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Abstract. Formalizations of concurrent memory models often represent
memory behavior in terms of sequences of operations, where operations
are either reads, writes, or synchronizations. More concrete models of
(sequential) memory behavior may include allocation and free opera-
tions, but also include details of memory layout or data representation.
We present an abstract specification for sequential memory models with
allocation and free operations, in the form of a set of axioms that provide
enough information to reason about memory without overly constraining
the behavior of implementations. We characterize a set of “well-behaved”
programs that behave uniformly on all instances of the specification.
We show that the specification is both feasible—the CompCert mem-
ory model implements it—and usable—we can use the axioms to prove
the correctness of an optimization that changes the memory behavior of
programs in an LLVM-like language.

Keywords: memory models, optimizing compilers, deep specifications

1 Introduction

When reasoning about compilers and low-level code, it is not enough to treat
memory as an assignment of values to locations; memory management, concur-
rency behavior, and many other factors complicate the picture, and without
accounting for these factors our reasoning says nothing about the programs that
actually run on processors. Memory models provide the necessary abstraction,
separating the behavior of a program from the behavior of the memory it reads
and writes. There have been many formalizations of concurrent memory models,
beginning with sequential consistency [1] (in which memory must behave as if it
has received an ordered sequence of read and write operations) and extending
to more relaxed memory models. Most of these models include a theorem along
the lines of “well-synchronized programs behave as if the memory model is se-
quentially consistent,” characterizing a large class of programs that behave the
same regardless of the concurrent memory model [7].

What, then, is the behavior of a sequentially consistent memory model?
When the only memory operations are reads and writes (and possibly synchro-
nization operations), the answer is simple: each read of a location reads the value
that was last written to that location. In other words, the memory does in fact
act as an assignment of values to locations. If we try to model other memory
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operations, however, the picture becomes more complicated. C and many re-
lated intermediate and low-level languages include at least allocation and free
operations, and we might also want to include casts, structured pointers, over-
lapping locations, etc. Even restricting ourselves to sequential memory models,
we can see that the space of possible models is much larger than “sequential
consistency” suggests.

Formalizing memory models is a crucial step in compiler verification. Projects
such as CompCert [4], CompCertTSO [9], Vellvm [11], and Compositional Comp-
Cert [8] specify memory models as part of the process of giving semantics to their
various source, target, and intermediate languages, and use their properties in
proving the correctness of optimizations and program transformations. The (in
most cases sequential) memory models in these works include some of the com-
plexity that more abstract formalisms lack, but they are also tightly tied to the
particular languages and formalisms used in the projects. Compiler verification
stands to benefit from memory model specifications that generalize away from
the details of particular memory models, specifications which encompass most
commonly used models and allow reasoning about programs without digging into
the details of particular models. Generic specifications of memory models have
the potential to lead to both simpler proofs—since all the reasoning about a par-
ticular model is encapsulated in a proof that it satisfies the specification—and
more general ones—since a proof using a specification is true for any instance of
that specification.

In this paper, we develop a specification for sequential memory models that
support allocation and free operations as well as reads and writes, and demon-
strate its use in reasoning about programs. We prove a sequential counterpart
to the “well-synchronized programs are sequentially consistent” theorem, char-
acterizing the set of programs that have the same behavior under any sequential
memory model that meets our specification. We also show that CompCert’s
memory model is an instance of our specification, and verify a dead code elimi-
nation optimization for an LLVM-like language using the specification, resulting
in a proof that is measurably simpler than the corresponding proof in Vellvm.
All definitions and proofs have been formalized in the Coq proof assistant, so
that our specification can be used for any application that requires mechanized
proofs about programs with memory; the Coq development can be found online
at http://www.seas.upenn.edu/~wmansky/meminterface.

2 An Abstract Sequential Memory Model

A memory model is a description of the allowed behavior of a set of memory
operations over the course of a program. A memory model can be defined in
various ways: as a set of functions that can be called along with some guarantees
on their results, as a description of the set of valid traces of operations performed
by the execution of a program, or as an abstract machine that receives and
responds to messages. In each case, the memory model makes a set of operations
available to programs and provides some guarantees on their behavior. These

http://www.seas.upenn.edu/~wmansky/meminterface
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operations always include reading and writing, and in many models these are
the only operations; however, there are many other memory-related operations
used in real-world programs. The main question is one of where we draw the
line between program and memory. Is the runtime system that handles memory
allocation part of the memory, or a layer above it? Does a cast from a pointer to
an integer involve the memory, or is it a computation within the program? Does
the memory contain structured blocks in which different references may overlap,
or are structured pointers program objects that must be evaluated to references
to distinct locations before they are read or written?

Our goal is to formalize the interface that memory provides to a programming
language. We aim to give an abstract specification for memory models that can
be used to define the semantics of a language, and to prove useful properties of
programs in that language independently of the implementation details of any
particular memory model. Our specification should describe the assumptions
about memory that programmers can make when writing their programs and
verifiers can make while reasoning. Since from the program’s perspective the
runtime system and the memory model are not distinct, our specification should
include the operations provided by the runtime system. It should be easy to use in
defining operational semantics for programming languages, and it should provide
as many axioms as are needed to make the behavior of memory predictable
without overconstraining the set of possible implementations.

For our specification, we begin with four operations: read, write, alloc, and
free. These operations appear in code at almost every level. They are, for in-
stance, the operations supported by the CompCert memory model [5], which
has been used to verify a compiler from C to machine code. Although Comp-
Cert’s model provides a realistic and usable formalization of the semantics of
these operations, it is not the only such formalization. Other choices, such as
CompCertTSO’s [9] or the quasi-concrete model [2], may allow more optimiza-
tions on memory operations or a cleaner formulation of some theorems. We may
want to store values in memory other than those included in CompCert, or
abstract away from the details of blocks and offsets.

Our aim is to give a simple specification of memory models such that:

– Most memory models that support read, write, alloc, and free can be seen as
instances of the specification.

– The specification provides the guarantees on these operations needed to rea-
son about programs.

Then we can use this specification to reason about programs independently of
the particular memory model being used, and by proving that particular models
(such as CompCert’s) meet the specification, be assured that our reasoning is
valid for those models.

2.1 Memory Model Axioms

Previously, we mentioned three main approaches to specifying memory models.
In the functional approach (e.g. CompCert [5]), each operation is a function with
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its own arguments and return type, and restrictions are placed on the results of
the functions. In the abstract-machine approach (e.g. CompCertTSO [9]), mem-
ory is a separate component from the program with its own transition system,
and steps of the system are produced by combining program steps and memory
steps. In the axiomatic approach (taken in most concurrent memory models),
a set of rules are given that allow some sequences of memory operations and
forbid others. A definition in one of these styles is often provably equivalent to a
definition in another style, although the axiomatic approach can be used to for-
malize some models that cannot be expressed in other ways (i.e. non-operational
models). Our axioms should be true for all (reasonable) memory models, and
also provide enough information to prove useful properties of a language that
uses the specification.

Our model begins with a set L of locations and a set V of values. Every
memory operation targets exactly one location, and locations are distinct : we
can check whether two locations are equal, and a change to one location should
not affect any other location. Locations may be thought of as unique addresses or
memory cells. Values are the data that are stored in the memory; for simplicity,
each location is assumed to be able to hold a single value of any size (in future
work, we intend to extend this model to account for the size of data).

Definition 1. Given a location ` ∈ L and a value v ∈ V, a memory operation
is one of read(`, v), write(`, v), alloc(`), and free(`). The operations write(`, v),
alloc(`), and free(`) modify the location `. Over the course of execution, a pro-
gram produces a series of memory operations. A memory model can be given as
a predicate can do on a sequence of memory operations m = op1 ... opk (called
the history) and an operation op, such that can do(m, op) holds if and only if,
given that the operations in m have occured, the operation op can now be per-
formed. A sequence of operations op1 ... opk is consistent with a memory model
if can do(op1 ... opi−1, opi) for each i < k, i.e., each operation in the sequence
was allowable given the operations that had been performed so far.

The axioms shown in Figure 1 restrict the possible behavior of a can do pred-
icate. (We write loc(op) for the location accessed by op.) The first two axioms
state the distinctness of locations, requiring that operations on one location do
not affect the operations possible on other locations. The remaining rules en-
force (but do not completely determine) the intended semantics of each kind of
memory operation: e.g., a write(`, v) operation must allow v to be read at `. We
do not completely constrain the semantics of the operations, but we attempt to
capture the expectations of a programmer about each operation: it should be
possible to allocate free memory and free allocated memory, write to allocated
memory and read the last value written, etc., and it should not be possible to
free memory that is already free, allocate memory that is already allocated, read
values that have not been written, etc. Note that, while the axioms are meant to
define the possible semantics of memory models, they also coincide with the sorts
of equivalences that are commonly used in compiler optimizations—reordering
unrelated operations, propagating stored values forward to later reads, etc.
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loc-comm
loc(op) 6= loc(op′)

can do(m op, op′) = can do(m op′, op)

loc-drop
loc(op) 6= loc(op′) can do(m, op)

can do(m op, op′) = can do(m, op′)

read-noop
can do(m, read(`, v))

can do(m read(`, v), op) = can do(m, op)

read-written
can do(m,write(`, v))

can do(mwrite(`, v), read(`, v′)) = (v = v′)

write-not-read
can do(m,write(`, v)) ∀v′. op 6= read(`, v′)

can do(mwrite(`, v), op) = can do(m, op)

not-mod-write
can do(m, op) op does not modify `

can do(m op,write(`, v)) = can do(m,write(`, v))

write-any-value
can do(m,write(`, v)) = can do(m,write(`, v′))

alloc-allows
can do(m, alloc(`))

can do(m alloc(`),write(`, v)) ∧ ¬can do(m alloc(`), alloc(`))∧
can do(m alloc(`), free(`))

free-allows
can do(m, free(`))

¬can do(m free(`), read(`, v))∧
can do(m free(`), alloc(`)) ∧ ¬can do(m free(`), free(`))

base-allows
¬can do(·, read(`, v)) ∧ can do(·, alloc(`))∧

¬can do(·, free(`))

Fig. 1. The axioms of the memory model specification

If a behavior is “implementation-dependent”, or might vary across different
memory models, then the axioms leave it unspecified. Two major kinds of oper-
ation are left unspecified: reads from locations that have been allocated but not
written to (we call these locations “uninitialized”), and writes to locations that
have not been allocated. Because these operations are unspecified, the specifica-
tion admits instances in which they have a wide variety of interpretations: a write
to an allocated location may fail, write a value that can be read later, unpre-
dictably either allocate the location and write a value or do nothing at all, or any
other (possibly empty) subset of the conceivable behaviors of a write, depending
on the memory model. Parameterizing by the sets L and V also implicitly leaves
some aspects of the memory model unspecified. We do not constrain the kinds
or sizes of data that can be stored (although we do require that any value can be
stored in any location and read back unchanged), and we do not specify whether
there is a finite or an infinite number of locations. If we instantiate the specifica-
tion with an infinite L, then for any m there is an ` such that can do(m, alloc(`));
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if we choose a finite L, then we may reach states in which there is no such `. The
effect of running out of memory on program executions is left to the language
semantics, as we will show in Section 4.1.

Although each axiom only specifies the interaction between the new operation
and the most recent operation performed, we can derive rules that connect each
new operation to “the last relevant operation”, e.g., the last alloc or free of a loca-
tion being written. For instance, we can prove that if m write(`, v) write(`′, v′) is
a consistent history for some m, then can do(m write(`, v) write(`′, v′), read(`, v))
holds:

can do(m write(`, v) write(`′, v′), read(`, v))
= can do(m write(`, v), read(`, v)) by loc-drop
= (v = v) by read-written
= true

In each step, the condition that can do holds on the operations in the history
follows from the consistency assumption. In general, our rules only allow com-
plex reasoning about histories if those histories are consistent; an unspecified
operation may have unpredictable effects on memory behavior (e.g., a write to
an unallocated location may or may not quietly cause that location to be allo-
cated).

In the context of concurrent memory models, it is usually assumed or proved
that well-synchronized programs are sequentially consistent, regardless of the
relaxations allowed by the memory model. This allows the complexities of the
model to be hidden from the programmer, and means that verification of a
certain (large) class of programs can be done independently of the relaxed model.
Our axiomatization admits a similar property for sequential memory models.
Consider a simple abstract machine that associates each memory location with
one of three states: free, uninit, or stored(v), where v is a value. Upon receiving a
memory operation on a location, the machine’s state for the location transitions
as shown in the register automata of Figure 2; any operation not shown leads to
an error state.

Definition 2. The simple machine corresponding to a history m, written SM(m),
is the machine reached by starting with each location in the Free state and ap-
plying the operations in m to their corresponding locations, in order. The can do
predicate induced by the simple machine is the one such that can doSM(m, op)
when loc(op) has a transition labeled with op in SM(m).

Then we can prove the following theorems:

Theorem 1. The simple machine satisfies the memory model axioms.

Theorem 2. If a program never reads an uninitialized location and never writes
to a free location, then for any can do predicate that satisfies the axioms and any
consistent history m and operation op, can do(m, op) if and only if can doSM(m, op).

This gives us a class of programs for which any model that satisfies the axioms
is equivalent. For the (large) set of programs that take a principled approach
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Fig. 2. The transition system for locations in the simple memory machine

to memory and avoid implementation-dependent behavior, we can reason using
the simple machine and derive results that are applicable to any memory model
that implements the specification; this has the potential to greatly simplify our
proofs. On the other hand, many interesting programs may not meet the re-
quirements of the theorem. In this case, we may still be able to reason using the
specification: while we cannot turn to the fully defined simple machine, we can
still use the axioms to draw conclusions about a program’s memory behavior.
Finally, if we expect that the correctness of our reasoning depends on a particu-
lar implementation, then we can go beneath the specification and work with the
implementation directly. Having a reasoning principle for “well-behaved” pro-
grams simplifies our reasoning when it can be applied, but does not force us to
give up on reasoning about programs that are not well-behaved.

3 Instantiating the Specification

The CompCert verified C compiler includes a C-like memory model [5], which
is used to verify its transformations. In fact, it includes both a specification
of a memory model and an implementation of that specification. Memory is
modeled as a set of non-overlapping blocks, each of which behaves as an array
of bytes; an address is a pair (b, o) of a block and an offset into the array.
The specification defines four functions that can be called by programs (alloc,
free, load, and store) and states properties on them. Most of these properties
center around the permissions associated with each address, such as Readable,
Writeable, and Freeable, which indicate which operations can be performed on the
address. Figure 3 shows some of the properties for store; the other operations
have similar axioms. CompCert’s memory implementation manages the bounds,
allocation state, and content of each block in a way that is shown to satisfy the
axioms.
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(b, o) has permission Writeable in M1

∃M2. store(M1, b, o, v) = M2

store(M1, b, o, v) = M2 (b′, o′) has permission p in M1

(b′, o′) has permission p in M2

store(M1, b, o, v) = M2 (b′, o′) has permission p in M2

(b′, o′) has permission p in M1

store(M1, b, o, v) = M2

(b, o) has permission Writeable in M1

Fig. 3. A few of CompCert’s store axioms

Although the CompCert memory specification abstracts away from some of
the details of the implementation, it has some limitations as a generic memory
model specification. It is tied to CompCert’s particular definition of values and
its notion of blocks. Furthermore, there is no uniformity across the different
memory operations; each function takes different arguments and has a different
result type, so that 44 axioms are used to express properties of the sort laid out
in our specification. The CompCert memory model specification does not include
an axiom that says “operations on different locations are independent”; indeed,
it is difficult to state such an axiom, since “operations” are not quantifiable
objects. Instead, we can look at the axioms stating that, e.g., a store to (b, o)
does not change the permissions of another block and a free succeeds as long as
the target address is Freeable, and conclude that a free can occur after a store

to a different location if and only if it could occur before the store.
Using this sort of reasoning, we can show that the CompCert memory model

specification satisfies our specification in turn. We “implement” each one of our
memory operations with a call to the corresponding CompCert function, with
one allocated block for each allocated memory location. Our specification does
not include details about the size of values, so we restrict ourselves to 32-bit
values (which includes most CompCert values).

Definition 3. Given CompCert memory states M and M ′, let M
op−→ M ′ if

the function call corresponding to op can be applied to M to yield M ′. Let
can doCC(m, op) be true when there exist CompCert memory states M1, M2

such that empty
m−→∗ M1 and M1

op−→M2, where empty is the initial CompCert
memory state.

Theorem 3. can doCC satisfies the axioms of our specification.

Proof. The difficult axioms are loc-comm and loc-drop, since the other axioms
refer to the interaction of particular operations. For each of loc-comm and loc-
drop, we must break the proof into 16 cases, one for each ordered pair of mem-
ory operations. The cases involving load are straightforward, since it does not
change the memory state. In each other case, we must show that the first opera-
tion does not change the permissions associated with the location of the second
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operation and vice versa. This allows us to conclude that each operation can still
be performed after an operation to a different location is reordered/dropped.

This provides some evidence for the feasibility of our specification, since the
CompCert memory model (when used in this restricted way) satisfies its axioms.
By Theorem 2, we also know that on programs that do not read uninitialized
locations or write to free locations, the CompCert memory model has the same
behavior as the simple abstract machine. (The CompCert specification requires
that reads of uninitialized locations return a special undef value and writes to
free locations fail, which is just one point in the design space of memory models
allowed by our specification; reads of uninitialized locations could also fail or
return arbitrary values, for instance.)

Interestingly, while we choose the set of 32-bit CompCert values as our V
for this instance, we do not need to choose a particular L in order to prove the
above theorem. Each allocated location is mapped to a block, but the set of
locations need not be the set of blocks itself. In the CompCert memory model,
an alloc call always succeeds, implying that memory is infinite; however, the
proof of implementation still applies even if we choose a finite L. In this case,
while CompCert’s memory model is always willing to allocate more blocks, pro-
grams may still run out of distinct locations to request. Our specification’s view
of CompCert’s infinite-memory model gives us an interface that can be either
infinite-memory or finite-memory.

4 Using the Specification

From the perspective of a programming language, a memory model fills in the
gaps in the semantics and provides some guarantees about the observable be-
havior of the memory. In this section, we show how our specification can be used
for these tasks, by defining the semantics of a language using the specification
and verifying an optimization against it.

4.1 MiniLLVM

Our example language is MiniLLVM, a language based on the LLVM intermedi-
ate representation [3]. The syntax of the language closely resembles LLVM, with
the slight variation that labels are implicit in the structure of the control flow
graph rather than explicitly present in the instructions.

expr ::= %x | @x | c type ::= int | type pointer

instr ::= %x = op type expr , expr | %x = icmp cmp type expr ,expr |
br expr | br | alloca %x type |
%x = load type∗ expr | store type expr , type∗ expr |
%x = cmpxchg type∗ expr , type expr , type expr |
%x = phi [node1, expr1], ..., [nodek, exprk] |
%x = call type expr(expr , ..., expr) | return expr | output expr
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A MiniLLVM program P is a list of function definitions (f, `, params, G), where
f is the name of the function, ` is its location in memory, params is the list of the
function’s formal parameters, and G is the function’s control-flow graph (CFG).
(For simplicity, we assume that each node in a CFG contains exactly one instruc-
tion.) A configuration is either an error state Error or a tuple (f, p0, p, env , st , al),
where f is the name of the currently executing function, p0 is the previously ex-
ecuted program point, p is the current program point, env is the environment
giving values for thread-local variables, st is the call stack, and al is a record of
the memory locations allocated by the currently executing function (the alloca

instruction allocates space that is freed when the function returns). The seman-

tics of MiniLLVM are given by a transition relation P ` c
a→ c′, where a is

either a list of memory operations performed in the step or a value output by
the output instruction. A few of the semantic rules for MiniLLVM instructions
are shown in Figure 4, where Pf is the CFG for the function f in P , succ(p)
is the successor node of p in its CFG, Label extracts the instruction label for a
node from the CFG, and (e, env) ⇓ v means that the expression e evaluates to v
in the presence of the environment env . We make a point of allowing the store

instruction to fail into an Error state so that in our example optimization—a
dead store elimination—we can safely remove ill-formed stores.

Label Pf p = (%x = op ty e1, e2) (e1 op e2, env) ⇓ v

P ` (f, p0, p, env , st , al)→ (f, p, succ(p), env(x 7→ v), st , al)

Label Pf p = (alloca %x ty)

P ` (f, p0, p, env , st , al)
alloc(`)−−−−→ (f, p, succ(p), env(x 7→ `), st , al ∪ {`})

Label Pf p = (%x = load ty∗ e) (e, env) ⇓ `

P ` (f, p0, p, env , st , al)
read(`,v)−−−−−→ (f, p, succ(p), env(x 7→ v), st , al)

Label Pf p = (store ty1 e1, ty2
∗ e2) (e1, env) ⇓ v (e2, env) ⇓ `

P ` (f, p0, p, env , st , al)
write(`,v)−−−−−→ (f, p, succ(p), env , st , al)

Label Pf p = (store ty1 e1, ty2
∗ e2)

e1 fails to evaluate in env or e2 fails to evaluate to a pointer in env

P ` (f, p0, p, env , st , al)→ Error

Label Pf p = (output(e)) (e, env) ⇓ v

P ` (f, p0, p, env , st , al)
v−→ (f, p, succ(p), env , st , al)

P ` Error
a−→ Error

Fig. 4. Part of the transition semantics of MiniLLVM

Note that the interaction between the semantics of MiniLLVM and the mem-
ory model is restricted to the transition labels. We complete the semantics by
combining the transitions of the language with an instance of the memory model
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specification, passing the memory operations to the can do predicate and retain-
ing the output values, if any:

mem-step
P ` c

op1 ,...,opn ,v1,...,vk−−−−−−−−−−−−→ c′ can do(m, op1 ... opn)

P ` (c,m)
v1,...,vk−−−−−→ (c′,m op1 ... opn)

So while, e.g., a load operation may produce read(`, v) for any v, the only v
that will be allowed by the can do predicate is the one stored at `. To obtain
MiniLLVM semantics for a particular memory model, we simply instantiate the
rule with the can do predicate for that model; we can also reason at the level of
the specification and derive results that hold for every instance.

Finite Memory Semantics In Section 2.1, we noted that our specification
encompasses both infinite-memory and finite-memory models, and indeed our
semantics for MiniLLVM works in either case. However, it is interesting to con-
sider the way that finite memory is reflected in the semantics. If the set of
locations is finite, then we may reach a state (c,m) in which can do(m, alloc(`))
does not hold for any `. In this case, the mem-step rule cannot be applied, and
(c,m) is stuck. In terms of optimizations, this means that alloca instructions
may not be removed from programs, since this may enable behaviors that were
previously impossible due to the out-of-memory condition.

An alternative approach is to treat out-of-memory as an error state. We can
obtain this semantics by adding one more rule:

P ` c
alloc(`)−−−−→ c′ ∀`. ¬can do(m, alloc(`))

P ` (c,m)→ (Error,m)

Now the language semantics catches the out-of-memory condition and transi-
tions to an error state rather than getting stuck. This new semantics allows
alloca instructions to be removed but not inserted, since optimizations should
not introduce new errors. (With a more sophisticated treatment of L, we may
be able to state a semantics that allows both adding and removing alloca.) We
can choose whichever semantics is appropriate to the language or the applica-
tion at hand; our specification implicitly makes the behavior of out-of-memory
programs a question of language design rather than a feature of the memory
model itself.

4.2 Verifying an Optimization

A good specification should allow us to abstract away from unnecessary details,
so that we can separate reasoning about programs from reasoning about mem-
ory models. In this section, we will use the semantics of MiniLLVM with the
memory model specification to prove the correctness of a dead store elimina-
tion optimization (under any memory model that satisfies the specification). We
will assume that we have some analysis for finding dead stores, and prove that
removing dead stores does not change the behaviors of a MiniLLVM program.
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To begin, we need to state our notion of correctness. A correct optimization
should refine the behaviors of a program; it may remove some behaviors (e.g.
by collapsing nondeterminism), but it should never introduce new behaviors.

Definition 4. A configuration is initial if it is a tuple (f, p0, p, env , st , al) such
that st and al are empty and p is the start node of Pf . A trace of a program P
is a sequence of values v1, ... vn for which there is some initial configuration c0
and some state (c′,m′) such that (c0, ·)

v1,...,vn−−−−−→∗ (c′,m′). A program P refines
a program Q if every trace of P is a trace of Q.

We can prove refinement through the well-established technique of simula-
tion. In particular, since dead store elimination removes an instruction from the
program, we will use right-option simulation, in which the original program may
take some externally unobservable steps that the transformed program omits.

Definition 5. A relation R on states is a right-option simulation between pro-
grams P and Q if the initial states of P and Q are in R and for any states

CP , CQ in P and Q respectively, if R(CP , CQ) and P ` CP
k−→ C ′P , then there is

a state C ′Q such that R(C ′P , C
′
Q) and either

– Q ` CQ
k−→ C ′Q, or

– ∃C ′′Q. Q ` CQ → C ′′Q and Q ` C ′′Q
k−→ C ′Q.

Theorem 4. If there is a right-option simulation between P and Q, then P
refines Q.

We conservatively approximate dead stores by defining them as stores to
locations that will never be read again.

Definition 6. An instruction store ty1 e1, ty2
∗ e2 in a program P is dead if in

all executions of P , if e2 is evaluated to a location ` when the store is executed,
then ` will not be the target of a read for the remainder of the execution.

The optimization itself, given a dead store, is simple: we remove the node con-
taining the dead store from its CFG. The simulation relation Rdse relates a state
(c′,m′) in the transformed program to a state (c,m) in the original program if
m′ can be obtained from m by dropping writes to locations that will not be read
again, and c′ can be obtained from c by replacing the removed node n with its
immediate successor.

Definition 7. Let P be a graph in which the function f contains a node n
whose successor is n′. The predicate skip node holds on a pair of configurations
(c, c′) if either both c and c′ are Error, or c′ can be obtained from c by replacing
all occurrences of n in the program point and the stack with n′. Let Rdse be the
relation such that Rdse((c′,m′), (c,m)) when either

– c = Error, or
– m′ can be obtained from m by removing writes to locations that will not be

targeted by reads for the rest of the execution, and skip node(c, c′) holds.
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The proof proceeds as follows. First, we show that any step in the transformed
graph can occur in the original graph.

Lemma 1. Let P ′ be the program obtained from P by removing a node n from a

function f , and n′ be the successor of n. If P ′ ` (c′,m)
k−→ (c′2,m2), skip node(c, c′),

and c is not at n, then there exists c2 such that P ` (c,m)
k−→ (c2,m2) and

skip node(c2, c
′
2).

Proof. Because c is not at n, c and c′ execute the same instruction and produce
the same results, modulo the fact that n is present in P and absent in P ′ (giving
us skip node(c2, c

′
2)).

Next, we show that dropping writes to unread locations from a history does
not change the operations it allows.

Lemma 2. Let m and m′ be consistent histories such that m is produced by a
partial execution of a program P and m′ can be obtained from m by removing
writes to locations that are not targeted by reads for the rest of the execution. If P
never reads uninitialized locations or writes to free locations, then can do(m, op)
if and only if can do(m′, op).

Proof. By Theorem 2, can do(m, op) iff can doSM(m, op) (and likewise for m′).
We can show by induction that for any location `, if SM(m) and SM(m′) differ,
then SM(m) is in the Stored state and SM(m′) is not in the Freed state (and ` is
not read again in the execution). This is sufficient to guarantee that any non-read
operation has the same effect in SM(m) and SM(m′), and the conclusion follows
directly.

We can use this lemma to show that the relationship between memories is pre-
served by program steps.

Lemma 3. Let m and m′ be consistent histories such that m is produced by a
partial execution of a program P and m′ can be obtained from m by removing
writes to locations that are not targeted by reads for the rest of the execution. If P

never reads uninitialized locations or writes to free locations and P ` (c,m′)
k−→

(c2,m
′
2), then there exists m2 such that P ` (c,m)

k−→ (c2,m2) and m′2 can be
obtained from m2 by removing writes to locations that are not targeted by reads
for the rest of the execution.

Proof. Since we never observe the differences between m and m′, we can take
the same steps and produce the same operations under each history, preserving
the relationship between them.

Lemmas 1 and 3 taken together, with a little reasoning about the effects of the
dead store, allow us to conclude that Rdse is a simulation relation.

Theorem 5. Let P ′ be the program obtained from P by removing a dead store,
and suppose that P ′ never reads an uninitialized location and P never writes to
a free location. Then Rdse is a right-option simulation between P ′ and P , and
so P ′ refines P .
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Proof. The combination of Lemmas 1 and 3 give us all cases except the one in
which P executes the removed store. In that last case, we can show that the
effect of the store is to augment the history with a write to a location that is
not the target of a read for the rest of the execution, and after executing the
store, P is once again in lockstep with P ′.

Note that since P ′ has fewer writes than P , it may have more uninitialized
locations, and so the condition on reads must be checked on P ′ and the condition
on writes must be checked on P . We can conclude that, for this class of well-
behaved programs, the dead store elimination optimization is correct under any
memory model that meets the specification.

Comparison with Vellvm Using a more abstract specification should lead to
simpler proofs, giving us a more concise formulation of the properties of the mem-
ory model and allowing us to avoid reasoning about details of the model. The
Vellvm project [11] also included a dead store elimination for an LLVM-based
language verified in Coq, using a variant of the CompCert memory model, and so
provides us a standard with which to compare our proofs. While it is difficult to
compare different proof efforts based on different formalizations, several metrics
suggest that our specification did indeed lead to significantly simpler proofs. Vel-
lvm’s DSE verification consists of about 1860 lines (65k characters) of definitions
and proof scripts, while our verification is 890 lines (44k characters). A separate
section of Vellvm’s code is devoted to lifting CompCert’s memory axioms for
use in the proofs—essentially the memory model specification for Vellvm—and
this section is 1200 lines (38k characters), while our memory model specification
is 420 lines (17k characters). To correct for the effects of different proof styles
on line and character counts, we also compared the gzipped sizes of the devel-
opments; Vellvm’s proof is 12.4 kilobytes, our proof is 8.3 kilobytes, Vellvm’s
specification is 6.7 kilobytes, and our specification is 3.3 kilobytes.

Although Vellvm’s language is more featureful than MiniLLVM, this appears
to account for little of the difference in the proofs, since most of these features
are orthogonal to memory operations. Roughly speaking, our proof of correctness
is 2/3 the size of Vellvm’s and our specification is half the size, supporting the
assertion that our specification lends itself to simpler proofs. Furthermore, our
results hold not just for one model but for any instance of the specification.

5 Related Work

There have been many efforts to generically specify concurrent and relaxed mem-
ory models. The work of Higham et al. [1] is an early example of formalizing mem-
ory models in terms of sequences of read and write events; this approach is used
to formalize models ranging from linearizability to TSO and PSO. Yang et al. [10]
gave axiomatic specifications of six memory models, and used constraint logic
programming and SMT solving to check whether specific executions adhered to
the models. Saraswat et al. [7] gave a simple specification for concurrent memory
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models in terms of the “well-synchronized programs are sequentially consistent”
property, and demonstrated that their specification could be instantiated with
both models that prohibited thin-air reads and those that allowed them. In all
these works, reads, writes, and synchronizations were assumed to be the only
memory operations, and thus “sequential consistency” was taken to uniquely
define the single-threaded memory model.

Owens et al. [6] defined the x86-TSO memory model, and showed that their
axiomatic definition was equivalent to an abstract-machine model. This model
formed the basis for the memory model of CompCertTSO [9], the main inspira-
tion for our work. CompCertTSO’s model includes alloc and free operations,
and we follow its approach in giving semantics to our language by combining
language steps and memory steps. CompCertTSO does not seek to give a gen-
eral specification of a category of memory models, but rather a single instance
with TSO concurrency and CompCert-specific allocation and free behavior. We
know of no other work that attempts to give a generic, language-independent
specification of memory models with operations beyond read and write.

6 Conclusions and Future Work

While much work has gone into formalizing the range of possibilities for concur-
rent memory models, less attention has been devoted to a truly generic descrip-
tion of sequential memory models. Our specification is a first step towards such
an account, and we have highlighted the properties of generality, feasibility, and
usability that make it a reasonable specification for sequential memory models
with allocation and free operations. We have characterized the set of programs for
which all such models are equivalent, proved that CompCert’s memory model
is an instance of our specification, and used it to verify an optimization with
proofs demonstrably simpler than those written without such a specification.

Our memory model specification is currently based on the simplifying as-
sumption that the size of data does not matter. Reflecting the size of data
in the specification (e.g. by specifying the size of each allocation and allowing
reads/writes to offsets within blocks) would allow us to more faithfully model
CompCert’s and other C-like memory models, and give us an angle from which to
attack the problem of structured data. Another natural next step is to integrate
our specification into a framework for concurrent memory models, allowing us to
instantiate it with realistic models (such as CompCertTSO) that include alloca-
tion and free operations and verify optimizations with respect to those models.
Ultimately, we aim to construct a unified specification for memory models that
can be used to support and simplify any compiler verification effort.
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