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SUMMARY. We consider how an unconditional, finite-valued, finitely additive proba-
bility P on a countable set may localize its non-conglomerability (non-disintegrability). Non-
conglomerability, a characteristic of merely finitely additive probability, occurs when the uncon-
ditional probability of an event P(F) lies outside the closed interval of conditional probability
values, finfrer P(E|R), SUPheqr
P(E}R)], taken from a countable partition # = {h; : j = 1,...}. The problem we address
is how to identify events and partitions where a finite-valued, finitely additive probability fails
to satisfy conglomerability. We focus on the extreme case of 2-valued finitely additive prob-
abilities that are not countably additive. These are, equivalently, non-principal ultrafilters.
Evidently, the challenge we face is that given a countable partition, at most one of its elements
has positive probability under P. Thus, we must find ways of regulating the coherent condi-
tional probabilities, given null events, that cohere with the unconditional probability P. Our
analysis of P proceeds by the use of combinatorial properties of the associated non-principal
- ultrafilter Up. We show that when ultrafilter Up is not minimal in the Rudin-Keisler partial
order of B(w)\w, we may locate a partiti;)n in which P fails to satisfy the conglomerability
principle by examining (at most) countably many partitions. This result is then applied to
finitely additive probabilities that assume only finitely many values. By contrast, if ultrafilter
Up is Rudin-Keisler minimal, then P is simultaneously conglomerable in each finite collection

of partitions, though not simultaneously conglomerable in all partitions.

1. Introduction to Finitely Additive [f.a.] Probability

Let F be a o-field of sets, of subsets of Q2. Kolmogorov’s (1956) axiomatiza-
tion of probability requires that V(A, B) € F:
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(Ho<PA) <L

(2) P(Q) = 1.

(3) f AN B = ¢, then P(A) + P(B) = P(AU B). A

A probability satisfying axioms (1)-(3) is said to be finitely additive [f.a.].
Last, consider a fourth axiom, o-additivity (taken by Kolmogorov as an “expe-
dlent”)

(4) If (A; N A;) = ¢ whenever ¢ # j, then P(U;A;) = 5, P(A;).

What is distinctive about a f.a. probability that is not o-additive, a merely
finitely additive probability? The following illustrates a hallmark of merely
finitely additive probability. :

ExaMPLE 1 (deFinetti, 1930 and attributed to Levy by Cantelli, 1935). Con-
sider a f.a. probability P on the set of all pa1rs < s,t >, for s and t positive
integers, with the following two restrictions:

P(< s,t>) =0, that is, P is 0 on finite sets

and
P(< s,t >| B) = 0if B is an infinite set.

Define the events: £ = {< 5,t >: s > t];Sn = {< s5,t >:s=m}(m=1,..)
and T, = {<s,t>:t=n}(n=1,..).

Diagram for deFinetti - Levy Example -

O 2P TIY 29T

B

Event E corresponds to pairs <s,t>
below the main diagonal

Event E O

Event E ¢ o
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Then
P(E|Sn)=0form=1,...

yet
P(E|T,)=1forn=1,...

Let 75 be the partition by vertical strips: m; = {S,, : m = 1,...} and let m,
be the partition by horizontal strips: m, = {7}, : n = 1,...}. Thus, we see that
the following principle (evidently valid for each countably additive probability)
is invalid for each f.a. probability that satisfies the two constraints of Example
1, as such a probability must violate the principle in at least one of the two
partitions 7 and m;. Let # = {h, : n = 1,...} be an exhaustive partition.

Principle of (w—)conglomerability for events (deFinetti, 1972, p.99)
VIAeF)Ifeg < PA|hy) <ce(n=1,...), then ¢ < P(4) < c3.

Dubins (1975) strengthens the conglomerability principle to apply to all
bounded random variables, rather than applying it solely to the indicator func-
tions for events. He establishes that P is conglomerable (in the stronger sense)
in a partition 7 iff P 1s disintegrable in 7, which concept we review next.

For a f.a. probability P, partition m = {h; : j = 1,...}, and bounded ran-
dom variable X, let E,[X] and E,[X | h] denote the P-expectation of X and
conditional P-expectation of X given h, respectively. (We discuss coherence of
conditional probability, below.)

DEFINITION. P is disintegrable in the partition m provided that, for each
bounded random variable X,

E[X]= Ep[X | h]dP(h).
heEn '
In this paper, whenever we show that a f.a. probability P is conglomerable in a
partition 7, we do so for the strong (Dubins’) sense of the principle and when
we show that P fails to satisfy conglomerability in 7, we give the failure with
respect to an event, i.e., then we show that (deFinetti’s) weak conglomerability
principle fails.

Providing that preference is according to subjective expected utility, when
conglomerability fails in a partition 7, then such basic decision theoretic princi-
ples as simple dominance (or “admissibility”) fail in = as well. Therefore, it is
important to understand not only whether but where, i.e., in which partitions
does a particular merely finitely additive probability fail to satisfy the principle
of conglomerable.

In fact, (weak) conglomerability characterizes countable additivity. That is,
non-conglomerability of merely finitely additive probability is a hallmark, as the
following result reports.
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THEOREM 1 (Schervish et al., 1984). Each merely f.a. probability fails con-
glomerability for some event in some denumerable partition.

This result quantifies over all denumerable partitions and over all events.
These are large sets, e.g., of cardinality of the continuum when the underlying
set is countable. (Of course, if the underlying set is finite, there is no issue
to discuss.) To locate where non-conglomerability occurs, according either to
our proof of Theorem 1, or Zame’s (1988) simplified proof, depends for some P
upon how the conditional probabilities P(e | o) are defined, separate from the
unconditional probability, P(e).

For an illustration of this issue, reconsider Example 1. There are two con-
straints on P that lead to non-conglomerability in (at least) one of the two
partitions, 7, and 7, for the event E. The first is a constraint on the uncondi-
tional probability P(e): that P is 0 on finite sets. The second is a constraint on
the conditional probabilities P(e | e): that P(< s,¢t >| B) = 0 if B is an infinite
set. The first constraint insures that P is a purely finitely additive probability
on w. However, if Q= {Q: Q is a finitely additive probability satisfying the first
constraint} then only for a proper subset of Q does the unconditional probability
Q specify even the two families of conditional probabilities, given w; and given
7:. Only for some @ € Q does the unconditional probability entail the two sets
of conditional probabilities used in Example 1.

In this paper, we investigate the following issue:

Thematic question. Given a merely f.a. probability P, is it determined where
conglomerability fails based solely on the unconditional probability values P(e)?
That is, given P as an unconditional finitely additive probability, can event A
and partition 7 be found where P is not conglomerable in 7 for event A, i.e.,
where P is not m-conglomerable?

By contrast with the situation in Example 1, a positive answer to the ques-
tion is available (Schervish et al., 1984, p 210) whenever the range of P is an
infinite set, i.e., whenever P(e) assumes infinitely many values. The following
(see Dubins, 1975) illustrates what happens.

EXAMPLE 2. Let E; be the event of flipping a “fair” coin until heads shows.
Let E5 be the event of picking a positive integer “at random,” according to
some (purely) f.a. probability that assigns each integer 0 probability. (There are
very many such purely f.a. probabilities, indeed!) Assume P(E;) = P(E3) = .5;
for example, which of E; or F5 occurs may be determined by an extraneous
flip of a “fair” coin. Let z; be the random variable of the number of flips
in case E; obtains, 0 otherwise, and let x5 be the integer chosen at random
in case Ey obtains, 0 otherwise. Then P({zy = n}) = 0, forn = 1,... and
P({z; = n}) = 2=(*+1)_ Let k denote the random variable of the positive integer
that (with P-probability 1) results. So P(k = n) = P({z, = n}) = 2~ (»+1),
Thus, P(E; | k) =1 (k = 1,2,...), and conglomerability fails in the partition
m = {hg : k = 1,...}. Note that here each conditioning event, each partition
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element hy, has positive (unconditional) probability: P(hx) = 2=*+1) 5 . Here
the conditional probabilities P(e | k) are fixed by the unconditional probabilities
and non-conglomerability in 7 is fixed by the unconditional probability P, P
cannot be made conglomerable in .

When the (unconditional) probability P assumes infinitely many distinct
values, the unconditional probabilities for events identify an event F and count-
able partition, m = {h; : j = 1,...}, where each h; has positive P-probability,
and where P(E | h;} > P(E)+ ¢, for e > 0 and j = 1,... That is, when the
range of P is an infinite set, there exists a partition where P cannot be made
conglomerable.

The remaining case, thus, is where a merely f.a. probability P assumes only
finitely many values. A special sub-case that we consider in the next section is
for a two-valued merely f.a. (unconditional) probability P: V € F P(A) = 0 or
P(A) = 1. This is the difficult case because then the conditional probabilities
P(e | o) are determined by the unconditional probability P(e) only up to con-
ditioning sets of measure 1. With a two-valued probability, these form only a
sparse collection. Given a partition 7 = {h; : 1 = 1,.. .}, either one or none of its
elements has positive P-probability. To compensate, we use the following prin-
ciple in dealing with conditional probabilities P(e | o), especially for conditional
probability given events of (unconditional) probability 0.

Principle of conditional coherence: For all pairs of events, A and B such that
ANB # 0, Q(s) = P(e | B) is a finitely additive probability with Q(B) =1,
and Q(e | A) = P(e | AN B).

When P(AN B) > 0, the principle applies, trivially. The principle of condi-
‘tional coherence helps to formalize deFinetti’s (1972) concern with conditional
probability given an event, rather than given a field, in that P(e | B) does not
depend upon how we partition the contraries to event B.

Dubins (1975, §3, Corollary 1) reproves an important result of P. Krauss
(1968): for each finitely additive (unconditional) probability P, a full set of
conditional probabilities may be define that satisfy the principle of conditional
coherence. Moreover, Dubins (1975, Theorem 5) establishes that when P is
disintegrable in a partition 7, then there is a full set of coherent conditional
probabilities extending the set of conditional probabilities {P(e | h) : h € 7}.
Throughout this paper we adopt the principle of conditional coherence, relying
on Dubins’ Theorem 5 to show that whenever P is conglomerable in 7, then the
set of conditional probabilities {P(e | k) : h € 7} that make it conglomerable
are also coherent conditional probabilities.

REMARK. Though the merely f.a. probability P is two-valued, given B with
P(B) = 0, a coherent conditional probability P(e | B) may have an infinite
range and may be countably additive.

In section 2 we establish conditions when a two-valued merely f.a. probability
P on w cannot be made conglomerable in a specific partition, based on combi-
natoric properties of its associated non-principal ultrafilter Up. We show that
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for each non-Ramsey ultrafilter Up, either P cannot be made conglomerable in
a specific partition (based on Up’s combinatorics), or else a countable sequence
of partitions suffice to locate a partition where P does not satisfy the (weak)
principle of conglomerability. We refer the reader to Comfort and Negrepontis
(1974), especially chapters 9 and 16 for basic facts about ultrafilters and the
Rudin-Keisler ordering of f(w)\w.

2.  Ultrafilters on w

We investigate our thematic question first for two-valued, merely f.a. uncon-
ditional probabilities by considering combinatorial properties of their associated
non-principal ultrafilters.

DEFINITIONS. An ultrafilter U (on w) is a non-empty family of non-empty
subsets (of w), such that if A,B € U, then (ANB) € U;if A€ U and C D A,
then C € U: and VA(Cw)A €U or A€ U.

A principal ultrafilter is one generated by an element 7 € w, i.e., the set of
all subsets of w that contain 1. _

A non-principal ultrafilter contains no finite subsets.

Evidently, each 2-valued, unconditional f.a. probability P on the powerset of
w, with P(n) =0 (n = 1,...), corresponds uniquely to a non-principal ultrafilter
Up on w, as determined solely by its unconditional probability values.

Fact (ZFC). There are 2%2° non-principal ultrafilters on w. (See Comfort-
Negrepontis, 1974, p. 146.) Hereafter, we focus on non-principal ultrafilters in
our discussion of ultrafilters on w.

2.1 Some elementary combinatorics. Consider a function f : w — w. The
function f induces a denumerable (finite or countable) partition 1y = {hf : n =
1,...} of w by considering the inverse images, f~!(n).

DEFINITION. Call an ultrafilter U selective in a partition m = {hy, hg,.. .} if
there is an A € U so that:

dh € m witheither AChor |[ANh, <1 (n=1,...).

DEFINITION. When an ultrafilter Up is selective in a partition 7, we call the
following (one version of) its natural conditional probability given x:

In the first case, when P(h) = 1 then P(e | h) = P(e) and for h, # h, let
P(e | h,) be an arbitrary f.a. probability defined on A, .

In the second case, let P(e | h,) be concentrated, with probability 1, at the
singleton (A N h,) = {an}, if it exists. Otherwise, let P({an} | hn) = 1 for an
arbitrary a, € h,. Thus P(e | h,) is a 0-1 principal ultrafilter probability.

If Up is selective in partition m then there are many different versions of its
natural conditional probability, depending upon which A € Up is chosen. We



482 T. SEIDENFELD, M.J. SCHERVISH AND J.B. KADANE

note that each two versions differ only on a set of elements of 7 that lie outside
the ultrafilter Up, hence; each two versions differ for a set of condltlonlng events
of P-measure 0.

LEMMA 1. When Up is selective in a partition =, it is conglomerable there
using (any version of) its natural conditional probability for P given .

PROOF. In the first case, it is immediate that P is conglomerable in 7 from
Dubins’ equivalence with disintegrability and the obvious equality, Ep[X | h] =
Ep[X].

In the second case, let X be a bounded random variable with Ep[X] = c.
Then, as P is an ultrafilter probability, for each € > 0, P({a € w : |X(a)] < c+
¢}) = 1. Each natural conditional probability satisfies Ep[X | h,] = Ey (X (an) ]
hn] = X(an) (for n = 1,...). However, U{a,} = A € Up. Then P(Uh,
|Ep[X|hn]] <c+¢€)=1and P is disintegrable in 7; hence, P is conglomerable
in 7 using (any version of) it natural conditional probability. 0

DEFINITION. A non-principal ultrafilter U on w is said to be a Ramsey
ultrafilter if it satisfies Ramsey’s partition theorem for a set in U. That is, for
each integer n and binary partition {ho, h1} of [w]”, there is an A € U such that
either [A]™ C hg or [A]” C hy.

THEOREM 2 (attributed to Kunen). A non-principal ultrafilter on w is Ram-
sey iff it is selective in each partition w. (See Comfort-Negrepontis, 1974, p.
212.)

REMARK. In (ZFC + CH) there are 22° Ramsey ultrafilters on w. (Comfort-~
Negrepontis, 1974, p. 220)

THEOREM 3. If Up is a Ramsey ultrafilter, P can be made conglomerable
(simultaneously) in any finite number of partitions, (i = 1,...,k), by using
natural conditional probabilities.

ProOF. Givenm; = {hi :n=1,...}(i=1,...,k),let 4; € Up satisfy either
3r' € m; with A; C A or | 4 ﬂh’ |<1(n_1 ). Let m;A; = A € Up.
Then, correspondlng to the respective case, given m; for i = 1,...,k: either
AChior | ANk | <1(n=1,. ) Using A, consider a (versmn of the)
natural .conditional probablhty for P given m;(i = 1,... k). By Lemma 1, P is
conglomerable (s1multaneously) in each of the ;. 0

Hence, when Ramsey ultrafilters exist, they provide a negative answer to
our thematic question. That is, given any specific partition =, each Ramsey
ultrafilter probability has its associated (natural) conditional probability that
makes it conglomerable in 7. Next, we show that for non-Ramsey ultrafilters,
their combinatorial properties pinpoint some of their non-conglomerability.

DEFINITION. An ultrafilter U is weakly selective in a partition 7 if there exists
an A € U so that: either 3h, € 7 with AC h, or | ANh, | <w (n=1,..).
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REMARK. An ultrafilter U is a P-point iff it is weakly selective in each .
(Blass, 1973) Trivially, each Ramsey ultrafilter is a P-point.

COROLLARY 1. If Up is a P-point, but not Ramsey, then P fails to be
conglomerable in each partition where it lacks the Ramsey (selective) property.

ProoF. The claim is immediate from the following lemma.

LEMMA 2. If Up is weakly selective but not selective in partition © then Up
is not conglomerable in m, nor is it even approrimately conglomerable in = (and
the extent of non-conglomerability is 1).

ProOOF. (based on an argument by Dubins (1975, pp. 92-93). Let 7 be a
partition where Up is weakly selective but not selective. Thus, no element (hr)
of m belongs to Up an and no graph of a function g : w — w belongs to Up
either. But, as Up is weakly selective in 7, there is a function f :w — w whose
graph in 7 bounds Up from above. That is, let S, = {z : z € h, and z < f(n)}
and define S = US,,. Then S € Up.

Let Q be a finitely additive probability that is disintegrable in 7 so that, for
event A, Q(A fhEﬂ' Q(A | h)dQ(h). Then we see that P and @ are singular,
as follows le € > 0 and let m satisfy me > 1. Consider the finite partition of S
according to the 1/m quantiles of the conditional distributions Q(S | A)(h € ).
That is, given h € m and integer k (1 < k < m) the k/m — th Q(e | h)-quantile
point is the least element of h, z*, such that Q({z < z*} | h) > k/m. By the
reasoning above, for each k, the graph of the k/m-th quantile points does not
belong to Up. Hence, one of the (at most) m regions strictly between these
(at most) m-graphs, call it Ry, belongs to Up. But Q(Rk) < € yet P(Ry) = 1.
Hence, P 1s not at all approximable by f.a. probabilities @) that are conglomerable
(in Dubins’ sense) in 7. That is, failure of conglomerability in 7 is maximal.
For each coherent conditional probability P(e | e), for each ¢ > 0, there exists
A with P(A) =1, but P(A | h) < e(Vh € 7). &

Thus, for non-Ramsey P-points, we can identify a partition where conglom-
erability of events fails maximally.

3. Non-Ramsey Ultrafilters and Non-conglomerability

Next we explore consequences of Lemma 2 for the Rudin-Keisler partial order
of ultrafilters. The Rudin-Keisler partial order of ultrafilters, <, is defined as
follows:

Let f : w — w and ultrafilter U be given. Define ultrafilter V = f(U) by,
X € Vif f71(X) € U. Then say that V < U if there is some ¢ : w — w with,
g(U)=V.

The Rudin-Keisler partial order < is reflexive and transitive. Denote by
U~ V the equivalence relation (V <X U and U < V) and denote by V < U the
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strict partial order (V < U and V % U). It is well known that U a V iff there
is a function g(U) = V where g is 1-1 on a set in U. (See Comfort-Negrepontis,
1974, p.209.) That is, U ~ V obtains iff there is a mapping g(U) = V where U
i1s selective in 74 but no element of 7, belongs to U. Two other familiar results
about the Rudin-Keisler partial order on f(w)\w are that Ramsey ultrafilters
are minimal, and if U is a P-point and V < U, then V is a P-point too. Thus,"
Lemma 2 provides us with the following:

CoROLLARY 2. IfV < Up andV s a non-Ramsey P-point then, by mapping
Up to V and locating where V is not-selective, we fix a partition m based on the
combinatorial properties of Up (and V) in which P is non-conglomerable.

Recall, too, that in Example 1 the non-conglomerability for event E is lo-
calized to one of two orthogonal partitions, i.e., partitions whose elements meet
each other in singleton sets, at most. Since an ultrafilter is weakly selective in
(at least) one of each pair of orthogonal partitions, we can generalize this feature
of Example 1 using Lemma 2 as follows:

COROLLARY 3. Let V < U and W < U with f(U) =V and g(U) = W. If
ny and 7y are orthogonal partitions, then U is non-conglomerable in (at least)
one of these two partitions. _ 0]

Unfortunately, we do not know whether, for each non-Ramsey ultrafilter U
there exist V and W satisfying the hypothesis of Corollary 3. Next, we show that
when Up is not a Ramsey ultrafilter and we use conditionally coherent versions
of P’s natural conditional probabilities whenever Up is selective in a partition,
then the combinatorial properties of Up locate partitions and events where P
does not satisfy conglomerability.

THEOREM 4. If Up is not Rudin-Keisler minimal then, either there erists a
partition where Up 1s weakly selective but not selective (where P is mazimally
not conglomerable), or else a coherent set of P’s natural conditional probabilities,
coming from a countable sequence of partitions where Up is selective, lead to a
failure of conglomerability also to the marimum possible extent.

ProOF. By assumption, there exists V < Up. Let my be a partition

mo={h}: k] ={f(N},i=1,.}

induced by the mapping f(Up) = V. Since V < Up and V is non-principal, Up
is not selective in mg. Consider a (canonical) 1-1 map m between w and w x w
where m(h9) = {(,j) :¢=1,...} for (j =1,...), and let Ay be the diagonal of
7o under m. Then, m~1(Aq) € Up. If P is conglomerable in my then (Lemma
2) Up is not weakly selective in 7o either. Hence, we may assume that (under
m_l) the set Yy of points above Ag in 7y belong to Up. (Hereafter we suppress
m 1n our discussion of partitions and, where notationally convenient, we identify
unit sets with their members, as in the last sentence of this paragraph.) Let m
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be the partition orthogonal to mo, i.e., m = {h} : A} = {;** element of hQ : i =

..}, =1,...} where some elernents of mg and m may be disjoint. Slnce U pis
not selective in g, for each h! € 7y, A! ¢ Up. But Up is weakly selective in 7y,
since Yo € Up and | Yo NAL | < w (n—=1,...). Thus, if Up is not selective in m;
then P is not conglomerable in ;. Hence, we assume there exists a set A; € Up
such that | Ay NAL |[< 1(n—1,..). If we consider the mapping f! 1w 2w
associated with 71, then f*(Up) is the ultrafilter U; and since flis 1-1 on
Ay € Up, Up ~ U;. Based on Ay, choose a (version of the) natural conditional
probability for P, given w1, with set By = {by, : b1, € hl(n =1,..)}, B; D 4,
with P(bln I h )—— 1.

Let h0 be the least element of my that meets B; at some element b1k1 and
define set C’l —{b1k1}. Obviously, C; € Up, though this depends upon the
version of the natural conditional probability used. Call A} i1 that element of m;
which contains b;;1. Make a partially ordered tree T} from k. by rooting it in
bikr at level 0, 1.e. setting level 0 equal to the unit set {b;x1} and making level 1
the unit set {h — {b1x1}}. This partial order coincides in an obvious way with
the qualitative order from the natural conditional probability: lower levels have
(much) higher probability. Specifically, P(h}, — {b1x1} | hL,) = 0.

Iterate this procedure to create partitions m;(i = 2,.. .) of the sets C;_;
(where lim; C; = ) and where each m; is orthogonal to g, i.e., where each
element of the partition 7; meets each element of the partition my in at most
one element of w. (See the figure below.) Thus, the set ¥; (the points above the
diagonal A; of 7 x m;) belongs to Up; hence, Up is weakly selective in ;. Then,
P 1s not conglomerable in m; unless Up is selective in that partition. Then, if
Up is selective in ;, the function f! (which is associated with 7;) yields the
ultrafilter U; = f1(Up) and Up = U;.

Assuming that P is selective in m;, we arrive at the sets A; and B;, the
element b, and the set C;, just as in the case (i = 1), above. In this way we
produce another R-K equivalent ultrafilter U;, i.e., Up & U;. Also, we create the
tree T;, as described below. If this process continues, i.e., if Up is selective in
each m;(i = 1,.. ) then the infinite set of trees, {7} : i = 1,...}, which partition
w, identify a partition #* = {hf : 4 = 1...} in which the (chosen versions
of the) natural conditional probabilities associated with the ;s fail deFinetti’s
conglomerability principle. Moreover, the extent of the failure is maximal, i.e.
there is an event £ with P(E) = 1 and P(E | h}) =0, (: = 1,...). Next, we
give the details of the partial order for the tree T;. We define m;, A;, B;, b;pi, T
and Cj, inductively, as follows: For C;_, € Up, let

o= {h; : h;- = {j**elements of C;_; N R in=1,..},j=1,.. 4.

(Note: m; is a partition of C;_1, not of the full set w.) Thus, each partition
element h* € m; is orthogonal to 7y and is the graph of a (partlal) function. If
k > j, then A% lies above h‘ in mo. Also, the elements h* (that is, functions) in
partition m, grow more rapldly than do those in 7;. Since Up is not selective
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nor even weakly selective in 7o, Up 1s weakly selective in each mi. As argued in
the base case (i = 1},A; ¢ Up,Y; € Up, and for each h* € m;,h* € Up. Thus, P
is conglomerable in ; if and only if Up is selective there.

Segments of the first 3 partition elements
of my and elements of the set B, denoted by ®.

The circled integers bélong to U; The tree T,
is rooted in b, and its level 1 = {h: -b, L

The tree T, is rooted in b 21and its level 1 = {h:— b2 ¢ hz:- b,y
Ty's level 2 = {hi- b, , by by , oy BE b, o)
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Let A; be a set in Up meeting the condition that | A;NAL | <1(n=1,...).
Since there exists a coherent version of the natural conditional probability for
P, given m;, there is a set B; = {bin : bin € hi(n = 1,...)}, Bi D A; with
P(bin | ki) = 1. Let hY; be the least element of m that meets B; at some
element b, and let C; = B; — {b;;:}. Evidently, C; € Up. Denote by h}; that
element of m; which contains b;:, and for j < ¢, denote by hJ; that element of
7; containing b;:.
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Make a tree T; of height ¢ by rooting it in by at level 0 and making level 1
the i-element set {h}; — {b;x:}, A2, — {birs}, . . ., R,. — {bix:}}. Finite additivity
assures that P(Ulevel 1 | (Ulevel 1)U level 0) = 0. Level 2 of T} is formed
by adjoining to each b € h’ —{bix:}(7 =2,...,7) the (j — 1)-many sets {h7—1 —
{b},h9—-%2 — {b},.. h—{b}} wherebEh“Eﬂ'(n—_l ., J—1). Again,
finite additivity assures that: P(R/=! — {b} URI=2 — {b} U ... U R — {b} |
RI-tUh-2y...U h') = 0. Continue this way to extend the branches of T; by
adjoining to each b € level m (m < i) the v-many sets {h" — {b},...,h! — {b}}
for the v-many partition elements k that contain b (1 < v < m — 1) Finite
additivity assures that P(h” — {b}U...UR' — {b} | Y U...U hl) = 0. The tree
T; has branches ending at each level and the branches termmate in sets of the
form Al — b, for b € h! € ;.

Now, either this inductive procedure terminates after finitely many steps in
a partition my, where Up is weakly selective but not selective, or else it leads to
an infinite forest of trees {T; : ¢ = 1,...}. In the latter case the trees partition
the space, w, because: (1) Elements of a tree are disjoint subsets of w. (2)
(Uri) N (UL) = @ whenever i # j. And (3) for each b € w, b belongs only to a
non—empty finite sequence of partition elements {h’ : b € hJ and h? € g =

,k} where P(b | h') = 1, for i < k, and either b is the root of tree T} or
(b |5 =0,

Note that the union of sets in a tree does not belong to Up since w — Cit1 D
Upi but Ciy1 € Up. Moreover, the set of all tree-roots R = {b;x: : b;zi root
of T;, i = 1,...} does not belong to Up either. This is so because the b;.: are
selected from decreasing sets C; in order to have h’i meet 7y in its least element.
Thus, either all but a finite number of the b;,: belong to one partition element
of mp, orelse | RNAY | <w (n =1,...). Since Up is not weakly selective in
o, R ¢ UP.

Last, consider the binary partition of w\R formed by taking the union of
the sets in the odd levels of all trees, Lo, and the union of the sets in the even
levels (excluding R, the set of roots) Lg. Exactly one of these two countable
sets belongs to Up, since R does not. Without loss of generality, assume that
the union of sets from the odd levels is a set in Up. Observe, next, that each
b (an element of a set at level 2¢) has adjoined to it at level 2 4 1 the v-many
sets {h" — {b},...,h' — {b}} for the v-many partition elements h that contain
b(1<v<2i)(i_1 ).

Consider the denumerable set, 7 = {hT J =1,...} where each h; contains
finitely many subsets of w, one of which is {b} for some b € Lg, that is, b is an
element of a set from level 2 for some 7 (or from R), and the other sets in h;r- are
the finitely many disjoint sets (disjoint “events”) that are adjoined to {b} at level
2i+4-1 (or at level 1). Evidently, (Uggpr; A )N (UpeptjB) = 0 whenever ¢ # j. Let
g : w — w be any function that is constant on each element of hT for every j, such
that 971 ({i}) # ¢ ({s}) when i # j, and call V, the ultrafilter deﬁned by g(Up).
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Since each h; is a finite collection of disjoint subsets of w, trivially, Vp 1s weakly
selective in the partition 7t = {hJr h+ ={i:g(m) =ime B¢ hT} j =
..}. Either V}, is not selective in 7t and P cannot be made conglomerable
there by the reasoning of Corollary 2, or else there is a set A* € V}, such that
AT k]| <1(j=1,..) and we may assume that g~!(At) is a subset of sets
belongmg to Lo. Thus for each set kY — {b} that meets g~ (A1), from an odd
level 2¢ 4+ 1 (or from level 1) there is a unique b, an element of an element of
level 2i (or an element of R) where, p(h/ — {b} | k) = 0, (: = 1,...). Hence,
using these natural conditional probabilities for P violates conglomerability in
the partition, 7* = {h? : B — {b} € g~1(A%),7 = 1,...}. That is, there is a
set g71(A*) belonging to Up where, for each b/ € 7*, P(¢~1(At) | A7) = 0 but
P( ~1(A%*)) = 1. When ULg € Up, just reverse the roles of even and odd levels
in the trees.
Next, we show that the combinatorial properties of Up serve to localize the
non- conglomerablhty in P even when the (coherent) conditional probabilities
P(e | ) are not so-called “natural.”

THEOREM 5. IfUp is not Rudin-Keisler minimal then, either (i) there exists
a partition where Up 1s weakly selective but not selective; i.e., a partition m™ in
which P 1is singular with respect to each f.a. Q that is conglomerable in 7 (by
Lerfhma 2), or else (i1) P’s conditional probabilities (taken from no more than a
sequence of partitions where Up is selective) lead to a failure of conglomerability
of extent at least 1/2, i.e.,

3(E € Up)3r*V(h € n*)P(E | k) < 5.

Proor. We follow the reasoning of the previous theorem, identifying par-
titions m;(¢ = 1,...) of the nested sets C! € Up (where C'+1 D Cj) in which
Up 1s weakly selective. If Up fails to be selective in 7;, clause (i) is established.
However, unlike the situation in Theorem 4, when Up is selective in 7; the con-
ditional probability P(e | h;) need not be the “natural” one. Nonetheless, one
of two cases arises.

Case (a): 3(E € Up) such that for each h* € m;, P(E | h*) < .5. Then
conditional probability given m;, is assigned so that P fails to be conglomerable
in m; (by at least .5) - clause (ii).

Case (b): There exists A; € Up such that | A;NA}, | <1(n=1,...) and the
conditional probability, given ;, satisfies P(ain | h%) > .5 whenever A;Nh: # @

We continue the argument with Case (b). Let Cy = w and denote by B} =
{a@in : P(asn | hL) > .5} so that B! € Up. As before, let h;)i be the least element

of mp that meets B} at some element b;: and let C! = B! — {b;;:}. Evidently,
" C{ € Up. Again, denote by h}; that element of m; which contains b;:, and
for j < ¢, denote by hfc,- thatselement of m; containing b;;:. We construct the
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trees T as before; however, now the 7} may fail to be a partition of w. That
is, let D! = {h' : A" N C! = ¢} and D} # @ is possible. To accommodate the
sets of these h?, each a partition element where conditional probability fails to
concentrate above .5 on any element, we form a second array of partially ordered
sets, Si(i = 1,...), analogous to the T;. Each S; has a base (level 0) rooted in
the set D! (rather than the singleton root b;: of Tj). The tree structure in
S! above D} is analogous to that above b;: in T;. There are two sub-cases to
consider:

(b.1) T = {T!} € Up. Then, by reasoning and notation of the previous theo-
rem, i.e., dividing between odd and even levels of 7, 3(¢~}(At) € Up)In*V(h* €
r) P(g-1(A%) | h*) < 5.

(b.2) S = {S!} € Up. Whereas the roots R of T (or roots R’ of T') do not
belong to Up, the set D = U; D; may belong to Up. However, as D is a collection
of (disjoint) partition elements {h* : h* € D;;i=1,...}, with each h* orthogonal
to mo, consider the partition mp of D formed by these sets h*. If D € Up, then
Up is weakly selective in mp. So, either

(b.2.1) Up is not selective in mp and P is not even approximately mp-
conglomerable or

(b.2.2) 3(A € Up) | ANh' | < 1 for each h' € mp. But, since ip NC} = §
(i=1,...), for each h* € 7p, P(A | h') < .5 and the conditional probability P,
given 7p, fails the conglomerability principle by an extent .5 (at least).

Thus, without loss of generality in case (b.2), assume that D ¢ Up. That 1s,
the union of the level 0 sets of S does not belong to Up. Then, as the structure
of S at higher levels if the same as in 7, conclude by reasoning (with notation
as in Theorem 4) that upon dividing between the odd and even levels of S,
(g~ (AY) € Up)In*V(h* € m*) P(g~1(AT) | h) < 5. . 0

4. Non-conglomerability for Finitely Valued Merely
f.a. Probabilities

Let P be a merely f.a. probability that assumes only finitely many values.
Then (Schervish et al., 1984 p. 213) P may be written as P = Zle v Bi,
where 7; > 0, > .7 = 1, and each P; is an ultrafilter probability. Since P
is merely finitely additive, there exists an integer k;, 0 < k; < k where each
P;(i < k;) is a principal ultrafilter probability, and each Pi(k; +1 < i < k) is
a non-principal ultrafilter probability. Denote each of these ultrafilters by Us;.
Theorem 3.3. (Schervish ef al., 1984) establishes that 8 = yx141 +. ..+ is the
least upper bound on the extent of non-conglomerability possible with P, over
all events and all countable partitions. It is an elementary fact that we may find
k disjoint sets {A4; : A; € U;(1 = 1,...,k), with A; N A; = 0 for i # j}. Thus,
vi P;(e) = P(e | A;), so that P(e) =), y1 P(e | Ai).
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Let M be the (possibly empty) set of integers that index the non-Ramsey.
(non-principal) ultrafilters, and let ypr = 3 i pr 7i- Then we may apply Theorem
4 to obtain the following result.

COROLLARY 4. Let P be as above, together with its decomposition as a miz-
ture of ultrafilter probabilities. Then, (i) either there is a determinate partition
where P fails to be even approrimately conglomerable (up to the extent ypr), or
(ii) based on the natural conditional probabilities for P;, there is a determinate
partition where P’s extent of non-conglomerability is yar.

Proor. Use the fact that the A;s are disjoint to apply Theorem 4 to each
Ui;(i € M). Whenever (i): according to the proof of that theorem we encounter
a partition of A; where U; is weakly selective but not selective, there P fails
to be (even approximately) conglomerable to the extent v;. We may concate-
nate these (disjoint) partitions to form a single partition where P cannot be
made conglomerable. If (ii): for a given U;(z € M), it is selective in each of the
(countably many) partitions used in the proof of Theorem 4, then as previously
shown, when P;’s natural conditional probabilities are used, it fails conglomer-
ability in the partition 7* of A;, and the extent of nonconglomerability there is
the maximum possible value, 1. ' 0

Likewise, we may apply Theorem 5 to obtain the following:

CoOROLLARY 5. Let P be as above, together with its decomposition as a
mizture of ultrafilter probabilities. Then, either there is a determinate partition
where P fails to be even approzimately conglomerable (up to the extent ypr ),
or, based on the conditional probabilities for P;, there is a determinate partition
where P’s extent of non-conglomerability is yar /2, at least.

PRroOF. Use Theorem 5 with each of the disjoint sets A;(i € M).- m
5. Conclusion

We have shown how to locate partitions in which a finite-valued, merely
finitely additive probability P displays non-conglomerability. Our approach is
to use some combinatorial properties of the associated non-principal ultrafilters
for P to regulate all the coherent conditional probabilities for P. These combi-
natorial properties of the associated ultrafilters are given by the unconditional
probability P. This analysis improves upon our previous result in two ways. It
demonstrates where P displays non-conglomerability according to its uncondi-
tional probability even when P is only two-valued, and it avoids quantifying over
a continuum of partitions and conditional probabilities. Also, we hope we have
indicated how some basic set-theoretic combinatorial properties of ultrafilters
carry interesting consequences for finitely additive probabilities.
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