Lecture 13 Point Groups and Character Tables

Symmetry elements/operations can be manipulated by Group Theory, Representations and Character Tables

So, What IS a group?

And, What is a Character???

A GROUP is a collection of entities or elements which satisfy the following four conditions:

- 1) The product of any two elements (including the square of each element) must be an element of the group. For symmetry operations, the multiplication rule is to successively perform operations.
- 2) One element in the group must commute with all others and leave them unchanged. Therefore the "E",

$$EX = XE = X$$

3) The associative law of multiplication must hold

$$A(BC) = (AB)C$$

4) Every element must have a reciprocal which is also an element of the group. i.e.,

$$X(X^{-1}) = (X^{-1}) X = E$$

Note: An element may be its own reciprocal.

Groups may be composed of anything: symmetry operations, nuclear particles, etc. Simplest is +1, -1.

All the groups which follow the same multiplication table are called representations of the same group.

Character Tables

Table 6.4 The C_{2v} character table

Character table for point group C_{3v}

C _{3v}	Е	2C ₃ (z)	3σ _v	linear functions, rotations	quadratic functions	cubic functions		
A ₁	+1	+1	+1	Z	x^2+y^2 , z^2	z^3 , $x(x^2-3y^2)$, $z(x^2+y^2)$		
A ₂	+1	+1	-1	R _z	-	$y(3x^2-y^2)$		
E	+2	-1	0	(x, y) (R _x , R _y)	(x ² -y ² , xy) (xz, yz)	(xz^2, yz^2) [xyz, z(x ² -y ²)] [x(x ² +y ²), y(x ² +y ²)]		

Table 6.3 The components of a character table

Name of point group*	Symmetry operations <i>R</i> arranged by class (<i>E</i> , <i>C</i> _n , etc.)	Functions	Further functions	Order of group, <i>h</i>
Symmetry species (Γ)	Characters (χ)	Translations and components of dipole moments (x, y, z), of relevance to IR activity; rotations	Quadratic functions such as z^2 , xy , etc., of relevance to Raman activity	
* Schoenflies symb	bol.			

Consequences of Symmetry

- Only the molecules which belong to the C_n , C_{nv} , or C_s point group can have a permanent dipole moment.
- A molecule may be chiral only if it does not have an axis of improper rotation Sn.
- IR Allowed transitions may be predicted by symmetry operations
- Orbital overlap may be predicted and described by symmetry

Point Group Assignments and Character Tables

POINT GROUPS

A collection of symmetry operations all of which pass through a single point

A point group for a molecule is a quantitative measure of the symmetry of that molecule

Assignment of Symmetry Elements to Point Group: At first Looks Daunting.

Daunting? However almost all we will be concerned with belong to just a few symmetry point groups

A Simpler Approach

POINT GROUPS

A collection of symmetry operations all of which pass through a single point

A point group for a molecule is a quantitative measure of the symmetry of that molecule

ASSIGNMENT OF MOLECULES TO POINT GROUPS

STEP 1: LOOK FOR AN AXIS OF SYMMETRY

If one is found - go to STEP 2

If not: look for

(a) plane of symmetry - if one is found, molecule belongs to point group C_s

Point Group Assignments: MFT Ch. 4

TABLE 4.3 Groups of High Symmetry

IADLE 4.3	droups of riight symmetry	
Group	Description	Examples
$C_{\infty y}$	These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion.	C_{∞} H—CI
$D_{\infty h}$	These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes, a perpendicular reflection plane, and an inversion center.	$C_{\infty} \rightarrow O = C_{2}$
T_d	Most (but not all) molecules in this point group have the familiar tetrahedral geometry. They have four C_3 axes, three C_2 axes, three S_4 axes, and six σ_d planes. They have no C_4 axes.	H C H
O_h	These molecules include those of octahedral struc- ture, although some other geometrical forms, such as the cube, share the same set of symmetry opera- tions. Among their 48 symmetry operations are four C_3 rotations, three C_4 rotations, and an inversion.	F-S-F F F
I_h	Icosahedral structures are best recognized by their six C ₅ axes, as well as many other symmetry operations—120 in all.	B ₁₂ H ₁₂ ²⁻ with BH at each vertex of an icosahedron

In addition, there are four other groups, T, T_h , O, and I, which are rarely seen in nature. These groups are discussed at the end of this section.

LINEAR MOLECULES

Do in fact fit into scheme - but they have an infinite number of symmetry operations.

Molecular axis is C_{∞} - rotation by any arbitrary angle $(360/\infty)^{\circ}$, so infinite number of rotations. Also any plane containing axis is symmetry plane, so infinite number of planes of symmetry.

Divide linear molecules into two groups:

(i) No centre of symmetry, e.g.: $H \longrightarrow C \longrightarrow N$ C_{∞}

No C₂'s perp. to main axis, but ∞ σ_v 's containing

main axis: point group $\mathbf{C}_{\infty \mathbf{V}}$

(ii) Centre of symmetry, e.g.:

Point group $D_{\infty h}$

Highly symmetrical molecules

A few geometries have several, equivalent, highest order axes. Two geometries most important:

Regular tetrahedron

- 4 C₃ axes (one along each bond)
- 3 C₂ axes (bisecting pairs of bonds)
- 3 S_4 axes (coincident with C_2 's)
- $6 \sigma_d$'s (each containing Si and 2

Cl's) Point group: T_d

Regular octahedron

e.g.

 $3C_4$'s (along F-S-F axes) also $4C_3$'s. $6C_2$'s, several planes, S_4 , S_6 axes, and a centre of symmetry (at S atom) Point group O_h

These molecules can be identified without going through the usual steps.

Note: many of the more symmetrical molecules possess many more symmetry operations than are needed to assign the point group.

Inorganic Chemistry Chapter 1: Table 6.2 Table 6.2 The composition of some common groups

Point group	Symmetry elements	Shape	Examples
<i>C</i> ₁	E	•	SiHClBrF
C_2	E, C ₂		H_2O_2
		20	
C_{s}	Ε, σ	0	NHF ₂
-5	-1.		2
C_{2v}	E , C_2 , $\sigma_{v'}$, $\sigma_{v'}'$	2	SO ₂ CI ₂ , H ₂ O
<i>C</i> _{3v}	E , $2C_3$, $3\sigma_{v}$		NH ₃ , PCl ₃ , POCl ₃
C_{∞}	$E, C_{2'}, 2C_{\varphi'}, \infty \sigma_{V}$	• • •	OCS, CO, HCI
$D_{ m 2h}$	$E, 3C_2, i, 3\sigma$	0.00	N_2O_4 , B_2H_6
$D_{3\mathrm{h}}$	E , $2C_{3'}$ $3C_{2'}$ $\sigma_{\rm h'}$ $2S_3$, $3\sigma_{\rm v}$		BF ₃ , PCI ₅
- 3h	-1,3,2, - h,3, v		3' 5
$D_{ m 4h}$	$E, 2C_4, C_2, 2C_2', 2C_2'', i, 2S_4, \sigma_h, 2\sigma_v, 2\sigma_d$	2	XeF_4 , trans- $[MA_4B_2]$
$D_{\infty h}$	$E_1 \infty C_2', 2C_{\varphi}, i_1 \infty \sigma_{\varphi} 2S_{\varphi}$	0 0	CO_2 , H_2 , C_2H_2
$T_{ m d}$	$E, 8C_{3}, 3C_{2}, 6S_{4}, 6\sigma_{d}$	Ŷ	CH ₄ , SiCl ₄
		· Co	
O_{h}	$E, 8C_{3}, 6C_{2}, 6C_{4}, 3C_{2}, i, 6S_{4}, 8S_{6}, 3\sigma_{h}, 6\sigma_{d}$	9	SF_6
		0 %	

4. The C_{nv} Groups

C20			$\sigma_v(xz)$			
A_1 A_2 B_1 B_2	1 1 1 1	1 1 1 1	1 -1 1 -1	1 -1 -1	z R _z x, R _y	x^2, y^2, z^2 xy xz yz

Car	E	2 <i>C</i> ₄	Cz	$2\sigma_{\nu}$	20 _d		1
A_1	ι.	1 1 — 1	1	1	1	z	$x^2 + y^2, z^2$
A_2	1	1	ī	I	— 1	R _z	
$\boldsymbol{B_1}$	t	— 1	1	1	— 1		$x^2 - y^2$
\boldsymbol{B}_2	ŧ	— 1	t	— 1	1		xy
E	2	O	-2	О	О	$(x, y)(R_x, R_y)$	(xz, yz)

Cso	E	2C ₅	$2C_5^2$	$5\sigma_{v}$		
A_1 A_2	1	1	1	1	Z	$x^2 + y^2, z^2$
A_2	1	1	1	1	R_z	Į
$\boldsymbol{E}_{\mathbf{t}}$	2	2 cos 72°	2 cos 144°	О	$(x, y)(R_x, R_y)$	(xz, yz)
	2	2 cos 144°	2 cos 72°	0	$\begin{array}{c} R_x \\ (x, y)(R_x, R_y) \end{array}$	(x^2-y^2,xy)

Cos	E	2C ₆	$2C_3$	C_2	$3\sigma_{v}$	3 <i>σ</i> ₄ ′		
A ₁ A ₂ B ₁	1	1	1	1	ī	<u> </u>	z	$x^2 + y^2, z^2$
A 2	ì	1	. 1	1	— 1	<u> </u>	R _z	-
B,	i	— i	1	1	1	— 1	_	
\boldsymbol{B}_2	1	1	1	— 1	— 1	1		
E_1	2	1	<u> </u>	-2	0	О	$(x, y)(R_x, R_y)$	(xz, yz)
E_2	2	1	1	2	О	O	$(x, y)(R_x, R_y)$	(x^2-y^2,xy)

6. The D_{nh} Groups

Dzk	$E C_2(z)$	C ₂ (y) ($C_2(x)$ i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$	1	
Ag Blg B2g B3g Au B1m B2u B3m	1 I I I I I I I I I I I I I I I I I I I	1 -1 1 -1 -1 -1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I I -I -I -I -I	-1 -1 -1 -1 -1 1	-1 -1 -1 -1 -1	R _z R _y R _x z y	x ² , y ² , z ² xy xz yz
D_{3R}	$E 2C_3$	$3C_2 \sigma_h$	253 3συ	1	1	-		
A ₁ ', A ₂ ' E' A ₁ " A ₂ " E"	1 1 1 2 -1 1 1 2 -1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R _z (x, z (R _x	ν) , R _γ)	$x^2 + y$ $(x^2 - y)$ (xz, yz)	² , <i>xy</i>)	
Dan	E 2C4	C_2 $2C_2'$	2C ₂ " i	254	σ _R 2σ	υ 2σ.	[l
A 10 A 20 B 10 B 20 E0 A 14 A 24 B 14 B 24 E4	1 1 1 1 1 1 1 1 2 0 1 1 1 1 1 1 1 1 2 0	1 1 1 -1 1 -1 -2 0 1 1 1 -1 1 -1 1 -1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 -1 -1 0 -1 -1 1	-1 - -1 - -1 -	1	R_z (R_x, z)	

9. The Cubic Groups (Continued).

T_h	E 4C	$4C_3^2$	3C2	i	\$S ₆ 4	4S ₆ 5	$3\sigma_h$				$\epsilon = \exp(2i\theta)$	πί/3)
A _q	1 1	1 1	1	Ī	1	1	1				$x^2 + y^2 +$	z ²
E ₀	$ \begin{cases} 1 & \epsilon \\ 1 & \epsilon^* \end{cases} $	ε* ε	1	-1 - 1 1	-1 ε ε*	− ι ε* ε	-1 $\{1\}$				$(2z^2-x^2-x^2-x^2-y^2)$	$-y^2$,
E _u T _o T _u	$ \begin{cases} 1 & \varepsilon \\ 1 & \varepsilon^* \\ 3 & 0 \\ 3 & 0 \end{cases} $	ε* ε 0 0	1 1 - 1	-1 - -1 - 3 -3		$-\epsilon^{\bullet}$ $-\epsilon$ 0	- i - 1 - 1		. R,		(xz, yz, xy)	ı
T_d	E 86	_	654	_	U	0	1	(<i>x</i> 	, y, z)		1	
$\overline{A_1}$	1	1 1	1	ī				x ² -	+ y ² -	+ z ²	-	
A ₂ E	1 2 -	1 1 -1 2	$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$				(2z	$2-x^2$	2 _ y2		
T_1	3	0 -1	ı	-1	(R_x)	R_y ,	R_x)	x ²	- y²)	·		
T ₂ 0	3 E 60	$\begin{array}{cc} 0 & -1 \\ C_4 & 3C_2 \end{array}$	- (=C.2	1		, z) -	•	(xy	, <i>xz</i> , y	z)	i	
$\frac{1}{A_1}$	1	1		1		-						<u>-</u>
A ₂ E	i -	- i 0	i	į	-1						$x^2 + y^2 + z$	
	_	•	2	-1	0						$(2z^2-x^2-x^2-x^2-y^2)$	y²,
T_1 T_2	3 –	- 1	- 1 - 1	- O	-1 1	'	R_{x} , R	(y, R_z)	; (x,)	', z)	(xy, xz, yz)	,
0,	E 8C	6C ₂	6C₄	$3C_2(=$	C ₄ ²)	i	654	8S ₆	30 _h	6σ₄		
A 10 A 20		1 1 1 -1	1 -1	1		1	· 1	1	1	1 -1		$x^2 + y^2 + z^2$
E_{q}^{-1}	2 –	1 0	Ö	2	:	2	Ô	-i	ż	Ô		$(2z^2 - x^2 - y^2, x^2 - y^2).$
$T_{1g} = T_{2g}$	3 ($\begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$	1	- 1 1		3	1 -1	0	-1 -1	-1	(R_x, R_y, R_z)	
A _{1H} A _{2H}	1	i i	1	1		-1	-1	-!	_i	$-\frac{1}{1}$		(xz, yz, xy)
E _w	2 —	1 0 01	0	2	:	-1 -2	0	1	-1 -2	0		
T_{2u}	1	0 1	-1	- I		-3	- I	0	1	-1	(x, y, z)	

Table 6.4 The C_{2v} character table

C _{2v}	Ε	C_{2}	$\sigma_{_{_{ m V}}}$	$\sigma_{_{\!\scriptscriptstyle V}}{}'$	h = 4	
A ₁	1	1	1	1	Z	x^2 , y^2 , z^2
A_2	1	1	-1	-1	R_z	
B ₁	1	-1	1	-1	x , R_y	xy
B ₂	1	-1	-1	1	y , R_x	ZX, YZ

Table 6.5 The C_{3v} character table

C	- ′3v	Ε	2 C ₃	$3\sigma_{_{ m v}}$	<i>h</i> = 6	
Δ	A ₁	1	1	1	Z	Z^2
A	A ₂	1	1	-1	R_z	
Е		2	-1	0	$(x, y) (R_{x'}, R_{y})$	$(zx, yz) (x^2 - y^2, xy)$

Character table for C_{∞_V} point group

	E	2C _∞	•••	∞ σ _v	linear, rotations	quadratic
Α ₁ =Σ ⁺	1	1	•••	1	z	x^2+y^2, z^2
$A_1 = \Sigma^+$ $A_2 = \Sigma^-$	1	1	•••	-1	R _z	
E ₁ =Π	2	2cos(Φ)		0	(x, y) (R _x , R _y)	(xz, yz)
E ₂ =Δ	2	2cos(2φ)	•••	0		(x^2-y^2, xy)
E ₂ =Δ E ₃ =Φ	2	2cos(3φ)	•••	0		
•••		•••	•••			

Character table for D_{∞_h} point group

	E	2C _∞		∞σν	i	2S _∞		∞C' ₂	linear functions, rotations	quadratic
Α _{1g} =Σ ⁺ _g	1	1		1	1	1		1		x^2+y^2, z^2
A _{2g} =Σ ⁻ _g	1	1	•••	-1	1	1	•••	-1	R _z	
Ε _{1g} =Π _g	2	2cos(φ)		0	2	-2cos(φ)		0	(R _x , R _y)	(xz, yz)
E _{2g} = Δ_g	2	2cos(2ф)	•••	0	2	2cos(2ф)	•••	0		(x²-y², xy)
Е _{3g} =Ф _g	2	2cos(3ф)		0	2	-2cos(3ф)		0		
•••	•••	•••	•••	•••	•••	•••	•••	•••		
$A_{1u} = \Sigma^{+}_{u}$	1	1	•••	1	-1	-1	•••	-1	z	
$A_{2u} = \Sigma_u$	1	1	•••	-1	-1	-1	•••	1		
E _{1u} =П _u	2	2cos(φ)	•••	0	-2	2cos(φ)	•••	0	(x, y)	
E _{2u} =Δ _u	2	2cos(2ф)	 .	0	-2	-2cos(2ф)		0		
Е _{зи} =Ф _и	2	2cos(3ф)	•••	0	-2	2cos(3ф)	•••	0		
•••										