Maladies Génétiques Neurovasculaires

Journées du DES de Neurologie Inter-région Ouest

Dominique Hervé - Hôpital Lariboisière - Paris 02/03/2017

Maladies Génétiques Neurovasculaires

1/ Maladies génétiques des petites artères cérébrales

2/ Formes génétiques d'angiopathie de moyamoya

3/ Cavernomatoses cérébrales génétiques

Maladies des petites artères cérébrales

- 1/4 des infarctus et 2/3 des hémorragies cérébrales
- MPA « aigües »
 - inflammatoires: angéites cérébrales I / II
 - ou non inflammatoires: syndrome de Susac, sd de Sneddon,...
- MPA chroniques
 - artériolosclérose liée aux FRV (HTA) +++
 - angiopathie amyloïde cérébrale sporadique
 - maladies génétiques des petites artères cérébrales

Maladies génétique des petites artères cérébrales

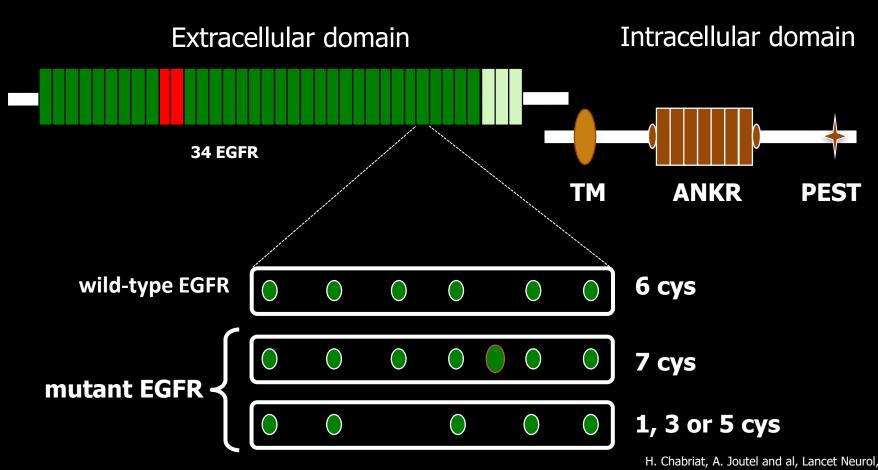
NOTCH 3

CADASIL

HTRA1:

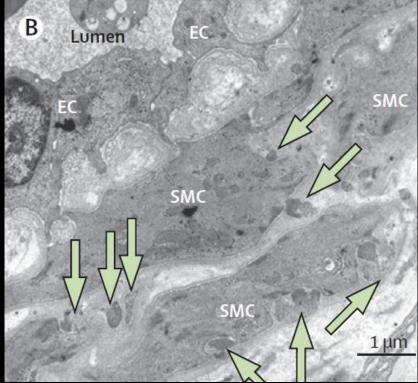
- Mutations homozygotes: CARASIL
- Mutations hétérozygotes: forme autosomique dominante

- COL4A1 / COL4A2

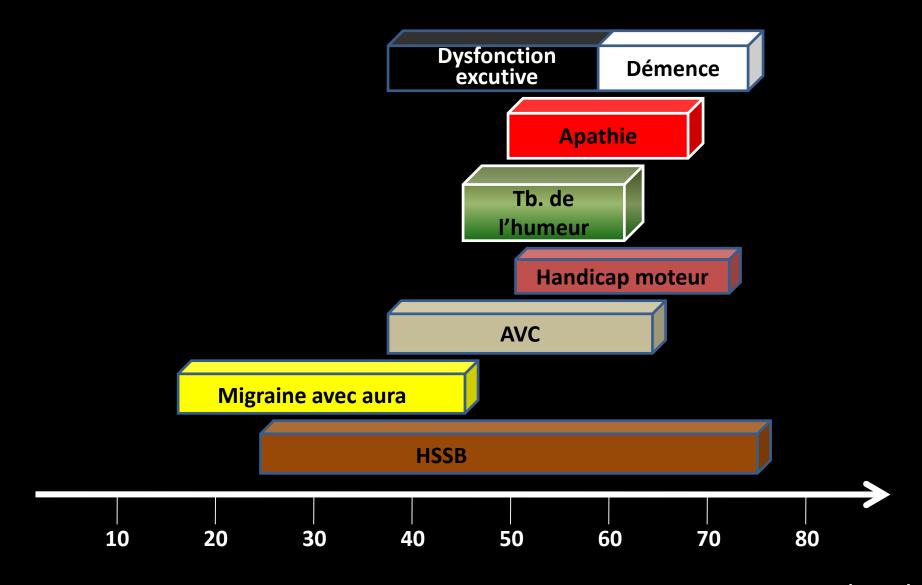

- Mutation glycine → protéine anormale: forme hémorragique
- Mutation en UTR → surexpression du gène: forme ischémique (PADMAL)

APP

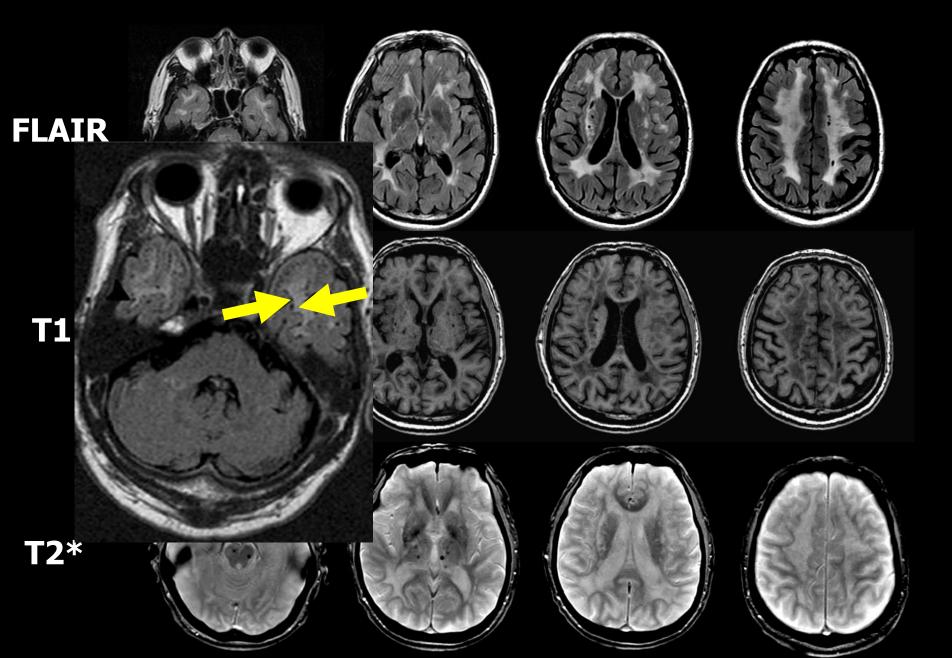
Angiopathie amyloïde cérébrale héréditaire A béta


Mutations du gène NOTCH3: CADASIL

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy



- Accumulation de protéine NOTCH3 3 à la surface des CML et des péricytes
- Altérations des CML
- Présence de GOM à la surface des CML

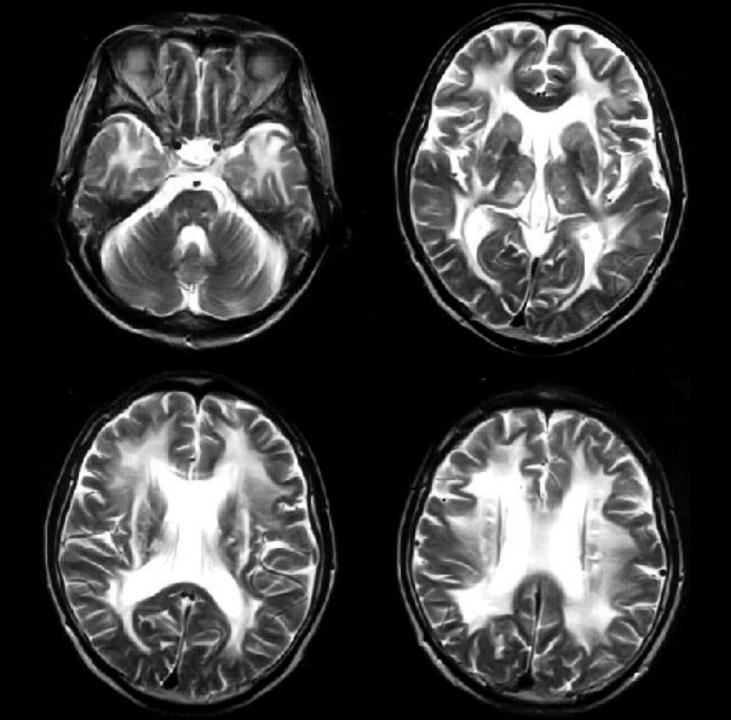


Histoire naturelle de la maladie

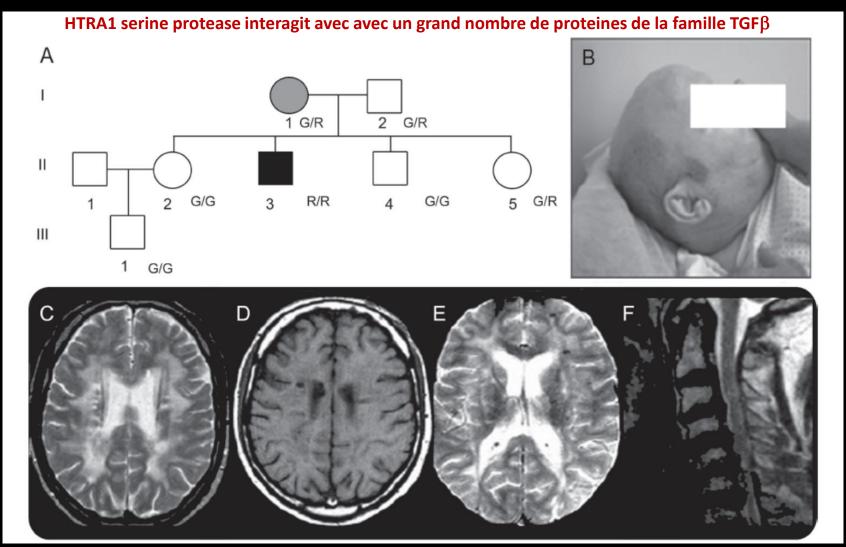
Age (years)

IRM

Dans quelles situations doit-on évoquer CADASIL?


- Sujet <u>symptomatique</u>: en présence d'une histoire familiale et d'un tableau clinique et IRM compatible
 - En cas d'histoire familiale chez apparentés 1^{er} et 2nd degrés:
 - Troubles cognitifs même progressif
 - AVC répétés
 - Troubles moteurs ou de la marche non expliqués
 - Hisoire familiale d'HSSB (SEP, ou maladie d'Alzheimer atypique)
 - L'absence d'histoire familiale reste compatible avec le diagnostic
 - Mutation de novo
 - Histoire familiale mal connue ou forme peu sévère
 - IRM
 - HSSB pôle antérieur des lobes temporaux +++
 - ± Infarctus multiples parfois silencieux ± microsaignements
 - Surtout si absence d'HTA et âge jeune
- Sujet <u>asymptomatique</u> ayant un apparenté atteint de CADASIL:
 - → consultation multidisciplinaire +++

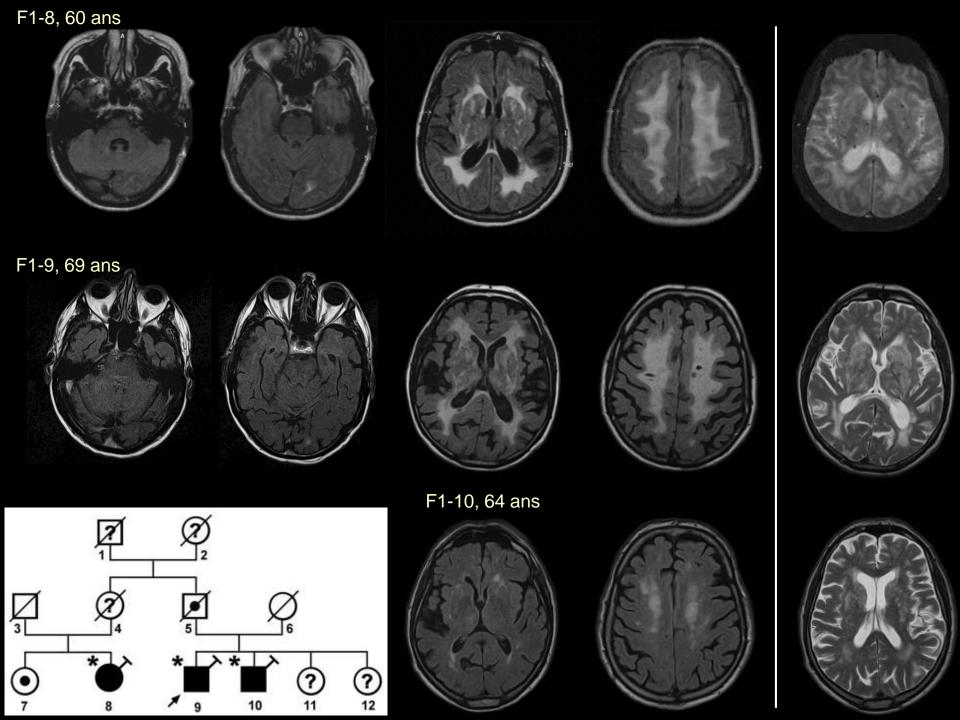
Mutations du gène HTRA1


1/ forme récessive: CARASIL

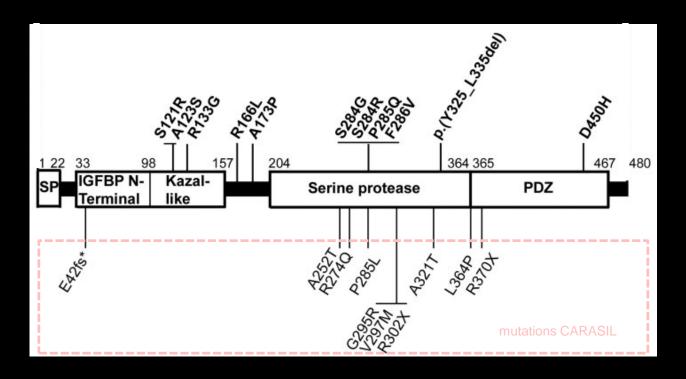
Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and Leukoencephalopathy

- Consanguinité fréquente
- > Age de début: 20-45 ans
- > AVC, AITs, démence d'installation progressive ou par à coup (50%)
- ➤ Alopécie précoce +++
- Atteinte squelettique en particulier rachidienne+++
 - > cyphose, ossification ligament intraspinal, déformation articulaire, spondylose dégénérative déformante.

Mutation non-sens HTRA1 chez un patient caucasien ayant un CARASIL



<u>Case report</u>: 34 ans, alopécie avant 18 ans, instabilité à la marche, impériosités mictionnelles, dysarthrie


Mutations du gène HTRA1

2/ forme autosomique dominante

- Phénotype clinique distinct de CARASIL
 - âge de début + tardif
 - absence signes extra-neurologiques (alopécie / atteinte vertébrale précoce)
- Mais proche des artériolopathies liées à âge et HTA
 - âge de début comparable
 - phénotype IRM identique

Protéine HTRA1

- HTRA1 = Serine protéase, plusieurs domaines
- Mutations homozygotes HTRA1 (CARASIL): réduction sévère de l'activité protéolytique
- Activité protéolytique des variants hétérozygotes identifies :
 - réduction sévère ou réduction partielle
 - → difficultés d'interprétation diagnostique

En résumé

- HTRA1 → LEV autosomique récessive (CARASIL)
 - consanguinité +++
 - mutations homozygotes / autosomique récessif
 - porteurs hétérozygotes non affectés
- HTRA1 → LEV autosomique dominante
 - pas de consanguinité
 - mutations hétérozygotes / autosomique dominant
 - porteurs hétérozygotes affectés
- Quand demander un séquençage d'HTRA1?
 - o recommandations encore à déterminer: nb patients identifiés limité
 - LEV AD sans cause, début tardif, état criblé
 - LEV sporadiques: lésions IRM étendues, FDRV limités, état criblé, début tardif

COL4A1 — COL4A2

1/ forme multisystémique / hémorragique

Phénotype périnatal

- Hémorragies cérébrales périnatales
- Hémiplégie infantile

Porencéphalie

Phénotype MPA (IRM)

- Hémorragies c. profodes +++
- Microsaignements profonds
- Petits infarctus profonds
- HSSB periventriculaires
- Leucoencéphalopathie diffuse

Symptomes neurologiques

Migraine avec ou sans aura Epilepsie

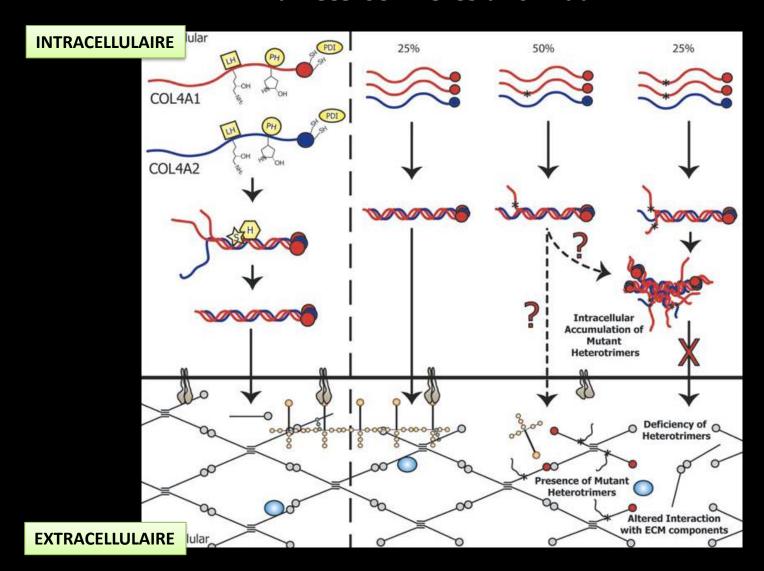
Phénotype rénal

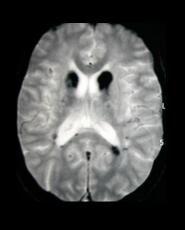
- Hématurie
- Kystes rénaux

Kystes hépatiques cysts

Muscles

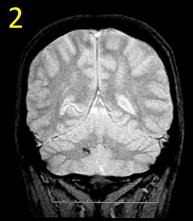
- Crampes
- Elévation CPK

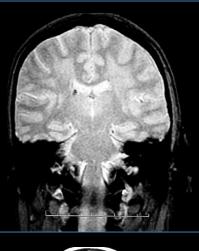

Phénotype oculaire

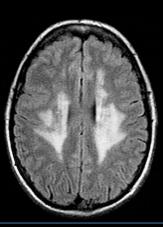

Col4A1

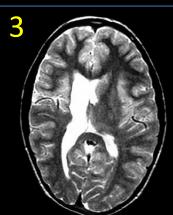
Col4A2

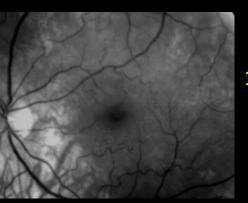
- Tortuosités artériolaires rétiniennes
- Hémorragie rétinienne
- Cataracte congénitale ou rétinienne
- Anomalie du segment antérieur de l'oeil
- Glaucome


Mutation COL4A1/2 → assemblage anormal des triples hélice s de collagène → accumulation intracellulaire ou sécrétion d'hétérotrimères anormaux






35 ans: hémorragies cérébrales

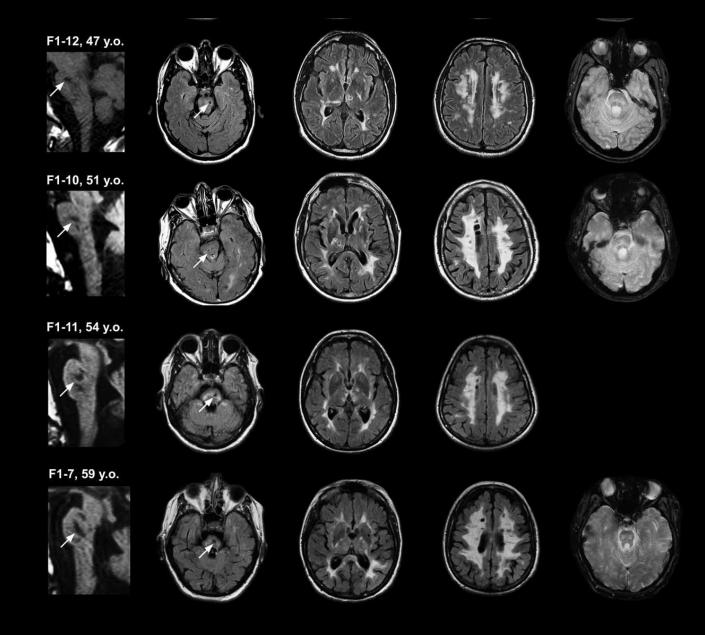


40 ans: migraine avec aura

Retinal tortuosities

15 ans: hémiparesie infantile

COL4A1


2/ forme ischémique cérébrale: PADMAL

Pontine Autosomal Dominant MicroAngiopathy with Leukoencephalopathy

- ➤ Infarctus cérébraux récidivants à partir de 35 à 45 ans.
- > Déficit moteur et cognitif d'aggravation prigressive ou par à coup
- ➤ Mutation au niveau d'un site d'accrochage d'une protéine régulant l'expression de COL4A1
- Surexpression du gène
- > Fibrose de la paroi des petites artères cérébrales et alteration des CML

IRM

APP

Angiopathie amyloïde cérébrale héréditaire A Béta

- Mutation du précurseur du peptide beta amyloïde (APP)
 - o forme flamande, forme hollandaise
 - âge de début précoce +++
 - hémorragies cérébrales récidivantes, démence
 - accumulation peptide amyloïde vaisseaux +/- parenchyme cérébral (plaques séniles)

- Duplication de l'APP
 - Maladie d'Alzheimer autosomique dominante + AAC
 - Démence +/- hémorragies cérébrales

En pratique

- Quand suspecter une MPA génétique ?
 - Sujets jeunes (<60 ans) avec des HSSB confluents ou de topographie évocatrice
 - Discordance entre sévérité des lésions microvasculaires et FRV
- Réaliser systématiquement un arbre généalogique +++ et rechercher pour chaque individu dans la famille:
 - ATCD d'AVC, Tb de l'équilibre, déclin cognitif, diagnostic eronné de SEP, signes extra cérébraux: tortuosités arteriolaires retiniennes → col4A1/A2, peau, rein,...
- Réaliser une IRM cérébrale avec des séquenes T1 coupes fines,
 FLAIR, T2*, Diffusion, 3DTOF puis analyser le pattern des lésions
 - Pole antérieur des lobes temporaux: CADASIL, CARASIL
 - porencéphalie: Col4A1, COL4A2
 - Prédominance pontique des lacunes: COL4A1 (PADMAL)
- Diagnostic génétique et conseil génétique éventuel

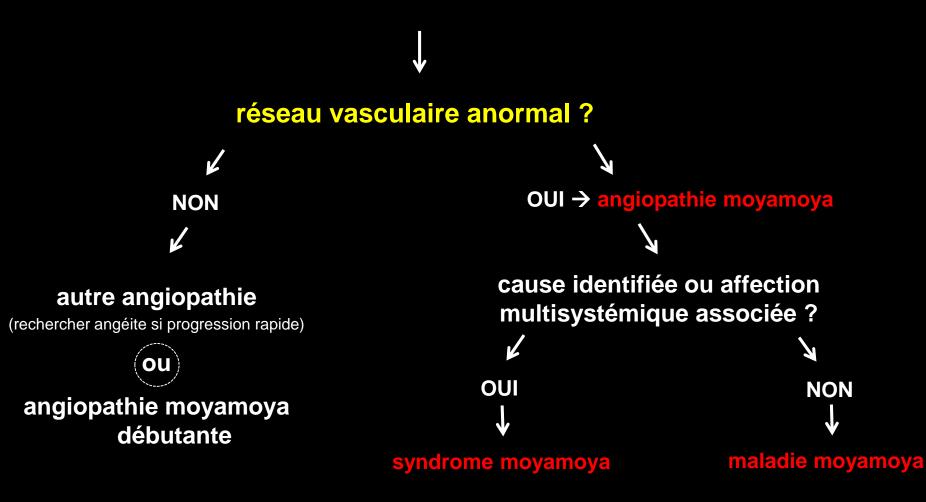
Maladie et Syndrome de Moya-Moya

lésions sténo-occlusives

bifurcation des terminaison carotidiennes

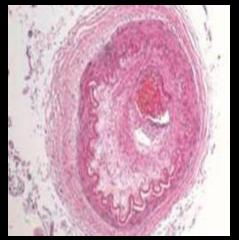
réseau néovasculaire de la base du crane

■ bilatérale (Mal. MM)


circulation post. le + svt préservée (Mal. MM)

Terminologie

angiopathie bifurcation terminaison ACIs



Mal. MM: Anatomopathologie

ACM

- Epaississement de l'intima
 - hyperplasie fibrocellulaire
 - cellules musculaires lisses actine positives
- Amincissement de la média

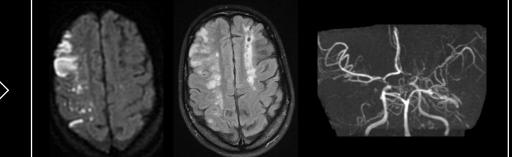
- Lésions non athéromateuses non inflammatoires
- Thromboses luminales

Mal. MM: Génétique

- Formes familiales: 6 à 10%, modes de transmission variables
- aucun gène responsable de forme monogénique
- gène de susceptibilité (GWAS) en 17q25: RNF213
 - forte association entre MM (population japonaise) et variant R4810K
 - 80% chez patients ayant un MM vs 1,5% chez les controles
 - connaissance mécanistique limitée
 - <u>association non retrouvée avec ce variant chez les caucasiens:</u> origine génétique différente ?
 - association avec d'autres variants RNF213 chez les caucasiens ?

Mal. MM: Expression clinique

AIT, Infarctus cérébraux


- 50 à 75%
- ■facteurs favorisants hémodynamiques parfois retrouvés
 - hyperventilation (sport, pleurs chez l'enfant,...)
 - Induction anesthésique
- en cas de dilatation maximale des artérioles intracraniennes

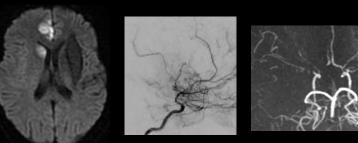
Hémorragies cérébrales

- rares chez l'enfant, + fréquent chez les adultes (jusqu'à 40%)
- hémorragies parenchymateuse, sous arachnoïdienne, intraventriculaire
- mécanismes:
 - rupture néovaisseau fragile (microanévrysmes)
 - développement d'anévrysme intracrânien
 - indéterminé

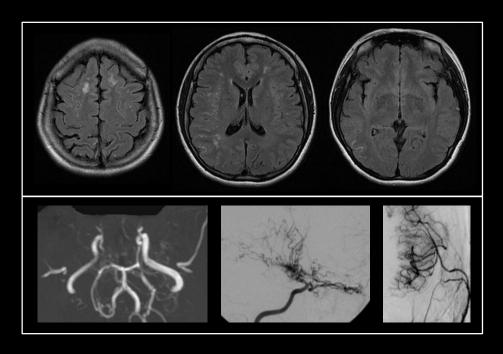
Patiente de 31 ans

- Symptomatologie initiale
 - déficit SM gauche.
 - précédé de plusieurs AITs bilatéraux depuis 1 an

- Evolution à M4
 - aphasie + hémiparésie droite



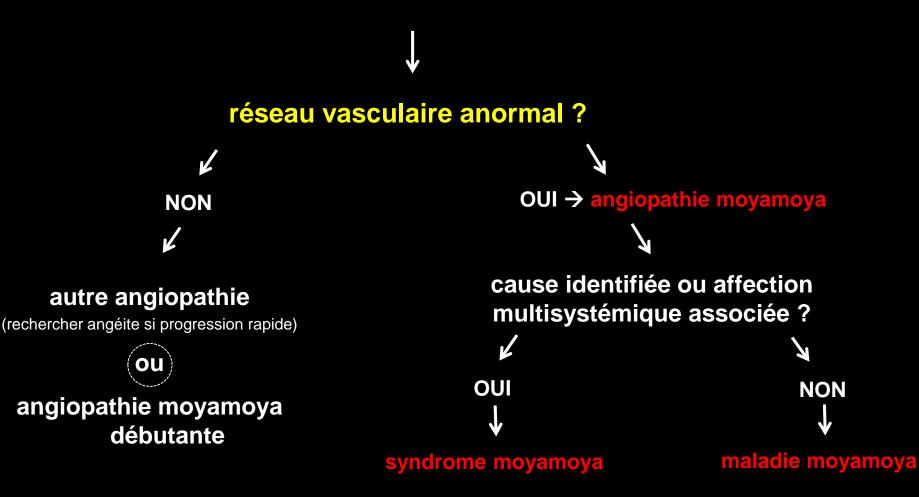
- déficit du Mb Inf. gauche
- contexte: majorationhypotenseur + déshydratation



Patiente de 37 ans, coréenne

- De l'âge de 14 à 24 ans
 - nombreux AITs hémodynamiques
 - tb de l'élocution ou déficit d'un membre
 - o déclenchés par exercice, pleurs ou changement brutal de température
 - o durée: de qq sec. à qq min.

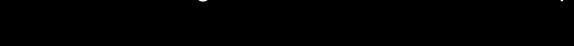
- A l'âge de 32 ans
 - Découverte fortuite en IRM d'une maladie de moya-moya



Aucun AIT ni AVC depuis l'âge de 24 ans

Terminologie

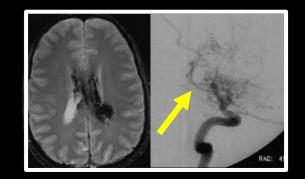
angiopathie bifurcation terminaison ACIs

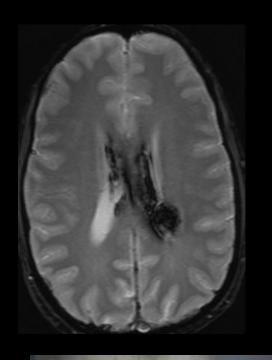


Sd de MM: aff. génétiques multisystémiques

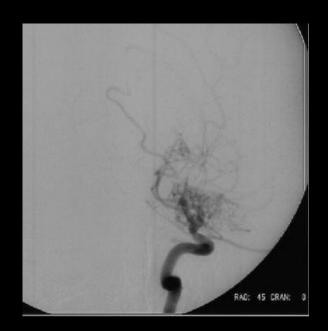
- Drépanocytose
- Neurofibromatose de type 1
- Trisomie 21
- BRCC3 MTCP1
- **GUCY1A3** (α1β1 sGC)
- Dwarfisme primaire (MOPD 2)
- Sd d'Alagille (JAG 1, Notch2)
- ACTA2

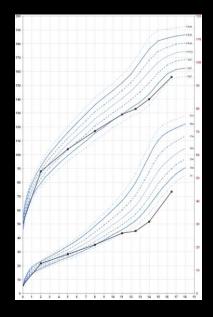
Sd de MM: Neurofibromatose de type 1


- autosomique dominante
- mutations du gène de la neurofibromine, 17q11.2


Pénétrance complète, expression variable

- Prévalence: 1/5000
- Angiopathie intracranienne:
 - Rare: 5 % des patients
 - Artères de grand et moyen calibre
 - Prédominance antérieure (ACM et ACA > ACP)
 - Moya-Moya (50%), sténoses, occlusions, ectasies, fistules, mégadolicho artères
 - Risque AVC si MM asymptomatique: 2,5% par an




- Patient de 27 ans
- Céphalée brutale et intense

NF1

Sd de MM génétique: BRCC3 – MTCP1

- Récessif lié à l'X
- Phénotype
 - Moyamoya
 - Petite taille
 - Dysmorphie faciale
 - Dysfonctionnement hormonal
 - Insuffisance gonadique basse
 - Azoospermie
 - Insuffisance somatotrope partielle
 - Cataracte bilatérale précoce
 - Cardiopathie dilatée
 - Coronaropathie, HTA
- Délétion BRCC3 et MTCP1 (Xq28)

Sd de MM de cause non mendélienne

- Angiopathie post radique de la base du crane ++++
- Athérome intra-cranien
- Dysplasie fibro-musculaire
- Angéites d'origine infectieuse, infl. ou auto-immune
- Dysthyroidies autoimmunes
- Sd des antiphospholipides, thrombophilies
- Tumeurs et méningites de la base du crane...

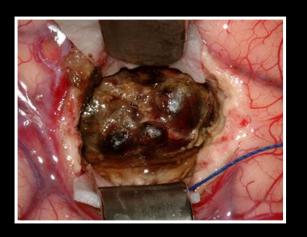
Sd de MM: Bilan étiologique en pratique

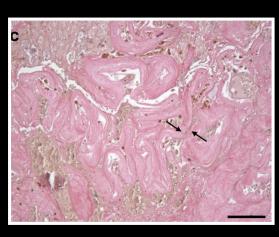
Clinique

- Histoire d'irradiation encéphalique
- Origine ethnique, ATCD crise drépanocytaire
- Histoire familiale
- Morphotype: trisomie 21
- Examen cutané: recherche de taches café au lait, de neurofibromes
- Taille
- recherche d'une symptomatologie extracranienne

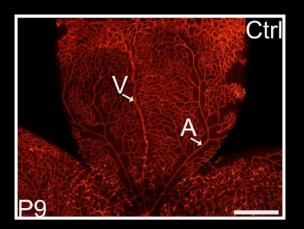
Biologiques

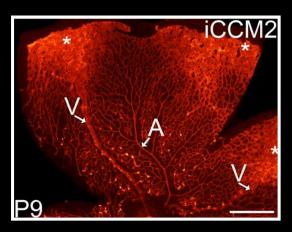
- Electrophorèse de l'hémoglobine si point d'appel
- Analyse génétique si point d'appel (NF1, ACTA2, BRCC3-MYCP1, Caryotype)
- Etude du LCR
- Bilan inflammatoire et autoimmun
- Recherche d'une thrombophilie, d'un syndrome des antiphospholipides

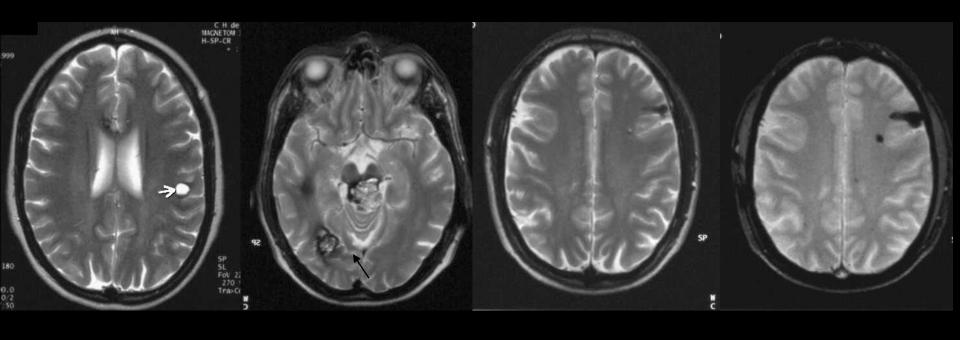

Morphologique


- Artériographie cérébrale
- Imagerie de la base du crane
- Imagerie cardiaque + aorte + branches (dont artères rénales)

Cavernomatoses cérébrales génétiques


- cavernome = malformation vasculaire capillaro-veineuse
- prévalence en population générale
 - environ 0,5 %
- forme sporadique
 - cavernome unique
 - Pas d'histoire familiale
- forme génétique
 - cavernomes multiples
 - histoire familiale
 - environ 10% des cas


Anatomopathologie


- cavités hématiques (cavernes)
- 1 couche de cell end. + tissu conjonctif
- pas d'interposition de parenchyme cérébral

- malformations capillaroveineuses
- pas d'atteinte artérielle

Caractéristiques IRM

hyper T1 et T2
TYPE 1

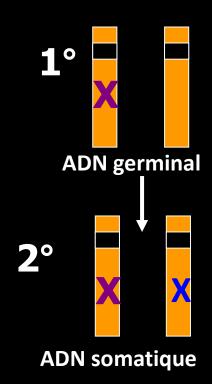
hyper et hypo T2
« pop corn »

TYPE 2

hypo T1 et T2 TYPE 3

iso T1 et T2 hypo T2* TYPE 4

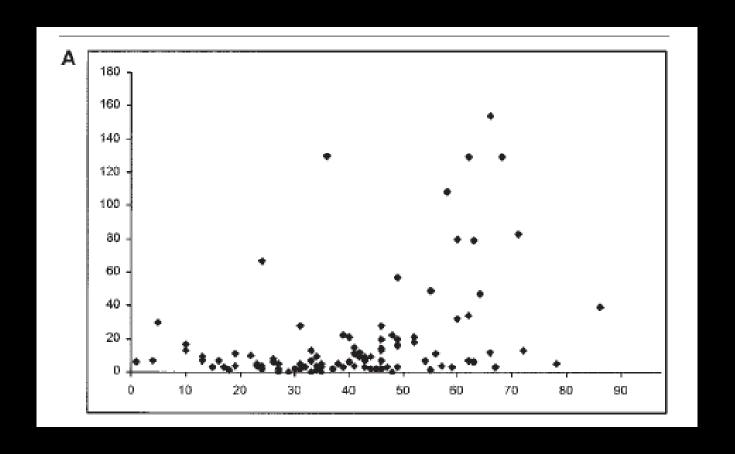
Cavernome: Classification en 4 types (Zabramski et al., 1994)


Cavernomatoses héréditaires 3 gènes impliqués:CCM1, CCM2 ou CCM3

1er évènement d'inactivation :

perte, mutation... CONSTITUTIONNELLE (=germinal) = présent dans toutes les cellules avant la naissance héréditaire

2ème évènement d'inactivation :


perte, mutation... SOMATIQUE affectant l'autre allèle du même gène

Inactivation successive des deux allèles

→ apparition des CCM

Augmentation du nb de cavernomes avec le temps

mutations perte de fonction germinales et acquises somatiques → augmentation du nb de cvernomes avec le temps

Conclusions

- Pénétrance incomplète
 - Clinique: 50 %
 - IRM: 95 %: SWI >> T2* >> T2
- Hétérogénéité clinique et neuroradiologique
- Cavernomatoses génétiques d'allure «sporadique»
 - Néo-mutations
 - Forme familiale méconnue
- Localisation extra-cérébrales
 - Cavernomes rétiniens
 - Angiomes cutanés capillaro-veineux

