中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (1): 131-138.doi: 10.12307/2023.742

• 干细胞综述 stem cell review • 上一篇    下一篇

星形胶质细胞调节缺血性脑卒中的胶质瘢痕形成

杨  婷1,丁智斌1,2,3,江  楠1,韩红霞4,侯苗苗1,3,马存根2,宋丽娟1,2,3,李新毅1,3   

  1. 1山西医科大学第三医院(山西白求恩医院,山西医学科学院,同济山西医院)神经内科,山西省太原市   030032;2山西中医药大学国家中医药管理局多发性硬化益气活血重点研究室/第一临床学院脑病科,山西省晋中市   030619;3山西医科大学细胞生理学教育部重点实验室,山西省太原市   030001;4山西省心血管病医院(山西医科大学附属心血管病医院),山西省太原市   030024
  • 收稿日期:2022-11-02 接受日期:2022-12-10 出版日期:2024-01-08 发布日期:2023-06-29
  • 通讯作者: 李新毅,主任医师,山西医科大学第三医院(山西白求恩医院,山西医学科学院,同济山西医院)神经内科,山西省太原市 030032;山西医科大学细胞生理学教育部重点实验室,山西省太原市 030001 宋丽娟,博士,副教授,山西医科大学第三医院(山西白求恩医院,山西医学科学院,同济山西医院)神经内科,山西省太原市 030032;山西中医药大学国家中医药管理局多发性硬化益气活血重点研究室/第一临床学院脑病科,山西省晋中市 030619;山西医科大学细胞生理学教育部重点实验室,山西省太原市 030001
  • 作者简介:杨婷,女,1999年生,山西省长治市人,汉族,山西医科大学在读硕士,医师,主要从事胶质细胞与脑血管病研究。 丁智斌,男,1989年生,山西省襄汾县人,汉族,2021年山西医科大学毕业,博士,主治医师,主要从事胶质细胞与神经再生研究。
  • 基金资助:
    国家自然科学基金青年科学基金项目(82004028),项目负责人:宋丽娟;中国博士后科学基金面上资助项目(2020M680912),项目负责人:宋丽娟;山西省基础研究计划自由探索类项目(20210302123408),项目负责人:丁智斌;山西省卫健委医学科技领军团队(2020TD05),项目负责人:马存根;山西医科大学第三医院人才引进科研启动金项目(2021RC033),项目负责人:丁智斌;山西中医药大学青年科学家培育项目(2021-PY-QN-09),项目负责人:宋丽娟

Astrocytes regulate glial scar formation in cerebral ischemic stroke

Yang Ting1, Ding Zhibin1, 2, 3, Jiang Nan1, Han Hongxia4, Hou Miaomiao1, 3, Ma Cungen2, Song Lijuan1, 2, 3, Li Xinyi1, 3   

  1. 1Department of Neurology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital), Taiyuan 030032, Shanxi Province, China; 2The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Department of Encephalopathy, First Clinical College, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi Province, China; 3Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030001, Shanxi Province, China; 4Shanxi Cardiovascular Hospital (Affiliated Cardiovascular Hospital of Shanxi Medical University), Taiyuan 030024, Shanxi Province, China
  • Received:2022-11-02 Accepted:2022-12-10 Online:2024-01-08 Published:2023-06-29
  • Contact: Li Xinyi, Chief physician, Department of Neurology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital), Taiyuan 030032, Shanxi Province, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030001, Shanxi Province, China Song Lijuan, MD, Associate professor, Department of Neurology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital), Taiyuan 030032, Shanxi Province, China; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Department of Encephalopathy, First Clinical College, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi Province, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030001, Shanxi Province, China
  • About author:Yang Ting, Master candidate, Physician, Department of Neurology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital), Taiyuan 030032, Shanxi Province, China Ding Zhibin, MD, Attending physician, Department of Neurology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital), Taiyuan 030032, Shanxi Province, China; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Department of Encephalopathy, First Clinical College, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi Province, China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030001, Shanxi Province, China
  • Supported by:
    Youth Science Foundation Program of National Natural Science Foundation of China, No. 82004028 (to SLJ); General Program Supported by China Postdoctoral Science Foundation, No. 2020M680912 (to SLJ); Free Exploration Project of Shanxi Basic Research Priorities Program, No. 20210302123408 (to DZB); Leading Medical Science and Technology Team of Shanxi Health Commission, No. 2020TD05 (to MCG); Talent Introduction Program of Scientific Research Foundation Supported by Third Hospital of Shanxi Medical University, No. 2021RC033 (to DZB); Young Scientist Development Program Supported by Shanxi University of Chinese Medicine, No. 2021-PY-QN-09 (to SLJ)

摘要:


文题释义:

星形胶质细胞:是中枢神经系统中数量最多、分布最广泛及功能多样化的细胞,在脑缺血缺氧及继发的炎症反应诱导下,发生活化、增殖和迁移等一系列形态和功能的变化,在缺血性脑卒中后的神经保护、炎症、胶质瘢痕形成等一系列病理改变中发挥着重要作用。
胶质瘢痕:是指在缺血半暗带周围形成的以增殖、肥大的星形胶质细胞及其分泌的细胞外基质为主要成分的物理-化学屏障,在缺血性脑卒中早期可以通过限制炎症扩散发挥保护作用,但是晚期严重抑制神经元和突触的再生,是影响神经功能恢复的主要障碍。


背景:缺血性脑卒中是临床上主要的致死及致残性疾病之一,经血管再通获益的患者数量极其有限,故探索有效治疗手段迫在眉睫。以星形胶质细胞为主所形成的胶质瘢痕作为缺血性脑卒中的重要病理变化之一,是阻碍脑卒中后期轴突再生和神经修复的主要原因。

目的:通过对缺血性脑卒中后星形胶质细胞瘢痕形成的病理过程、关键的信号调节机制和潜在治疗靶点进行分析,旨在为干预星形胶质细胞瘢痕形成以有效治疗缺血性脑卒中提供理论依据,并为促进脑卒中后康复提供新策略。
方法:全面检索2010-2022年在中国知网、PubMed和Web of Science数据库收录的相关文献,中文检索词:“缺血性脑卒中、脑缺血、星形胶质细胞、胶质瘢痕、胶质增生、星形胶质细胞增多症”,英文检索词:“Ischemic stroke,Brain ischemi*,Cerebral ischemi*,Astrocyt*,Astroglia*,Glial scar,Gliosis,Astrogliosis”,经筛选后纳入78篇文献进行综述。

结果与结论:①星形胶质细胞在中枢神经系统稳态的维持中具有重要作用,缺血性脑卒中发生后,星形胶质细胞从静息态转变为激活态,由于脑缺血部位损伤的严重程度的不同,其活化呈现从肿胀、增殖到胶质瘢痕形成的动态变化。②成熟的星形胶质细胞受到刺激重新进入细胞周期并发生增殖和迁移,是形成胶质瘢痕的主要细胞来源,脑室下区的神经干细胞、脑实质局部神经胶质抗原2(NG2)和室管膜细胞前体细胞也可分化为星形胶质细胞,内皮素1(ET-1)、水通道蛋白4(AQP4)、睫状神经营养因子(CNTF)和缝隙连接蛋白参与了此过程;硫酸软骨素蛋白多糖(CSPG)是细胞外基质的主要成分,同增殖的星形胶质细胞共同形成致密的胶质瘢痕屏障,阻碍了轴突的极化和延伸。③星形胶质细胞活化、增殖、迁移及促炎作用所涉及的关键信号分子的激活或者抑制调节了胶质瘢痕形成,转化生长因子β1(TGF-β1)/Smad和JAK/STAT3是经典的星形胶质细胞反应性相关通路,糖原合成酶激酶3β(GSK-3β)和受体相互作用蛋白激酶1(RIP1K)是调节炎症反应的关键分子,而关于Smad泛素化相关因子2(Smurf2)和白细胞介素17及其下游信号通路在胶质瘢痕形成中的研究相对较少,值得深入探索。④以星形胶质细胞反应性相关的信号通路、细胞增殖调控蛋白和炎症因子为靶点的药物有效抑制了缺血性脑卒中后胶质瘢痕的形成,其中临床常用药物如褪黑素和丙戊酸调节胶质瘢痕形成的作用已被发现,这使得通过抑制胶质瘢痕形成来促进神经功能恢复的药物应用于脑卒中患者成为可能。⑤然而,胶质瘢痕在脑卒中急性期发挥的神经保护作用是不可忽视的,因此如何选择合适的药物干预时机,以在保持胶质瘢痕发挥保护作用的同时促进局部微环境中的神经再生和修复是今后努力的方向。

https://orcid.org/0000-0002-1852-7893 (杨婷) ;https://orcid.org/0000-0003-3718-2226 (丁智斌);
https://orcid.org/0000-0001-9824-0157 (李新毅);https://orcid.org/0000-0003-2945-5669 (宋丽娟)

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 缺血性脑卒中, 星形胶质细胞, 胶质瘢痕, 增殖, 炎症, 再生, 信号通路, 治疗

Abstract: BACKGROUND: Cerebral ischemic stroke is one of the main fatal and disabling diseases in the clinic, but only a few patients benefit from vascular recanalization in time, so it is urgent to explore new and effective therapy. As one of the critical pathological changes of ischemic stroke, the glial scar formed mainly by astrocytes is one major cause that hinders axonal regeneration and neurological recovery at the late stage of stroke.  
OBJECTIVE: To elucidate the pathological process and crucial signal regulatory mechanism of astrocytes in the formation of glial scar after ischemic stroke, as well as the potential therapeutic targets, to provide a theoretical reference for intervening astrocytic scar formation against ischemic stroke effectively, and novel strategies for promoting post-stroke rehabilitation.
METHODS: The relevant articles published in CNKI, PubMed and Web of Science databases from 2010 to 2022 were retrieved. The search terms were “Ischemic stroke, Brain ischemi*, Cerebral ischemi*, Astrocyt*, Astroglia*, Glial scar, Gliosis, Astrogliosis” in Chinese and English. Finally, 78 articles were included after screening and summarized.  
RESULTS AND CONCLUSION:  (1) Astrocytes play an important role in the maintenance of central nervous system homeostasis. After ischemic stroke, astrocytes change from a resting state to an active state. According to the different severities of cerebral ischemic injury, astrocyte activation changes dynamically from swelling and proliferation to glial scar formation. (2) Mature astrocytes are stimulated to restart the cell cycle, then proliferate and migrate to lesions, which is the main source of the glial scar. Neural stem cells in the subventricular zone, neuron-glial antigen 2 precursor cells and ependymal precursor cells in the brain parenchyma can also differentiate into astrocytes. Endothelin-1, aquaporin 4, ciliary neurotrophic factor and connexins are involved in this process. In addition, chondroitin sulfate proteoglycan, as the main component of the extracellular matrix, forms the dense glial scar barrier with proliferated astrocytes, which hinders the polarization and extension of axons. (3) Activation or inhibition of crucial signal molecules involved in astrocyte activation, proliferation, migration and pro-inflammation functions regulate the glial scar formation. Transforming growth factor beta 1/Smad and Janus kinase/signal transducer and activator of transcription 3 are classical pathways related to astrogliosis, while receptor-interacting protein 1 kinase and glycogen synthase kinase 3β are significant molecules regulating the inflammatory response. However, there are relatively few studies on Smad ubiquitination regulatory factor 2 and Interleukin-17 and their downstream signaling pathways in glial scar formation, which are worthy of further exploration. (4) Drugs targeting astrogliosis-related signaling pathways, cell proliferation regulatory proteins and inflammatory factors effectively inhibit the formation of glial scar after cerebral ischemic stroke. Among them, the role of commonly used clinical drugs such as melatonin and valproic acid in regulating glial scar formation has been verified, which makes it possible to use drugs that inhibit glial scar formation to promote the recovery of neurological function in patients with stroke. (5) Considering the protective effects of glial scar in the acute phase, how to choose the appropriate intervention chance of drugs to maintain the protective effect of the glial scar while promoting nerve regeneration and repair in the local microenvironment is the direction of future efforts. 

Key words: cerebral ischemic stroke, astrocyte, glial scar, proliferation, inflammation, regeneration, signaling pathway, therapy

中图分类号: