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ABSTRACT

The paper presents the results of numerical sim-
ulations of a two-dimensional homogenous isotropic
turbulent flow carried out using the direct numerical
simulation (DNS) and large eddy simulation (LES)
methods. In the latter case, the classical Smagorinsky
model and the Approximate Deconvolution Method
(ADM) are used to model the sub-grid terms. In
ADM the unfiltered variables are obtained from the
iterative van Cittert method and are used to directly
calculate the sub-grid tensor. The vorticity-stream
function formulation of the Navier-Stokes equation is
used in this work. We focus on the accuracy and de-
pendence of ADM on the type of the filter (explicit,
compact), its order, number of the iterations during
the deconvolution procedure and the order of deriv-
ative discretization. Comparisons with DNS data are
performed taking into account the basic quantities,
e.g. the total energy, variance, and also higher or-
der statistical moments (skewness and kurtosis). We
found that when a high-order discretization method
is used the ADM with compact difference type filter-
ing schemes is more accurate than using the classical
finite difference type filters.
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1. INTRODUCTION

Two-dimensional (2D) turbulence is not an ideal
model of real turbulent flow. It does not occur in
nature or in laboratory, but it finds applications in
analysis of geophysical flows, such as oceanic and
atmospheric phenomena, as well as in astronomy and
plasma physics [} 2} 3]]. It is also important for un-
derstanding fully developed three-dimensional (3D)
turbulence, although the behavior of its energy cas-
cade is different than in real 3D flows [4}5,16]. In the
latter case, the energy is transferred from large scales

to smaller ones by the vortex stretching mechanism
that does not exist in a 2D turbulent flow. In this case,
according to the Kraichnan-Batchelor-Leith (KBL)
theory, a reverse energy transfer takes place.

Direct numerical simulation (DNS) of such a
complex phenomenon as turbulence requires a large
amount of computing resources and is usually very
time consuming. A common approach is to use
large eddy simulations (LES), in which only large-
scale vortices are directly calculated, while the ef-
fect of small sub-grid scales is modeled. The LES
equations are formally defined with the low-pass
filter operator that separates these scales. So far,
various approaches to modeling the interactions of
scales and the closure of the LES system have been
presented [7]. A relatively novel one is the Ap-
proximate Deconvolution Model (ADM) introduced
by Stolz and Adams [8]. The ADM uses the re-
peated filtering to approximate the unfiltered flow
variables and then applies them to the unknown sub-
grid terms to close the LES system. Initially, ADM
was successfully applied in 3D turbulent flow mod-
eling [9} [10, [L1} [12]. Then it was used to model
2D turbulence in large-scale ocean circulation prob-
lems [13} [14] as well as to small-scale atmospheric
boundary layer [15} (16} [17]]. Recently, Boguslawski
et al. [[18]] applied ADM based on the Wiener decon-
volution method for 2D homogenous isotropic turbu-
lence. San et al. [[19]] performed a detailed sensitivity
analysis of the low-pass spatial filters for ADM-LES
of homogeneous incompressible 3D flows using 2nd
order finite difference discretization scheme. They
considered various types of filters such as box fil-
ters, compact difference filters (CDF), known also as
Padé-type filters, differential and hyper-differential
filters. San and Staples [20] also tested various high-
order numerical schemes such as explicit and com-
pact finite differences, Arakawa scheme, dispersion-
relation-preserving scheme, and the Fourier-Galerkin
pseudospectral scheme for DNS of homogeneous
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isotropic 2D decaying turbulent flows. In the present
work, we continue this research applying different
filters and discretization methods and perform com-
parisons not only for basic quantities (e.g. a total
energy, variance) but also for higher-order statistical
moments, i.e. skewness and kurtosis.

2. GOVERNING EQUATIONS

The dimensionless vorticity-stream function for-
mulation of the Navier-Stokes equations for 2D in-
compressible flows can be written as follows:
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where w is the vorticity, ¥ is the stream function,
u= %’, V= —Z—"X’ are the velocity components and Re

is the Reynolds number.

Denoting by G the filter kernel in physical space,
the filtering of a general variable f is determined
by the convolution operation f = G % f, where
f_ 0; G(&)dé = 1. Thus, applying the filtration op-
eration to the equations (I)) and (2)) gives:
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is the sub-grid term which cannot be directly
computed because the unfiltered variables u, v, and
w are unknown. The standard closure for this sub-
grid term is usually based on the sub-grid viscosity,
whereas in the ADM approach it is computed using
the approximate unfiltered quantities.

3. APPROXIMATE DECONVOLUTION
MODEL

In this paper, the ADM is based on the so-
called iterative van Cittert deconvolution method
[21]], which applied for a general variable f can be
written as:

Napm

f= ) Uu-6y'f (©6)

where I is the identity operator and G, is the approx-
imate inverse filter. With the deconvolution model,

the unclosed sub-grid term can be closed as follows:
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ADM

where u*, v*, and w* are the reconstructed variables.

In practical LES, the exact form of the filter func-
tion G is unknown. It is a combination of an implicit
filter combined with mesh spacing and the filters in-
duced by the numerical discretization of the first and
second derivatives (G;) [22]]. In this paper, we do not
attempt to precisely define the effective filter G, such
that G, = G;G. Moreover, the filter used in the ADM
may be completely different from the LES filter. In
this paper, however, we only consider the ideal situ-
ation when these two filters are equal and we focus
on the effect of discretization on the simulation res-
ults. We consider two types of LES filters which are
based on the explicit and compact filtering methods.

3.1. Explicit and compact filters

For simplicity, we consider a 1D periodic do-
main [0, L] consisting of K uniformly distributed
nodes x; = h(i — 1), for i = 1,..., K, with the mesh
spacing & = L/K. The formulas derived for the 1D
domain can be directly applied to 2D and 3D cases
along separate lines in each direction.

The general formula for the explicit finite differ-
ence filtering (FDF) schemes can be written as:

N,
1.
EEDIAEEYS) ®)
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and for the implicit compact filters (CDF) as:
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where f; are the filtered values at nodes x;, f; are the
known discrete function values. The filters coeffi-
cients @; and b can be calculated from the following
system of N, + 1 equations for FDF schemes:
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and from M, + N, equations for CDF schemes:
M, N,
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(11)
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where

N
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is the filter kernel associated with CDF schemes (9)
in Fourier space, known as the transfer function, and
w =2nn/K, for 0 < n < K/2, is the so-called scaled
wavenumber in the range [0, 7]. In the case of FDF
schemes that can be considered as CDF with M, = 0,
the formula (I2) is reduced to the nominator. The
highest possible order of filtration for the assumed
stencils of Eqgs. (8) and (9) is equal to (2N,) and
2(M. + N, — 1), respectively. This is achieved when
all the coefficients @; and b;ﬁ are explicitly determ-

ined from the expansions of f and f into the Taylor
series and additional constraints for the transfer func-
tion. Figure (1} shows the transfer functions of some
FDF and CDF schemes used in this work. Here, we
only compare the results using second order filtering
schemes with M, = 0, N. = 1, denoted as G 1) and
with M. = 1, N, = 1, denoted by Gy 1).

Transfer function T(®)

1 \
0 0.5 1 1.5 2 2.5 3
Wavenumber (o)

Figure 1. Transfer functions of G

4. NUMERICAL METHODS

The objective of this work is to test and evaluate
the ADM model for 2D incompressible flow using
explicit and compact high-order discretization meth-
ods and compare the results using the pseudospectral
method. In this section, we briefly discuss the spatial
discretization and temporal integration methods we
use.

4.1. Spatial discretization methods

The general formula for the approximation of the
first and second order derivatives using explicit finite
difference (FD) and compact difference (CD) discret-

Table 1. Spatial discretization schemes and cor-
responding them approximation orders.

FD scheme CD scheme
2dorder | M=0,N =1 -
4™ order M=0ON=2|M=1,N=1
6Morder | M=O,N=3 | M=1,N=2
8™ order M=0N=4 | M=1,N=3
10" order | M=0,N=5| M=1,N=4
12™ order - M=2N=4
20™ order - M=4N=6

ization schemes can be written as follows:
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where FD schemes are obtained for M = 0. The
highest possible order of approximation for given
stencils M and N on the left and right-hand side of
Egs. and is equal to 2M + 2N. This is ob-
tained when all coefficients a; and b; are determined
directly from the Taylor series expansions. The coef-
ficients ax and b; can be derived from the following
systems of M + N equations:

M N
1+22ak:22j’bj
M rkZI - N (15)
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k=1 \i=1 j=1

where the second equation is fori = 1,.... N+ M — 1.
The case with r = 1 corresponds to the first order de-
rivative approximation and r = 2 to the second order.
Table [I] shows the discretization schemes we use in
this work, along with their corresponding orders.

4.2. Temporal integration method

As we mainly concentrate on the accuracy of
the spatial discretization methods and ADM, we use
a fourth-order Runge-Kutta (RK) time integration
scheme with a small time step At = 5.0 x 107*. Tak-
ing into account Eq. (3)) written as:

d
d—": = D(u, v, ) (16)
where D(u,v,w) is a discrete operator of spatial

derivatives, the fourth-order RK scheme can be is
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defined as:
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where for k = 1,2,3 the velocity components
u®_ v® are obtained from Eq. .

5. RESULTS

We consider a 2D periodic domain with the di-
mensions L, X L, = 2x X 2n. The flow field is ini-
tialized as a homogeneous isotropic turbulence (HIT)
in accordance with the method suggested by San et
al. [20], with the Taylor and Kolmogorov length
scales equal to /[, = 0.022L, and n = 0.00236L,,
respectively. In two-dimensional turbulence, the in-
ertial range in the energy spectrum is proportional to

k=3, where k = |k| = \/k2 +k? is a wavenumber in
Fourier space. The initial energy spectrum is given

by the formula
1\ (k)
- =l 1
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in which the maximum value of initial energy spec-
trum is obtained for k,, a, = (2’;1);” ,and s is a shape
parameter. As in [20]], we take k, = 12 and s = 3.

The initial vorticity distribution is defined as

CONETED (19)

where (k) = £(k) + n(k) is the phase function, and
&(k), n(k) € [0, 2n] are independent random values.
The results obtained using the ADM model
described above are compared with the classical
Smagorinsky model and filtered DNS data. In the
Smagorinsky model, the sub-grid term is defined as

Pw 62w)

o, ?@ 2
o 0y? (20)

Tses = Vt(

where v, = (C;A)* /S ;S is the non-dimmensional
turbulent viscosity, Cy is the Smagorinsky constant,
A is the filter width and §;; is the strain rate tensor.

The simulations were carried out for the Reyn-
olds number Re = 1000. The exemplary DNS results
were obtained on the mesh with 10252 nodes and the
results of the classical LES or applying ADM were
obtained on the mesh consisting of 257> nodes. The
total simulation time was ¢ = 10 seconds.

The initial vorticity field and its evolution over
time in the HIT configuration in the case of DNS
is shown in Figure [2] At the time moment ¢ = 0,
large scale vortices do not exist. It can be seen

that initially only small-scale turbulent structures are
present. Over the time they form larger vortical struc-
tures and decay under the influence of the viscous
forces.
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Figure 2. Vorticity contours in HIT configuration
at various time moments.

In DNS and LES with the Smagorinsky model
the 6th order CD scheme was used with M = 1 and
N = 2 in Egs. and (I4). The computations
performed with ADM were performed with various
FD, CD schemes and also pseudospectral discretiz-
ation method. The results obtained using the ADM
are compared with the results of DNS and also with
those achieved without any model on the mesh con-
sisting of 256 nodes .

Figure [3] shows the comparison of the en-
ergy spectrum for filtered values of DNS, classical
Smagorinsky model and ADM with Napy = 2 using
2nd order FDF and CDF schemes and various dis-
cretization methods at time ¢ = 5 seconds. It can be
seen that in all cases the total energy of the flow pre-
dicted by both LES and ADM agrees relatively well
with the filtered DNS solution.

However, there are significant differences for the
higher central moments, such as variance, skewness
and kurtosis, as shown in Figures []to [6] In these
cases, the ADM provides much more accurate results
compared to the classical LES. From the Figs. []to
we can also see that the ADM with CDF schemes
is much more accurate than with FDF schemes.

Moreover, the results obtained without the sub-
grid model using the pseudospectral method diverges
from DNS data. This is because the mesh 256> does
not ensure a sufficient resolution and, as the pseudo-
spectral method is not dissipative, it turns out to be
unstable. It can be seen that the ADM stabilizes it
correctly. Figure [/|shows the comparison of the vor-
ticity fields at the time moment ¢ = 10 for ADM with
2nd order FDF and CDF schemes and for ’No model’
using the pseudospectral method with DNS vorticity
field. It is worth noting that only the ADM with the
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Figure 3. Energy spectra at time r = 5

pseudospectral CDF scheme almost perfectly agrees
with DNS. As shown in [23]], the higher the order of
the CD discretization scheme, the results are closer
to the spectral solutions.
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Figure 4. Variance of the u variable

6. SUMMARY

In this paper, we applied the Approximate De-
convolution Model (ADM) for numerical modeling
a two-dimensional homogeneous isotropic turbulent
flow. We analysed the effect of ADM accuracy and
its dependence on the type of filter (explicit, com-
pact) and its order. We also performed an analysis
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of ADM’s dependence on various spatial discretiz-
ation methods, such as explicit finite difference and
compact difference schemes, as well as the Fourier
pseudospectral method.

The results obtained using the ADM model were

compared with the classical Smagorinsky model and
the DNS data. It has been observed that the use of a
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Figure 6. Kurtosis of the u variable

higher order compact discretization scheme with the
ADM model leads to nearly spectral accuracy. It was
found that in such cases the ADM based on the com-
pact filters is more accurate than using the classical
finite difference type filters.
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Figure 7. Vorticity contours in HIT configuration
obtained in the simulations using DNS (upper left
figure), ‘no-model’ approach (upper right), ADM
with 2nd order FDF (lower left) and CDF (lower
right).
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