Lecture 13 Point Groups and Character Tables # Symmetry elements/operations can be manipulated by Group Theory, Representations and Character Tables So, What IS a group? And, What is a Character??? A GROUP is a collection of entities or elements which satisfy the following four conditions: - 1) The product of any two elements (including the square of each element) must be an element of the group. For symmetry operations, the multiplication rule is to successively perform operations. - 2) One element in the group must commute with all others and leave them unchanged. Therefore the "E", $$EX = XE = X$$ 3) The associative law of multiplication must hold $$A(BC) = (AB)C$$ 4) Every element must have a reciprocal which is also an element of the group. i.e., $$X(X^{-1}) = (X^{-1}) X = E$$ Note: An element may be its own reciprocal. Groups may be composed of anything: symmetry operations, nuclear particles, etc. Simplest is +1, -1. All the groups which follow the same multiplication table are called representations of the same group. Character Tables # **Table 6.4** The C_{2v} character table ## Character table for point group C_{3v} | C _{3v} | Е | 2C ₃ (z) | 3σ _v | linear
functions,
rotations | quadratic
functions | cubic
functions | | | |-----------------|----|---------------------|-----------------|---|---|---|--|--| | A ₁ | +1 | +1 | +1 | Z | x^2+y^2 , z^2 | z^3 , $x(x^2-3y^2)$, $z(x^2+y^2)$ | | | | A ₂ | +1 | +1 | -1 | R _z | - | $y(3x^2-y^2)$ | | | | E | +2 | -1 | 0 | (x, y) (R _x , R _y) | (x ² -y ² , xy)
(xz, yz) | (xz^2, yz^2) [xyz, z(x ² -y ²)] [x(x ² +y ²), y(x ² +y ²)] | | | **Table 6.3** The components of a character table | Name of point group* | Symmetry operations <i>R</i> arranged by class (<i>E</i> , <i>C</i> _n , etc.) | Functions | Further
functions | Order of
group, <i>h</i> | |-------------------------|---|---|---|-----------------------------| | Symmetry
species (Γ) | Characters (χ) | Translations and components of dipole moments (x, y, z), of relevance to IR activity; rotations | Quadratic functions such as z^2 , xy , etc., of relevance to Raman activity | | | * Schoenflies symb | bol. | | | | ## Consequences of Symmetry - Only the molecules which belong to the C_n , C_{nv} , or C_s point group can have a permanent dipole moment. - A molecule may be chiral only if it does not have an axis of improper rotation Sn. - IR Allowed transitions may be predicted by symmetry operations - Orbital overlap may be predicted and described by symmetry # Point Group Assignments and Character Tables ## **POINT GROUPS** A collection of symmetry operations all of which pass through a single point A point group for a molecule is a quantitative measure of the symmetry of that molecule Assignment of Symmetry Elements to Point Group: At first Looks Daunting. Daunting? However almost all we will be concerned with belong to just a few symmetry point groups ## A Simpler Approach ### **POINT GROUPS** A collection of symmetry operations all of which pass through a single point A point group for a molecule is a quantitative measure of the symmetry of that molecule #### **ASSIGNMENT OF MOLECULES TO POINT GROUPS** #### STEP 1: LOOK FOR AN AXIS OF SYMMETRY If one is found - go to STEP 2 If not: look for (a) plane of symmetry - if one is found, molecule belongs to point group C_s #### Point Group Assignments: MFT Ch. 4 TABLE 4.3 Groups of High Symmetry | IADLE 4.3 | droups of riight symmetry | | |----------------|--|--| | Group | Description | Examples | | $C_{\infty y}$ | These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion. | C_{∞} H—CI | | $D_{\infty h}$ | These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes, a perpendicular reflection plane, and an inversion center. | $C_{\infty} \rightarrow O = C_{2}$ | | T_d | Most (but not all) molecules in this point group
have the familiar tetrahedral geometry. They have
four C_3 axes, three C_2 axes, three S_4 axes, and six
σ_d planes. They have no C_4 axes. | H
C
H | | O_h | These molecules include those of octahedral struc-
ture, although some other geometrical forms, such
as the cube, share the same set of symmetry opera-
tions. Among their 48 symmetry operations are four
C_3 rotations, three C_4 rotations, and an inversion. | F-S-F
F F | | I_h | Icosahedral structures are best recognized by their six C ₅ axes, as well as many other symmetry operations—120 in all. | B ₁₂ H ₁₂ ²⁻ with BH
at each vertex of
an icosahedron | In addition, there are four other groups, T, T_h , O, and I, which are rarely seen in nature. These groups are discussed at the end of this section. #### LINEAR MOLECULES Do in fact fit into scheme - but they have an infinite number of symmetry operations. Molecular axis is C_{∞} - rotation by any arbitrary angle $(360/\infty)^{\circ}$, so infinite number of rotations. Also any plane containing axis is symmetry plane, so infinite number of planes of symmetry. Divide linear molecules into two groups: (i) No centre of symmetry, e.g.: $H \longrightarrow C \longrightarrow N$ C_{∞} No C₂'s perp. to main axis, but ∞ σ_v 's containing main axis: point group $\mathbf{C}_{\infty \mathbf{V}}$ #### (ii) Centre of symmetry, e.g.: Point group $D_{\infty h}$ #### **Highly symmetrical molecules** A few geometries have several, equivalent, highest order axes. Two geometries most important: #### Regular tetrahedron - 4 C₃ axes (one along each bond) - 3 C₂ axes (bisecting pairs of bonds) - 3 S_4 axes (coincident with C_2 's) - $6 \sigma_d$'s (each containing Si and 2 Cl's) Point group: T_d #### Regular octahedron e.g. $3C_4$'s (along F-S-F axes) also $4C_3$'s. $6C_2$'s, several planes, S_4 , S_6 axes, and a centre of symmetry (at S atom) Point group O_h These molecules can be identified without going through the usual steps. Note: many of the more symmetrical molecules possess many more symmetry operations than are needed to assign the point group. ## Inorganic Chemistry Chapter 1: Table 6.2 Table 6.2 The composition of some common groups | Point group | Symmetry elements | Shape | Examples | |------------------------|--|----------|--| | <i>C</i> ₁ | E | • | SiHClBrF | | | | | | | C_2 | E, C ₂ | | H_2O_2 | | | | 20 | | | C_{s} | Ε, σ | 0 | NHF ₂ | | -5 | -1. | | 2 | | C_{2v} | E , C_2 , $\sigma_{v'}$, $\sigma_{v'}'$ | 2 | SO ₂ CI ₂ , H ₂ O | | | | | | | <i>C</i> _{3v} | E , $2C_3$, $3\sigma_{v}$ | | NH ₃ , PCl ₃ , POCl ₃ | | C_{∞} | $E, C_{2'}, 2C_{\varphi'}, \infty \sigma_{V}$ | • • • | OCS, CO, HCI | | $D_{ m 2h}$ | $E, 3C_2, i, 3\sigma$ | 0.00 | N_2O_4 , B_2H_6 | | $D_{3\mathrm{h}}$ | E , $2C_{3'}$ $3C_{2'}$ $\sigma_{\rm h'}$ $2S_3$, $3\sigma_{\rm v}$ | | BF ₃ , PCI ₅ | | - 3h | -1,3,2, - h,3, v | | 3' 5 | | $D_{ m 4h}$ | $E, 2C_4, C_2, 2C_2', 2C_2'', i, 2S_4, \sigma_h, 2\sigma_v, 2\sigma_d$ | 2 | XeF_4 , trans- $[MA_4B_2]$ | | | | | | | $D_{\infty h}$ | $E_1 \infty C_2', 2C_{\varphi}, i_1 \infty \sigma_{\varphi} 2S_{\varphi}$ | 0 0 | CO_2 , H_2 , C_2H_2 | | $T_{ m d}$ | $E, 8C_{3}, 3C_{2}, 6S_{4}, 6\sigma_{d}$ | Ŷ | CH ₄ , SiCl ₄ | | | | · Co | | | O_{h} | $E, 8C_{3}, 6C_{2}, 6C_{4}, 3C_{2}, i, 6S_{4}, 8S_{6}, 3\sigma_{h}, 6\sigma_{d}$ | 9 | SF_6 | | | | 0 % | | | | | | | #### 4. The C_{nv} Groups | C20 | | | $\sigma_v(xz)$ | | | | |-------------------------|------------------|------------------|--------------------|---------------|--|--------------------------------| | A_1 A_2 B_1 B_2 | 1
1
1
1 | 1
1
1
1 | 1
-1
1
-1 | 1
-1
-1 | z
R _z
x, R _y | x^2, y^2, z^2 xy xz yz | | Car | E | 2 <i>C</i> ₄ | Cz | $2\sigma_{\nu}$ | 20 _d | | 1 | |--------------------|----|-------------------------|----|-----------------|-----------------|--------------------|------------------| | A_1 | ι. | 1
1
— 1 | 1 | 1 | 1 | z | $x^2 + y^2, z^2$ | | A_2 | 1 | 1 | ī | I | — 1 | R _z | | | $\boldsymbol{B_1}$ | t | — 1 | 1 | 1 | — 1 | | $x^2 - y^2$ | | \boldsymbol{B}_2 | ŧ | — 1 | t | — 1 | 1 | | xy | | E | 2 | O | -2 | О | О | $(x, y)(R_x, R_y)$ | (xz, yz) | | Cso | E | 2C ₅ | $2C_5^2$ | $5\sigma_{v}$ | | | |-------------------------------|---|-----------------|------------|---------------|--|------------------| | A_1 A_2 | 1 | 1 | 1 | 1 | Z | $x^2 + y^2, z^2$ | | A_2 | 1 | 1 | 1 | 1 | R_z | Į | | $\boldsymbol{E}_{\mathbf{t}}$ | 2 | 2 cos 72° | 2 cos 144° | О | $(x, y)(R_x, R_y)$ | (xz, yz) | | | 2 | 2 cos 144° | 2 cos 72° | 0 | $\begin{array}{c} R_x \\ (x, y)(R_x, R_y) \end{array}$ | (x^2-y^2,xy) | | Cos | E | 2C ₆ | $2C_3$ | C_2 | $3\sigma_{v}$ | 3 <i>σ</i> ₄ ′ | | | |--|---|-----------------|----------|------------|---------------|----------------|--------------------|------------------| | A ₁ A ₂ B ₁ | 1 | 1 | 1 | 1 | ī | <u> </u> | z | $x^2 + y^2, z^2$ | | A 2 | ì | 1 | . 1 | 1 | — 1 | <u> </u> | R _z | - | | B, | i | — i | 1 | 1 | 1 | — 1 | _ | | | \boldsymbol{B}_2 | 1 | 1 | 1 | — 1 | — 1 | 1 | | | | E_1 | 2 | 1 | <u> </u> | -2 | 0 | О | $(x, y)(R_x, R_y)$ | (xz, yz) | | E_2 | 2 | 1 | 1 | 2 | О | O | $(x, y)(R_x, R_y)$ | (x^2-y^2,xy) | #### 6. The D_{nh} Groups | Dzk | $E C_2(z)$ | C ₂ (y) (| $C_2(x)$ i | $\sigma(xy)$ | $\sigma(xz)$ | $\sigma(yz)$ | 1 | | |--|---|--|--|---|---------------------------------|----------------------------------|--|--| | Ag
Blg
B2g
B3g
Au
B1m
B2u
B3m | 1 I I I I I I I I I I I I I I I I I I I | 1
-1
1
-1
-1
-1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | I
I
-I
-I
-I
-I | -1
-1
-1
-1
-1
1 | -1
-1
-1
-1
-1 | R _z
R _y
R _x
z
y | x ² , y ² , z ²
xy
xz
yz | | D_{3R} | $E 2C_3$ | $3C_2 \sigma_h$ | 253 3συ | 1 | 1 | - | | | | A ₁ ', A ₂ ' E' A ₁ " A ₂ " E" | 1 1 1 2 -1 1 1 2 -1 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | R _z
(x,
z
(R _x | ν)
, R _γ) | $x^2 + y$ $(x^2 - y)$ (xz, yz) | ² , <i>xy</i>) | | | Dan | E 2C4 | C_2 $2C_2'$ | 2C ₂ " i | 254 | σ _R 2σ | υ 2σ. | [| l | | A 10
A 20
B 10
B 20
E0
A 14
A 24
B 14
B 24
E4 | 1 1 1 1 1 1 1 1 2 0 1 1 1 1 1 1 1 1 2 0 | 1 1
1 -1
1 -1
-2 0
1 1
1 -1
1 -1
1 -1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
-1
-1
0
-1
-1
1 | -1 -
-1 -
-1 - | 1 | R_z (R_x, z) | | 9. The Cubic Groups (Continued). | T_h | E 4C | $4C_3^2$ | 3C2 | i | \$S ₆ 4 | 4S ₆ 5 | $3\sigma_h$ | | | | $\epsilon = \exp(2i\theta)$ | πί/3) | |--|--|--|---|---|-------------------------------|---------------------------------------|-----------------------|------------------|--------------------|------------------|-----------------------------|-----------------------------------| | A _q | 1 1 | 1 1 | 1 | Ī | 1 | 1 | 1 | | | | $x^2 + y^2 +$ | z ² | | E ₀ | $ \begin{cases} 1 & \epsilon \\ 1 & \epsilon^* \end{cases} $ | ε*
ε | 1 | -1 -
1
1 | -1
ε
ε* | − ι
ε*
ε | -1 $\{1\}$ | | | | $(2z^2-x^2-x^2-x^2-y^2)$ | $-y^2$, | | E _u T _o T _u | $ \begin{cases} 1 & \varepsilon \\ 1 & \varepsilon^* \\ 3 & 0 \\ 3 & 0 \end{cases} $ | ε*
ε
0
0 | 1
1
- 1 | -1 -
-1 -
3 -3 | | $-\epsilon^{\bullet}$ $-\epsilon$ 0 | - i
- 1
- 1 | | . R, | | (xz, yz, xy) | ı | | T_d | E 86 | _ | 654 | _ | U | 0 | 1 | (<i>x</i>
 | , y, z) | | 1 | | | $\overline{A_1}$ | 1 | 1 1 | 1 | ī | | | | x ² - | + y ² - | + z ² | - | | | A ₂
E | 1 2 - | 1 1
-1 2 | $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ | $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | | | | (2z | $2-x^2$ | 2 _ y2 | | | | T_1 | 3 | 0 -1 | ı | -1 | (R_x) | R_y , | R_x) | x ² | - y²) | · | | | | T ₂
0 | 3
 E 60 | $\begin{array}{cc} 0 & -1 \\ C_4 & 3C_2 \end{array}$ | -
(=C.2 | 1 | | , z) - | • | (xy | , <i>xz</i> , y | z) | i | | | $\frac{1}{A_1}$ | 1 | 1 | | 1 | | - | | | | | | <u>-</u> | | A ₂
E | i - | - i
0 | i | į | -1 | | | | | | $x^2 + y^2 + z$ | | | | _ | • | 2 | -1 | 0 | | | | | | $(2z^2-x^2-x^2-x^2-y^2)$ | y², | | T_1 T_2 | 3 – | - 1 | - 1
- 1 | - O | -1
1 | ' | R_{x} , R | (y, R_z) | ; (x,) | ', z) | (xy, xz, yz) | , | | 0, | E 8C | 6C ₂ | 6C₄ | $3C_2(=$ | C ₄ ²) | i | 654 | 8S ₆ | 30 _h | 6σ₄ | | | | A 10 A 20 | | 1 1
1 -1 | 1
-1 | 1 | | 1 | · 1 | 1 | 1 | 1
-1 | | $x^2 + y^2 + z^2$ | | E_{q}^{-1} | 2 – | 1 0 | Ö | 2 | : | 2 | Ô | -i | ż | Ô | | $(2z^2 - x^2 - y^2, x^2 - y^2).$ | | $T_{1g} = T_{2g}$ | 3 (| $\begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$ | 1 | - 1
1 | | 3 | 1
-1 | 0 | -1
-1 | -1 | (R_x, R_y, R_z) | | | A _{1H}
A _{2H} | 1 | i i | 1 | 1 | | -1 | -1 | -! | _i | $-\frac{1}{1}$ | | (xz, yz, xy) | | E _w | 2 — | 1 0
01 | 0 | 2 | : | -1
-2 | 0 | 1 | -1
-2 | 0 | | | | T_{2u} | 1 | 0 1 | -1 | - I | | -3 | - I | 0 | 1 | -1 | (x, y, z) | | # **Table 6.4** The C_{2v} character table | C _{2v} | Ε | C_{2} | $\sigma_{_{_{ m V}}}$ | $\sigma_{_{\!\scriptscriptstyle V}}{}'$ | h = 4 | | |------------------------|---|---------|-----------------------|---|-------------|-----------------------| | A ₁ | 1 | 1 | 1 | 1 | Z | x^2 , y^2 , z^2 | | A_2 | 1 | 1 | -1 | -1 | R_z | | | B ₁ | 1 | -1 | 1 | -1 | x , R_y | xy | | B ₂ | 1 | -1 | -1 | 1 | y , R_x | ZX, YZ | ### **Table 6.5** The C_{3v} character table | C | -
′3v | Ε | 2 C ₃ | $3\sigma_{_{ m v}}$ | <i>h</i> = 6 | | |---|-----------------|---|------------------|---------------------|--------------------------|----------------------------| | Δ | A ₁ | 1 | 1 | 1 | Z | Z^2 | | A | A ₂ | 1 | 1 | -1 | R_z | | | Е | | 2 | -1 | 0 | $(x, y) (R_{x'}, R_{y})$ | $(zx, yz) (x^2 - y^2, xy)$ | #### Character table for C_{∞_V} point group | | E | 2C _∞ | ••• | ∞ σ _v | linear,
rotations | quadratic | |--|---|-----------------|-----|------------------|--|-----------------| | Α ₁ =Σ ⁺ | 1 | 1 | ••• | 1 | z | x^2+y^2, z^2 | | $A_1 = \Sigma^+$ $A_2 = \Sigma^-$ | 1 | 1 | ••• | -1 | R _z | | | E ₁ =Π | 2 | 2cos(Φ) | | 0 | (x, y) (R _x ,
R _y) | (xz, yz) | | E ₂ =Δ | 2 | 2cos(2φ) | ••• | 0 | | (x^2-y^2, xy) | | E ₂ =Δ
E ₃ =Φ | 2 | 2cos(3φ) | ••• | 0 | | | | ••• | | ••• | ••• | | | | #### Character table for D_{∞_h} point group | | E | 2C _∞ | | ∞σν | i | 2S _∞ | | ∞C' ₂ | linear
functions,
rotations | quadratic | |---|-----|-----------------|-----------|-----|-----|-----------------|-----|------------------|------------------------------------|----------------| | Α _{1g} =Σ ⁺ _g | 1 | 1 | | 1 | 1 | 1 | | 1 | | x^2+y^2, z^2 | | A _{2g} =Σ ⁻ _g | 1 | 1 | ••• | -1 | 1 | 1 | ••• | -1 | R _z | | | Ε _{1g} =Π _g | 2 | 2cos(φ) | | 0 | 2 | -2cos(φ) | | 0 | (R _x , R _y) | (xz, yz) | | E _{2g} = Δ_g | 2 | 2cos(2ф) | ••• | 0 | 2 | 2cos(2ф) | ••• | 0 | | (x²-y², xy) | | Е _{3g} =Ф _g | 2 | 2cos(3ф) | | 0 | 2 | -2cos(3ф) | | 0 | | | | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | | | | $A_{1u} = \Sigma^{+}_{u}$ | 1 | 1 | ••• | 1 | -1 | -1 | ••• | -1 | z | | | $A_{2u} = \Sigma_u$ | 1 | 1 | ••• | -1 | -1 | -1 | ••• | 1 | | | | E _{1u} =П _u | 2 | 2cos(φ) | ••• | 0 | -2 | 2cos(φ) | ••• | 0 | (x, y) | | | E _{2u} =Δ _u | 2 | 2cos(2ф) | . | 0 | -2 | -2cos(2ф) | | 0 | | | | Е _{зи} =Ф _и | 2 | 2cos(3ф) | ••• | 0 | -2 | 2cos(3ф) | ••• | 0 | | | | ••• | | | | | | | | | | |