Lecture 13
Point Groups and Character Tables



Symmetry elements/operations can be manipulated by
Group Theory, Representations and Character Tables
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And, What is a Character???




A GROUP is a collection of entities or elements which satisfy the
following four conditions:

1) The product of any two elements (including the
square of each element) must be an element of the
group. For symmetry operations, the multiplication rule
is to successively perform operations.

2) One element in the group must commute with all
others and leave them unchanged. Therefore the “E”,

EX = XE =X
3) The associative law of multiplication must hold
A(BC) = (AB)C

4) Every element must have a reciprocal which is also
an element of the group. i.e., -

XX-1) = (X)X = E

Note: An element may be its own reciprocal.

All the groups which follow the same multiplication table are called
representations of the same group. 9 Character Tables



Table 6.4 The C,, character table




linear
functions,
rotations

cubic
functions

73, x(x2-3y2), z(x2+y?)

y(3x%y?)

(xz2, yz2) [xyz, z(x2-y2)]
[(x(x2+y2), y(x2+y2)]




Table 6.3 The components of a character table

Name of Symmetry Functions Further Order of
point operations R functions group, h
group* arranged by
classi(E C , etc.)
Symmetry Characters (y) Translations and Quadratic functions
species (I') components of such as 22, xy, etc.,
dipole moments (x, y, 2), of relevance to Raman
of relevance to IR activity

activity; rotations

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

* Schoenflies symbol.
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Consequences of Symmetry

Only the molecules which belong to the C, C,,,
group can have a permanent dipole moment.

or C point

A molecule may be chiral only if it does not have an axis of
improper rotation Sn.

IR Allowed transitions may be predicted by symmetry
operations

Orbital overlap may be predicted and described by symmetry



Point Group Assighnments and
Character Tables



POINT GROUPS

A collection of symmetry operations all of which pass through a single point

A point group for a molecule is a quantitative measure of the symmetry of that
molecule

Assignment of Symmetry Elements to Point Group: At first
Looks Daunting.
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Cubic groups

Daunting? However almost all we will be concerned
with belong to just a few symmetry point groups
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A Simpler Approach

Special Groups
Start . (2) Linear? Ceoy, Doop?
Shed (b) Multiple high-order axes?
T, Th, Tg, O, Op, I, 1;?

Low Symmetry (no axes): Cy, Cs, Cj

4

Step 2

Y

§t_€£3 >  Only S, (n even) axis: S4, Se, Ss, . ..,

Cs axis (not simple consequence of Spy)

No Cy’s axes L to Cy n C2 s axes L to Cp
ncv noos ncds noos

Cnh Cnv Cn Dllh D nd Dn



POINT GROUPS

A collection of symmetry operations all of which pass through a single point

A point group for a molecule is a quantitative measure of the symmetry of that
molecule

STEP 1 : LOOK FOR AN AXIS OF SYMMETRY
If one is found - go to STEP 2

If not: look for
(a) - if one is found, molecule

belongs to point group Cs



Point Group Assignments: MFT Ch. 4

TABLE 4.3 Groups of High Symmetry

Group

- These molecules are linear, with an infinite number
of rotations and an infinite number of reflection
planes containing the rotation axis. They do not
have a center of inversion.

D,y These molecules are linear, with an infinite number
of rotations and an infinite number of reflection
planes containing the rotation axis. They also have
perpendicular C; axes, a perpendicular reflection
plane, and an inversion cenler.

Description

T, Most (but not all) molecules in this point group
have the familiar tetrahedral geometry. They have
four C; axes, three C; axes, three Sy axes, and six
o4 planes. They have no C, axes.

0y These molecules include those of octahedral struc-
ture, although some other geometrical forms, such
as the cube, share the same set of symmetry opera-
tions. Among their 48 symmetry operations are four
C; rotations, three C, rotations, and an inversion.

I Icosahedral structures are best recognized by their
six Cs axes, as well as many other symmetry opera-
tions—120 in all.

Examples

('\T}—H—CI

P
('M—ro—¥=0

B,,H,,>” with BH
at each vertex of
an icosahedron

In addition, there are four other groups, T, T,. O, and I, which are rarely seen in nature. These groups are discussed at the end

of this section.




' LINEAR MOLECULES '

Do in fact fit into scheme - but they have an

Molecular axis is C_, - rotation by any arbitrary angle
(360/x0)°, so infinite number of rotations. Also any plane

containing axis is symmetry plane, so infinite number of

planes of symmetry.

Divide linear molecules into two groups:

()  No centre of symmetry, e.g.: Q4 C=—=N ----------- ( Cw

No C5's perp. to main axis, but « c,'s containing

main axis: point group Coov



(ii) Centre of symmetry, e.g.:

C, i.e. C,+ o0Cs's + op

Point group D,

Highly symmetrical molecules

A few geometries have several, equivalent, highest order
axes. Two geometries most important:



Regular tetrahedron

e.g. Cl 4 C5 axes (one along each bond)
‘ 3 C, axes (bisecting pairs of bonds)
/Si~---...,,,,,CI 3 S, axes (coincident with C5's)
Cl \CI 's (each containing Si and 2

Cl's) Point group: Ty

Regular octahedron

3C4's (along F-S-F axes)

€.g. F also 4 C3's. 6 C5's, several
Fu,_ ,,..‘«““‘F planes, S4, Sg axes, and a centre
F/S\F of Symmetry (at S atom) Point group Oh
F These molecules can be identified without going

through the usual steps.

Note: many of the more symmetrical molecules possess
many more symmetry operations than are needed to
assign the point group.




Table 6.2 The composition of some common groups

Point group

Symmetry elements

(€

T

Ea

5 G et g

E 2C, 30,
EC) 2C¢, g,
£ 3C, i 30

E,2C, 3C, 0, 25, 30,

£ 2C,C, 2C, €7 i, 25, 0, 20, 20,

FURST]

E wC,',2C, i, @0, 25,

£, 8C, 3C,, 65, 60,

E,8C, 6C, 6C,, 3C,, i, 65, 85, 37, 6a,

Examples

SiHCIBrF

H,0

NHF

50,Cl,, H,0

NH,, PCI, POCI,

0Cs, CO, HCl

N,0,, B,H

C. Ly a4

BF,, PCl,

XeF,,

4

trans{MA B,]

€O, H,, C,H

222

CH,, SiCl,

SF

6
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4. The C,, Groups

CZU

=

C:

A
Az
B,
B,

CJU

g

1
1
—1
—1

2C,

z 2 2
x'lyiz

A

c4 a

N o= -

F-4
R
(x, Y)(Rx., R,)

x* 4 2, ==

(x2 — »32, xy)Xxz, yz)

A,
A3
B,

y

0| G, ¥)IR., R,)) (xz, »z)

2Cs2 So.

NN -~

&

1
1

2 cos 72°

2 cos 144°

2Cs 2C,

C:

1 1 z

x* 4 2 22

1 —1 R,
2 cos 144° 0 (x, YR, R)) (xz, yz)
2 cos 72° Q

30‘, 30‘4

(x* — »2, x»)

NN =

—1
—1
—2

R,

1
—1
1
—1
o
O

I
1
i
1
0| G, (R, R)) (xz, yz)
0

x?* 4 2, z*

(x* — y%, xy)



6. The D,, Groups
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9. The Cubic Groups (Continued).

Th | £ 4Cy 4Cy% 3C, i 45 455 3o, e = exp (2mif3)
A, | 11 | Pl 1 1 x4yt 22
Al 1 1 I =1 =1 -1 -1
E | e ¢ | B PLE (222~ x* = y3,
¢ | e* € ] ! c* € 1 x?=y?

I ¢ &t I =1 —¢ —* —1
E 'l e ¢ [ =1 —e* —¢ —1
T, o 0 -1 3 0 0 -1 (Ry\ Ry, Ry) (x2, ¥z, xy)
.13 0 0 -~ =3 0 o0 1 (x, y, 2)
T‘ E 8C3 3C2 GS‘ 60’,;
Ay |1 1 S x4 pi4 22
E 2 -1 2 0 o (222 - x? - »2,

' x2—yh)
Ty |3 0 —1 1 —1 (Re, Ry, Ry)
T, 3 0 -1 -1 1 (x,y,2) ~ (xy, xz, y2)
0 | E 6Cy 3C,(=C.,Y) 8Cy 6C,
4, | 1 1 | | x4 yi4 2
A, | 1 =1 1 ~1
E |2 o 2 - 0 (22% = x* — 2,
x? = y?)
Tl 1 -1 0 -t (R,,R,,R,);(x,y.z)
T ] 3 —1 -1 -0 I (xy, xz, y2)
O, |E 8Cy 6C; 6C, ICA=C) i 6S, 85S¢ 3ay 6a,
Al 1 1 1 1 I I T O x34 pt4g2
Azp | 1 I =1 -1 1 I -t 1 1 =1
E, |2 —1 0 o 2 2 6 -1 2 o (222 — x3 — y2
x2— y2).

T, |3 0 —1I | -1 3 1 0 —1 —1]|(R:,R,,R)
Ty |3 0 1 —| -1 I -1 0 -1 1 (xz, yz, xy)
Al 1 1 1 1 1 -1 -1 =1 =1 =1
Az ] I -1 -1 1 -1 1 =1 =1 1
E, |2 1 0 o 2 -2 0 1 =2 9
Twl3 0 -t 1 -1 -3 =1 0 1t 1{(xy2
Tald 0 1 -1 -1 -3 1 0 1 -1




Table 6.4 The C,, character table

B ... 2 o e ey A
A . IR 7 GV
A, ] -1 - R
B. -1 1 -1 x Ry Xy
B, S YR ZX, V7



Table 6.5 The C.. character table

C, E 2C, 30, h=6

R B -
A . R,
B -1 0 Xy (R,R) (2 y2) (- ¥, X))
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Character table for C_,, point group

linear,

2C_, oo &sigma, rotations quadratic
A =2* 1 1 Z x%+y?, 72
A,=3 1 -1 R,
E,=MN 2cos(D) 0 I(ny’)y) Ry (xz, yz)
E,= 2cos(20) 0 (x2-y2, xy)
E;=D 2cos(39) 0




Character table for D, point group

linear
2C.. °oQ, i 2S.. oo(C', functions, [quadratic
rotations
A=E, 1 1 1 1 1 x2+y?, 72
A=Y, 1 -1 1 1 -1 R,
E,.=, 2cos(dp) 0 2 -2cos(d) 0 (Rw R))  |(xz, yz)
E,.=4, 2cos(29) 0 2 2cos(29) 0 (x2-y?, xy)
E3=D, 2cos(3¢) 0 2 -2cos(39) |... 0
A,,=5*, 1 1 -1 -1 -1 z
A,z 1 -1 -1 -1 1
E, =N, 2cos(d) 0 -2 2cos(d) 0 (x,y)
E,=4, 2cos(2¢) 0 -2 -2cos(2¢) 0
E; =0, 2cos(3d) 0 -2 2cos(39) 0




