

Intuitively, we know symmetry when we see it.

But how do we put in quantitative terms that allows us to compare, assign, classify?

Symmetry Operations and Symmetry Elements

Definitions:

- A symmetry operation is an operation on a body such that, after the operation has been carried out, the result is indistinguishable from the original body (every point of the body is coincident with an equivalent point or the same point of the body in its original orientation).
- A symmetry element is a geometrical entity such as a line, a plane, or a point, with respect to which one or more symmetry operations may be carried out

Symmetry Operation	Symmetry Element	Notation
Identity	-	E
Reflection in a plane	Plane of symmetry	$\sigma_{v}, \sigma_{d}, \sigma_{h}$
Proper rotation	Rotation axis (line)	C_n ; where = 360/angle
Rotation followed by reflection in the plane perpendicular to the rotation axis	Improper rotation axis (line)	S _n
Inversion	Center of inversion	I

Notes

(i) symmetry operations more fundamental, but elements often easier to spot.

(ii) some symmetry elements give rise to more than one operation - especially rotation - as above.

Some examples for different types of molecule: e.g.

Line in molecular plane, bisecting HOH angle is a rotation axis, giving indistinguishable configuration on rotation by 180°.

By VSEPR - trigonal, planar, all bonds equal, all angles 120°. Take as axis a line perpendicular to molecular plane, passing through B atom.

F(2)

Symbol for axes of symmetry

where rotation about axis gives indistinguishable configuration every (360/n)^o (i.e. an n-fold axis)

Thus H_2O has a C_2 (two-fold) axis, BF_3 a C_3 (three-fold) axis. One axis can give rise to >1 rotation, e.g. for BF_3 , what if we rotate by 240°?

In general C_n axis (minimum angle of rotation (360/n)^o) gives operations C_n^m, where both m and n are integers.

When m = n we have a special case, which introduces a new type of symmetry operation.....

IDENTITY OPERATION

For H_2O , C_2^2 and for $BF_3 C_3^3$ both bring the molecule to an IDENTICAL arrangement to initial one.

Rotation by 360^o is exactly equivalent to rotation by 0^o, i.e. the operation of doing NOTHING to the molecule.

xenon tetrafluoride, XeF₄

cyclopentadienide ion, C₅H₅⁻

benzene, C₆H₆

Examples also known of C_7 and C_8 axes.

If a C_{2n} axis (i.e. even order) present, then C_n must also be present:

Therefore there must be a C_2 axis coincident with C_4 , and the operations generated by C_4 can be written:

$$C_4^{1}, C_4^{2} (C_2^{1}), C_4^{3}, C_4^{4} (E)$$

Similarly, a C_6 axis is accompanied by C_3 and C_2 , and the operations generated by C_6 are:

 $C_6^{1}, C_6^{2} (C_3^{1}), C_6^{3} (C_2^{1}), C_6^{4} (C_3^{2}), C_6^{5}, C_6^{6} (E)$

Molecules can possess several distinct axes, e.g. BF₃:

Three C_2 axes, one along each B-F bond, perpendicular to C_3

Inversion (i)

Each atom in the molecule is moved along a straight line through the inversion center to a point an equal distance from the

X,Y,Z

-X, -Y, -Z

inversion center.

Mirror planes (σ) of BF₃:

Mirror planes can contain the principal axis (σ_v) or be at right angles to it (σ_h). BF₃ has one σ_h and three σ_v planes: (v = vertical, h = horizontal)

IMPROPER ROTATION

An improper rotation is rotation, followed by reflection in the plane perpendicular to the axis of rotation. Thus

 $S_n = C_n * i = i * C_n$

both independent symmetry operations commute. Essentially

Symmetry elements/operations can be manipulated by Group Theory, Representations and Character Tables

So, What IS a group?

And, What is a Character???

A GROUP is a collection of entities or elements which satisfy the following four conditions:

1) The product of any two elements (including the square of each element) must be an element of the group. For symmetry operations, the multiplication rule is to successively perform operations.

2) One element in the group must commute with all others and leave them unchanged. Therefore the "E",

$$EX = XE = X$$

3) The associative law of multiplication must hold

$$A(BC) = (AB)C$$

4) Every element must have a reciprocal which is also an element of the group. i.e.,

$$X(X^{-1}) = (X^{-1}) X = E$$

Note: An element may be its own reciprocal.

Groups may be composed of anything: symmetry operations, nuclear particles, etc. Simplest is +1, -1.

W. Н.

Character table for point group C_{3v}

C _{3v}	E	2C ₃ (z)	3σ _v	linear functions, rotations	quadratic functions	cubic functions
A ₁	+1	+1	+1	Z	x ² +y ² , z ²	z^3 , x(x ² -3y ²), z(x ² +y ²)
A ₂	+1	+1	-1	Rz	-	y(3x ² -y ²)
E	+2	-1	0	(x, y) (R _x , R _y)	(x ² -y ² , xy) (xz, yz)	$(xz^2, yz^2) [xyz, z(x^2-y^2)]$ [x(x ² +y ²), y(x ² +y ²)]

Table 6.3 The components of a character table

Name of point group*	Symmetry operations <i>R</i> arranged by class (<i>E</i> , <i>C_n</i> , etc.)	Functions	Further functions	Order of group, <i>h</i>
Symmetry species (Γ)	Characters (χ)	Translations and components of dipole moments (<i>x</i> , <i>y</i> , <i>z</i>), of relevance to IR activity; rotations	Quadratic functions such as <i>z</i> ² , <i>xy</i> , etc., of relevance to Raman activity	

* Schoenflies symbol.

W. H.

Consequences of Symmetry

- Only the molecules which belong to the C_n, C_{nv}, or C_s point group can have a permanent dipole moment.
- A molecule may be chiral only if it does not have an axis of improper rotation **Sn**.
- IR Allowed transitions may be predicted by symmetry operations
- Orbital overlap may be predicted and described by symmetry

Point Group Assignments and Character Tables

A collection of symmetry operations all of which pass through a single point A point group for a molecule is a quantitative measure of the symmetry of that molecule

Assignment of Symmetry Elements to Point Group: At first Looks Daunting.

Daunting? However almost all we will be concerned with belong to just a few symmetry point groups

W. H.

A Simpler Approach

POINT GROUPS

A collection of symmetry operations all of which pass through a single point

A point group for a molecule is a quantitative measure of the symmetry of that molecule

ASSIGNMENT OF MOLECULES TO POINT GROUPS

STEP 1 : LOOK FOR AN AXIS OF SYMMETRY

If one is found - go to STEP 2

If not: look for

(a) plane of symmetry - if one is found, molecule belongs to point group C_s

Point Group Assignments: MFT Ch. 4

TABLE 4.3	Groups of High Symmetry	
Group	Description	Examples
$C_{\infty \nu}$	These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion.	C _∞ H—Cl
$D_{\infty h}$	These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes, a perpendicular reflection plane, and an inversion center.	$C_{\infty} \rightarrow 0 = C_{2}$
T _d	Most (but not all) molecules in this point group have the familiar tetrahedral geometry. They have four C_3 axes, three C_2 axes, three S_4 axes, and six σ_d planes. They have no C_4 axes.	
O _h	These molecules include those of octahedral struc- ture, although some other geometrical forms, such as the cube, share the same set of symmetry opera- tions. Among their 48 symmetry operations are four C_3 rotations, three C_4 rotations, and an inversion.	F-S-F FF
I _h	Icosahedral structures are best recognized by their six C_5 axes, as well as many other symmetry operations—120 in all.	

TABLE 4.3 Groups of High Symmetry

In addition, there are four other groups, T, T_h , O, and I, which are rarely seen in nature. These groups are discussed at the end of this section.

B₁₂H₁₂²⁻ with BH at each vertex of an icosahedron

LINEAR MOLECULES

Do in fact fit into scheme - but they have an infinite number of symmetry operations.

Molecular axis is C_{∞} - rotation by any arbitrary angle $(360/\infty)^{\circ}$, so infinite number of rotations. Also any plane containing axis is symmetry plane, so infinite number of planes of symmetry.

Divide linear molecules into two groups:

(i) No centre of symmetry, e.g.: $H \longrightarrow C \longrightarrow N$ C_{∞}

No C₂'s perp. to main axis, but $\infty \sigma_v$'s containing main axis: point group $C_{\infty v}$

Point group $D_{\infty h}$

Highly symmetrical molecules

A few geometries have several, equivalent, highest order axes. Two geometries most important:

Regular tetrahedron

 $3C_4$'s (along F-S-F axes) also $4C_3$'s. $6C_2$'s, several planes, S_4 , S_6 axes, and a centre of symmetry (at S atom) Point group O_h

These molecules can be identified without going through the usual steps.

Note: many of the more symmetrical molecules possess many more symmetry operations than are needed to assign the point group.

Inorganic Chemistry Chapter 1: Table 6.2 Table 6.2 The composition of some common groups

W. H. Freeman

© 2009 W.H. Freeman

4. The C_{nv} Groups

$ \frac{C_{2v}}{A_1} $ $ \frac{A_2}{B_1} $ $ B_2 $	E 1 1 1 1	$ \begin{array}{cccc} C_2 & \sigma_1(xz) \\ \hline 1 & 1 \\ 1 & -1 \\ -1 & 1 \\ -1 & -1 \\ \hline -1 & -1 \end{array} $		$ \frac{z}{R_z} \\ x, R_y \\ y, R_x $	x ² , y ² xy xz yz	² , z ²	
$ \begin{array}{c} C_{3v} \\ \hline A_1 \\ A_2 \\ E \end{array} $	E 1 1 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$z R_z (x, y)(z)$	R _x , R _y)	$x^{2} + \frac{1}{(x^{2} - x^{2})^{2}}$	y^2, z^2 $y^2, xy)($	xz, yz)
$ \begin{array}{c} C_{4v} \\ \hline \\ A_1 \\ A_2 \\ B_1 \\ B_2 \\ E \\ \end{array} $	E 1 1 1 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1		x, Ry)	$x^{2} + y$ $x^{2} - y$ xy $(xz, yz$)
$\frac{C_{50}}{A_1}$ $\frac{A_2}{E_1}$ E_2	E 1 1 2 2	1 1 2 cos 72° 2 co	2 <i>C</i> ₅ ² 1 1 0s 144° 0s 72°	5σ _υ 1 -1 0 0	z R _z (x, y)(R	R _x , R _y)	$ x^{2} + y^{2}, z^{2} $ (xz, yz) (x ² - y ² , xy)
$ \begin{array}{c} C_{6\nu} \\ A_1 \\ A_2 \\ B_1 \\ B_2 \\ E_1 \\ E_2 \end{array} $	E 1 1 1 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 1	$\begin{array}{c c} 3\sigma_{d} \\ \hline 1 & z \\ -1 & R_{z} \\ -1 & 1 \\ 1 & 0 \\ 0 & (x) \end{array}$, <i>y</i>)(<i>R</i> _x ,		$x^{2} + y^{2}, z^{2}$ (xz, yz) (x ² - y ² , xy)

4. The C_{nv} Groups

$ \frac{C_{2v}}{A_1} $ $ \frac{A_2}{B_1} $ $ B_2 $	E 1 1 1 1	$ \begin{array}{cccc} C_2 & \sigma_1(xz) \\ \hline 1 & 1 \\ 1 & -1 \\ -1 & 1 \\ -1 & -1 \\ \hline -1 & -1 \end{array} $		$ \frac{z}{R_z} \\ x, R_y \\ y, R_x $	x ² , y ² xy xz yz	² , z ²	
$ \begin{array}{c} C_{3v} \\ \hline A_1 \\ A_2 \\ E \end{array} $	E 1 1 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$z R_z (x, y)(z)$	R _x , R _y)	$x^{2} + \frac{1}{(x^{2} - x^{2})^{2}}$	y^2, z^2 $y^2, xy)($	xz, yz)
$ \begin{array}{c} C_{4v} \\ \hline \\ A_1 \\ A_2 \\ B_1 \\ B_2 \\ E \\ \end{array} $	E 1 1 1 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1		x, Ry)	$x^{2} + y$ $x^{2} - y$ xy $(xz, yz$)
$\frac{C_{50}}{A_1}$ $\frac{A_2}{E_1}$ E_2	E 1 1 2 2	1 1 2 cos 72° 2 co	2 <i>C</i> ₅ ² 1 1 0s 144° 0s 72°	5σ _υ 1 -1 0 0	z R _z (x, y)(R	R _x , R _y)	$ x^{2} + y^{2}, z^{2} $ (xz, yz) (x ² - y ² , xy)
$ \begin{array}{c} C_{6\nu} \\ A_1 \\ A_2 \\ B_1 \\ B_2 \\ E_1 \\ E_2 \end{array} $	E 1 1 1 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 1	$\begin{array}{c c} 3\sigma_{d} \\ \hline 1 & z \\ -1 & R_{z} \\ -1 & 1 \\ 1 & 0 \\ 0 & (x) \end{array}$, <i>y</i>)(<i>R</i> _x ,		$x^{2} + y^{2}, z^{2}$ (xz, yz) (x ² - y ² , xy)

6. The D_{nh} Groups

D 2 k	E	$C_2(z)$	C₂(y)	$C_2(x)$	i	σ(xy)	σ(xz)	σ(yz)			
A ₀ B ₁₀ B ₂₀ B ₃₀ A _u B _{1u} B _{2u} B _{3u}	1 1 1 1 1 1 1				1 1 1 -1 -1 -1				Rz Ry Rz z y z	x ² , j xy xz yz	y ² , z ²
D3M	E	2C ₃ 2	$C_2 \sigma_h$	253	300	_		-			
A ₁ ', A ₂ ' A ₁ " A ₂ " E"	1 1 2 1 1 2	1 1 1 1 1		$ \begin{array}{c} 1 \\ 1 \\ 2 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $		R _z (x,) z (R _x	v) , R _y)	$x^2 + y$ $(x^2 - y)$ (xz, yz)	y², xy)		
DAN	E	2 <i>C</i> _	C ₂ 2C ₂	′ 2 <i>C</i> 2 [*]	i	25.	σ _R 2σ	-, 2σ,		ł	
A 1.9 A 2.9 B 1.9 B 2.9 E 9 A 1.4 A 2.4 B 2.4 B 2.4 E 4 E 4 E 4 E 4 E 4 E 4 E 4 E 4 E 4 E	I I I I I I I I I I 2	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ \end{array} $	1 - 1 1 - 2 1 - 2 1 - 2 1 - 1 1 - 2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \\ -2 \\ -2 \\ \end{array} $	i 1 1 1 1 1 1 1 1 1 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R _z (R _x , z (x, y		$ x^{2} + y^{2}, z^{2} x^{2} - y^{2} xy (xz, yz) $

5. The D_{nh} Groups

D 28	E	$C_2(z)$	C2())	$C_1(x)$	1	$\sigma(xy)$	σ(xz)	o()/2)			
A. B B.2. B.3. A. B.1. B.1. B.2. B.3. B.3.			-1 -1 -1 -1 -1	1 -1 -1 1 -1 -1 1 -1			-1 -1 -1 -1 -1		R, R, R, z y x	x ² , xy xz yz	y ² , z ²
Dam	E	2C, 2	BC ₂ σ _h	2.53	300		1				
1.1.1 1.1.1.1 1.1.	1 2 1 1 2			-1	$-1 \\ -1 \\ -1 \\ 1 \\ 0$	R. (x,) (R,	y) . R,)	$x^2 + y$ $(x^2 - z)$ (xz, yz)	y², xy)		
D	E	264	C1 2C1	2C2*	i	25. 0	σ _h 2σ	. 20.	1	I	
A 1.0 A 200 B 200 E 0 A 100 B 200 E 0 A 100 B 200 E 0 E 0 E 0	1 1 2 1 1 1 2		$ \begin{bmatrix} 1 \\ 1 \\ -2 \\ -2 \\ 1 \\ 1 \\ -1 \\ -2 \\ 1 \\ -2 \\ 1 \\ -2 \\ 1 \\ -2 \\ $		1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R. (R z (x. y		$x^{2} + y^{2}, z^{2}$ $x^{2} - y^{2}$ xy (xz, yz)

9. The Cubic Groups (Continued).

T _h	$E 4C_3 4C_3^2 3C_2 i 4S_6 4S_6^3 3\sigma_h$		$\epsilon = \exp\left(2\pi i/3\right)$
Ag	1 1 1 1 1 1 1		$\frac{1}{x^2+y^2+z^2}$
Au Ee	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{l} (2z^2 - x^2 - y^2, \\ x^2 - y^2) \end{array}$
E,	$\int 1 \varepsilon \varepsilon^* = 1 - 1 - \varepsilon - \varepsilon^* - 1$		$x^2 - y^2$
T _e T _u	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(R_x, R_y, R_z) (x, y, z)$	(xz, yz, xy)
T_d	$E 8C_3 3C_2 6S_4 6\sigma_d$		
A_1 A_2		$x^2 + y^2 + z^2$	
E	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(2z^2 - x^2 - y^2),$ $x^2 - y^2)$	
$T_1 \\ T_2$	$\begin{vmatrix} 3 & 0 & -1 & 1 & -1 \\ 3 & 0 & -1 & -1 & 1 \\ \end{vmatrix} \begin{pmatrix} (R_x, R_y, R_z) \\ (x, y, z) \\ \ddots \\ \end{vmatrix}$		
0	$\begin{vmatrix} E & 6C_4 & 3C_2(=C_4^2) & 8C_3 & 6C_2 \end{vmatrix}$	(xy, xz, yz)	
A 1			$x^2 + y^2 + z^2$
A 2 E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{l} (2z^2 - x^2 - y^2, \\ x^2 - y^2) \end{array}$
$T_1 \\ T_2$	$\begin{vmatrix} 3 & 1 & -1 & 0 & -1 \\ 3 & -1 & -1 & 0 & 1 \end{vmatrix} (R_x, R_y)$	$(R_{z}); (x, y, z)$	• •
0,	$\begin{bmatrix} E & 8C_3 & 6C_2 & 6C_4 & 3C_2(=C_4^2) & i & 6S_4 \end{bmatrix}$	85 ₆ 3an 6an	(xy, xz, yz)
A 10	1 1 1 1 1 1	1 1 1	$x^2 + y^2 + z^2$
A 20 Eg	$\begin{vmatrix} 1 & 1 & -1 & -1 & 1 & 1 & -1 \\ 2 & -1 & 0 & 0 & 2 & 2 & 0 \end{vmatrix}$	$\begin{vmatrix} 1 & 1 & -1 \\ -1 & 2 & 0 \end{vmatrix}$	$(2z^2 - x^2 - y^2, x^2 - y^2).$
T_{1g}	3 0 -1 1 -1 3 1	0 -1 -1	(R_x, R_y, R_z)
T ₂₉ A ₁₁		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(xz, yz, xy)
A ₂₄ E ₄	2 -1 0 0 2 -2 0	$ \begin{bmatrix} -1 & -1 & 1 \\ 1 & -2 & 0 \end{bmatrix} $	
T _{1#} T _{2#}	$\begin{vmatrix} 3 & 0 & -1 & 1 & -1 & -3 & -1 \\ 3 & 0 & 1 & -1 & -1 & -3 & 1 \end{vmatrix}$	$\begin{array}{cccc} 0 & I & 1 \\ 0 & 1 & -1 \end{array}$	(x, y, z)

Table 6.5 The C_{3v} character table

W. H.

Character table for $C_{\scriptscriptstyle \! \infty \nu}$ point group

	E	2C	••••	∞ σ _v	linear, rotations	quadratic
A ₁ =Σ ⁺	1	1		1	Z	x ² +y ² , z ²
A ₁ =Σ ⁺ A ₂ =Σ ⁻	1	1		-1	R _z	
Е ₁ =П	2	2cos(Φ)		0	(x, y) (R _x , R _y)	(xz, yz)
E ₂ =Δ	2	2cos(2φ)		0		(x ² -y ² , xy)
Е ₃ =Ф	2	2cos(3φ)		0		
•••	•••	•••	•••	•••		

Character table for $D_{{\scriptscriptstyle \infty}{\scriptscriptstyle h}}$ point group

	E	2C	 ∞0 ^v	i	2S _∞	 ∞C'2	linear functions, rotations	quadratic
Α _{1g} =Σ+ _g	1	1	 1	1	1	 1		x ² +y ² , z ²
A _{2g} =Σ ⁻ g	1	1	 -1	1	1	 -1	R _z	
E _{1g} =Π _g	2	2cos(φ)	 0	2	-2cos(φ)	 0	(R _x , R _y)	(xz, yz)
E _{2g} =Δ _g	2	2cos(2φ)	 0	2	2cos(2φ)	 0		(x²-y², xy)
E _{3g} =Φ _g	2	2cos(3ф)	 0	2	-2cos(3ф)	 0		
•••			 			 		
Α _{1u} =Σ+ _u	1	1	 1	-1	-1	 -1	z	
A _{2u} =Σ ⁻ _u	1	1	 -1	-1	-1	 1		
Е _{1u} =П _u	2	2cos(φ)	 0	-2	2cos(φ)	 0	(x, y)	
E _{2u} =Δ _u	2	2cos(2ф)	 0	-2	-2cos(2ф)	 0		
Е _{зи} =Ф _и	2	2cos(3φ)	 0	-2	2cos(3φ)	 0		
•••			 			 		