Cisco Compact EGC GaN Segmentable Node A90201 with 85-105 MHz Split

Abstract

The Cisco ${ }^{\circledR}$ Compact EGC GaN Segmentable Node A90201 with $85-105 \mathrm{MHz}$ Split is designed to meet the growing need for network segmentation. The node provides advanced features and benefits, helps operators reduce operating costs by streamlining node segmentation deployments and configuration, and is well suited for migration toward Fiber to the Curb (FTTC) and Fiber to the Building (FTTB) architectures.

The node makes use of the latest developments in GaN (Gallium Nitride) monolithic microwave integrated circuits (MMICs), bringing excellent RF performance at a lower power consumption (compared to GaAs technology). It can be configured electronically for rapid initial setup or for adjustments that are needed as network requirements shift. All settings can be done without service interruption, an especially important capability in networks that deliver real-time interactive services such as Voice over IP (VoIP) and high-speed data transmission. The node's interface allows easy configuration through a handheld programmer terminal or by connection to a standard PC. This interface allows the settings to be stored and reapplied to streamline configuration.

The node provides flexible options because of its large optical input range and high RF output level. Thus, it can work with a large variety of reverse transmitters to support a variety of applications within the network.

The number of plug-ins has been minimized to help operators keep inventory and costs down. The full-range electronic attenuators and equalizers offer improved versatility and make it possible to achieve the same adjustment range as with conventional plug-ins or potentiometer solutions. A plug-in diplexer filter is used to determine the forward/reverse band split.

To meet future demands for more bandwidth, the node offers an electronic $862-\mathrm{MHz}$ to $1-\mathrm{GHz}$ field-programmable bandwidth extension, and reverse path that can be upgraded to 200 MHz .

The Cisco Compact EGC GaN Segmentable Node A90201 with $85-105 \mathrm{MHz}$ Split can be configured with a Cisco status monitoring transponder (Status Monitoring and Control [SMC], Hybrid Management System [HMS], or DOCSIS) to enable remote monitoring of critical node parameters and remote control of the built-in 3 -state reverse switch.

Figure 1. Cisco Compact EGC GaN Segmentable Node A90201 with 85-105 MHz Split

Features

- Improved distortion at a lower power consumption with GaN-based output stages
- RF output level adjustable over a wide range: 94 to $119 \mathrm{~dB} \mu \mathrm{~V}$
- Wide optical input: -7 to +2 dBm
- Configurable for 1 GHz or 862 MHz operation
- Configured by Electronic Gain Control (EGC) technology
- Full segmentable in forward path and reverse path
- Automatic redundancy switching for forward path
- Easy setup and control

Product Diagrams

Figures 2, 3, and 4 provide an overview and block diagrams for the Cisco Compact EGC GaN Segmentable Node A90201 with 85-105 MHz Split.

Figure 2. Overview

Figure 3. Block Diagram (with RTX)

Figure 4. Block Diagram (with EDR TX)

Product Specifications

This section provides product specifications. Table 1 lists optical specifications, Tables 2 and 3 give forward and reverse RF specifications, and Table 4 lists station powering specifications. Table 5 provides environmental, mechanical, compliance, and safety specifications.

Table 1. Optical Specifications

Item	Value
Optical	$1200-1600 \mathrm{~nm}$
Optical wavelength	-7 to +2 dBm
Optical input level	$\leq \pm 0.5 \mathrm{~dB}$
AGC accuracy	$7 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ at $86-862 \mathrm{MHz}$
Equivalent Input Noise (EIN) current	$8 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ at $86-1006 \mathrm{MHz}$

Table 2. Forward RF Specifications

Item	Value
Forward $\mathbf{R F}^{1}$	Selectable $86-862 \mathrm{MHz}$ or $86-1006 \mathrm{MHz}$
Frequency range	$94-119 \mathrm{~dB} \mu \mathrm{~V}$ at 3.25% OMI per ch
Output level range	$67.25 \pm 0.5 \mathrm{~dB} \mathrm{~A} / \mathrm{W}$ at full gain, 1310 nm
Responsivity	$\leq \pm 0.75 \mathrm{~dB}$ at $86-862 \mathrm{MHz}$
Flatness	$\leq \pm 1.0 \mathrm{~dB}$ at $86-1006 \mathrm{MHz}$
	$0-15 \mathrm{~dB}, 0.5 \mathrm{~dB}$ step

Item	Value
Path to path isolation	$\begin{aligned} & \geq+60 \mathrm{~dB} \text { at } 86-862 \mathrm{MHz} \\ & \geq+55 \mathrm{~dB} \text { at } 862-1006 \mathrm{MHz} \end{aligned}$
Output return loss	$\geq 18 \mathrm{~dB}$ at $5-65 \mathrm{MHz}$, reduce 1.5 dB per octave
Output test point return loss	$\geq 20 \mathrm{~dB}$ at $5-65 \mathrm{MHz}$, reduce 1.5 dB per octave
Output test point	$\begin{aligned} & -20 \pm 0.5 \mathrm{~dB} \text { at } 86-862 \mathrm{MHz}, \\ & -20 \pm 0.75 \mathrm{~dB} \text { at } 86-1006 \mathrm{MHz} \end{aligned}$
Distortion ${ }^{2}$ - CTB - CSO	$\begin{aligned} & \leq-60 \mathrm{~dB} \\ & \leq-60 \mathrm{~dB} \end{aligned}$
Distortion ${ }^{3}$ (with power saving on) CTB cso	$\begin{aligned} & \leq-60 \mathrm{~dB} \\ & \leq-60 \mathrm{~dB} \end{aligned}$
Hum modulation ${ }^{4}$	$\leq-65 \mathrm{~dB}$ at $86-1006 \mathrm{MHz}$
Thermal stability	$\leq \pm 1.0 \mathrm{~dB}$
Redundant receiver switchover time	$\leq 25 \mathrm{~ms}$
Number of optical inputs	2
Number of RF output ports	2 active outputs +1 additional output with plug-in output splitter
Group delay	$\Delta f=1 \mathrm{MHz}$ $\Delta f=4.43 \mathrm{MHz}$ $\leq 3 \mathrm{nsec}$ $\leq 2 \mathrm{nsec}$ at $86-94 \mathrm{MHz}$ at $112.25-116.68 \mathrm{MHz}$ $\leq 2 \mathrm{nsec}$ $\leq 1 \mathrm{nsec}$ at $95-112 \mathrm{MHz}$ $>119.25 \mathrm{MHz}$
Transponder pick-off point ${ }^{5}$	$-33 \pm 1.5 \mathrm{~dB}$
Notes: 1. Unless otherwise specified, all forward band specifications are tested with a 65/86 diplexer module installed. 2. CENELEC $42 \mathrm{ch}, 3.25 \% \mathrm{OMI}, 9 \mathrm{~dB}$ tilt, and output level $116 \mathrm{~dB} \mu \mathrm{~V}$. 3. CENELEC $42 \mathrm{ch}, 3.25 \% \mathrm{OMI}, 9 \mathrm{~dB}$ tilt, and output level $113 \mathrm{~dB} \mu \mathrm{~V}$. 4. At 8 Ampere AC current. 5. Relative to the level of the node output port.	

Table 3. Reverse RF Specifications

Item	Value
Reverse RF 1	
Frequency range	$5-200 \mathrm{MHz}$
Tilt	Slope $<1.0 \mathrm{~dB}$
Flatness	$\leq \pm 0.5 \mathrm{~dB}$
Path to path isolation	70 dB
Input return loss	$\geq 18 \mathrm{~dB}$ at $5-65 \mathrm{MHz}$, reduce 1.5 dB per octave
RTx test point return loss	$\geq 18 \mathrm{~dB}$ at $5-65 \mathrm{MHz}$, reduce 1.5 dB per octave
RTx test point	Refer to the RTx data sheet, part number 7018738, when RTx is installed
	Refer to the EDR data sheet, part number 95-7024051-01, when EDR is installed
Hum modulation ${ }^{4}$	$\leq-65 \mathrm{~dB}$ at $5-65 \mathrm{MHz}$
Reverse input attenuator	$0-20 \mathrm{~dB}, 0.5 \mathrm{~dB}$ step
Reverse tri-state switch	On, $-6 \mathrm{~dB}, \mathrm{Off}$
Thermal stability	$\leq \pm 0.7 \mathrm{~dB}$

Item	Value
Redundant transmitter switchover time	$\leq 25 \mathrm{~ms}$
Group delay	$\Delta f=1 \mathrm{MHz}$ $\leq 12 \mathrm{nsec}$ at $5-6 \mathrm{MHz}$ $\leq 7 \mathrm{nsec}$ at $6-7 \mathrm{MHz}$ $\leq 5 \mathrm{nsec}$ at $7-8 \mathrm{MHz}$ Insertion loss ${ }^{2}$ Insertion loss of transponder $8-64 \mathrm{MHz}$ injection point ${ }^{3}$
Notes: nsec at $64-65 \mathrm{MHz}$	
1. Unless otherwise specified, all reverse band specifications are tested with a 65/86 diplexer module installed.	
2. From RF port to the reverse transmitter input, input attenuator at 0 dB and tri-state switch at ON setting.	
3. From the transponder's RF output to the reverse transmitter's input.	
4. At 8 Ampere AC current.	

Table 4. Station Powering Specifications

Item	Value								
Power Supply									
65 V remote powered	24-65 VAC								
230V mains powered	100-240 VAC								
Powering									
Maximum AC current	15A at power supply input								
Maximum AC current per port	8A								
Power Consumption									
Power consumption ${ }^{1}$	1 Tx, 1 Rx, 1 transponder$\leq 49.5 \mathrm{~W}$					2 Tx, 2 Rx, 1 transponder$\leq 54.0 \mathrm{~W}$			
Power reduction: - Power saving on - Dynamic power saving2 - Redundancy mode - Single output mode	$\begin{aligned} & 2.2 \mathrm{~W} \\ & 6.8 \mathrm{~W} \text { per path } \\ & 2.2 \mathrm{~W} \\ & 21.3 \mathrm{~W} \end{aligned}$								
Control module power consumption	0.5 W								
Transponder	s2.0W (HMS/SMC transponder) $\leq 2.5 \mathrm{~W}$ (DOCSIS transponder)								
AC Current and AC Voltage									
AC input voltage	24V	30 V	35 V	40 V	45 V	50V	55 V	60V	65 V
AC current draw (A) (1 Tx, 1 Rx, 1 transponder)	2.31	1.88	1.60	1.41	1.27	1.14	1.05	0.98	0.95
AC current draw (A) (2 TX, 2 Rx, 1 transponder)	3.20	2.40	2.03	1.82	1.61	1.43	1.32	1.24	1.15

Notes:

1. Segmented mode; power saving mode off.
2. The availability of the dynamic power saving depends on the combination of the optical input level and the RF output level, as shown in the following graph.

Table 5. Environmental, Mechanical, Compliance, and Safety Specifications

Item	Value
Environmental	
Operating temperature	-40 to $+55^{\circ} \mathrm{C}(-40$ to +131 F)
Storage temperature	-40 to $+8{ }^{\circ} \mathrm{C}(-40$ to +185 F)
Water and dust ingress rating	IP67
Mechanical	
Connectors: - Optical - RF	$\begin{aligned} & \text { SC/APC } \\ & \text { PG11 } \end{aligned}$
Housing dimensions (HxWxD)	$\begin{aligned} & 293 \mathrm{~mm} \times 292 \mathrm{~mm} \times 125 \mathrm{~mm} \\ & (11.5 \mathrm{in} . \times 11.5 \mathrm{in} . \times 4.9 \mathrm{in} .) \end{aligned}$
Weight	8 kg (17.6 lb)
Compliance and Safety	
Electrical safety	EN 50083-1, EN 60065, IEC 60065
Laser safety	IEC/EN 60825-1
EMC dmissions	EN 50083-2
RoHS	Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment, O.J. (L 19)

Ordering Information

This section contains ordering information for the node (Table 6) and required and optional accessories. Consult your account representative to determine the best configuration for your particular application.

Table 6. Cisco Compact EGC GaN Segmentable Node A90201 with $85-105$ MHz Split Part Numbers

Description	Part Number for Ordering
Compact EGC GaN Segmentable Node, 1 Rx, $\mathbf{1}$ GHz, AGC, 230 VAC, EU Power Plug, 85/105 MHz	A90201.10285
Compact EGC GaN Segmentable Node, $\mathbf{1 ~ R x , ~ 1 ~ G H z , ~ A G C , ~ 2 3 0 ~ V A C , ~ U S ~ P o w e r ~ P l u g , ~ 8 5 / 1 0 5 ~ M H z ~}$	A90201.10185
Compact EGC GaN Segmentable Node, $\mathbf{1 ~ R x , ~ 1 ~ G H z , ~ A G C , ~ 6 5 ~ V A C , ~ L i n e s ~ P o w e r , ~ 8 5 / 1 0 5 ~ M H z ~}$	A90201.10385

The required accessories listed in Table 7 must be ordered separately.
Table 7. Required Accessories and Part Numbers

Description	Part Number for Ordering
Output Splitter-1 required, choose from the following: - 0 dB jumper - $3.5 / 3.5 \mathrm{~dB}$ splitter - $2 / 6 \mathrm{~dB}$ directional coupler - $1 / 10.5 \mathrm{~dB}$ directional coupler - 0.6/14 dB directional coupler	A74069.10 A77041.10 A77042.10 A77043.10 A77044.10
Reverse Transmitter (1 or 2) or EDR Module (only 1), choose from the following: - Reverse Transmitter for Compact Nodes, FP 0 dBm - Reverse Transmitter for Compact Nodes, CWDM 3 dBm (1270 nm to 1610 nm) - Reverse Transmitter for Compact Nodes, CWDM 6 dBm (1270 nm to 1610 nm) - EDR C2185 Tx module with CWDM Tx OPM (1270 nm up to 1610 nm) - EDR C2185 Tx module with DWDM Tx (ITU ch. 17 up to ch. 61) - EDR C2185 Tx module without Optical Pluggable Module (OPM) (require 1 OPM) - 3 dBm CWDM Tx OPM (1270 nm to 1610 nm) - 3 dBm DWDM Tx OPM (ITU ch. 17 to ITU ch. 61)	A90080.10 A90083.10yyyy A90086.10yyyy 4042891.yyyy 4042892.yy 4042889 4042872.yyyy 4042872.yy
Optical Adapter Internal optical connector is SC/APC, choose from the following: - Adapter SC/APC to E2108 - Adapter SC/APC to FC/APC - Adapter SC/APC to SC/APC	$\begin{aligned} & \text { A90540.1048 } \\ & \text { A90540.1068 } \\ & \text { A90540.1088 } \end{aligned}$

The optional accessories listed in Table 8 must be ordered separately.
Table 8. Optional Accessories and Part Numbers

Description	Part Number on Module	Part Number for Ordering
Transponder, choose from the following: \bullet - Plug-in Euro-DOCSIS/DOCSIS Transponder - Plug-in Compact SMC Transponder - Plug-in Compact HMS Transponder - Plug-in Compact HMS Transponder with EDR	4038489	4038498
Handheld Terminal (required for configuration of the unit)		A91051.12
PC Configuration Kit (software and USB-cable)	A91065.10	

Description	Part Number on Module	Part Number for Ordering
Plug-in Diplex Filter - 2 required, choose the following (included in the part numbers listed in Table 6): - $42 / 54 \mathrm{MHz}$ split (left) - $42 / 54 \mathrm{MHz}$ split (right) - $65 / 86 \mathrm{MHz}$ split (left) - $65 / 86 \mathrm{MHz}$ split (right) - $85 / 105 \mathrm{MHz}$ split (left) - $85 / 105 \mathrm{MHz}$ split (right)	$\begin{aligned} & 4028316 \\ & 4028317 \end{aligned}$	$\begin{aligned} & 4008154 \\ & 4008155 \\ & 589690 \\ & 589691 \\ & 4044038 \\ & 40440397 \end{aligned}$
Single Reverse Filter - 1 required for each RTx, 2 required for EDR, choose from the following: - Single low pass filter 65 MHz - Single band pass filter $15 / 65 \mathrm{MHz}$ - Single high pass filter $11 / 15 \mathrm{MHz}$ - Single high pass filter 85 MHz - Single high pass filter $15 / 85 \mathrm{MHz}$		A75127.1065 A75127.101565 A75127.101115 A75127.1085 A75127.101585
Optical Receiver	4026169	4033722
Control Module	4026179	4034246
Kit, AC Path Selection Fuse 8 A Time Delay, Black Handle (1 Kit=10 pcs of 715123)		4043258
Kit, AC Path Selection Fuse 10 A Mini-Blade, Black Handle (1 Kit=4 pcs of 4036557)		4036876
Sleeve PG11-5/8 in. with O-ring (included in the part numbers listed in Table 6)		744576

cisco

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters

 Cisco Systems (USA) Pte. Ltd. SingaporeEurope Headquarters
Cisco Systems International BV Amsterdam, The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

