Mutual Information

Given a random variable X, we can represent the information $H(X)$ by a diagram showing X 's information as a region of the space of all information.
$H(X)$

If we have two random variables (independent or not), the information conveyed jointly by them $H(X, Y)$ as the set union of the information conveyed by each.

or

The information conveyed by X given $Y, H(X \mid Y)$, is represented by the set difference (not symmetric difference) of X and Y, because, if Y is known, all the information that was conveyed by Y is now given, and no longer conveys any information.

The mutual information of random variables X and Y is defined to be $I(X, Y)=H(X)-H(X \mid Y)$. In this setting, - once again is represented by set difference in our diagram.

$$
I(X, Y)
$$

or

So the information mutual to X and Y is that which is shared by both of them. This can also be computed as follows: $I(X, Y)=H(X)+H(Y)-H(X, Y)$. In this case, + is represented by union in our diagram if we consider the diagram to represent multisets, that is, sets where the multiplicity of an element can be greater than 1 . From $H(X)$, we get multiplicity 1 for each element of X. From $H(Y)$, we add multiplicity 1 to each element of Y, making the elements common to X and Y have multiplicity 2 . Finally, we subtract multiplicity one from each element that belongs to either X or Y, thus leaving the elements common to X and Y with multiplicity 1 and all others with multiplicity 0 .

We can extend this idea of mutual information to what is known as interaction information when more than two variables are involved. In such a case, we define $I(X, Y, Z)=-H(X)-H(Y)-H(Z)+H(X, Y)+H(X, Z)+H(Y, Z)-H(X, Y, Z)$. It is the information that is common to X, Y, and Z. Information appearing only in X is assigned multiplicity $-1-0-0+1+1+0-1=0$ by the expression above. Information belonging to X and Y but not Z is assigned multiplicity $-0-0-0+1+0+0-1=0$. Information belonging to X and Y and Z is assigned $-1-1-1+1+1+1-1=-1$, that is, a negative value! This is one of the oddities of interaction information. The general form for the interaction information of a set of random variables $V=\left\{X_{1}, \ldots, X_{n}\right\}$ is given by
$I(V)=-\sum_{S \subseteq V}-1^{|V|-|S|} H(S)$.

