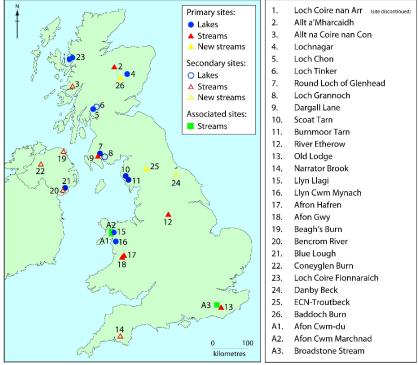
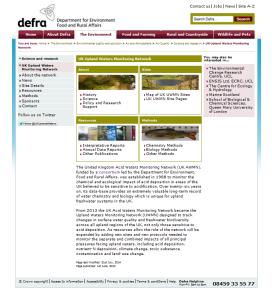
30 years of aquatic macrophyte monitoring with the UK Upland Waters Monitoring Network


Ewan Shilland & Don Monteith


(based on a science partnership of UCL, CEH, QMUL and SG; supported by DEFRA, DOENI, Forestry Commission, NRW, SEPA, SG, SNH, WG, NERC CEH, ENSIS Ltd. & several volunteers)

UWMN Introduction

- Set up in 1988 to assess the chemical and biological response of acidified lakes and streams to emission reductions
- Originally 22 sites across UK in N-S, E-W gradients, with afforested and nonafforested pairs and NW "control" sites
- Water chemistry, fish, invertebrates, macrophytes, diatoms, temperature & physical variables at some sites eg flow
- Demonstrated the effects of reductions in S emissions – reduced xSO4
- Clear recovery evidence from chemistry but biological lags
- Despite N emission reductions demonstrated variable changes in NO3
- Demonstrated upwards trends in Dissolved Organic Carbon (DOC)

UWMN Macrophyte Sampling & Funding

SITE	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Loch Coire nan Arr																														
Allt a Mharcaidh																														
Allt na Coire nan Con													spate								spate		spate			half		spate	spate	spate
Lochnagar																											half			
Loch Chon																														
Loch Tinker																														
Round Loch of																														
Loch Grannoch																														
Dargall Lane																										half				
Scoat Tarn																														
Burnmoor Tarn																														
River Etherow																														
Old Lodge																										half				
Narrator Brook																										half				
Llyn Llagi																														
Llyn Cwm Mynach																														
Afon Hafren																														
Afon Gwy																														
Beaghs Burn																			spate											
Bencrom River															spate											half				
Blue Loch																														
Coneyglen Burn													spate						spate											
Loch Coire Fionnaraich																														
Danby Beck																										half				
Baddoch Burn																														
							DTM ill																							
		No plar	nned sa	mpling																										
		Funded, sampled and analysed																												
		Funded but unsampled (usually due to spate))																						
		Unfund																												
		Unfund					ł																							
				, I not sar																										
			d sampli																											
				-																										

1988 - 1990 Paul Raven.1991 - 2007 Don Monteith.2003 - 2017 Ewan Shilland.

UWMN Macrophyte Methods - Streams

- Fixed 50 m section of stream
- Transect every 5 m from 0-50 m inclusive, substrate and macrophyte taxa (if any) recorded at three equidistant points.
- In the 5 m stream sections between each transect the stream bed is surveyed and the total amount of filamentous algae, plant cover (expressed as a percentage of submerged stream bed) and floristic composition of the plant assemblages are estimated visually
- Substrate composition of the stream bed and percentage shade also recorded in these 5 m sections
- Digital photographs taken of each 5 m section
- Major morphological features and the location of notable growths of plants in the channel are annotated on to large scale sketch maps.
- Data summarised in annual reports showing estimated percentage of submerged stream bed throughout the 50 m length covered by each taxon.

UWMN Macrophyte Methods - Lakes

- Inshore survey
 - Inshore zone viewed either by walking the shoreline, wading or from a slow-moving boat. Emergent, floating and submerged macrophytes recorded and major stands annotated on a large scale map.
- Transect survey
 - Two to four fixed-point survey transects of 60 m in length. A fixed line is deployed along the transect and two replicates of water depth, substrate type, amount of plant material and relative abundance of species recorded at 10 m intervals, with an additional site 5 m from the shore.
- Trawl survey
 - Two to four transverse trawls are made across the lake by trawling a double headed rake attached to a long rope behind a boat travelling at a steady speed. Each traverse sub-divided into five approximately equal trawl sections for which the amount of plant material recovered and relative abundance of individual macrophyte taxa are recorded.
- Since 2009 Common Standards Monitoring Methodology for lake macrophyte sampling performed alongside the UK UWMN protocol.
 - Two to four additional 100 m shoreline transects
 - Strandline species recorded
 - Lake transects using both methods.
 - Long day..

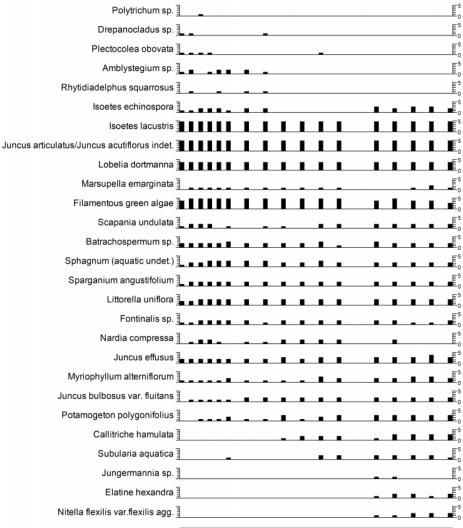
UWMN Macrophyte Results

site	species											samj	ple y	year	S									
LAKES		95	96	97	98	99	00	01	02	03	04	05	06	07	08	09	10 1	11 1	12 1	3 1	14 1	5	16 1	7
Lochnagar	Subularia aquatica	Х	•	X	•	X	•	Χ	•	X	·	Х	•	•	•	1	•	•			< - 1	•	• •	
	Elatine hexandra	\checkmark	٠	√	٠	√	٠	Х	٠	Х	٠	Χ	٠	•	٠	٠	• •	•	< •		•		• •	
Loch Chon	Subularia aquatica	\checkmark	•	✓ -	•	√	•	\checkmark	٠	\checkmark	٠	\checkmark	٠	•	•	•	• •	•	< •		•	•	• •	· (5 5)
	Chara virgata	Х	٠	X	•	✓ -	•	\checkmark	•	\checkmark	٠	\checkmark	•	•	•	•	•	•	< •		•	•	• •	· Stand From
Loch Tinker	Subularia aquatica	\checkmark	٠	< _	•	Х	•	Х	•	\checkmark	٠	\checkmark	•	•	•	\checkmark	•	•	< •		•		• •	
Round Loch of Glenhead	Myriophyllum alterniflorum	Х	٠	Х	٠	Х	٠	Х	•	\checkmark	٠	\checkmark	٠	•	•	\checkmark	•	•	× •		< - 1		• 🗸	
	Elatine hexandra	\checkmark	٠	X	٠	Χ	٠	Χ	٠	Х	٠	Χ	٠	٠	Χ	٠	• •	•			< 1		• •	
Purpmoor Torp	Chara virgata	Х	٠	Х	٠	Х	٠	Х	٠	\checkmark	٠	\checkmark	٠	•	\checkmark	٠	•	•	< •		< - 1	•	• •	· CARAN
Burnmoor Tarn	Nitella translucens	Х	٠	X	•	Х	•	Х	•	Х	٠	Х	٠	•	\checkmark	•	•	•	< •		\checkmark	•	• •	
	Potamogeton berchtoldii	Х	٠	Х	٠	Х	•	Х	•	Х	٠	Х	•	•	Х	•	•	•	< •		< - 1	•	• •	
	Callitriche hamulata	Χ	٠	Х	•	√	•	1	٠	\checkmark	٠	\checkmark	٠	•	•	\checkmark	•	< I	• •	<u> </u>	•		• 🗸	A NY
Llyn Llagi	Nitella flexilis agg.	х	•	Х	•	Х	•	Х	٠	Х	٠	х	٠	•	•	\checkmark	•	1	• •		•	1	• •	A L' Dr Dr
	Elatine hexandra	Х	٠	X	•	Х	•	Х	•	Х	٠	Х	•	•	•	\checkmark	•	$\langle \cdot \rangle$	•	\sim	•	1	• 🗸	
Live Cure Mussel	Eleogiton fluitans	Х	•	X	•	<	•	1	•	\checkmark	٠	\checkmark	•	•	\checkmark	•	× 1	•	< •		< - (• 🗸	
Llyn Cwm Mynach	Isoetes lacustris	Х	٠	X	•	✓ -	•	\checkmark	•	\checkmark	٠	\checkmark	•	•	Х	•	Х	•	< •		\checkmark	•	• 🗸	to for) lot
STREAMS																								and a start
Allt na Coire nan Con	Fontinalis antipyretica	Χ	X	Х	Х	Х	•	Х	Х	Χ	Х	Х	Х	1	•	\checkmark	•	< - 1	< - v	<u> </u>	•		• •	· · ··································
Dargall Lane	Blindia acuta	Х	X	X	Х	Х	Х	Х	Х	\checkmark	$\neg \checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	•	•	• •		•		• •	
	Hygrohypnum ochraceum	Х	X	X	Х	Χ	Х	Х	Χ	Χ	Χ	\checkmark	Χ	\checkmark	\checkmark	\checkmark	1	< - 1	< <		V - 1	1	× -	UWMN sites with new macrophyte
River Etherow	Hyocomium armoricum	Х	X	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ	Х	1	1	< .	1	< - ·	1	< <	taxa since 1995
Old Lodge	Hyocomium armoricum	Х	X	X	Х	Х	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	\checkmark	1	< - 1	< - v		< - 1	1	<	Karring
	Hyocomium armoricum	Χ	X	X	Х	Χ	Χ	Х	\checkmark	\checkmark	Χ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	< - 1	< <		V - 1	1	< - √	
Afon Hafren	Fontinalis antipyretica	Х	X	X	Х	х	х	х	Х	Χ	Χ	Χ	Χ	Χ	Χ	\checkmark	X	Κ 3	X 🗸	1	1	K I	X 🗸	
	Marsupella emarginata	Х	X	X	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	XJ	K I	< <	1	X J	ζ.	< <	
Afon Gwy	Hyocomium armoricum	Χ	X	X	Х	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	\checkmark	\checkmark	X	1	< <		< - 1	1	< <	
Coneyglen Burn	Hyocomium armoricum	Χ	X	X	Х	Х	Х	Х	Х	Χ	Х	X	Х	•	•	•	•	1	• •		•	1	• 🗸	

Key. ✓ species recorded during survey, X species not recorded during survey, • no survey

Recovery – lake macrophytes

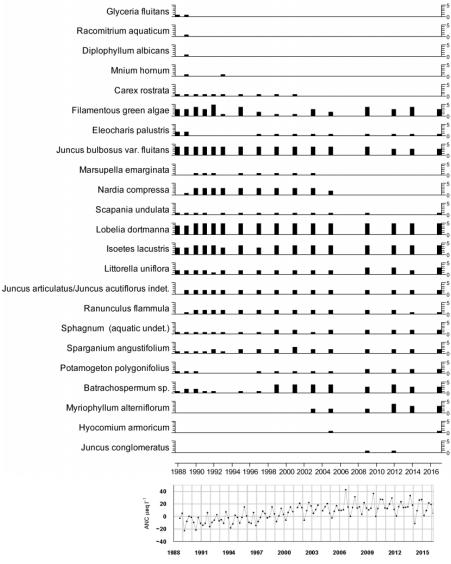
UKUWMN lake sites with new macrophyte taxa since 1995


Lochnagar (Subularia aquatica, 2009) Loch Chon (Chara virgata, 1999) Loch Tinker (Subularia aquatica, 1995) Round Loch of Glenhead (Myriophyllum alterniflorum, 2003) Burnmoor Tarn (Chara virgata, 2003, Nitella translucens, 2008, Potamogeton berchtoldii, 2012) Llyn Cwm Mynach (Eleogeton fluitans, 1999) Llyn Llagi (Subularia aquatica, 1993, Callitriche hamulata 1999, Nitella flexilis agg., 2009, Elatine hexandra 2009)

Increasing ANC (Acid Neutralising Capacity – overall buffering capacity against acidification) allows species that extract carbon from the water column, rather than sediments, to establish.

UWMN Macrophyte Results – Lakes

^{1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016}

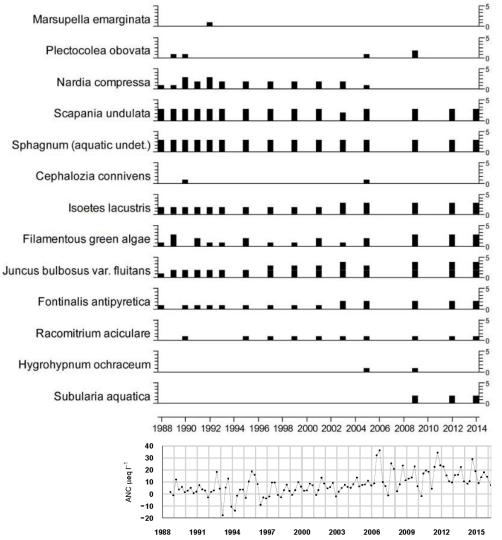

Llyn Llagi shows the greatest signs of macrophyte recovery

Gained several new submerged plant species: Subularia aquatica 1993 Callitriche hamulata 1999 Nitella flexilis agg. 2009 Elatine hexandra 2009

Site has moved from the C1 to the C2 category in Duigan *et al*'s. (2007) lake classification scheme

UWMN Macrophyte Results – Lakes

Round Loch of Glenhead


The elodied species *Myriophyllum alterniflorum*, increasingly established in the Round Loch of Glenhead after 2003.

ANC (Acid Neutralising Capacity – overall buffering capacity against acidification) ~10 microequivalents

UWMN Macrophyte Results – Lakes

Lochnagar

Increase in area of Juncus bulbosus

Gained Subularia aquatica in 2009 – again at around 10 microequivalents ANC.

JNCC joint altitude record with nearby Sandy Loch – also possible response to changing temperatures and ice environment.

Ruderal annual - seeds prolifically

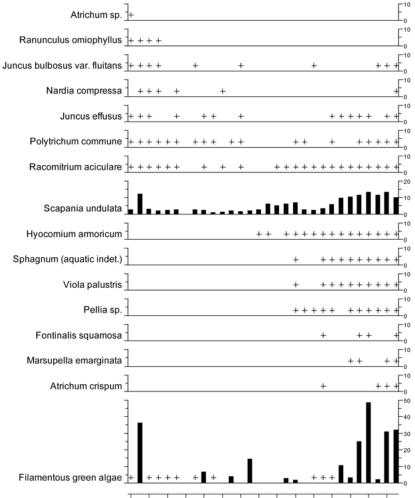


Recovery – stream macrophytes

UKUWMN stream sites with new macrophyte taxa since 1995

Allt na Coire nan Con (*Fontinalis antipyretica*, 2007) Dargall Lane (*Blindia acuta*, 2003) River Etherow (*Hygrohypnum ochraceum*, 2005 *Hyocomium armoricum*, 2010) Old Lodge (*Hyocomium armoricum*, 2000) Afon Gwy (*Hyocomium armoricum*, 2008) Afon Hafren (*Hyocomium armoricum*, 2002, *Fontinalis squamosa*, 2009, *Marsupella emarginata*, 2012) Coney Glen Burn (*Hyocomium armoricum*, 2011)

Bryophyte floras getting gradually richer. New species usually less acid-tolerant mosses. *Hyocomium armoricum* has been recorded when average ANC in the streams has risen above around 10 µeq l⁻¹



Hygrohypnum ochraceum Claw Brook-moss

UWMN Macrophyte Results – Streams

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Afon Hafren

Three additions to the submerged taxa: Hyocomium armoricum Fontinalis squamosa Marsupella emarginata

Possible increases in Filamentous algae Significant linear changes in inverts and

UWMN Macrophyte Results – Streams

Juncus effusus -Nardia compressa + Racomitrium aciculare + Scapania undulata Polytrichum sp. + Ranunculus flammula Pellia sp. Polytrichum commune Juncus bulbosus var. fluitans Hyocomium armoricum Sphagnum (aquatic indet.) Lemanaea sp. Filamentous green algae 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017

Afon Gwy

Hyocomium armoricum established in 2008

Sporadic acid-sensitive Lemanaea sp. alga after 2006.

Increases in Filamentous algae

Significant linear changes in inverts and diatoms

UWMN Macrophyte Results – Streams

Atrichum crispum +	+ +++++++++++++++++++++++++++++++++++++
Juncus bulbosus var. fluitans]+ + + + +	++ ++++
Mnium homum]+ + +	E_0
Juncus effusus <u>+ + + + + + + + + + + + + + + + + + +</u>	+ + + + + + + + + + + + + - 0
Scapania undulata	
Polytrichum sp. + + + + +	+ + + + + + + + + + + + + - 0
Fontinalis antipyretica	++ + E ¹⁰ ₀
Pellia sp.	+ + + + + + + + + + + + + + + + + + + +
Dicranella sp.	+ E ¹⁰
Leptodictyum riparium	+ E ¹⁰
Atrichum undulatum	+ E ¹⁰
Gymnocolea inflata	+ E ¹⁰
Ranunculus omiophyllus	+ E ¹⁰
Hygrohypnum ochraceum	+ + + + + + + + + + + + + + + + + + + +
Dicranella heteromalla	+ + + + +
Racomitrium aciculare	+ +++++++
Hyocomium armoricum	+ + + + + + + + + + + + + + + + + + + +
Straminergon stramineum	+ E.º
Filamentous green algae <u>+ + + + + + + + + + + + + + + + + + +</u>	+++ _++

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

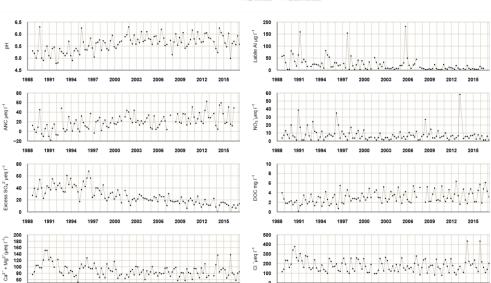
River Etherow

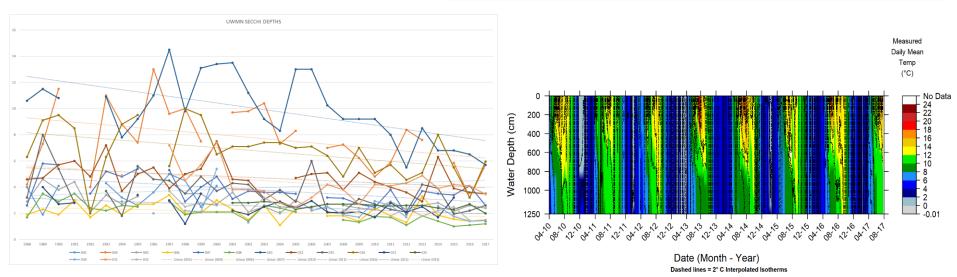
Two new submerged taxa: Hyocomium armoricum Hygrohypnum ochraceum

"Flashy" site on W Pennines and prone to high flow events

UWMN Macrophyte findings so far

- Macrophyte species richness increasing slightly at over half of the sites.
- New taxa have been found in seven out of eleven lake sites and seven out of eleven stream sites.
- Of the sites with new taxa nine are unafforested and five forested.
- Species composition at eight sites has not changed significantly since the study onset. Whilst this includes a few cleaner "control" sites it also includes sites with improving trends in deposition and surface chemistry eg Scoat Tarn,
- Changes due to improving deposition not expected at "control sites" and no apparent signs of climate driven taxa changes
- No sites are exhibiting significant species losses. Where change is occurring macrophyte diversity is generally increasing.
- Macrophyte changes tend to lag behind chemical improvements and responses of diatoms and invertebrates isolation/dispersal?
- Increasing ANC allows species that extract carbon from the water column to establish at lake sites with new species the taxa that have arrived are those unable to extract carbon directly from lake sediments. This is consistent with reduced acidity, increased ANC and the subsequent higher availability of inorganic carbon in the water column for plant metabolism.
- The primary changes observed in UWMN streams have been the more recent detection of aquatic mosses, albeit in very small amounts, at sites previously dominated almost solely by acid tolerant liverworts. In some sites *Hyocomium armoricum* has been recorded when average ANC in the streams has risen above around 10 µeq l⁻¹
- Aquatic mosses tend to dominate the least acidic streams on the Network.




UWMN Macrophytes – what next

- PhD. Accepted onto the London NERC Doctoral Training Partnership 2018.
- Microscope ID stream & lake bryophyte voucher backlog
- Database results eg historic transect data
- Literature review
- Possibility to include data from Water Framework Directive, SAC/SSSI site surveys, River Habitat Surveys – harmonisation with UWMN datasets
- Rigorous data analysis explore drivers of change: 1. Lakes 2. Streams
 - Acidity changes main or secondary driver?
 - Climate changes in flow/hydrology/storminess/sea salt events/lake exposure?
 - Climate changes in minimum/maximum temperatures?
 - Nutrients esp. N deposition increases in fil alg?
 - Lakes increasing DOC / light regime changes?
 - Biomass/productivity changes PVI?
 - Changes in biotic pressures grazing/biofilms?
- Add current biomonitoring metrics to database explore development of low alkalinity metrics?
- 3. Lake sediment DNA/macrofossils explore viability of sediDNA technique/taphonomy against 30-year recorded time-series, establish reference conditions and compare to current trajectories with changes in eg climate, nutrients. Test seed bank viability to determine recolonisation pathways – sediment v dispersal

UWMN Supporting Data

- Water chemistry, including DOC, AI
- Deposition chemistry
- Biology fish/inverts/diatoms
- Flow for some sites eg Mharcaidh/Dargall Lane
- Temperature / lake thermal regime
- Lake Secchi depths
- O2 profiles
- Stream physical/morphological data (including fish section HABSCORES)
- Planning on TLS scans of stream sections 2018
- Food webs plants not included (Clare Gray IC)
- Heavy metals

Questions?

Thanks to the funders

(based on a science partnership of UCL, CEH, QMUL and SG; supported by DEFRA, DOENI, Forestry Commission, NRW, SEPA, SG, SNH, WG, NERC CEH, ENSIS Ltd. & several volunteers)

