95% confidence inter-
vals for accident year 1995 through 2005 loss
ratio estimates one year out with the confidence
intervals for the loss ratio estimates over the ulti-
mate time horizon. In the Private Passenger Auto
Liability example considered here, the 95% con-
fidence interval for the accident year 2004 loss
ratio estimate is approximately 66:7%§ 1:6%,
which is about two-thirds of the range of the con-
fidence interval for estimates at the ultimate time

horizon. For all of the older accident years, as in
the case of the chain ladder estimates, the first
year of future development accounts for more
than half of the variation associated with the ul-
timate time horizon.

3.6. Modeling the loss ratio estimate at
inception

Up to this point we have focused on modeling
the distribution of the ultimate loss ratio after
losses have begun to emerge. However, there is
no reason why we cannot extend essentially the
same procedure backward to the inception of loss
exposure at age 0. Indeed, the benefit of doing
so is that we can obtain a complete model of the
path of the ultimate loss ratio from inception to
ultimate.
The main difference in the procedure is that

the lognormal model for loss emergence between
age 0 and 1 describes the behavior of the paid
loss ratio rather than an age-to-age factor. The
rest of the analysis is merely an application of
Formula 3.3.
For example, assume for the sake of illustra-

tion that the age 1 paid loss ratios in Table 1
are lognormally distributed and reflect “on level”
adjustments to the accident year 2005 level. The
mean age 1 paid loss ratio is 28.8%, which we
can take as an estimate of the 2005 “on level”
age 1 paid loss ratio. The unbiased estimates of
the parameters of the lognormal distribution rep-
resenting the paid loss ratio at age 1 are ¹=
¡1:246 and ¾ = 0:069. These parameters imply
a lognormal mean paid loss ratio of 28.8% that
matches the sample mean. The age 1 to ultimate
development factor of 2.508 implies an ultimate
loss ratio estimate at inception of 72.3%.
Applying the lognormal multiplicative rule de-

scribed in Section 2, the parameters of the log-
normally distributed ultimate loss ratio (at the
ultimate time horizon) are ¹=¡1:246+0:919 =
¡0:327 and ¾ =

p
0:0692 +0:0182 = 0:071, im-

plying a 95% confidence interval of 62.8% to
82.9%, a range of 20.1%. The parameters of the
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Table 9. Log t confidence intervals for paid loss development factors reflecting parameter uncertainty: private passenger auto
liability, based on industry aggregate experience through December 2004

Supporting Information for Log t Log t
Confidence Interval Determination 95% Confidence Ratio to Lognormal

Paid Loss Degrees of LDF LDF At At
Development Sample Freedom Lower LDF Upper Lower Upper
Period Size n n¡1** T¡1

n¡1(97.5%) Bound Mean Bound Bound Bound

Age-to-age factors

9–Ult* 1 3 3.182 0.998 1.001 1.004 0.998 1.002
8–9 2 3 3.182 1.000 1.003 1.005 0.999 1.001
7–8 3 3 3.182 1.004 1.005 1.006 0.999 1.001
6–7 4 3 3.182 1.004 1.009 1.015 0.998 1.002
5–6 5 4 2.776 1.017 1.020 1.023 0.999 1.001
4–5 6 5 2.571 1.039 1.045 1.050 0.998 1.002
3–4 7 6 2.447 1.085 1.092 1.099 0.998 1.002
2–3 8 7 2.365 1.184 1.198 1.212 0.997 1.003
1–2 9 8 2.306 1.697 1.767 1.839 0.992 1.008

Age-to-ultimate factors***

9–Ult* 0.998 1.001 1.004 0.998 1.002
8–Ult 1.000 1.004 1.008 0.998 1.002
7–Ult 1.005 1.009 1.013 0.998 1.002
6–Ult 1.011 1.018 1.025 0.997 1.003
5–Ult 1.031 1.039 1.047 0.997 1.004
4–Ult 1.075 1.085 1.095 0.996 1.004
3–Ult 1.171 1.185 1.198 0.996 1.004
2–Ult 1.397 1.420 1.443 0.996 1.005
1–Ult 2.401 2.508 2.619 0.991 1.009

* Age 10 deemed to be ultimate
** Judgmentally limited to a minimum of 3. (Variance not defined, if d.f. < 3.)
***From Monte Carlo simulation (10,000 trials)

ultimate loss ratio one year out are ¹=¡1:246
+0:919 =¡0:327 and ¾ =

p
0:0692 +0:0022 =

0:069. The indicated 95% confidence interval is
63.0% to 82.6%, a range of 19.6%. These calcu-
lations are summarized in Table 6.
The comparable Bornhuetter-Ferguson esti-

mate can be determined by applying Formula
3.4. Table 7 shows that the 95% confidence in-
terval for the revised Bornhuetter-Ferguson es-
timate of the accident year 2005 loss ratio one
year out is 68.6% to 76.4%, a range of 7.8%.

4. Adjusting the model for
parameter uncertainty

In Section 2 we explained that, given the
observations x1,x2,x3, : : : ,xn arising from a log-
normal process and the natural logarithms of the
same observations y1,y2,y3, : : : ,yn (where yi =

lnxi), the mean ȳ and standard deviation s of the
log-transformed sample are unbiased estimators
of the lognormal process parameters ¹ and ¾,
respectively. The parameter selections ¹= ȳ and
¾ = s define the lognormal distribution f(x j ¹,¾)
that best fits the data, using unbiasedness as the
criterion for “best.”
However, while these are good estimates of

the parameters, there is uncertainty about their
true values. Fortunately, by combining informa-
tion contained in the sample with results from
sampling theory, it is possible to determine the
mixed distribution f(x) that reflects the probabil-
ity weighted contribution of all of the potential
parameter values.15 Wacek [15] showed that f(x)

15This assumes that the historical data and future observations are
samples from the same distribution. To the extent that future eco-
nomic, regulatory, and market conditions are different from those
of the past, there will be additional sources of parameter uncertainty
beyond those measured here.

186 CASUALTY  ACTUAR IAL  SOC IETY  V O L U M E  0 1 / I S S U E  0 2



The Path of the Ultimate Loss Ratio Estimate

defines a “log t” distribution16 and in particular
that the random variable y = lnx is Student’s t
with n¡ 1 degrees of freedom, mean ȳ and vari-
ance s2 ¢ (n+1)=n ¢ (n¡ 1)=(n¡ 3).17

4.1. Log t confidence intervals

The bounds of the two-sided log t 95% confi-
dence interval are given by exp[ȳ¡T¡1n¡1(97:5%)
¢s ¢p(n+1)=n] and exp[ȳ+T¡1n¡1(97:5%) ¢ s ¢p
(n+1)=n], respectively, where T¡1n¡1(97.5%) is

the value of the standard Student’s t cdf with
n¡ 1 degrees of freedom corresponding to a cu-
mulative probability of 97.5%.18 Two-sided 95%
confidence intervals for Private Passenger Auto
Liability age-to-age factors, based on the log t
distribution, are shown in Table 9. Unfortunately,
the log t distribution does not share the multi-
plicative property of the lognormal. As a result,
we cannot specify the distribution of age-to-ulti-
mate development factors in closed form. In-
stead, the age-to-ultimate factor distributions and
related confidence intervals must be estimated
using a Monte Carlo simulation procedure that
determines the age-to-ultimate factor from the
underlying age-to-age factors for each random
trial.
In the top section of Table 9, we have tabulated

the indicated log t 95% confidence intervals for
age-to-age factors based on the industry Private
Passenger Auto Liability 2004 Schedule P data,
together with the ratios of these confidence inter-
val bounds to the lognormal confidence interval
bounds given in Table 4. In addition, we have
tabulated the sample size for each development
period as well as T¡1n¡1(97.5%) and the degrees
of freedom used in the calculations. At the risk
of being seen as statistically less than rigorous,
we set a minimum degrees of freedom value of

16The log t bears the same relationship to the Student’s t distribution
that the lognormal bears to the normal.
17Note that if we used the maximum likelihood estimator s2ml =Pn

i=1((yi ¡ ȳ)2=n), the variance of this Student’s t distribution
could be expressed as s2ml ¢ (n+1)=(n¡ 3).
18T¡1

n¡1(97.5)% is replicated in Excel by TINV(0:05,n¡ 1).

3 for purposes of calculating the confidence in-
tervals to avoid using log t distributions with an
undefined variance.
The log t confidence intervals shown in Table 9

for age-to-age factors are very close to the log-
normal confidence intervals given in Table 4. The
largest difference is in the age 1 to 2 factor, where
the upper bound of the log t interval is 1.839,
which is only 0.8% larger than the lognormal up-
per bound of 1.824. The percentage differences
for the other age-to-age factors are smaller.
In the lower section of Table 9, we have tab-

ulated the 95% confidence intervals for age-to-
ultimate factors indicated by a Monte Carlo sim-
ulation involving 10,000 trials. As was the case
with the age-to-age factors, the differences be-
tween the log t confidence intervals and lognor-
mal confidence intervals for the age-to-ultimate
factors are quite small. For example, the largest
difference is in the age 1 to ultimate confidence
interval, where the upper bound of the log t in-
terval is 2.619. This is only 0.9% larger than the
lognormal upper bound of 2.595. The percentage
differences for the other age-to-ultimate factors
are smaller. This suggests that, at least for Private
Passenger Auto Liability at the industry level, the
effect of parameter uncertainty is small enough
that it can be ignored. However, that is probably
not the case for individual insurers, particularly
small ones, writing Private Passenger Auto Lia-
bility or for other lines of business.

4.2. Log t simulation of development
factors

In the Monte Carlo simulation of age-to-ulti-
mate factors, for each trial we randomly selected
one age-to-age factor from each of the log t dis-
tributions representing development from age 1
to 2, age 2 to 3, : : : , age 9 to 10. Treating age
10 as ultimate, we then multiplied these age-to-
age factors in the usual way to determine a set
of age-to-ultimate factors for that trial. After the
results of the 10,000 trials were tabulated, we de-
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Table 10. Monte Carlo simulation of estimated ultimate loss ratio for accident year 2004 one year out: illustration of one
random trial reflecting parameter uncertainty, private passenger auto liability, based on industry aggregate experience through
December 2004

Degrees Uniform Random Random
of Random LDF: LDF:

Devt Expected Sample Freedom Number Accident Revised
Period LDF Size n n¡1** R T¡1

n¡1(R) ȳ s Yr Devt* Tail*
r
n+ 1
n

9–Ult*** 1.001 2 3 0.561 0.167 0.001 0.000 1.225 1.001
8–9 1.003 3 3 0.074 ¡1:938 0.003 0.000 1.155 1.002
7–8 1.005 4 3 0.084 ¡1:810 0.005 0.000 1.118 1.005
6–7 1.009 5 4 0.484 ¡0:043 0.009 0.000 1.095 1.009
5–6 1.020 6 5 0.899 1.468 0.020 0.000 1.080 1.020
4–5 1.045 7 6 0.128 ¡1:255 0.044 0.000 1.069 1.044
3–4 1.092 8 7 0.131 ¡1:220 0.088 0.000 1.061 1.092
2–3 1.198 9 8 0.396 ¡0:273 0.181 0.001 1.054 1.198
1–2 1.767 9 8 0.116 ¡1:293 0.569 0.016 1.054 1.727

1.727 1.418

Revised Chain Ladder Loss Ratio Estimate One Year Out = Paid Loss Ratio x Actual Acc Year Devt x Revised Tail Factor

= 26:6%£1:727£1:418 = 65:1%

Revised B-F L/R Loss Ratio Estimate One Year Out = Actual Paid L/R - Expected Paid L/R + Expected Paid L/R x Revised Tail Factor

= (26:6%£1:727)¡ (26:6%£1:767) + (26:6%£1:767)£1:418 = 65:6%

* = exp(ȳ +T¡1
n¡1(R)¡ s

p
(n+ 1)=n)

** Judgmentally limited to a minimum of 3. (Variance not defined, if d.f. < 3.)
***Age 10 deemed to be ultimate

termined the lower and upper bounds of the 95%
confidence interval for each age-to-ultimate fac-
tor (age 1 to ultimate, age 2 to ultimate, etc.) by
identifying the 2.5 percentile and the 97.5 per-
centile of the 10,000 trial values.
To make the random age-to-age factor selec-

tions, we started with a random draw R from
the uniform distribution defined on the interval
[0,1]. Because R has a value between 0 and 1, it
can be treated as though it is a cumulative prob-
ability. The number T¡1n¡1(R) that corresponds to
a standard Student’s t cumulative probability of
R is a random number from the standard Stu-
dent’s t distribution with n¡ 1 degrees of free-
dom, which has a mean of zero and a variance of
(n¡ 1)=(n¡ 3). More generally, the correspond-
ing random number from the Student’s t distri-
bution with n¡ 1 degrees of freedom, mean M
and variance C2 ¢ (n¡ 1)=(n¡ 3) is given by M +
T¡1n¡1(R) ¢C, which corresponds to a random num-
ber of exp[M +T¡1n¡1(R) ¢C] from the related log t
distribution. Substituting the appropriate values
of ȳ for M and s

p
(n+1)=n for C, we obtain

exp[ȳ+T¡1n¡1(R) ¢ s
p
(n+1)=n] as the value of a

randomly selected age-to-age factor.
Putting some numbers to it, a draw of R =

0:873 implies a random age 1 to 2 development
factor from the corresponding log t with 8 de-
grees of freedom of exp(0:569+1:229 ¢ 0:016 ¢p
10=9) = 1:803.19 If the next draw is R = 0:239,

then the random age 2 to 3 factor, drawn from the
corresponding log t with 7 degrees of freedom,
is exp(0:181+ (¡0:749) ¢ 0:005p9=8) = 1:194.
Random numbers corresponding to the other
development periods are similarly obtained.
Then the age 1 to ultimate factor, the age 2 to ul-
timate factor, age 3 to ultimate factor, and so
on, are obtained by multiplication. Tabulation of
these results completes the first trial. The pro-
cess is repeated in the same way for 10,000
trials.

19T¡1
n¡1(R) is replicated in Excel by TINV(2(1¡R),n¡ 1) if R >

0:5, and ¡TINV(2R,n¡ 1), if R · 0:5. TINV assumes users are
interested in two-tailed applications and therefore takes as its first
argument the total two-tail probability. It returns values only from
the right half of the distribution.
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4.3. Log t simulation of future loss ratio
estimates
Under conditions of parameter uncertainty, the

distribution of future loss ratio estimates must
also be modeled using Monte Carlo simulation.
Each of the lognormal age-to-age development
components identified in Section 3 must be re-
placed with corresponding log t components.
For example, to estimate the distribution of

the updated chain ladder estimate of the accident
year 2004 ultimate loss ratio at the end of 2005,
given the year-end 2004 estimate of 66.7%, we
tabulated 10,000 randomly obtained year-end
2005 loss ratio estimates. To determine each loss
ratio estimate, we randomly selected from the
log t distributions that represent the factors that
contribute to the uncertainty in that estimate. For
each trial we randomly selected one factor from
the distribution of accident year 2004 develop-
ment during 2005 and one factor from each of
the age-to-age factor distributions that contribute
to the revised tail factor. Then we multiplied all
of these factors and the paid loss ratio as of year
end 2004 to arrive at the ultimate loss ratio esti-
mate for that trial.
This is illustrated in detail in Table 10 for one

trial, where the simulated actual accident year
2004 age 1 to 2 development factor is 1.727
(compared to an expected factor of 1.767) and
the revised tail factor is 1.418 (compared to an
expected 1.420). The product of the year-end
2004 paid loss ratio and these two factors is the
revised estimated ultimate loss ratio for accident
year 2004 as of the end of 2005.
To arrive at approximate distributions of re-

vised chain ladder ultimate loss ratio estimates
for all of the accident years 1995 through 2004
as of the end of 2005, the process described in the
preceding paragraph was repeated 10,000 times
for each accident year.20 The results of this pro-

20Note that largely because their tail factors overlap, the accident
year 1995 through 2004 ultimate loss ratio estimates are not in-
dependent, and for that reason their distributions were modeled
simultaneously. To give one example of the tail factor overlap, the

Table 11. Log t confidence intervals—ultimate loss ratios, for
one year vs. ultimate time horizons: private passenger auto
liability, based on industry aggregate experience through
December 2004

95% Confidence Intervals—
Chain Ladder Estimates

Accident
Year Dec 2004 One-Year Horizon Ultimate Horizon

1995 72.1% 72.1% 72.1% 72.1% 72.1%
1996 70.9% 70.7% 71.1% 70.7% 71.1%
1997 68.5% 68.3% 68.7% 68.3% 68.8%
1998 69.6% 69.4% 69.7% 69.3% 69.8%
1999 74.6% 74.2% 75.0% 74.1% 75.1%
2000 79.6% 79.3% 79.9% 79.0% 80.3%
2001 78.1% 77.7% 78.5% 77.4% 78.9%
2002 74.6% 74.1% 75.1% 73.8% 75.5%
2003 67.8% 66.9% 68.6% 66.7% 68.9%
2004 66.7% 64.0% 69.4% 63.8% 69.6%

95% Confidence Intervals—
B-F Estimates

Accident
Year Dec 2004 One-Year Horizon Ultimate Horizon

1995 72.1% 72.1% 72.1% 72.1% 72.1%
1996 70.9% 70.7% 71.1% 70.7% 71.1%
1997 68.5% 68.3% 68.7% 68.3% 68.8%
1998 69.6% 69.4% 69.7% 69.3% 69.8%
1999 74.6% 74.2% 75.0% 74.1% 75.1%
2000 79.6% 79.3% 79.9% 79.0% 80.3%
2001 78.1% 77.7% 78.5% 77.4% 78.9%
2002 74.6% 74.2% 75.1% 73.8% 75.5%
2003 67.8% 67.1% 68.4% 66.7% 68.9%
2004 66.7% 64.8% 68.5% 63.8% 69.6%

cess are summarized in Table 11, which, as the
log t version of Table 8, compares the 95% confi-
dence intervals for the accident year 1995—2004
loss ratio estimates one year out with the con-
fidence intervals for the estimates over the ul-
timate time horizon. The chain ladder estimates
are summarized in the top half of the table and
the Bornhuetter-Ferguson estimates in the bot-
tom half. As we observed in the lognormal case,
much of the potential variation in the ultimate
loss ratio estimates that is expected over the time
horizon to ultimate is encompassed in the varia-
tion expected over a one-year time horizon. For
example, the log t 95% confidence interval for
the chain ladder estimate of the accident year
2004 loss ratio one year out of 66:7%§ 2:7% is

mean age 8 to 9 factor of 1.002 shown in Table 10, which illustrates
the calculation of the accident year 2004 ultimate loss ratio esti-
mate for one Monte Carlo trial, was also used in the calculation of
ultimate loss ratio estimates for accident years 1996 through 2003.
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nearly as wide as the 95% confidence interval of
66:7%§ 2:9% for the same loss ratio over the ul-
timate time horizon. Similarly, the accident year
2003 confidence interval for the chain ladder es-
timate of approximately 66:7%§ 0:9% for a one-
year time horizon is also nearly as wide as that
for the time horizon to ultimate of 67:8%§ 1:1%.
For the older accident years, the proportion of the
variation associated with the ultimate time hori-
zon accounted for by the first year of future de-
velopment is somewhat smaller, but the absolute
size and significance of the confidence intervals
for those years is much smaller.
Note that the log t confidence intervals are at

least as wide in every case as the comparable
lognormal confidence intervals shown in Table 7.
In fact, in the case of the chain ladder estimates,
for every accident year 1995—2004 the log t con-
fidence intervals for the one-year time horizon
are at least as wide as the lognormal confidence
intervals for the ultimate time horizon!

5. Conclusions

There are a number of potential applications
of the framework we have described for mod-
eling future estimates of the ultimate loss ratio,
ranging from loss reserving to pricing to analysis
of risk-based capital. While a detailed discussion
of these applications is beyond the scope of this
paper, we will touch briefly on some examples.

5.1. Loss reserving

The framework presented in this paper gives
reserve actuaries a way to manage their clients’
expectations. Reserve clients don’t like surprises
and often express frustration that loss ratio or
reserve estimates change significantly from one
period to the next. We have shown in this pa-
per that a large proportion of the potential vari-
ation in ultimate estimates can be present in the
first year of future development. As we saw in
the Private Passenger Auto Liability example we

presented, this phenomenon is particularly pro-
nounced when the estimates are determined us-
ing the chain ladder method, but it can also be
present if the estimates are derived from the
Bornhuetter-Ferguson approach. It seems likely
that most reserve clients do not understand this
phenomenon. Actuaries have done a good job in
getting clients to understand that ultimate loss
estimates are subject to large potential variation,
but many clients seem to expect that variation to
emerge only in the distant future, if at all.
We suggest that the uncertainty in loss ratio

and reserve estimates be framed in terms of how
these estimates might change at the next valua-
tion by presenting the ultimate estimates together
with confidence intervals consistent with the val-
uation time horizon. For example, if the next
valuation will be in one year, then the results
would be presented with one-year time horizon
confidence intervals. Then, because the poten-
tial variation has been explained to them in ad-
vance, clients might be better able to accept the
revised estimates produced at the next valuation.
This framework also naturally facilitates the ex-
planation of the reasons for estimate revisions in
terms of the sources of variation. For example,
how much of the revision is due to actual acci-
dent year development and how much is due to a
tail factor revision caused by loss emergence on
the older accident years?
While we have focused much of our discussion

on historical accident years and thus implicitly
on reserving, we can easily extend this frame-
work to encompass certain aspects of the pricing
and underwriting, which can be used to assess
risk load requirements and reinsurance risk trans-
fer characteristics as well as to establish expec-
tations for paid loss emergence during the first
year after inception.

5.2. Risk-based capital

The framework described can also be applied

to analysis of the issues outlined by Butsic [3]
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in his paper on solvency measurement in risk-
based capital applications. He advocated the use
of a common time horizon for measurement of
all kinds of risks on both sides of the balance
sheet. He showed how long-term solvency pro-
tection could be achieved by periodic assessment
and adjustment of risk-based capital using a short
time horizon, e.g., one year. In particular, But-
sic proposed that the risk-based capital charge
at the beginning of each period be calibrated to
a suitably small Expected Policyholder Deficit
(EPD)21 expressed as a ratio to expected unpaid
losses. The capital charge would be reset at the
beginning of each new period based on asset
and/or liability changes during the period just
ended. While he illustrated his approach with nu-
merical examples, he did not describe a model
for how claim liabilities change from one pe-
riod to the next. The model presented in this
paper, using parameters determined from Sched-
ule P data, could be used together with Butsic’s
approach to test and refine the capital charges
employed in the NAIC and rating agency
risk-based capital models.22 Moreover, to the
extent that these risk-based capital charges
imply the minimum amount of capital needed
by an underwriter to assume risk, the model
potentially has application to the problem of
capital allocation for pricing applications as
well.

5.3. Other stochastic loss development
models

We have used Hayne’s simple lognormal
model to illustrate how to model the future be-
havior of loss ratio estimates. However, the same

21The EPD is defined as the expectation of losses exceeding avail-
able assets. It can be viewed as the expected value of the proportion
of policyholder claims that will be unrecoverable because of insurer
insolvency.
22For stress testing these solvency models it may make sense to
use the chain ladder model, which produces more variable loss
ratio estimates, rather than the Bornhuetter-Ferguson model.

conceptual approach can be used with other sto-
chastic models. If ultimate loss ratios are esti-
mated using a different stochastic model, the path
of future revisions to those ultimate loss ratio
estimates can be determined using the ideas pre-
sented in this paper.

Abbreviations and notations

¹, first parameter of lognormal, E(ȳ) = ¹
¾, second parameter of lognormal, E(s2) = ¾2

EPD, expected policyholder deficit
f(x j ¹,¾), distribution of x, given known param-

eters ¹,¾
f(x), distribution of x (unknown parameters)
n, number of points in sample
N¡1(prob), standard normal inverse distribution

function
P, actual paid loss ratio
R, random number from unit uniform distribu-

tion
s, standard deviation of log-transformed sample
T¡1n¡1(prob), standard student’s t inverse distribu-

tion function
tail, random variable for mean tail factor one

year out
x1,x2,x3, : : : ,xn, lognormal sample
xBF , Bornhuetter-Ferguson estimate of ultimate

loss ratio
xCL, chain ladder estimate of ultimate loss ratio
xP , cumulative paid loss ratio
y1,y2,y3, : : : ,yn log-transformed sample
ȳ, mean of log-transformed sample
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