
An Efficient Heterogeneous Register File

Implementation for FPGAs

Hasan Erdem Yantır and Arda Yurdakul

Computer Engineering, Boğaziçi University

P.K. 2 TR-34342 Bebek, Istanbul, TURKEY

Phone: +90 212 359 7780, Fax: +90 212 287 2461

{hasanerdem.yantir, yurdakul}@boun.edu.tr

Abstract—For the future of computing, wide usage of hetero-
geneous architecture is indispensable since advances in technology
scaling cannot satisfy the expected increase in performance of
computational platforms anymore. FPGA is a promising platform
for heterogeneous computing due to its configurable structure.
Each part of an FPGA can be configured to perform a different
task that it is best suited for. Such a heterogeneous system needs
a common register file (RF) that can serve different parts of
the FPGA with at different characteristics in terms of running
frequency, data consumption/production rate, required number
of ports, data widths, address spaces and endianness. In this
study, we propose a heterogeneous register file (HRF) architecture
for FPGA-based heterogeneous systems. The designed register
file uses a heterogeneous multi-port base-RF to provide such
heterogeneity. For the power and area reduction, the design takes
advantage of frequency differences between processing elements
and HRF by an efficient multi-pumping system. According to
the literature, this is the first study on FPGA-based heteroge-
neous RFs. For experimentation, HRF is tested in four different
heterogeneous architectures with increasing complexity. For all
HRF configurations, speed, area and energy are measured. Test
results of the HRF on Xilinx Virtex-5 show that our heterogeneous
register file outperforms other RF architectures implemented by
conventional methods.

I. INTRODUCTION

In the past, performance of computational platforms could
increase by advances in technology scaling without any ar-
chitectural change. However the technology advance is not
sufficient anymore and wide usage of heterogeneous architec-
tures is envisaged for the future computing systems. FPGAs
are great candidates of heterogeneous platforms for the imple-
mentation of such complex applications because of their fully
reconfigurable architectures. Hence, each part of an FPGA
can be configured to perform a different task that it is best
suited for. Nowadays, most embedded applications require
partitioning the functionality between computational units with
different characteristics. Each computational unit works on a
different set of data and sometimes they require processing the
same data set.

One of the obstacles in the way of obtaining high perfor-
mance in heterogeneous computing is the memory-wall [1]. If
the processing elements cannot get the data from register file
at the processing rate, this causes a bottleneck that adversely
affects the overall performance. In order to meet the require-
ment of proper data usage between the computational units,
such a heterogeneous system needs a heterogeneous register

file that can meet the requirements of different computing
units on the FPGA. These requirements can be specified in
terms of execution frequency, data consumption/production
rate, data width, address space, number of ports, bandwidth
and endianness (order of bytes/bits in memory).

In this study, we propose a heterogeneous register file
(HRF) for heterogeneous systems on a single FPGA. In fact,
the term heterogeneous memory could be used in place of het-
erogeneous register file. However we prefer the heterogeneous
register file term since implementation is inside the FPGA.
The designed register file exploits multi-porting and multi-
pumping to provide such heterogeneity. Multi-pumping also
provides significant power and area reduction. Facilitating the
RF implementations that cannot be designed by conventional
methods is one of the extra advantages of multi-pumping. In
the designed system, each processing element can use as many
ports as it requires and the register file can be adapted to
meet the data requirements of the processing elements. In a
heterogeneous system, processing elements can run at different
clock domains depending on their architectures. When the
frequencies of the processing elements are different from each
other, multi-pumping can be exploited to take advantage of
these differences. Sometimes, data widths of the processing
elements may be different. In that case, port widths and word
lengths of block memory devices can be set according to
the processing elements. When the port width and number
of required ports can be satisfied for a processing element,
the bandwidth requirements of that processing element can be
met. Endianness is another feature that refers to how bytes of a
data word are ordered within memory. In HRF, the endianness
of a port can be defined as either big-endian or little-endian
for each processing elements.

The rest of the paper is organized as follows: In the
following section, we mention about the related studies in
the literature. Section III explains the HRF architecture in an
orderly fashion. Section III-A explains detailed architecture of
base-HRF designed by using dual port BRAMs. The method
described in this section is the enhanced version of the study
in [2]. Section III-B explains how multi-pumping can be used
with base-HRFs so as to obtain smaller register files with
increased number of ports. The ultimate architecture of our
HRF also becomes clear in this section. Results are discussed
in Section IV. The final section concludes the work.



II. RELATED WORK

A heterogeneous system with shared memory needs a
multi-port register file (MPo-RF). The multi-port register file
implementation in FPGA is one of the most resource consum-
ing parts of such a design. In a heterogeneous system designed
as a custom chip, RFs can be implemented as hard-IPs.
However, on FPGAs, this is an infeasible solution. Therefore,
general purpose HRFs for heterogeneous systems on FPGAs
have to be implemented with on-chip resources of the FPGA.

There are different ways in designing of MPo-RFs in
FPGAs. The first method is utilizing memory capabilities of
slices that are available on an FPGA. However, this method
is not scalable at all because the combinational and wiring
delays of slices dominate as the number of ports increases
[3]. The second method relies on using block RAMs that are
available in traditional FPGAs [4] [5]. However, they have
only two ports and are not sufficient for a heterogeneous
architecture that usually needs many ports and shows different
characteristics. The third method is combining on-chip block
RAMs (BRAM) in conventional methods to form an MPo-RF.
In MPo-RF design with BRAMs, two common methods are
replication and banking. Multi-read and one-write RFs can be
designed by using only replication. To increase the number
of write ports, both replication and banking can be exploited
as suggested by Sagmir et al. [2]. In this approach, BRAMs
are grouped by replication and form a bank. In a bank, all
of the BRAMs contain the same data, i.e., the same data are
written to all BRAMs inside a bank. However in this method,
an RF is partitioned between register banks. Multiple-read can
be done from the same bank, but two or more write operations
cannot be done on the same bank. In [6], this problem is solved
by using live value table (LVT) that holds the ID of the most
recently updated bank. During a read operation, the most recent
value is selected by LVT outputs, and directed to the output
of the MPo-RF. This methodology comes with extra resource
usage, decrease in operating frequency and increase in power
consumption.

There exist some nonspecific RF architectures implemented
in a heterogeneous system. As an example, the work in [7] pro-
poses a register file design that supports multiple accesses from
two processors. One of these processors is a high performance
core, and the other one is a low power core. In this design,
each processing element can use 2R&1W ports and there
are some additional mechanisms to provide data consistency
between storage units. It uses multiplexer-based port-sharing
which has been proven to be inefficient for FPGAs [8]. In
the study [9], each processor uses its local memory and a
unified external memory is shared between the processors. This
system uses a NUMA layout and there is no shared memory
that can be used concurrently between the processors. In
[10], an ESL synthesis framework for heterogeneous systems
has been proposed. In this system, processors are connected
to a shared memory by using Xilinx LMBs (local memory
buses) so only one processor can access the shared memory
at a time. In [11], each processing element uses a dedicated
memory with a shared external memory. A heterogeneous
register file should service different processing elements that
show different characteristics in terms of operating frequency,
number of ports, data width, address space and endianness.
To the best of our knowledge, none of these studies has

touched structurally heterogeneous register files for heteroge-
neous computing platforms on FPGAs like has been addressed
in this study.

III. HRF ARCHITECTURE

Our heterogeneous register file design is a combination
of base heterogeneous MPo-RF (base-HRF) and multi-pump
circuits applied to ports of the base-HRF. The resulting HRF
can serve different processing elements having different char-
acteristics. Processing elements might be anything that can
be implementable in FPGA like hardcore/softcore processors,
DSP processors, custom logic circuits, etc. Figure 1 shows
a representation of FPGA-based heterogeneous computing
system consisting of four processing elements (PEs) and an
abstract HRF architecture used commonly by these PEs. In the
figure, clocks of each processing elements are generated from
DCMs or PLLs existing in contemporary FPGAs. Number
of processing elements, address spaces of the processing ele-
ments, number of read/write ports, data widths, multi-pumping
factors, endianness and clock frequencies (DCM values) in the
figure can be changed depending on the application running
on heterogeneous system. For example, PE 0 needs three read
ports and its access speed is three times slower than that of the
base-HRF. It accesses a memory of H0 depth and word length
of each memory is D0. The following sections will elaborate
on the architectural details of our HRF design.

A. Base Heterogeneous Register File

In traditional FPGA architectures, there exist dedicated
BRAMs for storage. As an example, FPGA used for this study
(Xilinx Virtex-5 XC5VLX110T) includes total 148 BRAMs.
Each BRAM can store up to 36 Kbits of data and can be
configured as either two 18 Kb RAMs or one 36 Kb RAM.
However these BRAMs have only two ports which are used
either as write or read ports depending on the BRAM mode.
So exclusively BRAMs are not sufficient to implement a
heterogeneous MPo-RF.

As pointed in Section II, an MPo-RF can be designed
by replication and banking as Sagmir et al. suggested [2].
However, in this method, the RF is divided into equally sized

Fig. 1: Single-FPGA Heterogeneous System with HRF



Fig. 2: A base-HRF with four read and three write ports (4R&3W)

address spaces and each BRAM holds full address space
although only a portion of this address space is reachable.
In addition, data width of the register file is fixed for all banks
and cannot be changed. This architecture does not provide
a heterogeneous structure since port widths and register file
sizes are fixed. When used for heterogeneous systems, this
method results in the waste of storage resources in FPGA. In
a heterogeneous system, each processing element requires its
own address space. Data widths of the processing elements
may vary with characteristics of the processing elements. For
example, Microblaze soft-core processor consumes 32-bit data
and Picoblaze processor consumes 8-bit data. A heterogeneous
system may consist of these processors and an encryption
system like 128-bit AES core from OpenCores [12] to encrypt
the results of their operations instantaneously. Additionally,
the address space of a processing element should not be
reachable from other processing elements to protect its data
from accidental write operations and data corruptions. At the
same time, processing elements may use computational results
of each other so they can access the address spaces of other
processing elements to get data. For this reason, address spaces
of processing elements should be separated. Otherwise (if
a processing element can write entire address space), this
system requires a complex compiler that have to orchestrate
all processing elements against data corruptions. Alternatively,
this issue can also be handled by hardware mechanisms. In
both cases, complexity of the heterogeneous system increases.

In our HRF design, each processing element has an address
space and this address space corresponds to a portion/bank of
the HRF with varying heights and data widths. Each bank
consists of replicated BRAMs configured as simple dual port
i.e. they have only one read and one write port. Each register
bank is associated with a write port. Inside a bank, all BRAMs
hold the same data and represent the same address space range
to increase the number of read ports. In other words, each
replicated BRAM is associated with a read port. This address
space is named as local address space. Union of all banks
forms the global address space so the global address space is
the sum of all local address spaces of processing elements. A
processing element can only write to its own address space and
can read data from address spaces of all processing elements.

Equation 1 shows the formula of the total address space. At the
addressing perspective, width of the read address is wider than
write address because read address space is higher. Equations
2 and 3 show the write address width and read address width
respectively. In here, write addresses are the trimmed versions
of the read addresses.

Total HeightHt =

Bank#∑

i=0

Hi (1)

Write Address Width of PEi = log2(Hi) (2)

Read Address Width for all PEs = log2(Ht) (3)

Figure 2 illustrates implementation of 4R&3W base-HRF
using BRAMs. In the example, there are three write ports so
there should be three banks. Data widths and heights of the
banks are determined according to the processing elements
and they can be different. Each bank holds a local address
space as shown in the figure. Global address correspondence
of each bank is shown at the left corners of the banks. For
example, the first bank holds the data that corresponds the
addresses between 0 and H0− 1. During a read operation, the
data that is pointed by the given read address is directed to
output port from BRAM that contains corresponding address
space. This data direction is done by multiplexers connected
to outputs of BRAMs. The select inputs of the multiplexers
are the most significant bits of read address that is able
to distinguish the smallest address space. The size of select
inputs can be changed depending on the partition (i.e. number
of write ports). Here it is worth noting that the height of
a bank has to be a power of two, otherwise multiplexers
would be very large. During a write operation, the value is
written to the corresponding register bank. However it is not
possible to realize more than one write operation to the same
bank at the same time. After applying multi-pumping (see
Section III-B), if the number of write ports is not sufficient
for a processing element, local address space of a processing
element is fragmented since there are more than one write
ports dedicated to this processing element. This problem can
be handled by register renaming at compile time [13].



1) Output Port Width: In HRF, read output data width of
the base-HRF should be set as the largest data width of the
processing elements to guarantee one-cycle access to HRF for
all processing elements. The processing elements with smaller
data widths should use only a portion of the data. In such a
case, processing elements can put data in a buffer and process
it in parts.

Fig. 3: Sign pass between different width data

2) Signed Number Conversions: In some cases, a higher-
bit processing element can require the results of lower-bit
processing elements. To handle incompatibility between the
number representations, a data read from a bank is fit to the
target whilst passing through the multiplexer. A conversion
mechanism is required to preserve the data sign. In such a
case, remaining bits of the data are complemented with the
most significant bits of the read value to preserve the sign.
Figure 3 shows this basic conversion.

(a) (b)

Fig. 4: Connection methods with different endianness

3) Endianness: Endianness differences between the pro-
cessing elements can be handled automatically in the design
phase of our register file. If processing elements have different
endianness, then HRF holds all data values in little-endian
format. Designer can specify the endianness of a processing
element and routing of the HRF can be designed by regarding
endianness. In such a case, order of the buses coming to/going
from base-HRF can be reversed in order to provide compati-
bility. Figure 4 shows the little-endian (4a) and big-endian (4b)
connection schemes for little-endian and big-endian processing
elements respectively in an example 32-bit HRF design. For the
byte endianness, also byte orders for each processing element
can be configured.

B. Multi-pumping

Multi-pumping (MPu) is a method used in digital circuits.
The idea behind multi-pumping is to operate the RF much
faster than its input and output ports so that multiple accesses
can be done to realize multiple reads and multiple writes in a

time-multiplexed manner. This method illustrates one resource
as if there exist multiple replications of this resource. In this
way, the area of the RF is reduced considerably. The multi-
pumping factor (MPuF) is defined as the rate between the
operating frequency of the register file and the frequency to
read from or write to a port. The formula of MPuF is given
in Equation 4.

MPuF =
Processing Element Period

HRF Period
(4)

In the literature, multi-pumping is achieved by connecting
multiplexers to the input ports and demultiplexers to output
ports of the register file. However, in [8], it is shown that
this type of implementation is not scalable, because the oper-
ation frequency decreases when multi-pumping factor (MPuF)
increases. This shift register based design method provides
smaller and faster MPo-RFs compared to the traditional multi-
pumped implementations.

In general, processing elements in a heterogeneous system
runs at different frequencies and each of them belongs to
different clock domains. Regarding the different clock do-
mains, each processing element can exploit multi-pumping for
area reduction. In HRF, different multi-pumping factors can
be applied to different ports of the register file depending
on characteristics of processing elements. When applied to
the write ports, multi-pumping also diminishes address space
fragmentation for a processing element as stated in Section
III-A. With respect to variance in MPuFs, each connected
processing elements run at most at a fraction of the HRF speed.
For example in Figure 1, if MPuF=2 were applied to read
port of the base-HRF, the corresponding processing element
that is getting service from first read port would run at most
half of the HRF clock speed (CLKRF). In the designed HRF,
each processing element can be dedicated more than one port
(both read and write). However it is required that the MPuFs
of these ports should be the same and equal to the clock
speed ratio of HRF and processing element. If a processing
element needs fewer ports than the multi-pumping offers, the
processing element does not have to make connections to
excess ports and they can be left unconnected.

Fig. 5: A Multi-pumped HRF



Figure 5 shows the design of shift register based multi-
pumping with base-HRF. In the design, all of the input and
output signals are connected to Parallel In Serial Out (PISO)
and Single In Parallel Out (SIPO) shift registers as shown
in Figures 6a and 6b respectively. In PISO, the two-to-one
multiplexers select the signals which come from either the
previous register or the processing element. Each processing
element has its own load signal (LOAD Wy and LOAD Ry)
if corresponding MPuF is greater than 1. Otherwise it is
connected directly to HRF without using PISO and SIPO, that
is, it can run at the frequency of the HRF. The processing
elements control the flow of the data to/from HRF by this
signal. All input signals are registered in order to be processed
by RF. Keeping in mind that the processing element and the
RF have fully synchronized the clocks, one access cycle from
the processing element to the RF is realized as follows: Firstly,
the processing element sets ”LOAD Rx” or ”LOAD Wx” at
the rising edge of its clock, and holds it high for one cycle
of the register file. In this way, the input values coming
from the processing element (ADDR Ry Rx, ADDR Wy Wx,
DI Wy Wx, WE Wy Wx) are stored in the PISO shift registers.
In here, x corresponds the to port number that is connected to
xth input of the shift registers and y corresponds to port number
of HRF that the related SIPOs or PISOs is connected to. Note
that the ones corresponding to x=0 directly access to base-
HRF when load signal is logic-1 because they are first input
of SIPOs. In this way, the first read values are also loaded
into the related SIPO shift registers. At the beginning of the
next cycle of the inner clock, load signal is set to logic-0
and keeps it at this level till the end of the clock period of
the processing element. However, at each rising clock edge
of the base-HRF, values in shift registers are moved towards
the base-HRF. In this way, the base-HRF processes the next
values of read address, write address, write data, write enable
one-by-one. Similarly, base-HRF produces one read value at
each clock cycle and each read value is shifted through its
corresponding SIPO shift register. After n cycles of the base-
HRF, all PISO shift registers are empty and all SIPO shift
registers are full. This process takes multiple cycles in RF but
this period seems like one cycle for the processing element.
Hence at the end of the clock cycle of the processing element,
the values are read from SIPO shift registers except the last
ones, which are directly taken from the HRF.

(a) Parallel Input Single Output (PISO) shift register.

(b) Single Input Parallel Output (SIPO) shift register.

Fig. 6: SIPO and PISO shift registers.

IV. EXPERIMENTAL RESULTS

A set of experiments have been conducted to measure the
performance and area of the designed HRFs. In the tests, Xilinx
Virtex-5 XC5VLX110T FPGA is used. All HDL files that
implement the corresponding HRFs are automatically synthe-
sized with proper features (data widths, address spaces, bank
heights, endianness, port numbers, etc.). All timing results are
obtained by constraints forcing until the constraints fail to
find the maximum speed. For the energy measurements, Xilinx
Power Analyzer (XPA) is used by introducing an activity file
as input. The activity file utilizes the register file with 100%
load. To generate the clocks of the processing elements DCM is
used. DCM can generate different clock frequencies with zero
clock skew. All clock domain crossing operations is handled
by XST. These results are not the unique solutions because
some advanced constraints and custom placement rules might
affect the results. However the variations should be small and
these results are sufficient to give an intuition.

For the experiments, we have prepared four different
FPGA-based heterogeneous systems composing of different
processing elements that show different characteristics as il-
lustrated in Figure 7. As the system number increases, com-
plexity of the system increases too. Running frequencies of the
processing elements vary and clocks are generated by DCM.
Depending on the ratio between HRF speed and processing
element speed, MPuFs are set.

Table I shows the resource occupation of each HRF in
terms of LUT-FF pairs and 18kB BRAM blocks. In terms
of LUT-FF pairs, distributed approach is worst hence it is
implemented by using slices. For System 0 and 1, HRF is
slightly worse than MPo because HRF uses PISO and SIPO
shift registers at the input and output ports. Nevertheless they
are comparable. In BRAM usage, HRF consumes the lowest
area because it exploits multi-pumping and world length of
BRAM blocks can be variable. However in MPo approach,
this structure is not suitable for different length blocks. It is
also interesting that System 0 and System 1 had to use 4 and 6
18k BRAMs respectively according to our base-HRF design.
During synthesis, XST uses slice-based memory resources
like RAM32M for small blocks and number of occupied
BRAMs decreases. This is also another reason to why LUT-
FF pair usage is higher in HRF for System 0 and System 1.
When the system complexity increases, our HRF outperforms
MPo in both LUT-FF pairs and BRAMs (see System 2). In
addition, our competitors become to be eliminated when the
complexity increases. For example, distributed RF could not
be implemented for System 2 and 3 because total chip area is
not sufficient to route all RF signals in an allowable time so its
results are not available (NA) as shown in table. For System 3,
MPo RF is non implementable too, because there is no enough
BRAMs. So, facilitating the multi-ported RF implementations
that cannot be designed by pure MPo-RF is one of the extra
advantages of multi-pumping.

Figure 8a and 8b show the maximum operating frequencies
and energy consumptions of the designed RFs respectively.
From the figure, it can be inferred that HRF consumes much
less energy than others because it uses least number of
BRAMs. In terms of energy, it is obvious that using BRAM
and exploiting multi-pumping as much as possible decrease the
energy consumption. For operating frequency, MPo is better



(a) System 0 (b) System 1 (c) System 2 (d) System 3

Fig. 7: Single-FPGA Heterogeneous Systems with increasing complexity.

TABLE I: Resource evaluation results

HRF MPo [2] Distributed
System LUT-FF Pairs BRAMs LUT-FF Pairs BRAMs LUT-FF Pairs BRAMs

System 0 146 2 132 16 10910 0
System 1 401 3 292 36 21397 0
System 2 1058 15 1670 156 NA NA
System 3 2247 56 NA NA NA NA

0 1 2 3
0

50

100

150

200

250

300

350

400

System #

M
a
x
F
re
q
u
en
cy

[M
H
z]

 

 

HRF
MPo
Distributed

(a)

0 1 2 3
0

2

4

6

8

10

12

14

16

18

20

System #

P
x
D

[n
J
]

 

 

HRF
MPo
Distributed

(b)

Fig. 8: Maximum operating frequency and energy consumption
results

in System 0 because shift registers in HRF dominate however
for System 1 and System 2, HRF outperforms. The distributed
implementation (using slices) is the worst method because its
frequency is the lowest and it occupies the largest area.

V. CONCLUSIONS

In this paper, we proposed an architecture for the design
and implementation of a heterogeneous multi-port register file
utilizing BRAMs by exploiting our multi-pumping methodol-
ogy. This heterogeneous register file can be used safely in
single-FPGA heterogeneous systems and outperforms other
RF architectures. Our design occupies less area and consumes
significantly lower energy than its alternatives.

ACKNOWLEDGMENT

This work is fully supported by The Scientific and Techno-
logical Research Council of Turkey, TUBITAK under BIDEB
2211 Program.

REFERENCES

[1] T. J. Ham, B. K. Chelepalli, N. Xue, and B. C. Lee, “Disintegrated
control for energy-efficient and heterogeneous memory systems,” in
High Performance Computer Architecture (HPCA2013), IEEE 19th

International Symposium on, 2013, pp. 424–435.

[2] M. A. R. Saghir and R. Naous, “A configurable multi-ported register
file architecture for soft processor cores,” in Proceedings of the 3rd

international conference on Reconfigurable computing: architectures,

tools and applications, ser. ARC’07. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 14–25.

[3] L. Lie-wen, G. Wei-hua, and H. Xiao-long, “Research on low power
design methodology of register files based on fpga,” in Electric Informa-

tion and Control Engineering (ICEICE), 2011 International Conference

on, 2011, pp. 673–676.

[4] Xilinx, IP Processor Block RAM (BRAM) Block. [Online]. Avail-
able: http://www.xilinx.com/support/documentation/ip documentation/
bram block.pdf

[5] Altera, Internal Memory (RAM and ROM) User Guide. [Online].
Available: http://www.altera.com/literature/ug/ug ram rom.pdf

[6] C. E. LaForest and J. G. Steffan, “Efficient multi-ported memories for
fpgas,” in Proceedings of the 18th annual ACM/SIGDA international

symposium on Field programmable gate arrays, ser. FPGA ’10. New
York, NY, USA: ACM, 2010, pp. 41–50.

[7] Y. Wu, P. Zhu, H. SUN, and E. Guidetti, “Register file organization
to share process context for heterogeneous multiple processors or joint
processor,” US Patent US20 130 173 865 A1, Jul 4, 2013.

[8] H. E. Yantir, S. Bayar, and A. Yurdakul, “Efficient implementations
of multi-pumped multi-port register files in fpgas,” in Digital System

Design (DSD), Euromicro Conference on, 2013, pp. 185–192.

[9] L. T. Rusten and G. I. Sortland, “Implementing a heterogeneous multi-
core prototype in an fpga,” Master’s thesis, Norwegian University of
Science and Technology, Department of Computer and Information
Science, 2012.

[10] Y. Corre, J.-P. Diguet, L. Lagadec, D. Heller, and D. Blouin,
“Fast template-based heterogeneous mpsoc synthesis on fpga,” in
Proceedings of the 9th International Conference on Reconfigurable

Computing: Architectures, Tools, and Applications, ser. ARC’13.
Berlin, Heidelberg: Springer-Verlag, 2013, pp. 154–166. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-36812-7 15

[11] W.-T. Zhang, L.-F. Geng, D. li Zhang, G.-M. Du, M.-L. Gao, W. Zhang,
N. Hou, and Y.-H. Tang, “Design of heterogeneous mpsoc on fpga,” in
ASIC, ASICON ’07. 7th International Conference on, 2007, pp. 102–
105.

[12] T. Ruschival, “Aes core project.” [Online]. Available: http://opencores.
org/project,tiny aes

[13] F. Anjam, S. Wong, and F. Nadeem, “A multiported register file with
register renaming for configurable softcore vliw processors,” in Field-

Programmable Technology (FPT), International Conference on, Dec.,
pp. 403–408.


