The comoving Coordinate System

The time dependence of a particle's motion is often not as interesting as the trajectory along the accelerator length "s".

The 4D Equation of Motion

$$
\frac{d^{2}}{d t^{2}} \vec{r}=\vec{f}_{r}\left(\vec{r}, \frac{d}{d t} \vec{r}, t\right)
$$

3 dimensional ODE of $2^{\text {nd }}$ order can be changed to a
6 dimensional ODE of $1^{\text {st }}$ order:

$$
\left.\begin{array}{l}
\frac{d}{d t} \vec{r}=\frac{1}{m \gamma} \vec{p}=\frac{c}{\sqrt{p^{2}-(m c)^{2}}} \vec{p} \\
\frac{d}{d t} \vec{p}=\vec{F}(\vec{r}, \vec{p}, t)
\end{array}\right\} \quad \frac{d}{d t} \vec{Z}=\vec{f}_{Z}(\vec{Z}, t), \quad \vec{Z}=(\vec{r}, \vec{p})
$$

If the force does not depend on time, as in a typical beam line magnet, the energy is conserved so that one can reduce the dimension to 5 . The equation of motion is then autonomous.

Furthermore, the time dependence is often not as interesting as the trajectory along the accelerator length "s". Using "s" as the independent variable reduces the dimensions to 4 . The equation of motion is then no longer autonomous.
$\frac{d}{d s} \vec{z}=\vec{f}_{z}(\vec{z}, s), \quad \vec{z}=\left(x, y, p_{x}, p_{y}\right)$

The 6D Equation of Motion

Usually one prefers to compute the trajectory as a function of "s" along the accelerator even when the energy is not conserved, as when accelerating cavities are in the accelerator.

Then the energy " E " and the time " t " at which a particle arrives at the cavities are important. And the equations become 6 dimensional again:
$\frac{d}{d s} \vec{z}=\vec{f}_{z}(\vec{z}, s), \quad \vec{z}=\left(x, y, p_{x}, p_{y},-t, E\right)$
But: $\vec{z}=(\vec{r}, \vec{p})$ is an especially suitable variable, since it is a phase space vector so that its equation of motion comes from a Hamiltonian, or by variation principle from a Lagrangian.
$\delta \int\left[p_{x} \dot{x}+p_{y} \dot{y}+p_{s} \dot{s}-H(\vec{r}, \vec{p}, t)\right] l t=0 \quad \Rightarrow \quad$ Hamiltonian motion
$\delta \int\left[p_{x} x^{\prime}+p_{y} y^{\prime}-H t^{\prime}+p_{s}\left(x, y, p_{x}, p_{y}, t, H\right)\right] d s=0 \quad \Rightarrow$ Hamiltonian motion
The new canonical coordinates are: $\vec{z}=\left(x, y, p_{x}, p_{y},-t, E\right)$ with $\quad \mathrm{E}=\mathrm{H}$
The new Hamiltonian is: $\quad K=-p_{s}(\vec{z}, s)$

Significance of Hamiltonian

The equations of motion can be determined by one function:

$$
\begin{aligned}
\frac{d}{d s} x & =\partial_{p_{x}} H(\vec{z}, s), \quad \frac{d}{d s} p_{x}=-\partial_{x} H(\vec{z}, s), \quad \cdots \\
\frac{d}{d s} \vec{z} & =\underline{J} \vec{\partial} H(\vec{z}, s)=\vec{F}(\vec{z}, s) \quad \text { with } \quad \underline{J}=\operatorname{diag}\left(\underline{J}_{2}\right), \quad \underline{J}_{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

The force has a Hamiltonian Jacobi Matrix:
A linear force:

$$
\vec{F}(\vec{z}, s)=\underline{F}(s) \cdot \vec{z}
$$

The Jacobi Matrix of a linear force: $\underline{F}(s)$
The general Jacobi Matrix : $\quad F_{i j}=\partial_{z_{j}} F_{i} \quad$ or $\quad \underline{F}=\left(\vec{\partial} \vec{F}^{T}\right)^{T}$
Hamiltonian Matrices: $\quad \underline{F} \underline{J}+\underline{J} \underline{F}^{T}=0$
Prove: $\quad F_{i j}=\partial_{z_{j}} F_{i}=\partial_{z_{j}} J_{i k} \partial_{z_{k}} H=J_{i k} \partial_{k} \partial_{j} H \quad \Rightarrow \quad \underline{F}=\underline{J} \underline{D} \underline{H}$

$$
\underline{F} \underline{J}+\underline{J} \underline{F}^{T}=\underline{J} \underline{D} \underline{J} H+\underline{J} \underline{D}^{T} \underline{J}^{T} H=0
$$

H i Symplectic Flows

The flow of a Hamiltonian equation of motion has a symplectic Jacobi Matrix
The flow or transport map:

$$
\begin{aligned}
& \vec{z}(s)=\vec{M}\left(s, \vec{z}_{0}\right) \\
& \vec{z}(s)=\underline{M}(s) \cdot \vec{z}_{0}
\end{aligned}
$$

A linear flow:
The Jacobi Matrix of a linear flow: $\underline{M}(s)$
The general Jacobi Matrix: $\quad M_{i j}=\partial_{z_{0 j}} M_{i} \quad$ or $\quad \underline{M}=\left(\vec{\partial}_{0} \vec{M}^{T}\right)^{\prime}$
The Symplectic Group $\mathrm{SP}(2 \mathrm{~N}): \quad \underline{M} \underline{J} \underline{M}^{T}=\underline{J}$

$$
\begin{array}{ll}
\frac{d}{d s} \vec{z}=\frac{d}{d s} \vec{M}\left(s, \vec{z}_{0}\right)=\underline{J} \vec{\nabla} H=\vec{F} \quad & \frac{d}{d s} M_{i j}=\partial_{z_{0 j}} F_{i}(\vec{z}, s)=\partial_{z_{0 j}} M_{k} \partial_{z_{k}} F_{i}(\vec{z}, s) \\
& \frac{d}{d s} \underline{M}\left(s, \vec{z}_{0}\right)=\underline{F}(\vec{z}, s) \underline{M}\left(s, \vec{z}_{0}\right)
\end{array}
$$

$K=\underline{M} \underline{J} \underline{M}^{T}$
$\frac{d}{d s} \underline{K}=\frac{d}{d s} \underline{M} \underline{J} \underline{M}^{T}+\underline{M} \underline{J} \underline{d} d s \underline{M}^{T}=\underline{F} \underline{M} \underline{J} \underline{M}^{T}+\underline{M} \underline{J}_{\underline{M}} \underline{F}^{T} \underline{F}^{T}=\underline{F} \underline{K}+\underline{K} \underline{F}^{T}$
$\underline{K}=\underline{J}$ is a solution. Since this is a linear ODE,$\underline{K}=\underline{J}$ is the unique solution.

Symplectic Flows i H

For every symplectic transport map there is a Hamilton function
The flow or transport map:

$$
\begin{aligned}
\vec{z}(s) & =\vec{M}\left(s, \vec{z}_{0}\right) \\
\vec{h}(\vec{z}, s) & =-\underline{J}\left|\frac{d}{d s} \vec{M}\left(s, \vec{z}_{0}\right)\right|_{\vec{x}_{0}=\vec{M}^{-1}(\vec{z}, s)} \\
\frac{d}{d s} \vec{z} & =\underline{J} \vec{h}(\vec{z}, s)
\end{aligned}
$$

Force vector:

There is a Hamilton function H with: $\quad \vec{h}=\vec{\partial} H$
If and only if: $\quad \partial_{z_{j}} h_{i}=\partial_{z_{i}} h_{j} \quad \Rightarrow \quad \underline{h}=\underline{h}^{T}$

$$
\underline{M} \underline{J}^{\underline{M}} \underline{M}^{T}=\underline{J} \Rightarrow\left\{\begin{aligned}
\frac{d}{d s} \underline{M} \underline{J} \underline{M}^{T} & =-\underline{M} \underline{J} \frac{d}{d s} \underline{M}^{T} \\
\underline{M}^{-1} & =-\underline{J} \underline{M}^{T} \underline{J}
\end{aligned}\right.
$$

$$
\vec{h} \circ \vec{M}=-\underline{J} \frac{d}{d s} \vec{M}
$$

$$
\underline{h}(\vec{M}) \underline{M}=-\underline{J} \underline{d} \frac{d}{d s} \underline{M}
$$

$$
\underline{h}(\vec{M})=-\underline{J} \underline{d} d \underline{M} \underline{M}^{-1}=\underline{J} \frac{d}{d s} \underline{M} \underline{J} \underline{M}^{T} \underline{J}=-\underline{J} \underline{M} \underline{\underline{d}} \frac{d}{d s} \underline{M}^{T} \underline{J}=\underline{M}^{-T} \frac{d}{d s} \underline{M}^{T} \underline{J}=\underline{h}^{T}
$$

Phase space density in 2D

- Phase space trajectories move on surfaces of constant energy

$$
\frac{d}{d s} \vec{z}=\underline{J} \vec{\partial} H \quad \Rightarrow \quad \underline{\frac{d}{d s} \vec{z} \perp \vec{\partial} H}
$$

A phase space volume does not change when it is transported by Hamiltonian motion.

Lioville's Theorem

A phase space volume does not change when it is transported by Hamiltonian motion. $\vec{z}(s)=\underline{M}(s) \cdot \vec{z}_{0} \quad$ with $\quad \operatorname{det}[\underline{M}(s)]=+1$

$$
\text { Hamiltonian Motion } \longrightarrow V=V_{0}
$$

But Hamiltonian requires symplecticity, which is much more than just $\operatorname{det}[\underline{M}(s)]=+1$

Generating Functions

The motion of particles can be represented by Generating Functions
Each flow or transport map:

$$
\vec{z}(s)=\vec{M}\left(s, \vec{z}_{0}\right)
$$

With a Jacobi Matrix :

$$
M_{i j}=\partial_{z_{0 j}} M_{i} \quad \text { or } \quad \underline{M}=\left(\vec{\partial}_{0} \vec{M}^{T}\right)^{\top}
$$

That is Symplectic:

$$
\underline{M} \underline{J} \underline{M}^{T}=\underline{J}
$$

Can be represented by a Generating Function:
$F_{1}\left(\vec{q}, \vec{q}_{0}, s\right) \quad$ with $\quad \vec{p}=-\vec{\partial}_{q} F_{1} \quad, \quad \vec{p}_{0}=\vec{\partial}_{q_{0}} F_{1}$
$F_{2}\left(\vec{p}, \vec{q}_{0}, s\right) \quad$ with $\quad \vec{q}=\vec{\partial}_{p} F_{2} \quad, \quad \vec{p}_{0}=\vec{\partial}_{q_{0}} F_{2}$
$F_{3}\left(\vec{q}, \vec{p}_{0}, s\right) \quad$ with $\quad \vec{p}=-\vec{\partial}_{q} F_{3} \quad, \quad \vec{q}_{0}=-\vec{\partial}_{p_{0}} F_{3}$
$F_{4}\left(\vec{p}, \vec{p}_{0}, s\right) \quad$ with $\quad \vec{q}=\vec{\partial}_{q} F_{4} \quad, \quad \vec{q}_{0}=-\vec{\partial}_{p_{0}} F_{4}$
6 -dimensional motion needs only one function! But to obtain the transport map this has to be inverted.

F i SP(2N) [for notes]

Generating Functions produce symplectic tranport maps
$F_{1}\left(\vec{q}, \vec{q}_{0}, s\right) \quad$ with $\quad \vec{p}=-\vec{\partial}_{q} F_{1}\left(\vec{q}, \vec{q}_{0}, s\right) \quad, \quad \vec{p}_{0}=\vec{\partial}_{q_{0}} F_{1}\left(\vec{q}, \vec{q}_{0}, s\right)$

$$
\left.\begin{array}{l}
\vec{z}=\binom{\vec{q}}{\vec{p}}=\binom{\vec{q}}{-\vec{\partial}_{q} F_{1}\left(\vec{q}, \vec{q}_{0}, s\right)}=\vec{f}(\vec{Q}, s) \\
\vec{z}_{0}=\binom{\vec{q}_{0}}{\vec{p}_{0}}=\binom{\vec{q}_{0}}{\vec{\partial}_{q_{0}} F_{1}\left(\vec{q}, \vec{q}_{0}, s\right)}=\vec{g}(\vec{Q}, s)
\end{array}\right\} \begin{gathered}
\vec{z}=\vec{f}\left(\vec{g}^{-1}\left(\vec{z}_{0}, s\right), s\right) \\
\vec{M}=\vec{f} \circ \vec{g}^{-1} \\
\text { (function concatenation) }
\end{gathered}
$$

Jacobi matrix of concatenated functions:

$$
\vec{C}\left(\vec{z}_{0}\right)=\vec{A} \circ \vec{B}\left(\vec{z}_{0}\right)
$$

$$
C_{i j}=\partial_{j} C_{i}=\sum_{k} \partial_{z_{0 j}} B_{k}\left(\vec{z}_{0}\right)\left[\partial_{z_{k}} A_{i}(\vec{z})\right]_{\vec{z}=\vec{B}\left(\vec{z}_{0}\right)} \quad \Rightarrow \quad \underline{C}=\underline{A}(\vec{B}) \underline{B}
$$

$$
\vec{M} \circ \vec{g}=\vec{f} \quad \Rightarrow \quad \underline{M}(\vec{g})=\underline{F} \underline{G}^{-1}
$$

F i SP(2N) [for notes]

$$
\begin{aligned}
& F=\left(\begin{array}{cc}
1 & 0 \\
-F_{11} & -F_{12}
\end{array}\right) \quad G=\left(\begin{array}{cc}
0 & 1 \\
F_{21} & F_{22}
\end{array}\right) \Rightarrow G^{-1}=\left(\begin{array}{cc}
-F_{21}^{-1} F_{22} & F_{21}^{-1} \\
1 & 0
\end{array}\right) \\
& \underline{M}(\vec{g})=F G^{-1}=\left(\begin{array}{cc}
-F_{21}^{-1} F_{22} & F_{21}^{-1} \\
F_{11} F_{21}^{-1} F_{22}-F_{12} & -F_{11} F_{21}^{-1}
\end{array}\right) \\
& \underline{M}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \underline{M}^{T} \longrightarrow \text { The map from a generating function is symplectic. } \\
& =\left(\begin{array}{cc}
-F_{21}^{-1} & -F_{-2}^{-1} F_{22} \\
F_{11} F_{21}^{-1} & F_{11} F_{21}^{-1} F_{22}-F_{12}
\end{array}\right)\left(\begin{array}{cc}
-F_{22} F_{12}^{-1} & F_{22} F_{12}^{-1} F_{11}-F_{21} \\
F_{12}^{-1} & -F_{12}^{-1} F_{11}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

SP(2N) i F [for notes]

Symplectic tranport maps have a Generating Functions

$$
\begin{aligned}
& \vec{z}=\vec{M}\left(\vec{z}_{0}\right) \\
& \binom{\vec{q}}{\vec{q}_{0}}=\binom{\vec{M}_{1}\left(\vec{z}_{0}\right)}{\vec{q}_{0}}=\vec{l}\left(\vec{z}_{0}\right), \quad\binom{\vec{p}_{0}}{\vec{p}}=\binom{\vec{p}_{0}}{\vec{M}_{2}\left(\vec{z}_{0}\right)}=\vec{h}\left(\vec{z}_{0}\right)=\underline{J}\left[\vec{\partial} F_{1}\left(\vec{q}, \vec{q}_{0}\right)\right]_{\left(\vec{z}_{0}\right)} \\
& \vec{\partial} F_{1}=-\underline{J} \vec{h} \circ \vec{l}^{-1}=\vec{F}
\end{aligned}
$$

For F_{1} to exist it is necessary and sufficient that $\partial_{i} F_{j}=\partial_{j} F_{i} \quad \Rightarrow \quad \underline{F}=\underline{F}^{T}$

$$
-\underline{J} \vec{h}=\vec{F} \circ \vec{l} \quad \Rightarrow \quad-\underline{J} \underline{h}=\underline{F}(\vec{l}) \underline{l}
$$

Is $\underline{\mathrm{W}} \underline{\mathrm{h}} \underline{\mathrm{l}}^{-1}$ symmetric ? Yes since:

$$
\begin{aligned}
\underline{J h} \underline{l}^{-1}= & \left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
\vec{\partial}_{q_{0}}^{T} \vec{M}_{2} & \vec{\partial}_{p_{0}}^{T} \vec{M}_{2}
\end{array}\right)\left(\begin{array}{cc}
\vec{\partial}_{q_{0}}^{T} \vec{M}_{1} & \vec{\partial}_{p_{0}}^{T} \vec{M}_{1} \\
1 & 0
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
M_{21} & M_{22} \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
M_{12}^{-1} & -M_{12}^{-1} M_{11}
\end{array}\right)=\left(\begin{array}{cc}
M_{22} M_{12}^{-1} & M_{21}-M_{22} M_{12}^{-1} M_{11} \\
M_{12}^{-1} & M_{12}^{-1} M_{11}
\end{array}\right)
\end{aligned}
$$

SP(2N) i F [for notes]

$$
\begin{gathered}
\underline{J} \underline{l^{-1}}=\left(\begin{array}{cc}
M_{22} M_{12}^{-1} & M_{21}-M_{22} M_{12}^{-1} M_{11} \\
M_{12}^{-1} & M_{12}^{-1} M_{11}
\end{array}\right)=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \\
\vec{M}\left(\vec{z}_{0}\right)=\binom{\vec{M}_{1}\left(\vec{q}_{0}, \vec{p}_{0}\right)}{\vec{M}_{2}\left(\vec{q}_{0}, \vec{p}_{0}\right)}, \quad \underline{M}=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right) \\
\underline{M}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \underline{M^{T}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
-M_{12} & M_{11} \\
-M_{22} & M_{21}
\end{array}\right)\left(\begin{array}{ll}
M_{11}^{T} & M_{21}^{T} \\
M_{12}^{T} & M_{22}^{T}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
\\
M_{12} M_{11}^{T}=M_{11} M_{12}^{T} \quad \Rightarrow\left(M_{12}^{-1} M_{11}\right)^{T}=\left[\begin{array}{ll}
\left.M_{12}^{-1} M_{11} M_{12}^{T}\right] M_{12}^{-T}=M_{12}^{-1} M_{11} \\
\downarrow \\
& M_{21} M_{22}^{T}=M_{22} M_{21}^{T} \\
& M_{11} M_{22}^{T}-M_{12} M_{21}^{T}=1 \\
& M_{22} M_{11}^{T}-M_{21} M_{12}^{T}=1 \\
& \left(M_{22} M_{12}^{-1}\right)^{T}=\left[M_{22} M_{11}^{T} M_{12}^{-T}-M_{21}\right] M_{22}^{T}=M_{22}\left[M_{12}^{-1} M_{11} M_{22}^{T}-M_{21}^{T}\right]=M_{22} M_{12}^{-1} \\
A=A^{T}
\end{array}\right. \\
M_{21}-M_{22} M_{12}^{-1} M_{11}=M_{21}-M_{22} M_{11} M_{12}^{-T}=M_{12}^{-T} \longrightarrow B=C^{T}
\end{gathered}
$$

Symplectic Representations

[from notes]

Advantages of Symplecticity

Determinant of the transfer matrix of linear motion is 1 :

$$
\vec{z}(s)=\underline{M}(s) \cdot \vec{z}_{0} \quad \text { with } \quad \operatorname{det}(\underline{M}(s))=+1
$$

One function suffices to compute the total nonlinear transfer map:

$$
\begin{aligned}
& F_{1}\left(\vec{q}, \vec{q}_{0}, s\right) \quad \text { with } \quad \vec{p}=-\vec{\partial}_{q} F_{1}\left(\vec{q}, \vec{q}_{0}, s\right) \quad, \quad \vec{p}_{0}=\vec{\partial}_{q_{0}} F_{1}\left(\vec{q}, \vec{q}_{0}, s\right) \\
& \begin{array}{l}
\vec{z}=\binom{\vec{q}}{\vec{p}}=\binom{\vec{q}}{-\vec{\partial}_{q} F_{1}\left(\vec{q}, \vec{q}_{0}, s\right)}=\vec{f}(\vec{Q}, s) \\
\vec{z}_{0}=\binom{\vec{q}_{0}}{\vec{p}_{0}}=\left(\begin{array}{c}
\vec{f}\left(\vec{g}^{-1}\left(\vec{z}_{0}, s\right), s\right) \\
\overrightarrow{q_{0}} \\
\vec{\partial}_{q_{0}} F_{1}\left(\vec{q}, \vec{q}_{0}, s\right)
\end{array}\right)=\vec{g}(\vec{Q}, s) \\
\vec{M}=\vec{g} \circ \vec{g}^{-1}
\end{array}
\end{aligned}
$$

Therefore Taylor Expansion coefficients of the transport map are related.
Computer codes can numerically approximate $\vec{M}\left(s, \vec{z}_{0}\right)$ with exact symplectic symmetry.

- Liouville's Theorem for phase space densities holds.

Eigenvalues of a Symplectic Matrix

CHESS \& LEPP

For matrices with real coefficients:
If there is an eigenvector and eigenvalue: $\underline{M} \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$
then the complex conjugates are also eigenvector and eigenvalue: $\underline{M} \vec{v}_{i}^{*}=\lambda_{i}^{*} \vec{v}_{i}^{*}$
For symplectic matrices:
If there are eigenvectors and eigenvalues: $\underline{M} \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$ with $\underline{J}=\underline{M} \underline{{ }^{T}} \underline{J} \underline{M}$
then $\vec{v}_{i}^{T} \underline{J} \vec{v}_{j}=\vec{v}_{i}^{T} \underline{M}^{T} \underline{J} \underline{M} \vec{v}_{j}=\lambda_{i} \lambda_{j} \vec{v}_{i}^{T} \underline{J}_{j} \quad \Rightarrow \quad \vec{v}_{i}^{T} \underline{J} \vec{v}_{j}\left(\lambda_{i} \lambda_{j}-1\right)=0$
Therefore $\underline{J} \vec{v}_{j}$ is orthogonal to all eigenvectors with eigenvalues that are not $1 / \lambda_{j}$. Since it cannot be orthogonal to all eigenvectors, there is at least one eigenvector with eigenvalue $1 / \lambda_{j}$
Two dimensions: λ_{j} is eigenvalue Then $1 / \lambda_{j}$ and λ_{j}^{*} are eigenvalues

$$
\underline{\lambda_{2}}=1 / \lambda_{1}=\lambda_{1}^{*} \Rightarrow\left|\lambda_{j}\right|=1
$$

$\lambda_{2}=1 / \lambda_{1}=\lambda_{2}^{*}$

Four dimensions:

Radiation production

Lasing at JLAB with the ERI

Photon flux in Bends and Undulator

The umbrella of N -pole undulator radiation

Flux from N poles is N times the flux from one pole

The umbrella of N -pole undulator radiation

Angular Spectral Flux (Ph per s mrad${ }^{2} 0.1 \%$ BW)

$$
F_{\text {total }} \propto N
$$

Flux from N poles is N times the flux from one pole

The umbrella of N -pole undulator radiation

The power in the central cone is in dependent of N

Angular Spectral Flux (Ph per s mrad${ }^{2} 0.1 \%$ BW)

$$
F_{\text {total }} \propto N
$$

Flux from N poles is N times the flux from one pole

Brightness reduction by beam properties

Brightness reduction by beam properties

Brightness reduction by beam properties

Widening due to beam energy spread: Uncritical if

$$
\text { energy } s \text { pread }<\frac{1}{N}
$$

Field from a single electron cannot be distinguished from field from a spot with:

$$
\text { spot size }<\frac{\lambda}{\text { divergence }}
$$

Brightness reduction by beam properties

Field from a single electron cannot be distinguished from field from a spot with:

Widening due to beam divergence: Uncritical if divergence $<\frac{1}{\gamma \sqrt{N}}$ spot size $<\frac{\lambda}{\text { divergence }}$

To take advantage of many undulator poles, the electron beam needs to have little energy spread, little divergence, and small beam size.

Principle of an X-ray ERL

X-ray analysis with highest resolution in space and time:

Challenges:

- Accelerating Bunch
- Returning Bunch
- Low emittance, high current creation
- Emittance preservation
- Beam stability at insertion devices
- Accelerator design
- Component properties, e.g. SRF

Principle of an X-ray ERL

X-ray analysis with highest resolution in space and time:

Challenges:

- Low emittance, high current creation
- Emittance preservation
- Beam stability at insertion devices
- Accelerator design
- Component properties, e.g. SRF

