

Intuitively, we know symmetry when we see it.
But how do we put in quantitative terms that allows us to compare, assign, classify?

Symmetry Operations and Symmetry Elements

Definitions:

$>$ A symmetry operation is an operation on a body such that, after the operation has been carried out, the result is indistinguishable from the original body (every point of the body is coincident with an equivalent point or the same point of the body in its original orientation).
$>$ A symmetry element is a geometrical entity such as a line, a plane, or a point, with respect to which one or more symmetry operations may be carried out

Symmetry Operation	Symmetry Element	Notation
Identity	-	E
Reflection in a plane	Plane of symmetry	$\sigma_{v}, \sigma_{d}, \sigma_{h}$
Proper rotation	Rotation axis (line)	$C_{n} ;$ where $=360$ /angle
Rotation followed by reflection in the plane perpendicular to the rotation axis Inversion	Improper rotation axis (line)	S_{n}
Center of inversion		

Notes
(i) symmetry operations more fundamental, but elements often easier to spot.
(ii) some symmetry elements give rise to more than one operation - especially rotation - as above.

ROTATIONS - AXES OF SYMMETRY

Some examples for different types of molecule: e.g.

Line in molecular plane, bisecting HOH angle is a rotation axis, giving indistinguishable configuration on rotation by 180°.

By VSEPR - trigonal, planar, all bonds equal, all angles 120°. Take as axis a line
perpendicular to molecular plane, passing through B atom.

axis perpendicular
to plane
N.B. all rotations CLOCKWISE when viewed along -z direction.

Symbol for axes of symmetry

where rotation about axis gives indistinguishable configuration every $(360 / n)^{0}$ (i.e. an n-fold axis)

Thus $\mathrm{H}_{2} \mathrm{O}$ has a C_{2} (two-fold) axis, BF_{3} a C_{3} (three-fold) axis. One axis can give rise to >1 rotation, e.g. for BF_{3}, what if we rotate by 240° ?

Must differentiate between two operations.
Rotation by 120° described as $\mathrm{C}_{3}{ }^{1}$,
rotation by 240° as $\mathrm{C}_{3}{ }^{2}$.

In general C_{n} axis (minimum angle of rotation (360/n) ${ }^{0}$) gives operations $C_{n}{ }^{m}$, where both m and n are integers.

When $m=n$ we have a special case, which introduces a new type of symmetry operation.....

IDENTITY OPERATION

For $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2}{ }^{2}$ and for $\mathrm{BF}_{3} \mathrm{C}_{3}{ }^{3}$ both bring the molecule to an IDENTICAL arrangement to initial one.

Rotation by 360° is exactly equivalent to rotation by 0°, i.e. the operation of doing NOTHING to the molecule.

xenon tetrafluoride, XeF_{4}

cyclopentadienide ion, $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$

benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$

Examples also known of C_{7} and C_{8} axes.

If $\mathbf{a} \mathrm{C}_{2 \mathrm{n}}$ axis (i.e. even order) present, then C_{n} must also be present:

Therefore there must be a C_{2} axis coincident with C_{4}, and the operations generated by C_{4} can be written:

$$
C_{4}^{1}, C_{4}^{2}\left(C_{2}^{1}\right), C_{4}^{3}, C_{4}^{4}(E)
$$

Similarly, a C_{6} axis is accompanied by C_{3} and C_{2}, and the operations generated by C_{6} are:

$$
\mathrm{C}_{6}{ }^{1}, \mathrm{C}_{6}{ }^{2}\left(\mathrm{C}_{3}{ }^{1}\right), \mathrm{C}_{6}{ }^{3}\left(\mathrm{C}_{2}{ }^{1}\right), \mathrm{C}_{6}{ }^{4}\left(\mathrm{C}_{3}{ }^{2}\right), \mathrm{C}_{6}{ }^{5}, \mathrm{C}_{6}{ }^{6}(\mathrm{E})
$$

Molecules can possess several distinct axes, e.g. $B F_{3}$:

Three C_{2} axes, one along each $B-F$ bond, perpendicular to C_{3}

Inversion (i)

Each atom in the molecule is moved along a straight line through the inversion center to a point an equal distance from the inversion center.

$$
\xrightarrow{X, Y, Z} \quad-X,-Y,-Z
$$

Mirror planes (σ) of BF_{3} :

Mirror planes can contain the principal axis (σ_{v}) or be at right angles to it $\left(\sigma_{h}\right) . \mathrm{BF}_{3}$ has one σ_{h} and three σ_{v} planes:
($v=$ vertical, $h=$ horizontal)

$\boldsymbol{\sigma}_{\boldsymbol{v}}$ mirror plane
contains the C_{3} axis

is at right angles to the C_{3} axis

IMPROPER ROTATION

An improper rotation is rotation, followed by reflection in the plane perpendicular to the axis of rotation. Thus
$S_{n}=C_{n} * i=i * C_{n}$
both independent symmetry operations commute. Essentially
$C_{n} \perp \sigma$

Symmetry elements/operations can be manipulated by Group Theory, Representations and Character Tables

So, What IS a group?

And, What is a Character???

A GROUP is a collection of entities or elements which satisfy the following four conditions:

1) The product of any two elements (including the square of each element) must be an element of the group. For symmetry operations, the multiplication rule is to successively perform operations.
2) One element in the group must commute with all others and leave them unchanged. Therefore the "E",

$$
E X=X E=X
$$

3) The associative law of multiplication must hold

$$
A(B C)=(A B) C
$$

4) Every element must have a reciprocal which is also an element of the group. i.e.,

$$
X\left(X^{-1}\right)=\left(X^{-1}\right) X=E
$$

Note: An element may be its own reciprocal.

```
Groups may be composed of anything: symmetry operations,
nuclear particles, etc. Simplest is +1, -1.
```

All the groups which follow the same multiplication table are called representations of the same group.
\rightarrow Character Tables

Table 6.4 The $C_{2 v}$ character table

Character table for point group $\mathbf{C}_{3 \mathrm{v}}$

$\mathrm{C}_{3 \mathrm{v}}$	E	$\begin{aligned} & 2 \mathrm{C}_{3} \\ & \mathrm{z}) \end{aligned}$	$3 \sigma_{\mathrm{v}}$	linear functions, rotations	quadratic functions	cubic functions
A_{1}	+1	+1	+1	Z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$	$z^{3}, x\left(x^{2}-3 y^{2}\right), z\left(x^{2}+y^{2}\right)$
A_{2}	+1	+1	-1	R_{z}	-	$y\left(3 x^{2}-y^{2}\right)$
E	+2	-1	0	(x, y) ($\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}$)	$\begin{aligned} & \left(\mathrm{x}^{2}-\mathrm{y}^{2}, x y\right) \\ & (\mathrm{xz}, \mathrm{yz}) \end{aligned}$	$\begin{aligned} & \left(\mathrm{xz}^{2}, \mathrm{yz}{ }^{2}\right)\left[\mathrm{xyz}, \mathrm{z}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)\right] \\ & {\left[\mathrm{x}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right), \mathrm{y}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right]} \end{aligned}$

Table 6.3 The components of a character table

Name of point group*	Symmetry operations R arranged by class ($E, C_{n^{\prime}}$ etc.)	Functions	Further functions	Order of group, h
Symmetry species (Γ)	Characters (χ)	Translations and components of dipole moments (x, y, z), of relevance to IR activity; rotations	Quadratic functions such as $z^{2}, x y$, etc., of relevance to Raman activity	

Consequences of Symmetry

- Only the molecules which belong to the $\mathbf{C}_{n}, \mathbf{C}_{\mathrm{nv}}$, or \mathbf{C}_{s} point group can have a permanent dipole moment.
- A molecule may be chiral only if it does not have an axis of improper rotation $\mathbf{S n}$.
- IR Allowed transitions may be predicted by symmetry operations
- Orbital overlap may be predicted and described by symmetry

Point Group Assignments and Character Tables

POINT GROUPS

A collection of symmetry operations all of which pass through a single point A point group for a molecule is a quantitative measure of the symmetry of that molecule

Assignment of Symmetry Elements to Point Group: At first Looks Daunting.

Daunting? However almost all we will be concerned with belong to just a few symmetry point groups

A Simpler Approach

POINT GROUPS

A collection of symmetry operations all of which pass through a single point A point group for a molecule is a quantitative measure of the symmetry of that molecule

ASSIGNMENT OF MOLECULES TO POINT GROUPS

STEP 1 : LOOK FOR AN AXIS OF SYMMETRY
 If one is found - go to STEP 2

If not: look for
(a) plane of symmetry - if one is found, molecule belongs to point group C_{s}

Point Group Assignments: MFT Ch. 4

TABLE 4.3 Groups of High Symmetry

Group	Description
$C_{\infty v}$	These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion. These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_{2} axes, a perpendicular reflection plane, and an inversion center. Most (but not all) molecules in this point group have the familiar tetrahedral geometry. They have four C_{3} axes, three C_{2} axes, three S_{4} axes, and six σ_{d} planes. They have no C_{4} axes. These molecules include those of octahedral struc- ture, although some other geometrical forms, such as the cube, share the same set of symmetry opera- tions. Among their 48 symmetry operations are four C_{3} rotations, three C_{4} rotations, and an inversion.
Icosahedral structures are best recognized by their six C_{5} axes, as well as many other symmetry opera- tions-120 in all.	
I_{h}	

LINEAR MOLECULES

Do in fact fit into scheme - but they have an infinite
number of symmetry operations.
Molecular axis is C_{∞} - rotation by any arbitrary angle $(360 / \infty)^{0}$, so infinite number of rotations. Also any plane containing axis is symmetry plane, so infinite number of planes of symmetry.

Divide linear molecules into two groups:
(i) No centre of symmetry, e.g.:

No C_{2} 's perp. to main axis, but $\infty \sigma_{v}$'s containing main axis: point group $\mathrm{C}_{\infty \mathrm{V}}$
(ii) Centre of symmetry, e.g.:

Highly symmetrical molecules

A few geometries have several, equivalent, highest order axes. Two geometries most important:

Regular octahedron
e.g.

$$
3 C_{4} \text { 's (along F-S-F axes) }
$$ also $4 \mathrm{C}_{3}$'s. $6 \mathrm{C}_{2}$'s, several planes, $\mathrm{S}_{4}, \mathrm{~S}_{6}$ axes, and a centre of symmetry (at S atom) Point group O_{h}

These molecules can be identified without going through the usual steps.

Note: many of the more symmetrical molecules possess many more symmetry operations than are needed to assign the point group.

Point group	Symmetry elements	Shape	Examples
C_{1}	E		SiHClBrF
C_{2}	$E_{1} C_{2}$		$\mathrm{H}_{2} \mathrm{O}_{2}$
C_{5}	E, σ		NHF_{2}
$C_{2 v}$	$E, C_{2^{\prime}} \sigma_{v^{\prime}} \sigma_{v}{ }^{\prime}$		$\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$
$C_{3 v}$	$E, 2 C_{3^{\prime}} 3 \sigma_{v}$		$\mathrm{NH}_{3}, \mathrm{PCl}_{3}, \mathrm{POCl}_{3}$
$C_{\text {ov }}$	$E, C_{2}, 2 C_{\varphi^{\prime}} \infty \sigma_{v}$		OCS, $\mathrm{CO}, \mathrm{HCl}$
$D_{2 \mathrm{~h}}$	$E_{1} 3 C_{2}, i, 3 \sigma$		$\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~B}_{2} \mathrm{H}_{6}$
$D_{3 \mathrm{~h}}$	$E, 2 C_{3^{\prime}}, 3 C_{2^{\prime}}, \sigma_{\mathrm{h}^{\prime}}, 2 S_{3^{\prime}}, 3 \sigma_{v}$		$\mathrm{BF}_{3^{\prime}} \mathrm{PCl}_{5}$
$D_{4 \mathrm{~h}}$	$E_{1} 2 C_{4^{\prime}} C_{2^{\prime}}, 2 C_{2}^{\prime}, 2 C_{2}^{\prime \prime}, i, 2 S_{4^{\prime}} \sigma_{\mathrm{h}^{\prime}} 2 \sigma_{\mathrm{v}^{\prime}} 2 \sigma_{\mathrm{d}}$		XeF_{4}, trans-[MA $\left.\mathrm{B}_{2}\right]$
$D_{\text {ch }}$	$E_{1} \infty C_{2}{ }^{\prime}, 2 C_{\varphi^{\prime}},{ }^{\prime} \infty \sigma_{v}{ }^{\prime} 2 S_{\varphi}$		$\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$
$T_{\text {d }}$	$E_{1} 8 C_{3^{\prime}}, 3 C_{2^{\prime}}, 6 S_{4}, 6 \sigma_{\text {d }}$		$\mathrm{CH}_{4} \mathrm{SiCl}_{4}$
$O_{\text {h }}$	$E_{1} 8 C_{3^{\prime}}, 6 C_{2^{\prime}}, 6 C_{4}, 3 C_{2^{\prime}}, i, 6 S_{4^{\prime}} 8 S_{6^{\prime}} 3 \sigma_{\mathrm{h}^{\prime}} 6 \sigma_{\mathrm{d}}$		SF ${ }_{6}$

4. The $C_{n v}$ Groups

$C_{2 v}$	E	C_{2}	$\sigma_{1}(x z)$	$\sigma_{0}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	
A_{2}	1	1	-1	-1	R_{x}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

$C_{3 u}$	E	$2 C_{3}$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	
A_{2}	1	1	-1	R_{x}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	
$x^{2}+y^{2}, z^{2}$					
$\left(x^{2}-y^{2}, x y\right)(x z, y z)$					

C_{4}	E	$2 C_{4}$	C_{2}	$2 \sigma_{v}$	$2 \sigma_{d}$			
A_{1}	1	1	1	1	1			
A_{2}	1	1	1	-1	-1	z	R_{x}	
B_{1}	1	-1	1	1	-1			
B_{2}	1	-1	1	-1	1			
E	2	0	-2	0	0			

Cso	E	$2 C_{s}$	$2 C_{5}{ }^{2}$	$5 \sigma_{0}$		
A_{1}	1	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	1	-1	$\boldsymbol{R}_{\boldsymbol{x}}$	
E_{1}	2	$2 \cos 72^{\circ}$	$2 \cos 144^{\circ}$	0	$(x, y)\left(R_{x}, R_{y}\right)$	($x z, y z$)
E_{2}	2	$2 \cos 144^{\circ}$	$2 \cos 72^{\circ}$	0		$\left(x^{2}-y^{2}, x y\right)$

E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$				
A_{1}	1	1	1	1	1	1			
A_{2}	1	1	1	1	-1	-1			
B_{1}	1	-1	1	-1	1	-1			
B_{2}	1	-1	1	-1	-1	1			
E_{2}	2	1	-1	-2	0	0			
E_{2}	2	-1	-1	2	0	0	$	$	
:---									

4. The $C_{n v}$ Groups

$C_{2 v}$	E	C_{2}	$\sigma_{1}(x z)$	$\sigma_{0}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	
A_{2}	1	1	-1	-1	R_{x}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

$C_{3 u}$	E	$2 C_{3}$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	
A_{2}	1	1	-1	R_{x}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	
$x^{2}+y^{2}, z^{2}$					
$\left(x^{2}-y^{2}, x y\right)(x z, y z)$					

C_{4}	E	$2 C_{4}$	C_{2}	$2 \sigma_{v}$	$2 \sigma_{d}$			
A_{1}	1	1	1	1	1			
A_{2}	1	1	1	-1	-1	z	R_{x}	
B_{1}	1	-1	1	1	-1			
B_{2}	1	-1	1	-1	1			
E	2	0	-2	0	0			

Cso	E	$2 C_{s}$	$2 C_{5}{ }^{2}$	$5 \sigma_{0}$		
A_{1}	1	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	1	-1	$\boldsymbol{R}_{\boldsymbol{x}}$	
E_{1}	2	$2 \cos 72^{\circ}$	$2 \cos 144^{\circ}$	0	$(x, y)\left(R_{x}, R_{y}\right)$	($x z, y z$)
E_{2}	2	$2 \cos 144^{\circ}$	$2 \cos 72^{\circ}$	0		$\left(x^{2}-y^{2}, x y\right)$

E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 \sigma_{v}$	$3 \sigma_{d}$				
A_{1}	1	1	1	1	1	1			
A_{2}	1	1	1	1	-1	-1			
B_{1}	1	-1	1	-1	1	-1			
B_{2}	1	-1	1	-1	-1	1			
E_{2}	2	1	-1	-2	0	0			
E_{2}	2	-1	-1	2	0	0	$	$	
:---									

6．The $D_{n h}$ Groups

$\mathrm{D}_{2 \mathrm{k}}$	E	$C_{2}(z)$	$C_{2}(y)$	$C_{2}(x)$	i	$\sigma(x y)$	$\sigma(x z)$	$o(y z)$		
${ }^{\text {A }}$	1	1	－1	1	1	1	－	1		x^{2}, y^{2}, z^{2}
B_{20}	1	－1		－1	1	－1	1	1	R_{x} R_{y}	
${ }_{4}{ }^{30}$	I	－1	－1	1	-1	二 1	－1	－${ }_{1}^{1}$	R_{x}	$y z$
	${ }_{1}^{1}$	－${ }_{-1}^{1}$	－1	－1	二 1	二1	－1	－1	z	
${ }_{\text {Bru4 }}$	1	-1	－1	－1	二1		－1	－1	$\underset{x}{ }$	

Das	$2 C$.	C_{2}	$2 C_{2}$	$2 \mathrm{C}_{2}{ }^{\text {－}}$	i	$2 S_{4}$	σ_{n}	$2 \sigma_{0}$	$2 \sigma^{2}$		
A_{10}	1	1			1	1	1				$x^{2}+y^{2}, z^{2}$
Al_{10}	－1			二1	1	－1			二1	R_{z}	$x^{2}-y^{2}$
	${ }_{2}^{1}-1$	$-{ }^{\mathbf{1}}$	－${ }_{0}^{1}$	${ }_{0}^{1}$	2	－1	$-\frac{1}{2}$	－1	${ }_{0}^{1}$	（ R_{x}, R_{y} ）	
	1	1	－1	－1	－1	－1	二 1	-1	-1		
${ }_{\text {B1u }}$	－1	1		－1	－ 1	－1	二1	－1		z	
${ }_{\text {E＊}}$	$\frac{1}{2}-1$	$-\frac{1}{2}$		$\stackrel{1}{0}$	二 2	1		${ }_{0}^{1}$		(x, y)	

The $D_{n n}$ Groups

$D_{\text {zin }}$	E	CI(x)	$C \cdot(y)$	$C_{1}(x)$	1	$\sigma(x y)$	$0(x y)$	O(yz)		
4	1	1	1	1	1	I	1	1		$x^{2} \cdot y^{2} x^{3}$
Bi_{1}	I	I	-1	- I	1	I	-1	- 1	\boldsymbol{R}_{1}	$x y$
B_{39}	1	-1	1	- 1	1	- I	1	-1	\boldsymbol{R}_{y}	$x 2$
Al_{3}	I	-1	-1	1	1	-1	- 1	1	R_{r}	$y=$
A10	1	1	1	1	-1	-1	-1	- I		
Br_{10}	1	1	- 1	-1	-1	-1	1	1	\bar{z}	
Br_{2}	1	-1	I	- 1	-1	1	- 1	1	y	
B_{3}	1	-1	- I	1	-1	1	1	- I	x	

D.t	E	$2 C_{4}$	CI	$2 C^{\prime \prime}$	$2 c^{-}$	i	25_{4}	$\sigma_{\text {m }}$	$2 \sigma_{0}$	2π		
A1.	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2} \cdot y^{2}$
A]	1	1	1	-1	- I	1	1	1	- 1	-1	$\boldsymbol{R}_{\text {E }}$	
B_{i}	1	-1	1	1	-1	1	- I	1	1	-1		$x^{2}-y^{2}$
H_{2}	$\frac{1}{2}$	-1	- 1	-1	$\frac{1}{0}$	1	-1	1	-1	1		
${ }^{4}$	2	0	-2	0	0	2 -1		-2 -1	$\begin{array}{r} 0 \\ -1 \end{array}$	0 -1	$\left(R_{\text {m }}, R_{p}\right)$	(xx, yz)
Aim	1	1	1	-1	1 -1	-1	-1	-1 -1	-1	$-\frac{1}{1}$	3	
Bim_{14}	1	- 1	1	1	-1	-1	1	- 1	-1	1	2	
Bram_{2}	1	-1	1	-1		-1		$=1$	1	- 1		
E.	2	0	-2	0	0	-2	0	2	9	0	(x_{4}, y)	

9. The Cubic Groups (Continued).

Table 6.4 The $C_{2 v}$ character table

$$
\begin{array}{ccccccc}
C_{2 v} & E & C_{2} & \sigma_{v} & \sigma_{v}{ }^{\prime} & h=4 & \ldots \ldots \ldots \\
\hdashline \mathrm{~A}_{1} & 1 & 1 & 1 & 1 & z & x^{2}, y^{2}, \mathrm{z}^{2} \\
\mathrm{~A}_{2} & 1 & 1 & -1 & -1 & R_{z} & \\
\mathrm{~B}_{1} & 1 & -1 & 1 & -1 & x, R_{y} & x y \\
\mathrm{~B}_{2} & 1 & -1 & -1 & 1 & y_{1} R_{x} & z x, y z
\end{array}
$$

Table 6.5 The $C_{3 v}$ character table

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{v}$	$h=6$	
$\ldots \mathrm{~A}_{1}$	1	1	1	z	$\ldots \ldots \ldots$
$\mathrm{~A}_{2}$	1	1	-1	R_{z}	z^{2}
E	2	-1	0	$(x, y)\left(R_{x^{\prime}} R_{y}\right)$	$(z x, y z)\left(x^{2}-y^{2}, x y\right)$

Character table for $\mathrm{C}_{\infty v}$ point group

	\mathbf{E}	$\mathbf{2 C _ { \infty }}$	\ldots	∞ \&sigma ${ }_{v}$	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{1}}=\boldsymbol{\Sigma}^{+}$	1	1	\ldots	1	z	$x^{2}+y^{2}, z^{2}$
$\mathbf{A}_{2}=\Sigma^{-}$	1	1	\ldots	-1	R_{z}	
$\mathbf{E}_{1}=\boldsymbol{\Pi}$	2	$2 \cos (\Phi)$	\ldots	0	$(x, y)\left(R_{x}\right.$, $\left.R_{y}\right)$	$(x z, y z)$
$E_{2}=\Delta$	2	$2 \cos (2 \phi)$	\ldots	0		$\left(x^{2}-y^{2}, x y\right)$
$E_{3}=\Phi$	2	$2 \cos (3 \phi)$	\ldots	0		
\ldots	\ldots	\ldots	\ldots	\ldots		

Character table for $D_{\infty h}$ point group

	E	2C ${ }_{\infty}$...	$\infty \sigma_{v}$	i	2S ${ }_{\infty}$...	$\infty \mathrm{C}_{2}{ }_{2}$	linear functions, rotations	quadratic
$\mathrm{A}_{1 \mathrm{~g}} \mathrm{E}^{+}{ }_{\mathrm{g}}$	1	1	\ldots	1	1	1	\ldots	1		$x^{2}+y^{2}, z^{2}$
$\mathrm{A}_{2 \mathrm{~g}} \sum^{-}{ }_{\mathrm{g}}$	1	1	...	-1	1	1	...	-1	R_{z}	
$\mathrm{E}_{1 \mathrm{~g}}=\mathrm{C}_{\mathrm{g}}$	2	$2 \cos (\phi)$...	0	2	$-2 \cos (\phi)$	\ldots	0	$\left(R_{x}, R_{y}\right)$	(xz, yz)
$E_{2 \mathrm{~g}}=\Delta_{\mathrm{g}}$	2	$2 \cos (2 \phi)$	\ldots	0	2	$2 \cos (2 \phi)$...	0		($\left.x^{2}-y^{2}, x y\right)$
$\mathrm{E}_{3 \mathrm{~g}}=\Phi_{\mathrm{g}}$	2	$2 \cos (3 \phi)$	\ldots	0	2	$-2 \cos (3 \phi)$	\ldots	0		
\ldots	\ldots	\ldots		
$A_{1 u} \Sigma^{+}{ }_{u}$	1	1	...	1	-1	-1	...	-1	z	
$\mathrm{A}_{\mathbf{2 u}}=\Sigma^{-}{ }_{u}$	1	1	...	-1	-1	-1	...	1		
$\mathrm{E}_{1 \mathrm{u}}=\Pi_{u}$	2	$2 \cos (\phi)$...	0	-2	$2 \cos (\phi)$...	0	(x, y)	
$\mathrm{E}_{2 \mathrm{u}}=\Delta_{u}$	2	$2 \cos (2 \phi)$...	0	-2	$-2 \cos (2 \phi)$...	0		
$\mathrm{E}_{3 \mathrm{u}}=\Phi_{\mathrm{u}}$	2	$2 \cos (3 \phi)$	\ldots	0	-2	$2 \cos (3 \phi)$...	0		
\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots		

