INSTITUTE OF LANGUAGE AND LITERATURE

PI 6.1	V. N. Sorokin Wave Mechanics of the Speech Signal
Pl 6.2	O. Fujimura Fundamentals and Applications in Speech Production Research
Se 98	LARYNGEAL CONTROL 28
Se 98.1	A. Ní Chasaide Glottal Control of Aspiration and of Voicelessness
Se 98.2	H. Strik, L. Boves Regulation of Intensity and Pitch in Chest Voice
Se 98.3	A. M. Smetanin Investigation of the Voice Source Models
Se 98.4	B. P. Chernov, V. T. Maslov Larynx - Double-Sound Generator
Se 98.5	Sh. Kiritani, H. Imagawa, H. Hirose High-Speed Digital Image Recording for the Observation of the Vocal Cord Vibration
Se 99	HIGH QUALITY SPEECH SYNTHESIS
Se 99.1	K. Lukaszewicz, M. Karjalainen Microphonemics - High Quality Speech Synthesis by Waveform Concatenation
Se 99.2	W. J. Hess High-Quality Speech Synthesis Using Demisyllables and a Variable-Frame-Rate Vocoder
Se 99.3	L. S. Chudnovsky, V. M. Ageyev
	High Quality Synthesis of Vowels
Se 99.4	A. S. Gorodnikov, M. Mihkla, T. Tago A Hardware-Software System for Designing High-Quality Speech Compiling Synthesizers
Se 99.5	G. D. Frolov, I. M. Yefremova Compilation Synthesis of Speech Based on Clipped Signals

```
Se 100 ACOUSTIC FEATURES AS
    PERCEPTUAL CUES 4
Se 100.1 }\quad\begin{array}{l}{\mathrm{ L. Lisker }}\\{\mathrm{ Orchestrating Acoustic Cues to}}
            rchestrating Acoustic Cues to
            Linguistic Effect
            Mord-Initial Consonant Length in
            Pattani Mala
            K. Shimizu, M. Dantsuj
            Cross-Language Study on the
            Perception of Synthetic Speech
            Sounds of /r-1/
            Formant Transitions and Release
            Bursts as Perceptual Cues for
            Bursts as Perceptual Cues
            H. Quené
            Perceptual Relevance of Acoustical
            Perceptual Relevance of 
Se 101 HISTORICAL PHONETICS AND
            PHONOLOGY 4
Se 101.1 T.-R. Viitso 
            Phonology
            Phonology
            Zur Bewertung von
            phonetisch-phonologischer
            Rekonstruktion
            Rekonstru
            Syntagmatic Versus Paradigmatic
            Approach in Phonological Evolution
            Approach in
            Relation Between Segmental
            Relation Between Segmental 
Se }10
PROBLEMS OF SENTENCE
    PROSODY
Se 102.1 H. Pilch
Se 102.2 Prosodie als linguistische Gestalt
    G. Fant, L. Nord, A. Kruckenberg
            Segmental and Prosodic Variabiliti
            in Connected Speech. An Applied
            Data-Bank Study
Se 100.2
Se 100.3
Se 100.4
phonetisch-phonologischer
Se 101.3
Se 101.4
```


INDEX OF AUTHORS

Abe, J.-I.
Abramson, A. S.
Abuov, Zh.
Ageyev, V. M.
Aiba, S.
Antonova, D. N.
Belikov, V. I.
Boves, L.
Chernov, B. P.
Chudnovsky, L. S.
Dantsuji, M.
Dashko, Y. Y.
de Graal, T.
Dziubalska-Kołaczyk, K.
Eek, A.
Fant, G.
Faraclas, N.
Frolov, G. D.
Fujimura, O.
Galton, H .
Gasparov, M. L.
Golovko, Y. V.
Gorodnikov, A. S.
Guirao, M.
Help, T.
Hess, W. J.
Hirose, H .
Hurme, P.
Imagawa, H .
Ivanov, V. V.
Karjalainen, M.
Kashchayeva, S. S.
Khaskashev, T. N.
Kiritani, Sh.
Krasnova, L. S.
Kruckenberg, A.
Krushevskaya, I. I.
Lebedeva, G. N.
Lisker, L.
Lozhkin, V. N.
Lukaszewicz, K.
Maslov, V. T.
Mihkla, M.
Misheva, A.
Nadeina, N. A.
Ni Chasaide, A.
Nieboer, G. L. J.
Nikolayeva, T. M.
Nord, L.
Nossenko, E. L.

Se 103.2
Se 100.2
Po 4.7
Se 99.3
Se 103.2
Po 4.14
Po 4.3
Se 98.2
Se 98.4
Se 99.3
Se 100.3
Po 4.13
Se 103.3, Se 104.1
Se 103.1
PI 4.2 A
Se 102.2
Po 4.5
Se 99.5
Pl 6.2
Se 101.3
Sy 6.9A
Po 4.6
Se 99.4
Se 103.2
Pl 4.2 A
Se 99.2
Se 98.5
Se 104.2
Se 98.5
Se 101.4
Se 99.1
Po 4.8
Se 39.5 A
Se 98.5
Po 4.14
Se 102.2
Se 104.4
Po 4.2
Se 100.1
Se 100.4
Se 99.1
Se 98.4
Se 99.4
Se 69.5A
Se 104.4
Se 98.1
Se 104.1
Se 102.3
Se 102.2
Po 4.12

Penzl, H.
Perekhvalskaya, Y. V.
Peshak, J.
Pilch, H.
Poitelshmidova, A.
Quené, H.
Sardzhayeva, D. K.
Schutte, H. K.
Shcherbakova, L. P.
Shimizu, K.
Slootweg, A. M.
Smetanin, A. M.
Smirnova, V. G.
Sorokin, V. N.
Stoeva, T.
Strik, H.
Svetozarova, N. D.
Tago, T.
Taptapova, S. L.
Tătaru, A.
Tsiptsura, L. F.
Vakhtin, N. B.
Vende, K.
Viitso, T.-R.
Yefremova, I. M.
Yeloyeva, F. A.
Yermakova, I. I.

Se 101.2
Po 4.4
Se 104.5, Se 104.6
Se 102.1
Se 104.5, Se 104.6
Se 100.5
Po 4.10
Se 104.1
Po 4.7
Se 100.3
Se 102.5
Se 98.3
Po 4.11
Pl 6.1
Se 103.4
Se 98.2
Se 102.4
Se 99.4
Se 104.3
Po 4.1
Po 4.9
Po 4.6
Po 4.15
Se 101.1
Se 99.5
Po 4.4
Se 104.3

VICTOR SOROKIN

Institute for Information Transmission Problems Academy of Sciences, USSR
Moscow 101447

Abstract

Processes of control, muscular contraction, articulators deformations, and acoustical oscillations take place in continuous media. Description of these processes can be done by means of the same mathematical technique. Some important properties of the speech production processes are described.

Speech production processes proceed in different physical media : articulation control processes - on a set of α and γ motor neurons and muscle fibers, mechanical oscillation processes of the vocal folds, tongue and lips - in viacous - elastic tissues, acoustical processes - in air cavities of the vocal tract. There are certain special features in each medium which determine characteristics of the processes, but there is also a very important similarity that enables to use actually the same mathematical technique of wave mechanics. This similarity comes from the fact that on each level-acoustical, mechanical and control, the system of speech production is a system with distributed parameters.

Motor units in the articulation control system are discrete elements but their number is great, and their parameters overlap rather a wide range. Thus it is possible to consider that processes of muscle contraction control take place in a certain continious medium. In that medium, for instance, there is a possibility to control dynamic characteristics of the muscle by the working point shift of the muscular receptors and also by displacement of the area of the sarcomers contraction along the muscular fibers from one muscle end to another.

Amplitudes of eigenfunction of muscle elastic deformations change due to these displacements. Al though distributed control systems have been studied in engineering, special features of the articulation control system are little known and deep investigations in the area are of great necessity. Some results concerning articulation control system properties are described in [6].

Geometrical parameters of the vocal
folds are rather small. Thus folds elastic vibrations accompany waves in all three dimensions. It can be well seen in high speed motion pictures that elastic waves propagate along the focal folds and also in transverse and vertical directions. Besides, surface waves are observed after folds collapse [2]. Characteristics of the waves are determined by mechanical properties of the vocal folds tissues. For example, surface waves dissapear when cancer tumour evolves.

Mathematical models of vocal folds elastic vibrations were investigated in [4,5,6,7,9,10]. Computer modeling shows, that for the description of folda elastic oscillations in a vertical direction only one eigenfunction is sufficient, in a transversal direction two eigenfunctions are required, and oscillations along the vocal folds require three eigenfunctions. Vertical movements create a new, unknown before, excitation source - a piston source, which is active during close vocal slit interval also. A speech synthsizer excited by the described vocal source produces a speech signal with high naturalness.

Geometrical sizes of the tongue and lips are comparatively large. Thus elastic waves do not propagate in the articulators but their movementa are "wave-like", as it is seen in the cinemaradiographic motion pictures. Elastic deformations of the tongue and lips are described by the same mathematical technique as elastic deformations of the vocal folds.

It is sufficient to have only one eigenfunction for description of the shape and movements of the lip. This eigenfunction for the lip is just half-wave of sine. Five eigenfunctions must be used for the tongue shape description. In the case the approximation error in the uniform metrics is about 6-7\%. Change of the tongue shape is achieved by means of modes control of elastic oscillations. [6]. The velum is an elastic body with distributed parameters too, thus to calculate its deformations the same mathematical technique as for the vocal folds, tongue and lips must be used.

For the frequencies above $200-300 \mathrm{~Hz}$ the vocal tract is a system with distributed parameters where waves of acoustical oscillations propagate. Fast change of speech parameters and nonstationary procesaes domination are properties of acouspecularities of speech production acoustical processes which play crucial role both for speech synthesis and speech recognitiFirst of all one must reject an idea the vocal vocal slit is a starting point of the vocal tract. During production of voithe ficatives and stops the area of the vocal slit is comparable to the mini phonation the resistance of the vocal silit turns out to be not so high as it was supposed just recently. As a result, procesfluence upon acoustical parameters of speech gignal and, therefore, the voca slit is located almost in the middle of the vocal tract. During phonation formant alterations, sometimes up to $20-30 \%$ and those alternations are synchronous with vocal folds oscillations [6]. The formant frequencies variations are pretty and speech analysis the vocal tract must be considered as a parametric system with fast alternation of parameters.
In addition to those variations the formant frequencies sometimes undergo fast For example, the rate of the first formant Preqiency variation can be 10 times as much as the velocity of articulator movements, if the minimal area of the vocal As a result an abrupt change of formant frequencies is observed before and after a closure.
of radial tract walls yielding is a cause ring closure. The first formant frequency in this interval is equal to the radial resonance frequency ($150-350 \mathrm{~Hz}$) instead
of zero as it were in an acoustical system with absolutely rigid walls. There system diation of a speech signal through the yielding vocal tract walls and, as it was shown in [1], the radiation occurs mainly
in two areas around the lips and the phain two areas - around the lips and the ph leads to the "shut" effect, when in areas with a small cross-section the propagation of low-frequency oscillations stops due to as a result of all above mentione cts the only right method of description of apeech production acoustics is a method nonsteady-state wave processes. Therefore unadequate in consequence of the hypothe-
sis on steady stateness of processes and slow variations of the vocal tract parameters. This is confirmed by the low quality of formant speech synthesizers. More over,
there is a limit (not very high) for improvement of such synthesis naturalness and intelligibility.

As a basis for description of acoustical processes during speech production a method of travelling waves like Kelly lochbaum scheme [Kelly can be used. Lochbaum scheme has a set of serios shortcomings. Particularly, it generates specific noise during alternation of the vocal tract area function. However it is possible to solve the noise problem conditions between cylindrical sections which approximate the vocal tract shap [7,8] Further improvement of that tract length altermation. Characteristics of the turbulent source of excitation are iittle dependent on the place of articulation. Difference in acoustical characteristics of fricatives
and bursts of stops are results of various positions of the turbulent source in the vocal tract accompanied with chang in values of zeroes of the vocal tract transfer function. This effect is also a tract is a system with distributed parameters.
Thus, physics of speech production processes is much more complicated then it was supposed some time ago, but cogni of development of high quality synthesizers and reliable speech recognition systems.

1. Fant G., Nord L., Branderud P. A
note onthe vocal tract wall impedance.
STL QPSR, 1976, N 4, P. 13-20.
2. Hirano M. Data from high speed motion pictures. Vocal Fold Physiolosy Conf. 3. Kelly J. J. L. ${ }^{4 a 1-4 a 6 . ~ L o c h b a u m ~ C . C . ~ S p e e c h ~}$ synthesis. Proc. 2 Int. Congr. Ac., 1962 paper G42, Proc. $1-4$.
3. Sorokin $\nabla . N$. Some questions of the
general model of speech production genera5. Proc. ARSO-8, LVov, 1974, p. 97-100.
Soron system with distributed parameters. Acoust J., 1981, v. 27 , N 3, p. $434-440$
4. Sorokin' V.N. The speech production
5. Sorokin V.N. Travelling waves in
the vocal tract. Acoust. J., 1986, N4,
p. 506-510. B. Strube H.W. Time-varying wave digi- $^{\text {B }}$ tal filters for modeling analog system. 9. Titze J.R., Strong W.J. Normal mo-
des in vocal cords tissues. JASA, 1975, des in vocal cords tissur . 10. Titze J. R. On the mechanisms of the vocal-folds vibration. JASA, 1976,
N 6 , p. $1366-1380$.

OSAMU FUIIMURA
Murray Hill, New Jersey 07974 U.S.A.
AT\&T Bell Laboratories

ABSTRACT

Current issues in speech production research are reviewed with ome historical perspective. It is emphasized that recent progress computational and experimental techniques has brought about a substantial change in the research methodology, and that the interaction between linguistic theory and the understanding of the nature of speech signals has substantially contributed to the progress.
synthesis.
0. Introduction

In this paper, I would like to express my personal opinion about the direction of research in conjunction with a fairly wide variety
of topics in speech production research. The point I would like to make is that we need a deep inquiry into the nature of speech, in its linguistic, psychological, physiological and physical aspects, aking full advantage of the emerging computational techniques, order to pave the way for future industrial applications as well别 revisited (cf. Fujimura [1980]).

1. Physical Process
1.1. Acoustical Theory

According to the acoustical theory of speech production (Fan 1960], the physical process of speech production comprises two basic components: (1) source signal generation: the process of producing the source airflow through the glottis typically for along the vocal tract near constrictions for some of consonantal parts; and (2) vocal tract filtering: the linear process of converting the airflow/pressure source signals into outcoming acoustic wave that represent speech signals.

There have been challenges to the source-filter theory, claiming that the plane-wave assumption is not valid in reality when w consider the three-dimensional turbulence formation above the glottis [Teager 1983]. There is at least one experimental attempt as measuring the three-dimensional distribution of acoustic pressur within the vocal tract in vowel production [Firth 1986]. The
Fantian acoustical theory is the only workable (approximation) theory available at present, however.

In particular, it is well known that the vocal tract transfer functions for different vowel articulation gestures can b effectively represented by the F-patterns [Fant 1956]. We have (see Fig. 1). This acoustic measurement of the natural vocal tract does not involve any dc airflow. To the extent the observe transfer characteristics compare with predicted characteristics of naturally produced vowel sounds, our theory captures the essence
of the acoustic process.
Perceptually, also, it has been our experience for a long time that a series-type formant synthesizer captures all vowel characteristics in terms of the phonetic values that are familiar to us.
The role of formant transitions, associated characteristically with consonantal gestures, was convincingly demonstrated by

sheovencr in una
Fig. 1: Vocal tract transfer functions for Swedish vowels, The curves include a constant frequency function native speaker assumed to represent the transfer characteristic between the acoustic source (vibrator) output and the virtual excitation source above the glottis. The curve in the upper end of each frame represents the difference between the measurement and the theoretical prediction based on the series formant theory as
Fant [1961]. From Fujimura \& Lindquist [1971]. experiments led us to believe that the quasi-static formant theory
was effective enough to capture basic characteristics of speech ignals. For further progress, however, I believe this point has be revisited. There is enough evidence to suspect that our curren ignal processing technology that is commonly used in automatic ecognition schemes, for example, does not capture some crucia identification. Also, our knowledge of inherent signal propertie of occlusive consonants (see Blumstein \& Stevens [1979]) has no been utilized sufficiently in such applications.
The synthesis experiments, incidentally, not only contributed substantially to our understanding of the nature of speech signal subsequent emergence of the idea of analysis-by-synthesis STevens 1960], set a rather widely applicable methodology for studying complex human information processing
1.2. Articulatory System

The mandible is literally a basic component of the articulatory system, and our understanding of its function in speech is still far from satisfactory. Edwards [1985] made a fundamental contribution to our knowledge in this field, clarifying its translation relative to the skull.

The velum is presumably the simplest case for studying the phonetic functions relative to its physiological control and the resultant physical configuration. We seem to find a one-to-one correspondence between nasallty
articulatory gesture of the velum, which probably can be effectively represented by a one-dimensional measure of velum lowering. The acoustical consequences of its movement, however, is by no means simple, nor is it limited to the coupling of the nasal tract to the (proper) vocal tract, 195 assumetori et al. [1958]). Also, velum height is affected observably by the raised tongue dorsum for palatal consonants.

Because of the relative simplicity, the lip movement patterns have been the subject of quantitative studies by many investigators (see, interesting topic is the relation of lip gestures to the mandible gestures. Macchi [1985] studied this problem in relation to segmental vs. suprasegmental functions using a statistical analysis of microbeam data. She found evidence that while both articulators contribute to the lip closure, some suprasegmental the lip proper gesture.

The tongue is the most important articulator in the sense that determines the largest portion of the vocal tract shape, with a large number of degrees of freedom, resulting in direct acoustical anatomically, physiologically, and physically. Its phonological implications are also complex.
Since the introduction of x-ray techniques, the laterally viewed midsagittal surface shape has predominated in the discussions of ocal tract modeling. The cylinder model of the most extensively used computational algorithm for deriving are functions out of specifications of articulatory variables. I think it is now clear, however, that we cannot capture some of the mos basic principles of articulary the articulatory structures more
directly.
Let me illustrate this argument with one example, just to demonstrate the nature of the problem [Fujimura \& Kakita 1979]. In articulating a high front vowel, say [i], the tongue as a whole is pushed forward by the contraction of the posterior part of the
genioglossus muscle. At the same time, some other muscles, including the contraction of the anterior part of the genioglossus, which run vertically near the midsagittal plane only, are used to orm a fairly stiff surface shape with a significant groove along the midsagittal line. The resultant tongue surface is bulge upward on the sides. When the tongue is pushed upward and palate and support the tongue against a further upward forward push, leaving the central groove that forms a long and narro open channel. The back of the tongue is forwarded considerably creating a wide cavity behind in the lower and midale pharyngeal region. These conditions seem to be crucial for this vowel. Th the articulation stable, without requiring excessive accuracy of the muscle contractions for forming such a critical narrow passag. This may be considered a viewpoint generalizing Stevens' [1972] concept of the quantal nature of speech production.

This study of the three-dimensional effects of muscular contractions bas been performed by the use of the finite-elemen method of computational simulation [Kiritani et al. 1976; Kakit

This tongue shape formation is inherently a three-dimensiona process. It cannot be understood by considering the midsagitta configuration only, even though, after considering all thes factors, we may well be able to compute the three dimensional shape, and thereby the area function of the vocal tract, accurately understand the mechanism, even from, say, positions of three appropriately chosen sample flesh points of the tongue surface in the midsagittal plane.
Interaction among different anatomical/physiological components of the articulatory system is a particularly difficult issue to study
with limited available data. Intricate and often annoying effects of coupling between physical correlates of different linguistic variables have been observed. The segmental, effects (of vowe identity, consonantal voicing, etc.) on voice fundamenta frequency have been known for a long ime (see Kohler (1986 for discussed by Honda [1983], using careful electromyographic evaluation of activities of many relevant muscles.

The hyoid bone is located in between the tongue body and the larynx, conneted to both structures as well as the mandible via muscles and a unique sliding endon mechanism. An it behaved as an effective positional stabilizer via various sensory mechanisms. A recent study by Westbury [persona] communication], however, demonstrates, using a cineradiographic observation, that this assumption is not true. Rossh and Autesse [1981] studied related issues concerning the interaction betwee laryngeal control and tongue gestures based on careful observations.
1.3. Source Signal Generation

Much research has been devoted to and progress has been achieved in understanding the mechanism of voice production.
Publications are available, in part in proceedings of the Voice

Foundation Series of the Vocal Fold Physiology Conferences Stevens and Hirano 1981; Bless and Abbs 1983; Titze and Scherer topics range from subcortical neural patterns (in animal vocalization) to computational modeling of the vibration mechanism. Notably, the anatomy, physiology and biophysics of he vocal folds themselves are substantially better understood in comparison to our knowledge, say, ten years ago, demonstrating

The mucous membrane, the "cover" in Hirano's [1977] erminology, moves relatively independently from the muscular "body" of the folds, in the tangential direction in the speech mode, showing wave propagation along its vertical surface.
Fleshpoints on its surface draw roughly elliptic trajectories. This wo-dimensional picture (within the coronal plane) of vibration is ot new in essense: Kirikae [1943] in his early study using a troboscopic technique and carbon particies placed on fleshpoints of the muscosa observed clear wave propagation patterns from
bove in a living subject's larynx. Saito and his group at Keio Sive in a living subject's larynx. Saito and his group at Keio n the cover and the body by special x-ray techniques applied to excised larynges [Saito et al. 1981].
Van den Berg [1957] originally discussed his experimental results bout the incracion of the vocal folds with the airflow through Flanagan originated computational simulation of such a vibratory process using a mass and a spring to represent the vocal fold in Interaction with the airflow Flanagan \& Landgraf 1968] shizaka and Matsudaira [1968] theoretically demonstrated that explained only by adding another degree of freedom be proposed a now classical two-mass model of the vocal fold vibration mechanism. This minimally approximates the threedimensional structure by two pairs of mass and spring coupled with each other and with airflow. Flanagan and Ishizaka [1976] then produced a computational simulation of this model coupled
with the vocal tract, demonstrating significant segmental effects of the vocal tract loading on the voice fundamental frequency.

Titze and Talkin [1979] approached this issue by using a more detailed part-by-part approximation. Fujimura [1981a] discussed he tension control mechanism based on the body-cover theory elastic properties of tissues. Titze and coworkers discussed various aspects of the vocal fold vibration mechanism such a energy exchange between the air and tissues [Titze 1985] an contributions of extralaryngeal factors to the voice fundamenta
frequency frequency [Titze \& Durham 1987]. Conrad [1987] proposed
functional interpretation of the fold vibration functional interpretation of the fold vibration based on negativ
resistance as the key concept. Stevens [1974, 1975, to appeat also used circuit analogy and discussed large-amplitude as well a small-amplitude oscillatory characteristics. Rothenberg [1981] ha contributed further insights into the interaction between th
vibration and acoustic loading.

Fant [1983a] has been studying functional models of the source (volume flow) waveform in voicing using a unique system of parametric specifif
the voice quality.

Experimental and computational studies of the vortices just above the glottis also are interesting from many points of view. It is a difficult area of experimental studies because of the smal
dimensions involved. Unfortunately, scaled-up physic experiments do not provide us with straightforwardly interpretable results.

With respect to the turbulent noise generation for fricatives, ader are referred to recent PhD dissertations by Shadle[198 and Thomas[1985].
2. Physiological and Psychological Studies
21. Principles of Coordination and Control

One basic question in speech production research is what principle prescribes the time course of utterance, or the temporal pattern of motor commands for it, given the informational content of the message to be carried by it. The tacit assumption is a common daily activity for human life, and an uttererance must be economical in some sense [Lindb:om 1983; Kent 1983]. Nelson[1983] faced this issue straiz this principte proposed a control-theoretical account. Based on ture of spee combined with the concept of the quantal nalure
production [Stevens 1972], Perkell and Nelson [1982] discussed ome related stability issues of vowel articulation using microbeam data.
Among many topics concerning coordination of different organs in articulatory gestures, the concept of motor equivalence [Hughes \& Abbs 1976; Abbs 1979] poses an interesting question with respect
to high level planning and control in speech production [Abbs \& Gracco 1982, 1983]. For example, a bilabial stop consonant Inherently requires that the lips be closed, as its positional target
gesture. For this condition to be (nearly) achieved, in terms of motor control, various patterns of activities of multiple muscles could be used. If for example the lip constriction gesture and the mandible raising gesture can be mixed in different proportions for the same goal, say lip closure, the proportional contributions of different articulators may vary from occasion to occasion. The describe the regularity involved.

Abbs and Gracco [to appear] report that in a repetition of a word 'sapple', the excursions of the upper and lower lips (measured at
their vermilion borders) and of the mandible, for the vowel to their vermilion borders) and of the mandible, for the vowel to variable than the resultant distance between the fleshpoints of the lips, over repeated utterances for each subject. They argue that such relative invariance of physical quantities that are directly related to the acoustic and perceptual consequences suggests that there is a strong role played by high level motor planning and
adaptive (real time) control that combine the uses of different organs to achieve the given target gesture. According to them, the temporal coordination of a series of such target events also is fixed and is controlled at a level higher than for the movements of individual organs

This is an appealing hypothesis. There are different feedback paths available for speech production, and they are often crucia for understanding aspects of normal speech. Unless we understand the way abstract planning and control are related to signal level phenomena, we may not be able to interpret th meaning of observed signals at an intermediate level, such as the control of lips proper. We may then ask which level of observation in the hierarchy of speech production control is mos directly relevant to the description of the phonetic process Random variation must exist, but identifying its existence is bardly sufficient, particularly when an independent mechanism contributes to statistical reduction of variability of the measured dimension. Macchi's work [ibid.], on the other hand, does suggest that variabilities of different component organs do reflect pecific shares of different linguistic functions.

Several investigators recently proposed hypothetical principles for speech production coordination. Particularly at issue is how the temporal organization is designed, and what quantities remain invariant, given a phonetic identity of the speech material resisting various causes of variation of the signals (see Perkell Klatt [1986] for a collection of relevant discussions). Since th concept of temporal organization for most investigators remaine concatenated series of positional target gestures representin phonemic segments, supplemented by a smoothiing process calle coarticulation. In addition to this basic point of view Kozhevnikov and Chistovic [1985] introduced a sequential variation, and proposed a CV-type syllabic organizational unit Henke[1966]'s look ahead model generalized the notion of coarticulation to include anticipation. In this connection, recently Sternberg and his cowous [19, 1980] contributed a rathe intriguing discovery about how the motor program for what prior to the utterance.
Kelso and his coworkers [1986] hypothesized a general speec production principle in accordance with a popular theory of neuromechanical control of biological systems [Haken 1977]. The
basic idea is to assume simple oscillation as an underlying mechanism of speech production, and seek invariance in the phas relations among the underlying oscillatory movements of differen articulators which form a task-oriented coordinative structure. They have conducted sets of experiments measuring relativ go farther and argue that their result suggests some support of th consonant-vowel configuration as the basic phonological unit for my criticism and authors' reply, see [Fujimura 1986b; Kelso et al. 1986a].
When we consider apparent variance and invariance of specially designed and somewhat artificial (repectitive or purturbed) tasks, we need to be careful in interpreting data in differen experimental situations. Different feedback paths may be used in different mixtures depending on the particular task and situation Eliminating crucial dependence on one mechanism in one he use of that mechanism in other situations even for the same honetic gesture. For example, repetitive utterance materials ma introduce apparent characterization of movement control which may not properly belong to the nature of speech in general.

On the other hand, it is highly desirable, from a datainterpretation point of view, to design systematically controlled speech material, even at some cost of undetermined influence o he artificial contexts. A word paradigm, for example, comparing different vowel contexts for the same consonant in the same
phonological environment, is never perfectly uniform with respect phonological environment, is never perfectly uniform with respect words. I think we need to use both situations in such a case: natural linguistic materials in which items are not completely comparable, and systematically distributed artificial paradigm
which must resort to some which must resort to some "phonetic performance" even by onphoneticians, for the purpose of mutual calibration.
2.2. Neural Control of the Larynx and Sensory Mechanisms

Direct electrical access to higher level neural activities is not achievabie in normal circumstances, at present, ine spare setic field measurements. As for control of vocalization, however, anima experiments have made solid progress in our understanding about neural paths and control functions, for example relating activitics
at the brain stem level to laryngeal and other control in the monkey [Zealear 1987]. Senory characteristics also have bee studied by direct access to the afferent nerves. Davis and Nail [to fibers of the internal laryseal nerve of the cat, in response to carefully servo-controlled mechanical stimuli as well as chemical stimuli.
23. Observations in Pathologies and Speech Errors

One informative approach toward inaccessible human processes is to observe different types of pathological cases and compare the with normal cases. This is a rich and rewarding field, and in connection with the new research center with the microbeam progress. For University of Tokyo, Hirose and Kiritani [1985] obtained revealing data in cases of ataxia.
Another large area of study is speech errors. Recent studies tak segments do not occur indiscriminately with respect to their role in syllable or word composition, and provide new framework for the description of the cognitive phenomena responsible for phonological performance [Kupin 1979; MacNeilage 1985]. Along the same line, developmental observations of child language and specch contain unique and valuable dat.
3. Instrumental Methods

Algorithms of speech signal processing have become commonly available and sevcral cive studies of spech (acoustic) signels wsing personal computers and workstations extensively. Major research group often have more specialized advanced systems for efficient measurements of massive data. At the same time, large amouni of systematically collected specch materials are becoming as some partial syntactic transcriptions of large databases such the Brown Corpus [Frances \& Kucera 1982] and the TI speech data base [Fisher et al. 1986].
3.1. Mechanical Measurements

The use of servomechanical adjustment of output impedance under flexible computer control for positional measurements of eithe flesh points or peripheral structures of articulatory organ provides us with a very powerful means for studying moto control mechanisms in speech [Muller et al. 1977]. For mechanical conditions, such advanced techniques provide us wit new possibilities of, for example, perturbation experiments, extending earlier explorations using the bite block conditions (se for example, Lindblom et al. [1979]).
Light-weight mechanical devices have been used by some [Horiguchi \& Bell-Berti 1984].

3.2. Ultrasonic Measuremen

Surface contour information about organs that are not externally accessible can be obtained using ultrasonic techniques, which hav seen good progress for clinical purposes. Ulitrasonic puise echo as well as penetration/ononpentration information (using the reflection quality two-dimensional observations for some us relatively goo tongue and the larynx, without causing any hazard such ionization in the subject's body. Some investigators advocate the usefulness of ultrasonic measurements for detecting muscle
ontraction patterns as well as the surface shape of the tongue [Sonies et al. 1981]. As a novel application, Kaneko et al. [1981]
observed minute vibration of the vo al fold surface in response to external excitation.

The main limitation, in my opinion, of the ultrasonic technique pplied to tongue observations lies in the mechanical loadin at a boundary between a solid object or liquid and the air, and this necessitates a direct contact of the solid transducer surface onto either the skin itself or some liquid-like material as transmission medium. This is particularly problematic for measuring movements, because of the inertia of such a medium,
while it is circumventable for a carefully designed static measurement. The under surface below the floor of the tongue quite soff, but it easily transmits force through the tongue, causin nknown dynamic deformation. With careful application articularly in combination with other methods like x-ray se, however, since it can give different information related to he continuous surface contour as opposed to flesh-point sample positions of the tongue.
3.3. Optical Measurements

The use of a special fiberscope for laryngeal observations during speech utierances brought us new opportunities to understand the laryygeal gestures under phonetic control [Sawashima \& Hirose
1968; Sawashima 1976]. Recently, in addition to the film and ideo recording methods in use in the past, a new technique of using a two-dimensional array structure of light-sensitive
semiconductor elements (image sensors) has become feasible for high speed recording at a few thousands frames per second [Honda et al. 1985; Kiritani et al. to appear]. This makes it possible to digitally record glottal images without resorting to stroboscopic methods, which by definition is not very useful for
studying any aperiodic characteristics of the vocal fold vibration
3.4. General X-Ray Techniques

X -rays used to be the only source of information about dynamic ongue gestures, apart from the qualitative information obtained
through visual inspection from the outside and subjective tactile and proprioceptive sensations. Because of the hazardous ionization effects in the body, bowever, the film method using huoroscopic cineradiography (or other variants) is not generally ecommended for extensive data collicction of articulatory gestures. It also requires excessive analysis effort frame by
frame. The video recording technique is probably signifintly better but the situation is not qualitatively different. The basic problem stems from the flood exposure covering the entire image field. It should be mentioned, however, that careful and thorough examinations of limited amounts of film records in earlier years physiology of articulation [Chiba \& Kajiyama 1941; Houde 1967; Perkell 1969; Wood 1979]. Some information with respect to the configuration in the lower pharyngeal regions, for example in relation to pharyngealization in Arabic languages, is also ndispensable, at present, even though the available data are
extremely limited. El Halees [personal communication] for this purpose used the recently developed xeroradiographic method producing x-ray pictures of detailed structures with otherwise unimaginable clarity, but the extremely high dosage makes this method hardy applicable to more systematic studies. Rossi \& studying the functions of the hyoid bone. The computed tomography [Kiritani et al. 1977] also provides invaluable information at the cost of a very high dose. It is possible, however, to reduce the required dose substantially, by
adjusting the source intensity to barely sufficient amounts fo istinguishing air from tissues, rather than using the norma
conditions set optimally to differentiate tissue compositions. Another serious limitation of this method for speech researc purposes is that the measurement time is inevitably very long making even stationary vowel gestures somewhat difficult. In this respect, the nuclear magnetic resonance method has the sam
3.5. X-Ray Microbeam System

Unlike the conventional film method, where flood x-rays emerge in a wide solid angle uniformly from a small x-ray generating spo pencil beam of x-rays which is adaptively controlled by a digital computer. I invented the x-ray microbeam method out of the need to study dynamic articulatory gestures with the ver minimum use of radiation and for practical feasibility of analysin extensive data. The first generation, a pilot system for testing the method, was implemented in 1968 at the University of Tokyo
with a $50-\mathrm{kV}$ acceleration and a PDP-9 computer for contro Fujimura, Kiritani \& Ishida 1973] (supported in part by NIH USA). A second-generation device was implemented in 1973, with a $150-\mathrm{kV}$ acceleration and a $2-\mathrm{mA}$ electron beam current
[Kiritani et al. 1975](Japnese governmental grant). This system Kiritani et al. 1975](Japnese governmental grant). This system
was used for many data collection experiments, mainly by the University of Tokyo group, myself, and the speech physiolog roup at Haskins Laboratories in cooperation with the University of Tokyo group.
The third generation has been implemented at the University o hisconsin, Madison, as the central research tool for a nationally PI's: Abbs, Thompson and Fujimura, see Nadler et al. [1987]) his new system is designed for a $600-\mathrm{kV} / 5-\mathrm{mA}$ operation, and is ow being operated at $450-\mathrm{kV} / 5 \mathrm{~mA}$.
The reason for the high voltage is primarily twofold: (1) the eometrical design for distortionless image field requires a newl ope with extraneous metal objects in the mouth, such as denta Illings, so that the experimenters are not excessively constrained bout the choice of subjects in a wide range of experiment naclucing studies of pathologies. In addition, (3) the energy
absorbed by the body (i. e. ionization effects) is considerably less for the same detected energy, due to the better penetration of higb energy photons.
The system is equipped with provisions for simultaneous acoustic and electromyographic data acquisition, and extensive uses b Users' Committee (K. S. Harris, chair).

A number of metal pellets (gold sphere or cylinder, one to three mm in cross dimension) are placed on the tongue and othe ariculators, and a few reference pellets are similarly placed on compensation). Pellets are searched by the microbeam utamatically one by one time-sequentially, based on the pa ositions and according to prescribed prediction and searc gorithms. In the new system, the exposure time for each chosen, so there will be no excessive radiation after adaptivel sufficient amount of photon detection. The effective frame-rat varies from pellet to pellet according to the experimenter secification, and the microbeam is stopped by overdeflection fo radiation doses in realistic situations using thenentification. Th are extremely small in comparison with any other x-ray methems.

In addition to obvious reasons for dose reduction due to selective exposures in space and in time, there are more subtle and stil photons are created only along the narrow beam, as opposed to the flood x-ray situation where they are created all over the volume of the exposed object, contributing to the summed-over noise registration. This resulns in a signincanny better signal in substantially superior. This, combined with the inherently high detector sensitivity, means that for a given task, even the local x ray intensity at the point of exposure can be made considerably smaller than in a comparable situation (pellet positio the
The actual accumulative dosage in a few data acquisition session has been empirically evaluated using the Tokyo system Dosimetry film and TLD mosaic have been placed on both the entry side and the exit side of the head to reveal accurate spatial
distributions of accumulative dose within the image field, for two sessions each containing approximately 10 -minute worth net tota exposure. The total dose for such a typical session would be les than the accumulative cosmic ray exposure for the person unde normal circumstances. The peak dose rate (averaged over a very
small volume along the direction of photons) is really what we should pay attention to in planning experiments, taking conservative attitude. It was found to be about 10 mR maximum within the image field for each 1-minute worth ne exposure. This means that if we take the local peak dosage as a data accuisition would amount to a peak dose roughly comparable to one dental bitewing shot.
3.6. Magnetic Methods

While the radiation hazards are minimized by the use of the microbeam, it would be nice if we could perform comparable tasks without using ionizing photons at all. Sonoda's early its position being determined by externally located field detection coils [Sonoda \& Kiritani by externally located field dete this system tas the basi limitation of not being capable of tracking more than one sample point simultaneously. The use of an externally created ac fiel picked up by a small detector coil in the mouth circumvents this constraint [Oka 1980; Schoenle et al. 1983]. Each detector is a 4 $4 \times 2.5 \mathrm{~mm}$ coil wrappecd around a surface as in the case of the microbeam pellets. Perkell and Cohen [personal communication] recently succeeded in tracking one "peliet" on the tongue yielding an extensive set of data. A practical system using a large number of "pellets" simultaneousl remains to be devaped in order to replace the x-ray microbeam for general purposes of articulatory studies. The crucia
dependence on the attached wires leading to the outsid measurement system does constitute a limitation. Also, the metal pellets for the microbeam system can be substantially smaller. The magnetic method does have a distinct advantage, however, in not being constrained byy meal the and and in addition to the nouse of ionizing rays.
3.7. Electrical Methods
3.7.1. Palatography
for both research and tutorial/clinical purposes. It makes traditional palatography applicable to moving gestures, and at the same time, the data are now recorded in computer files directly. The idea of using multiple electrodes embedded on an artificia palate, to my kome who represented the time course pattern using
se spectrographic display scheme. This dynamic palatography was then computerized using oscillographic displays (Fujii et al. 1971]. We studied characteristics of Japanese apical consonants
Fujimura et al. 1973a] and Miyawaki [1972] studied their palatalization using this method. Eek [1973] also applied computerized dynamic palatography to studies of Estonian
 temporal
languages.
chemes using the same basic principle, called electropalatography r dynamic palatometry, are in use by several groups for phonetic research [Hardcastle 1972, 1974, 1984; Fletcher et al. 1975; Sawashima \& Kiritani 1985], and for clinical applications [Shibata at al. 1979]. The device is now commercially available with new palates as opposed to the palate specially made for the individual.

3.7.2. Glottography

Electroglottography [Fant et al. 1966; Smith 1981; Childers et al. 1984] and laryngography [Fourcin and Abberton 1977] have been used extensively for phonetic studies of vocal fold vibration patterns. While it is only an indirect indication of the condition
 ements makes it practically useful for many simations
3.7.3. Electromyography

Measurements of the muscle activities are at present the best we can do for directly observing physiological patterns above the
physical levels in speech behavior. The use of hook-wire electrodes prevails in electromyographic studies [Hirano \& Ohala 1969]. The interpretation of the signals representing contributions rom the complex of the muscle fibers under unidentified physical onditions is ind for rigorous quantitative discussions (see for decomposition, Deluca [1975]). With appropriate care, EMG is e most powerfur means for assessing speech control principles via direct measurements (see Fujimura [1979] for a review of its applications in studies of laryngeal control gestures). Combinations with other methods of physical observations are
often desirable, and the new research facility at the University of Wisconsin aims at simultaneous digital data recording with 'the microbeam pellet position measurement.
4. Temporal Organization and Linguistic Structure

The general aim in this area of study is to separate physical nstraints from linguistically motivated control. My own approach around 1960, working in Halle and Stevens' group at Ths was to observe the articulatory dynamics as much as of the lip movement (Fujimura 1961]. Öhman [1967] in the same he of effort, working with Lindblom [1968] at MIT and then TTH (RIT, Sweden), analysed x-ray data of trngue movement as well as acoustic data, and proposed a quantitative model frmaiizing a now stan ard sept of coaricilation same time, otman proposed the perturbation theory of
consonantal articulation, introducing an important conceptual eviation from the classical notion of speech as a single chain of egmental units. He tried to quantify the inherently nultidimensional nature of speech, by a method which later would ave been called a projection principle.
4.1. Segment Concatenation and Coarticulation

Coarticulation in the Lindblom and Ohman's sense is basically the
process of parameter smoothing in the physical realization of a phoneme to be the segmental unit, however, and expect an phoneme to be the segmental unit, however, and expect an
observable specch signal or its conventional parametric representation (as in specch synthesis experiments) to be constructed by concatenating segmental target values into a string,
it does not capture some important characteristics of natural it does not capture some important characteristics of natural
speech. The concept of coarticulation as a smoothing filter for any parameter, such as formant frequency, quite possibly with some notable asynchrony allowed, can be generalized to include the more traditional and qualitative linguistic notion of assimilation, or what we might call soft coarticulation [Fujimura
\& Lovins 1978]. This makes the string concatenation model more tenable, but at the same time it makes it more difficult to assess its validity; and still, it is difficult to explain observed ad hoc variation of phonemes in different environments [ibid].
An appropriate model of concatenation and smoothing, in my opinion, can be obtained only if we describe the production each of which is related to a physiologically controllable variable. The mapping relation between such a set of control variables into the conventional speech signal parameters such as formants and
pitch is likely quite complex, involving nonmonotonicity and hysteresis. Also, the control program itself is under the influence of feedback and anticipation. We need to know what these mapping characteristics are, or at least what qualitative constraints hey have, before we can determine what the effective variables phenomena. It is a horrendous task to pursute buits to physical in technology, particularly in computational methods, has progress feel that some progress is in sight (see for examples of research fforts along this direction, Coker (1968]; Browman \& Goldstein [1985]). It would not be possible at all, however, if we had to principle is not expected to eork over she ine the superpositional unless we find an effective transformation, resorting to statistical approaches blindly does not look very promising. Fortunately, ecent progress in phonological theory as referred to later, gives us good insight into this issuc, and of course, in turn, any formulation of a successful theory of phribute substantially to the

In this connection, from an enginecring point of view, I believe he optimal choice of a phonetic unit as long as we remain in the segment concatenation method, is the demisyllable or something Macchi 1980]. The demisyluble was also succesfullyman 1980; automatic speech recognition [Rosenberg et al. 1983]. The basic reason for the efficacy of demisyllables is that the predominant ypes of context sensitivity of phonemes, i. e. many sorts and effectively of allophonic variation, some nopelessly ad hoc, are from the prosodic effects (see infra). Ather apar
Siversten 1961; Dixon 1968. Ophique is to use phoneme diphones Siverssen 1961; Dixon 1968; Olive 1980] as the "segmental" unit arpproach is originally independent from the demisyic theory, this in practice both techniques in speech demisyllabic one, but converging using about the same number of units stored in the inventory. Olive's diphone sppproach has many additional features
as well as elaboration in details.
4.2. Phonology and Phonetics - Intonation and Other Topics One important recent development in the theory of phonology that
bears strong implications bears strong implications on understanding the temporal
organization of specch is the trend toward integrating phonetic
observations with the very core of the theoretical discussion. This new trend is most strongly seen in the description of
intonation/accent patterns, but it can now be found in the entirt domain of (nonlinear) phonology, influencing the basic structur of phonological representation from the lexical level dow Articulatory data, collected systematically with careful speech
material designs guided by the basic theoretical interest of linguistic structures may soon constitute unique objects of such discussions.
The spirit of nonlinear phonology at least in the case of so-called suprasegmental description is nothing new (see e. g. Hatto
1961]), and there has been a relatively descriptive work on intonation in Europe involving different experimental methods (see for more recent examples, Vaissiere [1977]; Nishinuma \& Rossi [1981]; Gärding [1983]; Thorsen [1984]; for discussion of interacting factors see Nooteboom \& Terken [1982]; see also Eek (ed.) [1978] for reports on various
studies on different languages). For its theoretical impact in general and formal phonology, we had to wait for the most rece progress using advanced computational environments. Some o he full-scale experimental effortss on sentential intonation by those familiar with linguistic theoretical issues was triggered by asture observations by speech researchers with engineering backgrounds (see e. g. [Maeda 1976]). After Liberman [1975]
theoretical lead (see also Liberman \& Prince [1977), Pierrehumbert's dissertation [1980] established a new experimenta/computational methodology of phonological/phonetic studies.

Traditionally, according to the explicit formulation due to generative phonology Chomsky \& Halle 1968], phonological rule discrete symbols (specifically binary-valued distinctive features) produced an input to the process of phonetic implementation hich handled numerical or continuously valued variables representing physical correlates of those features. The objects of which separated phonemic segments were the feature matrices, Jakobson et al. 1951] represented by its columns. At the output evel of phonology, the so-called systematic phonetic representation used numerical specifications of feature values, as buffer representation between the symbolic and numerical
computations. I do not believe that such description is tenable (Fujimura 1970; Keating 1985]) it is of an empirical question if the separation of numerical processing from symbolic manipulation as subcomponents of a body of ordered rules or processes can be maintained (see Ladd [1986] for subsets of rules are . It is conceivable that the two distinc different in their formal properties.

The concept of simultaneous bundles is abstract, just as that of distinctive opposition is. The current argument is that the inherently mutidimensional diffact (exical) level has to (abstract) temporal domains, and dimensional ecrering differen reflect some articulatory functions [Clements, personal communication; Halle 1983, 1985]. The emerging theory of between our findings ation seems to provide a good bridg their temporal organization on the phonological representation necessitated out of distributionstract derivational observations on the other [McCarthy personal communication; Fujimura 1986c]. At the same time, phonologica representations may specify linguistically significant oppositional by segment. Such a descriptive sposed to completely segmen marking convention [Chomsky \& Halle 1968; Kean 1975] for
example, may make good sense particularly if it is assisted by th syllabic framework and conventions involving res.
example a scheme proposed by Borowsky [1986].

A point of dispute, given this relaxation of the one-dimensionality (i. e. concatenative linearity) or the "simultaneous bundle
constraint, and the introduction of any rather specific but complex structural framework, is whether the abstract feature specification should be given unit by unit completely, or rather specifications are inherently nonsegmental in the sense that they (whether quasi-static values or cynamic patrerns as the "targe configurations) are sparsely specified in the multidimensional operate. In the latter case, the realization rules would compute the entire time course of each dimensional variable to specify the temporal course of physical signals for a large phrasal unit Pierrenumbert (see infra) clearly lakes Inkelas and her coworkers [1987] mainta.

A point of future study related to this topic is the nature of phrasing in speech utterance. A three-level framework of phrasing hierarchy has been proposed Pierrehumbert [1986]) in Beckman (in press) (alaso beckman and. In Japanese, within the minor (accent) phrase, any but the first lexically specified accen marks lose their realization, according to traditional accounts (see for rule formulation, McCawley [1968]; Haraguchi [1975]). Thi is usually interpreted as an erasure or such marks. Recently, with Pierrehumberi's descriptive framework) relating pitch contour realizations in contiguous phrases. This process, unlike the so called pitch decination, is conditioned crucially by the existence of accent in the preceding phrase. When we handle a large phrasal unit, according to the catathesis theory, a qualitatively the mark nor ignore it, but to reduce its manifestation for the subsequent phrases, if and only if there is a preceding accent (in the preceding minor phrase). This raises the following question Is the accent deletion really a symbolic phonological operation, o is it only a relatively strong degree of reduction? Further, larger phrasal units are something of a categorical nature, as expected from the syntactic motivation of the phrasal structures, or is it to be captured (roughly speaking at the phonetic level) as continuously varying boundary effects? That a complex set of discourse there is no evidence contrary to this.
Another set of observations being discussed in terms of the relation between phonology and phonetics concerns the neutralization of phonemic distincliens in [1984] studying final
environments. Dinnsen and Charles-Luce obstruents in Catalan challenged the separation of phonology and phonetics, claiming that the phonological rule devoicing obstruents must apply after the phonetic implementation rule that accounts
for speaker-dependent final devoicing. Similarly, the final Tor spalal tens/lax or voiced/voiceless opposition in German has been studied by several investigators, both in production and perception [Fourakis \& Iverson 1984; Port \& ODell 1985]. The perception of neutralization was revisited by Fourakis [1984].

Keating [1985] discussed the same difficulty in her study of vowel duration and voice onset timing patterns and has proposed a modification of the theoretical framework, allowing the grammar may seem necessary to explain what is observed using the may seem necessary to explain what is observed using the
crucial to the theory of phonology is, however, not just what is sufficient for the description of the observed patterns, but how we can transform observable signal characteristics to units and structures that are effective for phonological representation. If we
do not pursue an answer to this linguistic question, we will simply have to yield to the more complex data as we become capable of the more sophisticated measurements.
What is important here, bowever, is the fact that the fundamental concepts of phonological representation are being challenged, as
the result of accurate enough quantitative observations of actual physical signals, together with the technical capability of comparing exactly realized complex mathematical schemes by computation. The conceptual process of specch synthesis by rule is a concrete rechnical experience in our present-day research environment, and it has emerged, in part, as the result of an
engineering interest in a machine that relates lexical representations (often given in orthographic text) to speech signals.
4.3. Articulatory Aspects of Prosodic Control

Traditionally, prosodic effects on speech characteristics bave been discussed in connection with their manifestation in voice pitch discussed in connection with their maniestation in wits. Thus, the segmental units (phonemes in most discussions) displayed their inherent physical correlates when they were concatenated into a temporal string, with the coarticulation or smoothing with the resultant reduction or undershooting as the only modification,
while pitch and durational modulation were superimposed onto this representation of the speech signal. Some minor (presumably universal) interactions of laryngeal control with articulatory characteristics have also been considered. This picture is typically epresented in the tradition of speech synthesis by rule [Liberman et al. 1959: Holmes et al. 1964].

Recent studies clearly show that this classical view only reflects a lack of precise enough data, or at best, careful avoidance by the phoneticians of the intruding complexity of nonessential factors in the phonetic description. Every phonetician has known that segmental, suprasegmental, or extralinguistic, for physical measurements to yield valid comparison of contrasting phonemes. Even a narrow phonetic transcription cannot be performed mechanically, because supposedy identical pionetic segmers. The language would vary from one condition to andify words for practical purposes has compelled us to confront this outstanding roblem (for some relevant discussions, see Fujimura [1984]; M. Obala [1983])

4.3.1. Focus and Phrasing

Contrastive emphasis placed on a particular word in a sentence utterance introduces remarkable effects not only in the pitch contour and segmental durations, but also in the articulatory movition. Fig 2 illustrates an example of the vertical movement of a metal pellet placed on the blade of the tongue, tracked by the -ray microbeam system at the University of Tokyo. The subject was a phoneticaly trained fe American English.

The two utterances demonstrate the effects of different placements of focus (contrastive emphasis). It can be readily seen that the affected words are uttered with radically different gestures. The yllable nucleus of the word "six (see whe single arrow) show accompanied by a considerably extended time interval between the downward and upward (transitional) movements. Th

It's SIX five seven America Street

It's six five seven AMERICA Street

Fig. 2: Tongue blade movement (vertical position) as recorded by x -ray microbeam tracking. 'It's six five seven America Street
spoken by a female American speaker, with focus placed on (a) 'six' and (b) 'America'
consonantal gestures on both sides of the valley also show some ifferences between the two versions. The portions of the utterances representing the word 'America' (see the bracket), on he other hand, demonstrates an even more dramatic difference in gesture. There, betwest nothing between the two versions. Finding correspondence between the two curves as shown by the transcription in the figure, is difficult without resorting to an examination of other pellet positions (and the acoustic signal), in spite of the fact that he two front vowels as well as the /r/ all presumably involve

In this experiment, a few utterances were recorded for each of the our conditions placing emphasis on different focusable words. The patterns were observed to be qualitatively very consisten among different utterances for the same emphasis condition, but
the gestures for emphasized words tended to vary considerably in terms of the extent of the excursion and temporal expansion.
A somewhat similar modulation with less change in the depth of aucleus valleys was observed when distinct phrasing patterns we
$(5+5) \times 5$ (yielding 50$)$ vs. $5+(5 \times 5)$ (yielding 30$)$.
4.3.2. Iceberg Patterns

In the course of studying temporal organizations of articulatory
movement patterns, we realize it is rather difficult to define reliable land marks which we can rely on in comparing utterance
of the same phonetic segmental material under differen environments. The familiar notion of a segmental boundary (fo representative examples see Lehiste [1970]; Umeda [1975]) displayed as acoustic events such as voice onset, consonantal in the articulatory time course. This is particularly true, presumably, because we use selected flesh points on the articulators such as the tongue blade, which, depending on the context as well as the particular phoneme, may or may no represent the point of articulation. For a precise timing definition of an event that is crucial in terms of the acoustic consequences,
we will have to refer to a three-dimensional measurement covering a wide spatial domain, as seen in dynamic palatographic studies.

In my opinion, however, the apparent difficulty reflects a deeper issue. The dynamics of articulatory structures is inherrently continuous, involving a set of finite quantities like force and mass
Even when the velocity of a particular part of the organ change abruptly, for example by collision with a heavy hard structure such as the palate, the central part of the organ keeps moving rather smoothly. Apart from the possible indirect reaction through neural feedback, what determines the time course of the entire system reflecting the neural commands is the physically
central rather than peripheral part of the structure.

Also, for the purpose of quantitative analyses, a smoothly changing variable is mathematically more tractable that discontinuous functions, because smooth functions can be handled at least locally by a linear approximation. This means that within a selected range of change, the system can be treated as
superpositional system, where different factors can be easily separated out by controlling contributing factors one by one. In formidably complex process such as speech production, this is perhaps the only practical initial approach, until we have som comprehensive view of the entire system with respect to interrelations among specific parts of the system.

One more reason favoring recording smoothly changing variable is that our measurements are always noisy. A discontinuous tim inerene used as the means for evaluating the crucial event is measurement Especilly if th due to small noise in position measurement. Especially if the purpose is to determine timing values of crucial events, continuously moving parts of the time
functions provide the most accurate evaluation of timing in comparison with, for example, an evaluation of the time when movement starts from the standstill condition. If we define a event of invariably fast movement of a sample point fixed to the structure, say a pellet, crossing across a prespecified position, sa is very high with respect to the time evaluation. is very high with respect to the time evaluation. In order to mak
phonetically meaningful measurements, however we have to fin a crucial condition, say a specific value of height for the selected lesh point that makes sense as a definition of a phonetic event.
If we bave a validated model of the time course for the give determined by second order the system behavior is known to b we can use a large segment of the time changing variable tha covers an interval during which system parameters can be assumed take constant values, for a semiglobal curve fitting procedure hudies (e very noise-resistive method. Some recent temporal sudies (e.g. Ostry et al. [1983]) in effect assume such a simple My apran is 0 oy 10 find
My approach is to try to find relatively invariant movement merss that can be operationally defined reliably enough for the purpose of timing evaluations of landmark events. This metho
was motivated by the informal observation of various data from microbeam measurements. For some parts (in terms of pelle height) of the movement of the crucial articulator for placespecified consonants (the lower lip for labials and the tongue
blade for apicals), fairly reproducible results seemed to emerge with respect to timing modulation of such events as the result of prosodic control [Fujimura 1981, 1986]. Using a special statistical rocess to automatically and empirically decide such positiona anges for a selected domain of prosodic variability, we phrasing, the temporal modulation relation of each pair of itterances (see Fig. 5). The data are only preliminary, and await urther verification using more data, which hopefully will become available very shortly from the Wisconsin microbeam system
For such patterns that seem to be characteristic of the consonantvowel combination, or more generally for a given demisyllable here the observed articulator is crucial for the place specification of the consonant, I gave the name "iceberg", because such a movement pattern floats around fairly frely in time relative to
other articulators' movement patterns, when segmental or prosodic her articulators' movement patic
4.3.3. The Case of Velum Movement

Vaissiere [personal communication], using the microbeam data from the University of Tokyo, studied the velum movemen patterns in utterances of several sentences, as well as words in American). She interpreted the time functions representing the vertical position of a sample point of the velum surface, obtained by tracking a pellet attached on a flexible plastic strip which was laced on the velum in the nasal cavity [Fujimura, Miller \& Kiritani 1977]. In prescribing the time course of velum height, autosyllabic effects. The strength is conditioned by intrasyllabic position as well as stress. For the positional target, she concludes entatively that there is no target values for vowels, varied positions being specified for both nasal and nonnasal consonants depending on nonsegmental conditions.

One particularly interesting observation she has made is that the atated to syllabie reduction seems to vary basically from one speaker to another. In one speaker, the movement reduction for prosodically weak position seems to be explained by undershooting due to time constraints, whine for the other speaker, such issues will be pursued with extensive data using many subjects in different languages.
In many languages, it has been reported that velum height for word initial position is higher than for word final position,
segmentally (nearly) ceteris paribus [Ushijima et al. 1972; Fujimura 1977]. Some observation using my own articulation in Japanese shows that this initial vs. final distinction is observed for intrasyllabic position even when the nasal consonant is in wordmedial position.
4.3.4. Allophonic Variation

One important issue that stems from the traditional segmental view of speech is the allophonic variation of the same phoneme depending on the context. Presumably, any universal effects of (hara) coantial the that does not mean that the remining aspects of coarticulatory processes do not involve utterance parameters. Parameters such as time constants of movement patterns, inherent strengths of influence over neighboring elements within an articultory dimension, susceptibility of a target position
or a movement pattern to such influences, must vary fro language to language, dialect to dialect, and part of it may well vary speaker to speaker. The patterns of use of particula we have seen in Vaissiere's observation of velum movement patterns. Furthermore, parameters specifying a neutral (resi position, range of movement, sensitivity to prosodic modulatio etc. of the articulators must be specified as to what we may cal phonetic disposition to characherize each language, dialect terms of phonological petterns implemented as speech we need complex and very sophisticated normalization method to be applied to different phonetic systems.
Precise descriptions of coarticulation and normalization processes are not known to us at present, but as a matter of principle, we identify unexplained variation of phonetic values of phonological nits, phonemes or syllables. A large part of such variatio would be related to prosodic effects. There are known salien ases of phonetic variation of phonemic segments, however, which can be recognized as ad hoc in the sense that any language
dependent assimilatory principle (i. e. even soft coarticulation) would not be expected to predict them(Fujimura \& Lovins 1978] think most of such known allophonic variation is containe within the domain of the syllable, or in fact, the demisyllable.
My interest now is if we can find out some parts of such seemingly ad hoc variation to be describable in terms of a mor general systematic (but of course language dependent) description of temporal characteristics of articulatory processes. I think the ollowing observation of American English flapping may b uggestive of such a possibility.

In American English, intervocalic $/ t /$ and $/ d /$, typically in sressed-reduced environment (as in 'better', see Kahn [1976] Lcomplete closure accompanied by voicing for both $/ t /$ and $/ d$ tap or so-called flap, see Ladefoged [1977]). The microbean observation with respect to the tongue blade pellet (about one cm ehind the tip of the tongue) has revealed a very interesting dynamic characteristic of this articulatory gesture. Fig. 3 shows (voiced) tap for a pseudo-English phrase, spoken by a female speaker.

The two sets of time-functions representing coordinate values of peliets are aligned in time, in such a way that the two utterances ow a fair agreement roughly, apart from the following two oints [Birnbaum, personal communication]: (1) The mandible here is some tongue body movement for the stop correspondingly. (2) The tongue blade (presumably tip also) shows a distinctly different type of gesture both in the time nction shape. and the timing of the event as a whole relative to ther articulators' temporal patterns.
oint one probably can be explained in terms of the difference in he use of the linguamandibular gesture related to both the phonological syllabie margin status and the physical constraints or he physiological mechanism used for forming the apical closure. ovement is practically identical except for the local difference directly reflecting the consonantal (or rather syllable margin) gesture.
Given this agreement in the timing programs, the salient ifference in the blade movement is rather remarkable. In pertizular, the stop gesture occurs earlier and starts moving

Fig. 3: Tongue blade movement (vertical position) comparing meaningless phrases 'bet aught' (thicr liness) whichion) wasparing
pronounced with a medial stop, and 'bed wach waty pronounced with a medial tap by an American English speaker (female). The speaker was not given any instruction as to the manner of pronunciation, and the phrases were given in a list
form. The curves reperesent fom the height, The curves represent, from top to bottom, tongue bade dorsum advancement, respectively. The height, and tongue aligned in time to optimize the overall comparison for the curves
except local deviations.
toward the vowel considerably earlier. The peak of the consonantal constriction
msec or more earlier.

There are two categories of possible explanations. One is that the two gestures are, with respect to physiological realization,
basically different. Different associated with different neuromuscular and physical time constants, so that even the same time pattern of motor command at the cortical level results in such a timing difference. Or mechanisms. Particularly if the via different physiological cotrol more peripheral loop that elicits a response tose makes use of in a specific (perhaps unobserved) part of the subtice chang opposed to the stop gesture that is more or less under cortica control movement by movement, this rather qualitative difference A

Another explanation may be that somehow the moto programming manifesting different syllable or foot structures ha to be numer
configuration.

The former would suggest that the stop-flap (so-called) distinctio is inherently discrete. The latter may imply that such allophonic
variation is a continuous phenomenon; salient contrast evoke discretely or symbolically different perception or transcription, but epending on the context, particularly quantitatively specified honetic paramelers such as degree of emphasis or utterance speed, there may be intermediate cases from a phonetic point o view. The fact that some (even phonetically experienced) native
speakers are not comfortable identifying the "stop-flap" distinction may suggest that the latter is the case. The recent study o formant characteristics of $N /$-allophones by Sproat and Borowsky 1987] also seems to suggest the continuum of allophonic ariation, refuting Halle and Mohanan's proposal [1985], and cally seems promising in
4. An Elastic Model of Timing

As we have seen above, the temporal organization of speech for many purposes should be viewed as a multidimensional structure. structural units for duration assignment, or events for defining timing and time intervals, then we may be able to represent in each of the dimensions the timing of each event by a linear model. That is, each time interval between contiguous events may be
computed as a superposition of components due to different computed as a superposition of components due to diff
segmental and prosodic contributions as independent

The idea of using a string of springs as a model of speech timing, or more specifically of segmental durations, is not new. In particular, Jane Gaitenby [1965] at Haskins Laboratories discussed Lehiste [1980] for a review). What I would like to discuss here is a general model to describe the prosodic modulation of timing patterns of certain articulatory events. We can interpret time intervals among such events to derive durations of segmental units, whether phonemic, demisyllabic or syllabic.

After having determined the timing of each event in the time course of an utterance, we then will have to derive time functions of physical parameters, such as formant frequencies or tongue height, by looking up the inherent or segmental properties, static or dynamic as appropriate. As an example of such time function derivation processes, we may consider the case of pitch contours
out of abstract tone specifications in Pierrebe work (see for its implementation as a synthesis rule system, Anderson et al. [1984]), or the prediction of velum movement patterns in Vaissiere's work discussed above.
Let us start with a simple example. Fig. 4 shows a singledimension temporal model represented by a string of elastic between two speech events to be observed, which are represented by joining points (circles) between congtiguous springs. The j-th \mathbf{x}_{0} spring is is compressed or stretched deviating from its natural length $X_{o j}$, in response to the external force F. The extent of the
response depends on the inherent stiffess k, of the spring Let $u s$ call the external force "prosodic force", because it is the cause of prosodic modulation in our model. The speed of utterance is directly related to the value of this prosodic force. Since the elastic system is superpositionally linear, all the increments of
event intervals are proportional emphasize here that the use of springs in the model does not imply uniform compression or stretching of the speech structure within the unit that is represented by a spring. Each spring represents only the interval between each adjacent pair of selected
events.

Fig. 4: A spring system composed for a simple phrasal unit (single dimension)

This model can be effective not only for representing the tim interval distribution of an utterance as a whole, but also for the real time process of uttering a sentence, as far as the force is fixed
throughout the utterance. This is so because in order to determine throughout he utterance. This is so because in order to determine
the conditions of the part of an utterance to the left $($ i. e. the past) of any joint point, we do not have to know the structure to its right (future). The boundary conditions for any substructur defined by the joint points at its ends are completely specified by the force applied to the end points. In this sense, considering the condition for the spring system is a crucial difference, even though mathematically the two ways of specifying boundary conditions are exautly equivalent.
We now reed to devise a scheme to represent prosodi moduation. We would like to maintain that the quantities $x 0$ an onto a particular plane. We assume that the effect of stress is represented by a parailel spring, attached to the corresponding substring of segments representing a unit such as syllable, foot o This additional spring, which we may call a prosodic spring, has as its inherent properties, natural length xo and stiffness k representing the nature of the prosodic effect, such as the degre of stress. We may assume here that generally prosodic control is epresented taking compression as the positive sense of the force or a neutral situation, and a relaxation or expansion of a segmental spring occurs when a parallel spring counterbalances part of the external force.
Another salient effect of prosodic modulation is the phrasal effect in particular, phrase final lengthening. We represented in Fig. b, which are added to the segmental strings in series. These durational values are to be absorbed into the durational values of adjacent segmental units when we interpret the sprin

We can represent a hierarchical phrasal structure by emoedding substructures in a larger spring system [Fujimura 1986d]. We need at least one level of phonetically motivated phrasal level to allow control of the proso

We studied this issue using icebergs (see supra) as the time marking events [Fujimura 1986a]. Fig. 5 illustrates a comparison of two utterances of the same word string, twenty two plus seven imes four', distinguished by different phrasings corresponding to
different arithmatic values. In this figure, each articulatory event (shown by a horizontal bracket) is plotted at the horizonta position representing its average timing, and at the vertical utterances.

Fig. 5: A comparison of timings of corresponding events (iceberg-like movement patterns) in two utterances: along long ordinate, timiry difference for each event between the two utterances. Note the time scales (in frame numbers) are different between the two axes. The frame interval is about 8 msec .
.- pattern of timing difference demonstrates a piecewise linea change. This means that the ratio of the interval difference to the average time interval, i. e. the percentage of interval variation one phrase to another. The local utterance speed, or equivalentiy the prosodic force, was varied in a manner representable by parallel phrasal spring. Each breakpoint of straight lines indicates where a phrase boundary occurred in the sentence in question Actually, the piecewise linear change as seen in this figur constants of the constituent springs, within the general mod discussed above. At any event, this observation seems to hold fo all other similar utterance pairs. Furthermore, when we compar a sentence with a contrastive emphasis placed on different words, such a case, the emphasized word behaves as a prosodic phrase.

In my opinion, the traditional acoustic events for timing measurements are quite useful and reliable, but do not reveal some of the important characteristics of temporal or ganization. different articulatory dimensions, as I have discussed in previou papers, because movement patterns in each dimension can reflect articulator specific temporal constraints. Some aspects of the asynchronism are probably crucial for understanding the basid 1981, 1986; Allwood \& Scully 1982; Scully and Allwood 1985]. We need to measure articulatory events, as well as voicing We need to measure ariticulatory events, as well as voicin
control, for different articulators simultaneously. The x-ra microbeam provides us a good means to obtain useful and rathe

I I mentioned before, the complex spring model is useful for describing the utte:
conditions are met:

1) The prosodic force is not altered in
he middle of an integral utterance unit,
2) The change of plan takes place
that connects to the past part of the utterance
only through a single node.

Fig. 6: A complex spring model (single dimension). Any of the solid verical soildines, but not broken lines, can mark a point in
time as a boundary between past and future in motor programming.

Thus in Fig. 6, the solid vertical line can separate the past fro the future, but broken vertical lines cannot. Time must jump
from a single joint node to the next, as the motor program in for utterance execution. This suggests that the cognitive program controlling speech utterance is prepared as a sequence of phonetic phrasal units, formed into a simple concatenative linear string (c f Sternberg et al. (1978,1980$]$). Within each phrasal unit, there prosodic modulations, but the specification of all suct substructures within each phrasal unit must be complete before it gets started as an utterance.
Fig. 6 pertains only to one of the articulatory dimensions. The discussion above suggests also that the linkage among different
imensions must be solid at the phrase boundaries that serve for demarcating the motor program execution units.

5. Discourse and Intonation

In the tradition of linguistics, the sentence has played the most crucial role in the descriptive structure, defining the do most syntax most successfully. Without delineating linguistic phenomena on the basis of the concept of sentence, the present achievement of descriptive theory could not have been imagined. speech research are all contained within the bounds of sentences. The more realistic we become in handling speech signals, the more severe we find the constraints. Recent research efforts have ot overlooked these constraints. There are emerging findings which attempt at an ambitious challenge along this direction, even
hough, needless to say, it is very difficult to explore a rigorous theoretical approach, once we step out of the well-proved shelter of syntactic theory. These efforts are representatively aracterized by a combination of training in artificial intelligence with the semantic, syntactic, phonological and phonetic as well as sychological disciplines. From the phonetic point of view,
any cases in connection with emerging thoughts about hum linguistic performance and computational parsing of sentences.

Discussion of semantic references led AI researchers to th discovery of hierarchical block structures in the organization of Pierrehumbert [1986] (also Hirschberg [1987]) have shown an the voice pitch contours, when represented properly according to Pierrehumbert's descriptive framework, reveal the domains of such block structures. Silverman [1987] in his PhD dissertation orroborates this point, discussing related issues with extensive ata from systematically controlled perceptual experiments. It is information than that represented in written text, in the form of pitch (and other signal aspects such as voice quality modulation a well as intensity), which significantly helps the listener in parsing the sentences correctly. Marcus and Hindie [1983] proposing their play a crucial role in sentence parsing even though traditional play a crucial role in sentence parsing, even though traditiona
orthographic systems ignore such information and necessitate for the readers of text a more complex parsing strategy.

6. Concluding Remark

Speech is a physical and behavioral manifestation of linguistic structures. As such its characteristics can be evaluated only with eference to the linguistic structure that underlies it. While speech ignals convey information other than linguistic codes, and th oundary between linguistic and extra- or para-lingaistic issues may not be clearcut, there is no question that the primary goal of organizations of linguistic forms to properties of the units and that are uttered and perceived under different circumstances. For his goal to be achieved, it is imperative that we have an effective probably not the only correct) theory and a feasible presentation framework based thereon. In my opinion, we have hough we have seen remarkable progress in recent years in this field, and our understanding now is far better and more useful than it was a decade ago.
Furthermore, such theoretical endeavors must depend crucially on experimental and computational approaches, and is sensitive to the work in solid state physics is. Thus our work in speech synthesis fom text, for example, can be affected immediately by any anovative development of the level theory [Kiparsky 1982] in horphology, nonlinear phonology, lexical semantics, syntactic emporal organization of articulatory, avents. well as discussions of there is no question that the theoretical discussion of the emerging her/plane theory of phonological description must crucially depend on a rather accurate description of pitch contours, anatomy and hysiology of articuratory systems, movement patterns of the ond factual knowledge of along with a good linguistic insight ynchronic and diachronic. In addition, empirical languages, obtain in engineering implementations of the theories do provide us with invaluable suggestions as to the future direction, as well as
more we learn about speech and language, the more strongly are we impressed by the depth of the human cognitive faculty.
7. Acknowledgment

I wish to acknowledge the benefit of daily discussions of relevant issues with all my colleagues in the Departments of Linguistics
and of Artificial Intelligence Research, AT\&T Bell Laboratories. In addition, Kim Silverman and David Talkin read through earlier versions of my manuscript and contributed many helpful comments. I am also grateful for many expositional corrections contributed by several readers, particularly Nina MacDonald and Joan Bachenko

REFERENCES

Abbs, J.H.(1979). Speech Motor Equivalence: The Need for a Mupenhagen Curro, Proc. 9h En. Cong. Phonetic Sc., Vol II, Copenhagen, Aug 6-11, 318-324.
M, J.h. and Gracco, V.L.(1982); Motor Control of MultiMorement Behaviors: Orofacial Muscle Responses to Load
Perturbations of the Lips during Specch, Soc. Neuroscience 8 , 282.

Abbs, J.H. and Gracco, V.L.(1983), Sensorimotor Actions in the Control of Multimovement Speech Gestures, in Trends in Neuroscience 6, 393-395.
Abbs, J.H. and Gracco, V.L.(in press), Control of Multimovement Cordination: Sensorimotor
Specch Mortor Programming Speech Motor Programming, J. Motor Behavior.
Production, Proc. ICASSP '82, Vol. 2 Piscatade of Speech Service Center, 932-935.
Anderson, M., Pierrehumbert, J.B. and Liberman, M.Y.(1984) Synthesis by Rule of English Intonation Patterns, Proc. ICASSP Baer, T., Sasaki, C. and Harris Kervice Center,2.8.1-2.8.4. Baer, T., Sasaki, C. and Harris, K.(eds.),(1987), Larynneal
Function in Phonation and Respiration, San Diego, College Hill Press. ME and Pierreburert B B Structure in Japanese and English, in Pho.(1986), Intonational Ewen and E. Anderson(eds.), Cambridge, Cambridge U 509.

Bell-Berti, F. and Harris, K.S.(1982), Temporal Patterns of Coarticulation: Lip Rounding, J. Acoust. Soc. Am. 71, 449-454.
Bless, D.M. and Abbs, J.(eds.)(1983). Vocal Fold Physiology Contemporary Research and Clinical Issues, San Diego, Colleg Hill Press
Speech Prod and Stevens, K. N.(1979), Acoustic Invariance in pectral Charaion: Evidence from Measurements of the Spectral Charac
$66,1001-1017$.
Orowsky TJ.) PhD Diss., Dept Linguistics, U. Massachussets, Amherst.
Browman, C.P.(1980), Rules for Demisyllable Synthesis Using LINGUA, a Language Interpreter, Proc. ICASSP '80, Vol 2 Piscataway N.J., IEEE Service Center,561-164
Browman, C.P. and Goldstein, L.M.(1985), Dynamic Modeling of Phonetic Structure, in Phonerc Lingus), -- Essays in Honor Press,35-53.
Chiba, T. and Kajiyama, M.(1941), The Vowel, Its Nature an Structure, Tokyo, Tokyo Kaiseikan. TMore, G.P. (1984) Childers, D.G., Smith, A.M. and Moore, G.P.(1984), Relationships between Electroglottograph, Speech and Voca
Cord Contact, Folia Phoniatrica 36 , 105-118. Chomsky, N. and Halle, M.(1968), The Sound Pattern of English, New York, Harper \& Row.
Coker, C.H.(1968), Speech Synthesis with a Parametri Articulatory Model in Speech Symposium, Kyoto 1968, reprinted in Speech Synthesis, J. L. Flanagan and L. R. Rabiner(eds.),
Stroudsburg, Penn, Dowden-Hutchinson, Ross, 135 -139.

Conrad, W.(1987), Simplified One Mass Model with Supraglotta Phonation and Respiration, T. Baer, C. Sasaki and K. Harniten ads.), San Diego, College Hill Press, $320-338$.
Cooper, F.S., Delattre, P., Liberman, A.M., Borst, J. and Gerstman, L. (1952), Sorne Experiments on the Perception o
Speech Sounds, J. Acoust. Soc. Am. 24, $579-606$. Davis, PJ and Nail B.S (to appear) Th
Laryngeal Epithelial Receptors to Static and Dynamic Forms of Mechanical Stimulation, in Voice Production, O.Fujimura(ed.), New York, Rave Press
lattre, P. Liberman, A.M. and Cooper, F.S.(1955), Acoustic Loci and Transitional Cues for Consonants. 27, $769-73$. during Constant Force Isometric Contractions, Biol. Cybern. 19 159-187.
innsen, D. A. and Charles-Luce, J.(1984), Phonological Neutralization, Phoneti- Implementation and Individua解基, J. Phonetics $12,49-60$. of Contlinuous Speech Using the Diphone Method of Segmen Assembly, IEEE Trans. Audio electroacoustics 16, 40-50. dwards, J.(1985), Mandibular Rotation Speec
Scs.
Eek, A.(1973), Observations in Estonian Plalatalization: AD Articulatory Study, Estonian Papers in Phonetics, 18-36.
Papers of the Symposium, Tallinn Nov. 1978, Estonian Paners in Phonetics.
Eek, A. and Remmel, M.(1974), Context, Contacts and Duration wo Results concerning Temporal Organization, Preprints of the Speech Communication Seminar, Stockholm, Aug. 1-3, 1974
Fant, G.(1956), On the Predictability of Formant Levels an Spectrum Envelopes from Formant Frequencies, in For Roman Jakobson, M. Halle, H. G. Lunt, H. McLean and C. C. van Schooneveld(eds.), The Hague, Mouton, 109-120.
(1960); Acoustic Theory of Speech Production, The Hague,
ant, G.(1983), Preliminaries to Analysis of the Human Voice Source, KTH-QPSK '1982), Royal Inst. Technol., Sweden, 1-27. Fant, G.(1983a), T" oice Source: Acoustic Modeling, KTH QPSR 4 (1982), K Inst. Technol. Sweden, 28-4
Fant, G., Ondrac̈kova, J., Lindquist, J. and Sonesson, B.(1966) Technol. Sweden, 15-21.
Firth, I. M.(1986), Modal Analysis of the Vocal Tract, J. Acoust Soc. Am. 80, Suppl I, 597.
 DARPA Speech Recognition Date-Marse: Spall, K.(1986), The Dis, Proc, the DARPA Speech Recognition Workshops, Feb. (1986), Washington, D. C., Science Applications International Corp.
Flanagan, J.L. and Landgraf, L.(1968), Self-Oscillating Source fo Vocal- Tract Synthesizers, IEEE Trans. Audio-Electronics, 57-64
Flanagan, J.L. and Ishizaka, K. (1r76), Automatic Geneation Voiceless Excitation in a Vocal Cord/Vocal-Tract Speech Synthesizer, IEEE Acoust. Signal Speech Processing 24, 163-170 Fletcher, S.G., McCutcheon, M.J. and Wolf, M.S.(1975) Dynamic Palatometry, J Speech Hear. Res. 18, $812-819$.
Fourakis, M. (1984). Should Neutralization be Redefined? J
Fourakis, M. and Iverson, G.K.(1984), On the 'Incomplet Neutralization' of German Final Obstruents, Phonetica 41, 140149.

Fourcin, J. and Abberton, E.(1977), Laryngographic Studies of Vocal Cord Vibration, Phonetica 34, 313-315.
Frances, W.N. and Kucera, H.(1982), Frequency Analysis of English Usage, Boston, Houghton Mifflin Co.
Fromkin, V.A.(ed.)(1985), Phonetic Linguistics,
Fromkin, V.A.(ed.)(1985), Phonetic Linguistics, Essays in Honor
of Peter Ladefoged, Orlando, Flocide Fujii, I., Fujimura, O. and Kagaya R (1971), Paiatograpty by use of a Computer and an Oscilloscope, Pro 7th Int. Cong. Acoust., Vol 3, 113-116.
Fujimura, O.(1961), Bilabial Stop and Nasal Consonants: A Motion Picture Study and its Acoustical Implications, J Speech s. 4, 233-2247

General and Oriental Linguistics, R. Jakobson and Kawamoto(eds.), Tokyo, TEC Co., 109-130
Fujimura, O.(1976), Syllable as Concatenated Demisyllables an Fujimura, Proc. Acoust. Soc. Am. 59, Suppl 1, S55.
Velum and Tongue Movements on Articulatory Processes Articulatory Modeling and Phonetics, R.Carre, R.Descout, in M.Wajskop(eds.), Grenoble, GALF Groupe de la
Commuication Parter Communication Parlee, 115-126.
Fujimura, o.(1979), Physiological Functions of the Larynx in
Phonetic Control, Current Issues in the Phonetic and P. Hollien(eds.), Amsterdam, John Benjamins Sciences, H. Fujimura, O.(1980), Modern Methods of Investigation in Speech Production, Phonetica 37, 38-54.
Fujimura, $0 .(1981)$
Movements as a Multidimensional Phrasal Structure Articulatory Movements as a Multidimensional Phrasal Structure, Phonetica
$38,66-83$, corrected version in Proc. Symp. Acoustic Phonetics and Speech Modeling, Part 2, Paper S, Inst. Defense Analysics Princeton N.J..
Vocal Fold Physiology, Kover Theory of the Vocal Fold, in Tokyo, U. Tokyo Press, 271 . N. Stevens and M. Hirano(eds.), Fujimura, O. (1984), The Ross 271-281
Technology, Ling. Soc. Am. 104 Linguistics for Future Speech Fujimura, O. (1986), Relative, June 1984.
Movements: An Iceberg Model, in Invariance and Variabilitory in
Speech Processes Speech Processes, J. S. Perkell and D. H. Klatt(eds.), Hillsdale
N.J., Lawrence Erlbaum, 226- 242 Fujimura, Lawrence Erlbaum,226- 242
Movements - A Multidimensional Conization of Articulatory Running Specch, Proc. Acoust. Soc. Am. 80, Suppl I, S97. Phonetics 14.105-108. ujimura, O. (1986c), A.
Articulatory Gestures .. An X-ray Microbeam Organization of Phoniatrica 38, 298, (Abst.)
Fujimura, O.(1986d), A Linear Model of Speech Timing, in
Lehiste Puhenduse Lehiste Puhendusteos, R.Channon and L.Shockey(eds.),
Dordrecht, Holland, Foris. Fujimura, O.(ed.)(to appear),
Fold Physiology Conference Jan. Production - Proc. Sth Vocal Raven Press.
yjimura, 0 ad of Vocal Tract Charquist, J.(1971), Sweep-Tone Measurements Fajimura, O., Ishida, Y. and Acoust. Soc. Am. 49, 541-558. Controlled Radiography for Observation of Movements Articulatory and other Human Organs, Comp. Biology \& Med.
3, 371-384. Fujimura, O., Tatsumi, I.F. and Kagaya, R. 1973 a
 Fujimura, O., Miller
Controlled X-Ray Characteristics of Nasal Microbeam Study of Articulatory Madrid, 461 . Int Congr. on Acoustics, Contributed Papers 1

Fujimura, O., Macchi, M.J. and Lovins, J.B.(1977a) Demisyllables, and Affixes for Speech Synthesis, Proc. 9th In Congr. on Acoustics, Contributed Papers 1, Madrid, 513.
Fujimura, O. and Lovins, J.(1978), Syllables as Concatenative
Phonetic Units, in Syllables and Segments, A. Bell and J. B Phonetic Units, in Syllables and Segments, A. Bell and J. B Hopper(eds.), Amsterdam, North Holland, 107-120. An
unabridged version available from
Fujimura, O. and Kakita, Y.(1979), Remarks on Quantitative Description of the Lingual Articulation, in Frontiers of Speech Communication Research, S. Öhman and B. Lindblom(eds.), London, Academic Press,17-24
Fujisaki, H.(1977), Functional Models of Articulatory and
Phonatory Dynamics, in Proc. US. Phonatory Dynamics, in Proc. US-Japan Sem. Dynamic Aspects Tokyo, U. Tokyo Press, 347-366 Fujisaki, H.(1983), Dynamic
Fundamental Frequency in Speech and Singing Voice Production of Speech, P. F. MacNeilage(ed.), New York Springer-Verlag, 39-56
Garding, E. (1983), A Generative Model of Intonation, in
Prosody: Models and Mearer Prosody: Models and Measurements, A. Cutler and D. R Gaitenby, J.H.(1965), The Elastic Word, Status
2. New He (1), Speech Res. Grosz, B.J.(1977), The Representation and Use of Focus in Dialogue Understanding. Technical Rept 151, Menlo Park CA SRI International.
Haken, H.(1977), Synergetics (Third Edition 1983), Heidelberg, Springer Verlag.
Halle, M. (1983),
Imp.(1983), On Distinctive Features and their Articulatory Implementation, Nat. Lang. Linguistic Theory 1, 91-105.
Halle, M.(1985), Speculations about the
in Memory, in Phonetic York, Academic Press, 101-114 Halle, M. and Mohanan, K.
Modern English, Linguistic Inquiry i6, Segmental Phonology of Halle, M. and Vergusic Inquiry 16, 57-116.
Linguistic Inquiry 18, 45-84. Linguistic Inquiry 18, 45-8
Haraguchi, S. (1975),
Haraguchi, S. (1975), The Tore Pattern of Japanese: An
Autosegmental Theory of Tonolc. Aurosegmental Theory of Tonolc. ., PhD Diss., Dept. Linguistics
$\&$ Philosophy, MIT, Cambridge MA Hardcastle, W.(1972). The Use of
Phonetic Research, Phonerica 25, 192-215.
Hardcastle, W.J. (1974)
Activity during Speech: A Survental Investigation of Lingual Activity during Speech: A Survey, Phonetica 29, 129-157. Contact Patterns with Electropalatography WP Lingual Palatal U. Readings, No 4, 1-40.

Hattori, S.(1961), Prosodeme, Syllable Structure and Laryngeal
Phonemes, in Studies in Descriptive and Applied Linguistics,
Bulletin of the Surneal Univ., Tokyo, $1-27$.
Hattori, S., Yamamoto, K. and Fujimura, O.(1958), Nasalizatio of Vowels in Relation to Nasals, J. Acoust. Soc. Am. 30, 267-
274. Henke, W.L.(1966), Dynami Production Using Computer Ariculatory Model of Speech Production Using Computer Simulation, Mod.e of Diss., Dept
Linguistics \& Philosophy, MIT, Cambridge, Mass Hirano, M.(1977), Structure and Vibratory Behavio
Folds, in Dynamic Aspects of Speech Production, M. Sawashim and F. S. Cooper(eds.), Tokyo, U. Tokyo Pres, M. Sawashim Hirano, M. and Ohala, J. (1969), Use of Hooked-Wire Electrode for Electromyography of the Intrinsic Laryngeal Muscles,
Speech Hear. Res. 12, 362-373 Hirose, H. and Kiritani, S. (1985),
Labial Articulatory Movements in A A Kinesiological Study of Tokyo RILP 19, $201-208$.
Hirschberg, I
Studies, Proc. 1987), Uses of Intonational Cues in Discourse

Hirschberg, J. and Pierrechumbert, J.B.(1986), The Intonational
Structuring of Discourse, Proc. 2 2th Meeting Ass Comp Structuring of Discourse, Proc. 24th Meeting Ass. Comp Linguistics, New York, Columbia Univ.,136-144.
信 onda, K.(1983) Speech 7, 127-143
Activ:ty, in Vocal Fold Physiology: Biomechanics, Acoustics an Activity, in Vocal Fold Physiology: Biomechanics, Acoustics and
Phonatory Conrrol, I.Titze and R.Scherer(eds.), Iowa, Iowa U.
Press, 127-137.
Honda, K., Kiritani, S., Imagawa, J. and Hirose, H.(1985) High-Speed Digital Recording of Vocal Fold Vibration Using Solid-state Sensor, Ann. Bull. U. Tokyo RILP 19, 47-53.
Horiguchi, S. and Bell-Berti, F.(1984), The Velotrace: A Mechanical Device for Tracking Velar Position, Paper Presented
at the Meeting of American Cleft Palate A at the Meeting of American Cleft Palate Assoc., Seatle, WA.
Houde, R.(1967), A Study of Tongue Body Motion During Selected Speech Sounds, PhD Diss., U. Michigan, Speech Comm. Res. Lab. Monograph 2 (1968), Los Angeles.
House, A.S. and Stevens, K.N.(1956), Analog Studies of th House, A.S. and Stevens, K.N.(1956), Analog Studies of the
Nasalization of Vowels, J. Speech Hear. Dis. 2I, 218-232. Nasalization of Vowels, J. Speech Hear. Dis. 21, 218-232.
Hughes, O.M. and Abbs, J.H.(1976), Labio-Mandibula Hughes, O.M. and Abbs, J.H.(1976), Labio-Mandibular
Coordination in the Production of Specch: Implications for the Operator of Motor Equivalence, Phonetica 33,, 199-221.
Inkelas, S., Leben, W. and Cobler, M.(1987), The Phonology of
Intonation in Hausa, NELS 17, North-Eastern Linguistic Intonation in Hausa, NELS 17, North-Eastern Linguisti Society.
Ishizaka, K. and Matsudaira, M.(1968), What Makes the Vocal Cords Vibrate?, Proc. 6th Internat. Con
Kohasi(ed.). New York, Elsevier $9-12$.
Jakobson, R., Fant, C.G. and Halle, M.(1951), Preliminaries to
Speech Analysis, Cambridge, MIT Press (Third Edition 1963).
Kahn, D. (1976) Syllable-Based Generalizations in English Phonology, PhD Diss., Dept. Linguistics \& Pbilosophy, MIT,
Cambridge, Mass. New York, Garland Publishing, Inc. (1980) Cambridge, Mass. New York, Garland Publishing, Inc. (1980).
Kakita, Y., Hirano, M. and Ohmaru, K.(1981), Physical Properties of the Vocal Fold Tissue: Measurements on Excised larynges, Vocal Fold Physiology, K. N. Stevens and M.
Hirano (eds.) Tokyo Hirano(eds.), Tokyo, U. Tokyo Press, 377 -397.
Kakita, Y., Fujimura, O. and Honda, K. (1985), Computation of Patterns in Vowel Space, in Phonetic Linguistics, V. A Parerns in
Fromkin(ed.), New York, Academic Press, 133 -144.
Kaneko, T., Uchida, K.,Suzuki, H., Komatsu, K., Kanesaka, T., Kobayashi, N. and Naito, J. (1981), Ultrasonic Observations of
Vocal Fold Vibration, in Vocal Fold Phsion Vocal Fold Vibration, in Vocal Fold Physiology, K. N. Stevens
and M. Hirano(eds.). Tokyo, Univ.Tokyo Press, 107 -117.
Kean, M. (1975), The Theory of Markedness in Generative Grammar, PhD Diss., Dept. Linguistics \& Philosophy, MIT, Cambridge MA.
Keating, P. A.(1985), Universal Phonetics and the Organization New York, Academic Press, 115-132.
Kelso J.A.S., Saltzman E.L. and Tuller, B.(1986), The Dynamical Perspective on Speech Production, J. Phonetics 14, 29-59.
Kelso, J.A.S., Saltzman, E.L. and Tuller, B.(1986a), Intentiona Contents, Communicative Context, and Task Dynamics, a
Reply to Commentators, J. Phonetics 14, 171-196.
ent, R.D. (1983), The Segmental Organization of
Production of Speech, P. F. MacNeilage(ed.), New York, Springer-Verlag, $57-90$.
Kiparsky, P.(1982), From Cyclic Phonology to Lexical Phonology, The Structure of Phonological Representation, Part I, Publication, 131-176.
Kirikae, I.(1943), A Study on the Vibration of the Human Vocal Cords in Phonation and the Timing Relations of the Glottal Opening-Closure by the se of a Laryngeal Stroboscopic Motion Picture Technique, J. Japan Otorhinolaryngology 49
$236-268$.

Kiritani, S., Itoh, K. and Fujimura, O.(1975), Tongue-Pelle Tracking by a Computer Controlled X-Ray Microbeam System, J. Acoust. Soc. Am. 57, 1516-1520.

Kiritani, S., Miyawaki, K. Fujimura, O. and Miller, J. E.(1976), A Computalional Model of the Tongue, Ann Bull. U. Tobo

Kiritani, S., Tateno, Y. and Linuma, T.(1977), Computer Tomography of the Vocal Tract, in Dynamic Aspects of Speech Production, M. Sawashima and F. S. Cooper(eds.), Tokyo, U.
Tokyo Press, 203-208. Tokyo Press, 203-208.
Kiritani, S. Imagawa, H. and Hirose, H.(to Appear), High-Speect
Digital Image Recording for the Observation of Vocal Cord Digital Image Recording for the Observation of Vocal Cor
Vibration, in O.Fujimura(ed.), Voice Production, Raven Press. Vlatration, in O.Fujimura (ed.), Voice Production, Raven Press.
Klat, D.H.(1978), Synthesis by Rule of Consonant-Vowel Syllables, Proc. Acoust. Soc. Am. 64, Suppl 1, S114.
Klatt, D.H.(1979), Synthesis by Rule of Segmental Durations in
English Sentences, in Frontiers of Speech Communication English Sentences, in Frontiers of Speech Communication
Research, B. Lindblom and S. Ohman(cds.), New York, Academic Press, 287-300.
Kohler, K J. and van Dommelen, W. A. (1986), Prosodic Effects on Lenis/Fortis Perception: Preplosive F0 and LPC Synthesis, Phonetica 43, 70-75
Kozhevnikov, V.A. and Chistovic, L.A.(1965), Rech: Artikulyatsia
Kupin, J. J.(1979), Tongue Twisters as a Source of Information
about Speech Production, PhD Diss., Storrs CT, U. Conn.
Ladd, R.(1986), Intonational Pbrasing.
Ladd, R. (1986), Intonational Phrasing: the Case for Recursive Prosodic Structure, Phonology Yearbook 3, C. Ewen and E.
Anderson (eds.), Cambridge; Cambridge U. Press, $311-340$. Ladefoged, P., Cochran, A. and Disner, S.(1977), Laterals and Trills, J. Int. Phonetic Assoc. 7, 46-54.
Laferriere, M. and Zue, V.W.(1977), Flapping Rule in American English: An Acoustical Study, J. Acoust. Soc. Am. 61 , Suppl S31.
Right N.A. and Larsen, B.(1980), Cortical Activity in Left and Right Hemisphere during Language Related Brain Functions,
Proc. 9th Int. Cong. Phonetics Sci., Vol III, Copenhagen, Au Proc. 9 th Int.
$6-11,137-150$.
Gile 1 (1070), Supt Mat English, Ann. Bull. U. Tokjo RILP 14 1-28.
Liberman, A.M., Delattre, P.C., Cooper, F.S. and Gerstman, I J.(1954), The Role of Consonant-Vowel Transitions in the Perception of Stop and Nasal Consonants, Psychology Monographs 68, 1-1
Liberman, A.M., Ingemann, F., Lisker, L., Delattre, P. and Acoust. Soc. Am. 31, 1490-1499.
Liberman, M.Y.(1975) The Intonational System of English, PhD Diss., Dept. Linguistics \& Philosophy, MIT, Cambridge, Mass. Liberman, M.Y. and Prince, A.(1977),
Rhythm, Linguistic Inquiry 8, 249-336.
Rhythm, Linguistic Inquiry 8, 249-336.
Lindblom, B.(1964), Dynamic Aspects of Vowel Articul
Lindoc. Sth Int. Cong. Phonetic Science, Munster, 387-388.
Lindblom, B.(1968), On the Production and Recognition of Vowels PhD Diss., Lund Univ.
Lindblom, B. (1983), Economy of Speech Gestures, in The Production of Speech, P. F. MacNeilage(ed.), New York
Lindblom, B., Lubker, J. and Gay, T.(1979), Formant Frequencies of some Fixed-Mandible Vowels and a Model of Speech Motor Programming by Predictive Simulation, J. Macchi, M.J.(1980),
Speech Synthesis, Proc. ICASSP : 80, Vol 2, Piscataway NJ, IEEE Service Center, 565-567.

Macchi, M.J.(1985), Segmental and Suprasegmental Features and Lip and Jaw Ariculators, PhD Diss., Dept. Linguistics, New York Univ.
MacNeilage, P.F.(ed.) (1983), The Production of Speech, New
York, Springer-Verlag York, Springer-Verlag.
MacNeilage, P.F.(1985),
Typing, in Phonetic Linguistics, V.A Fromin in Speech and Florida, Academic Press. Maeda, S.(1976), A Ch
Intonation, PhD Diss., MIT, Cambridge MA
Meda S(1983), Corelt A Vyelles: Une Etude de Simulation Centre Telecommunications, Centre des Recherches de Lannion, Rept.

Marcus, M. and Hindle, D.(1983), D-Theory: Talking about Talking about Trees, Proc. 21st Annual Meeting of the Ass. Comp. Linguistics.
McCawley, J.D.(1968), The Phonological Component of a
Grammar of Japanese, The He Grammar of Japanese, The Hague, Mouton
Speech Production, J. Acoust. Soc. Amodel for the Study of Speech Production, J. Acoust. Soc. Am. S3, 1070-1082.
Miyawaki, K.(1972), A Study of Lingual Artury
Dywamic Palatography, M.A. Thesis, Dept. Linguistics, U. Tokyo.
Muller, E., Abbs, J, Kennedy, J. and Larson, C. (1977),
Significance of Perioral Biomechanics to Speech, Am. Speech Lang. Hear. Assoc. Speech, Am. Speech Lang. Hear. Assoc.
Research Using the New X-Ray Microbeam Sysech Movement International Congress of Phonetic Sciences, Tallinn, Paper Se 11.4.

Nelson, W.L.(1983), Physical Principles for Economies of Skilled
Movemen Movements, Biol. Cybernetics 46, 135-147.
Nishinuma, Y. and Rossi,
Analysis in French, Study of Sounds (The Phopn of Prosodic Japan) XXX, 155-169.
Nooteboom, S. G. and Terken, J. M. B.(1982), What Makes Speakers Omit Pitch Accents? An Experiment, Phonetica 39,
$317-336$,
Ohala, M.(1983); The Machine as an Addressee: When
Paralinguistics Fails, Abstracts of the Tenth International Congress of Phonetic Sciences, Dordrecht, Foris Publication,428. Öhman, S.E.G. (1967), Numerical Model of Coarticulation, J.
Acoust. Soc. Am. 41, $310-320$. Acoust. Soc. Am. 41, 310-320.
Oka, D.K.(1980), The Design and Test of a Ranging Transducer to
Monitor Articulatory Movement during Speech Production Thesis, MIT.
Thicule
Olive, J.P. (1980), A Scheme of Concatenating Units for Speech
Synthesis. Proc. Synthesis, Proc. ICASSP '80, Vol 2, Piscataway N.J., IEEE
Service Center. $568-571$. Service Center, 568 -571.
Ostry, D. J., Keller, E. and Parush, A.(1983), Similarities in the
Control of Spech Articulators and Limbs: Kin Tongue Dorsum Movement in Speech, J. Exp. Psychology: Human Percept. \& Perf. 9, 622-636.
Perkell, J.S.(1969), Physiology of Speech Production: Results and
Implications of a Quantitative Cineradigraphic Anals, Implications of a Quantitative Cineradiographic Analysis, Res.
Monograph No 53 , Monograph No 53, Cambridge, Mass, MIT Press.
Perkell, J.S. and Nelson, W L. (1982)
Speech Motor Controil: A Study of Vowel Production ingets and Motor Control, S. Grillner, B. Lindblom, J. Lubker, A. Persson(eds.), New York, Pergamon, 187-204.
Perkell, J. and Klatt, D. (eds.) (1986),
Perkell, J. and Klatt, D.(eds.)(1986), Invariance and Variability in
Speech Processes, Hillsdale NJ, Lawrence Erlbaum Speech Processes, Hillsdale NJ, Lawrence Erlbaum.
Pierrehumbert, J, 1980)
Intonation, PhD Diss., Dept. Linguistics \&honetics of English Cambridge MA.
Pierrehumbert, J. ${ }^{\text {² }}$ and Beckman, M.(in press), Japanese Tone Port, R.F. and O'Dell
Fint, R.F. and O'Dell, M.L.(1985), Neutralization of Syllable-
($)$.icing in German, J. Phonetics $13,455-471$

Poser, J.P.(1984), The Phonetics and Phonology of Tone and Intonation in Japanese, PhD Diss., Dept. Linguistics \& Philosophy, MIT, Cambridge MA.
Rome, J.A.(1964), An Artificial Pellet for Continuous Analysis of Speech, MIT Res. Lab. Eletronics, Quar. Prog. Rep. 74, 190191.

Rosenberg, E.A., Rabiner, R.L., Wilpon, G.J. and Kahn,
D.(1983), Demisyllable-Based Isolated word Recer D.(1983), Demisyllable-Based Isolated Word Recognitio
System, IEEE Trans. Acoust. Speech \& Signal Process 31, 713. Rossi, M. and Autesserre, D. (1981), Movements of the Hyoid and the Larynx and the Intrinsic Frequency of Vowels, J. Phonetics 9, 233-249,
Rothenberg M
Rothenberg, M.(1981), Acoustic Interaction between the Glottal Source and the Vocal Tract, in Vocal Fold Physiology, K. N.
Stevens and M. Hirano(eds.), Tokyo, U. Tokyo Press, $305-328$. Saito, S., Fukuda, H., Isogai, Y. and Ono, H.(1981), X-ray Stroboscopy, in Vocal Fold Physiology, K. N. Stevens and M. Hirano(eds.), Tokyo, U. Tokyo Press, 95-106.
Sawashima, M. and Hirose, H.(1968), New Laryngoscopic
Technique by Use of Fiber Optics, J. Acoust. Soc. Am. 43, 168Techn
169.
Sawashima, M.(1976), Fiberoptic Observation of the Larynx and other Speech Organs, Proc. US-JAP Sem. Dynamic Asp. Speech Production, Tokyo, U. Tokyo Press, 31-46
Sawashima, M. and Kiritani, S.(1985), Electro-Palatographic Patterns of Japanese /d/ and $/ \mathrm{r} /$ in Intervocalic Position, Ann Bill U. Toho RILP 19, 1-6.
Schönle, P.W., Wenig, P., Schrader, J., Grabe, K., Brockmann, E. and Conrad, B. (1983), Ein Elektromagnetisches Verfahren zur Simultanen Registrierung von Bewegungen im Bereich des
Lippen-, Unterkifer- und Zungensystems, Biomed. Technik 28, Lippen-, Unterkiefer- und Zungensystems, Biomed. Technik 28,
Scully, C. and Allwood, E. (1985), Production and Perception of an Articulatory Continuum for Fricatives in English, Speech Communicafions 4, $237-246$.
Siverman, K.(1987), The Structure and Processing of Fundamental Frequency Contours, PhD Diss., Cambridge Univ.
Language \& Speech Segment Inventories for Speech Synthesis, Language \& Speech 4, 27-89.
Shadle, C.(1985), The Acoustics of Fricative Consonants, PhD Shibata; $\mathrm{S} .$, ,
Ariculation by Use of Electro-Palatography (English translation 1982 available), Kokubunji, Tokyo, Rion Co., Ltd. Smith, S.(1981), Research on the Principle of Electroglottography, Folia Phoniatrica 33, 105-114.
Sonies, B.C., Shawker, T.H., Hall, T.E., Gerber, L.H. and
Leighton, S.B.(1981), Ultrasonic Y. Motion during Speech, J. Acoust. Soc. Am $70,683-686$ Sonoda, Y. and Kiritani, S.(1976), Analysis of Tongue Point Movements by a Linear Second-Order System Model, U. Tokyo,
Ann Bul Ann. Bul. RILP 10, 29-36.
Sproat, R. and Borowsky, T.(1987), On the Resyllabification of N in English, J. Acoust. Soc. Am. 81, Suppl. 1, S67.

Model for Speech Recognition, J.
Stevens, K.N.(1972), The Quantal Nature of Speech: Evidence from Articulatory-Acoustic Data, in Human Communication: A Unified View, E. E. David and P. B. Denes(eds.), New york,
McGraw-Hill, $51-66$. Mceraw-Hill, S1-66.
Stevens, K.N.(1975), Physics of Laryngeal Behavior and Larynx
Modes, Phonetica 34 . 264 . Stevens, K.N.(1983), Design Fea
in The Production of Speech, P. F. MacNeilage(ed.), New York, Springer Verlag, 247-262.
Stevens.
Stevens, K.N.(to appear), Modes of Vocal Fold Vibration Based
on a Two-Section Model, in Voice Production New York, Raven Press.

Stevens, K.N. and Hirano, M.(eds.)(1981), Vocal Fold Physiology
Tokyo, U. Tokyo Press. \quad W. ${ }^{1978) \text {, The }}$ Sternberg, S., Monsell, S., Knoll, R. and Wright, C.(1978), The
Latency and Duration of Rapid Movement Sequences: Latency and Duration of Rapid Movement Sequences:
Comparison of Speech and Typewriting, in Information Comparison of Speech and Typewriting, in Information
Processing in Motor Control and Learning, G. Stelmach(ed.), New york, Academic Press.
Sternberg, S., Wright, C.E., Knowll, R.L. and Monsell, S.(1980),
Motor Programs in Rapid Speech Motor Programs in Rapid Speech, Additional Evidence, in The Perception and Production of Fluent Speech, R. A. Cole(ed.), Hillscale N, Lawrence Erbaum, 507-534.
Teager, H.M.(1983), The Effects of Separated Air Flow on
Vocalization, in Vocal Fold Physiology: Contemporary Research ocalization, in Vocal Fold Physiology: Contemporary Research
and Clinical Issues, D. M. Bless and J. H. Abbs(eds.), San Diego, College-Hill Press, 124-141.
Thorsen, N.(1984), Variability and Invariance in Danish Stress Group Patterns, Phonetica 41, 88-102.
Thomas, T.J.(1985), An Articulatory Model of Speech Production
Including Turbulence, PhD Diss,. Cambridge Including Turbulence, PhD Diss., Cambridge Univ.
Vocal Folds, in Vocal Fold Physiology: Biomechanics, Acoustics and Phonatory Control, I. R. Titze and R. C. Scherer(eds.), Denver, The Denver Center for the Performing Arts, 349-357. Titze, I.R. and Talkin, D.T.(1979), A Theoretical Study of the of Phonation, J. Acoust. Soc. Am. 66, 60-74.
Titze, I. and Scherer, R.(eds.)(1983), Vocal Fold Physiology: Biomechanics, Acoustics and Phonatory Control, Denver, Denver Center of Perform Arts.
Titze, I.R. and Durham, P.L.(1987), Passive Mechanism Influencing Fundamental Frequency Control, in Laryngeal
Function in Phonation and Respiration, T. Baer, C. Sasaki and K. S. Harris(eds.), San Diego, College Hill Press, 304-319.

Umeda; N.(1975), Vowel Duration in American English, J. Acoust. Soc. Am. 58, 434-445. -
Ushijima, T. and Sawashima, M.(1972), Fiberoptic Observation ${ }^{6}, 25 \cdot 38$.
Vaissiere, J.(1977), Quelques Experiences d'Analyse Perceptuelle en Français, VIllèmes Journees d'Etude sur la Parole, Aix-en Provence, 25-27 Mai 1977, 183-189.
Van den Berg, J.(1957), Sub-Glottal Pressure and Vibrations of the Vocal Folds, Folia Phoniatrica 9, 65-71
ood, S.(1919), A Radiographic Analysis of Constriction
Zealear, D.(1987), The Brainstem Connections with the Laryngeal Region of the Motor Cortex in the. Monkey, in Laryngea Function in Phonation and Respiration, T. Baer, C. Sasaki,

AILbHE NI CHASAIDE

Centre for language and communication studies

ABSTRACT

There are two different, though potentially complementary explanations of how glottal control of voicelessness and aspiration is effected; a) by directly controlling the degree of glottal aperture
during stop closure and specifically at oral during stop closure and specifically at oral
release; by by controlling the precise timing of the abduction/adduction gesture.
Photoelectric glottographic data for aspirated (pre- and post-) and unaspirated stops in Icelandic and Irish uttered in differing stress conditions controlled; this and other "strategies" observed may be necessary to maintain voice offset and onset targets under differing aerodynamic conditions; such strategies might be best rather as evidence of a more general laryngeal response to changes in aerodynamic conditions.

introduction

Two rather different proposals have been made regarding the laryngeal mechanism which determines the presence and duration of aspiration. Kim /1/ has hypothesised that the degree of glottal opening during stop closure, and crucially at stop release the glottal aperture at the instant of release, the longer the aspiration that ensues; if the vocal folds are already adducted at that point, there will be no aspiration. Working from Kim's data, Catford /2/ gives an approximate graph showing the closure and aspiration duration.

More recently, Löfquist et al. 13/ have questioned
an underlying assumption of the earlier work, namely, that speakers directly control the degree duration of aspiration. These authors suggest that voluntary control of the size of glottal opening is rather poor and that subjects are unable to make very fine graded adjustments along this dimension." gesture is a relatively fixed ballistic opening/closing cycle; once peak glottal opening has been attained, the closing gesture tends to start immediately rather than maintain a static open position. Thus, rather than direct aperture on the timing of the laryngeal gesture, to which

Peak glottal opening (PGO) is an important index. The later the PGO, the greater the glottal abduction at stop release, and the. longer the aspiration. The converse should be true for preaspirated stops. It follows from Löqquist's account that, all else being equal, one might
expect greater peak glottal opening for aspirated than for an unaspirated stop: such a difference would however be a secondary consequence rather than the primary control parameter.
It was felt that voiceless stops in Icelandic and Irish (yielding pre-, post- and unasapirated types) across differing stress conditions might provide a
testing ground for these two models of aspiration control. The durations of preaspiration $/ 5 /$ and postaspiration $/ 6 /$ can be much shorter in unstressed than in stressed sylables, and it would models might best account for those differences.

MATERIALS

Recordings of four short data sets in Icelandic and Irish (a single subject in either case) included the following signals: photo-electric glottograph
(PEG), oral airflow, and audio. Further recordings of data sets 1,2 , and 3 were made, where subglottal pressure (strictly speaking, oesophageal pressure) was substituted for PEG. For details on equipment used see $/ 5 /$ and references therein. The
first data set (Icelandic, 66 tokens) contained the three possible bilabial stops in VCV, as exemplified in the words [lahpa], [la:pa] and [5ka:pa]. Each of these was inserted into carrier frames so that the word in alternate sentences did and did not, receive the main sentence, stress: $\frac{\text { wio mig. }}{\text { ut }}$ The three further sets involved lrish utterances containing the voiceless dental stop in VCY and \#CV. For set two (40 tokens), the word
[ba ${ }^{h} t^{h a}$ was simply inserted int [bah tha] was simply inserted into the frame: "Duirt repetitions the word received either normal sentence stress or emphatic stress. In set three (48 tokens), a further frame was added: "Dúirt se -- beag liom." As sentence stress in this last frame falls on beag, the word [bah t^{h}] $]$ is in the
relatively unst ressed (prenuclear) position. The intention here was to elicit three stress levels; emphatic, normal and a (relative) lack of stress. In the fourth set (24 tokens), the word [t ha:]was repeated with alternating emphatic and, norm
sentence stress in the frame:"Tá, adúirt sé."

Fig 1. Averaged PEG traces for Icelandic medial stops for stressed (higher peaks) and untressed (lower peaks) enviroment

- Unstres of periodicity

Fig 3. Averaged Reg for Irish $-{ }^{h} t^{h}$ - in environments.

Fig 4. Averaged PEG for Irish \# ${ }^{n}$ - in emphat

The comparative amplitude of the PEG waveform was measured at the following points: during the taken as the baseline from which the PEG amplitud was measured; at stop closure (for the preaspirate tops); at peak glottal opening; at stop release and at voice onset. The time intervals between of post- and preaspiration. Also measured for the atter, was the time taken to effect devoicing from the start of vocal fold abduction.

RESULTS

Figures $1,2,3$ and 4 display the averaged PEG esults. In Fig 1, where stressed and unstresse okens of the three types of voiceless stops in lottal are compared, the amplitude of the peak considerably greater for the stressed. to be although the duration of preaspiration is a goo deal shorter in unstressed than in stressed [hp] this is not reflected in the timing of PGO. ostaspiration values do not differ in the stressed appear surprising at first glance. Values ar niformly very short (ranging from 10 ms to 35 ms nd so, postaspiration is likely to be barely if a of perceptible). Also note that offset and onse amplitude of glottal opening for the stresse cases. In rig 3, where Irish unstressed tokens ar compared with normal and emphatic, PGO amplitud
seems again much lower in the unstressed.

The difference between emphatically and normally tressed tokens (Irish) is not uniformly reflected y aingle change in laryngeal behaviour. In \#CV, there is not only a large differencein the amp itude of PGO but also in its timing. The peak depending respectively on whether the stop occurs the normally or emphatically stressed syllable e difference in postaspiration duration is likely the medial stops are rather amplitude effects hese have both some pre- and postaspiration) hhen only emphatic and normal were contrasted (data set 2, Fig 2) there would appear to be littl a striking difference in the a striking difference in the glottal gesture second glottal opening peak, the first of which crresponds in timing to that of the normally stressed tokens. The durations of pre- and tress conditions. Note that the same for both effect voicelessness is about the same also, but that the amplitude of glottal opening at which stress; the rate considerably greater with emphatic be quicker. As a consequence of the may therefore peak, the amplitude of glottal opening opening releas.e also appears to be greater for these stops. In Fig 3 (data set. 3 , containing additionally emphatic and normal is less striking been the there is again clear evidence of double peaking in the emphatic. It is likely that speakers were
differentiating less consistantiy between the emphat icaly and normally stressed tokens, whe

interpretation

As the photoelectric glottograph is not results could be rue to resuft of the catheder with the light sensor in the pharynx might affect the amount of ligh picked up, and hence, the amplitude of the waveform Long term catheder shifting could not however explain the systematic differences noted, given
that the stress-varying utterances were read as alternating sentences and that recordings were short in any case. However, if there were to b some stress-related articulatory difference, e.g. laryngeal movement in the vertical dimension, it amplitude (though hardly the double peaks of the Irish emphatic stops). There is nevertheless some corroborative evidence for our interpretation Andersen $17 /$ reports similar variation in PGO amplitude for voiceless stops spoken at differen data, but were to some extent backed up by fibre optic and EMG data. More recently, on the basis of inverse filtered data, Fant /8/ and Gobl /9/ hav reported for [h], a wider glottal opening in th
stressed than in the unstressed syllable.

Even if our interpretation is correct, one must further ask whether these differences are activel controlled, or might simply be a passive
consequence of some other stress correlate such as increased stop duration or higher subgloch pressure (Ps).

The Icelandic data shows that the degree of glottal opening can not be just a function o geminate is as long as for the stressed single stops, but PGo amplitude is much lower Furthermore, within either stress condition, PGO is stops. Therefore geminate than for the single vocal folds will simply deflect more widely given extra time in which to do so
A second possibility is that the vocal folds ar (a likely correlate a consequence of increased P necessarily to be expected in every though no see, for example Welsh /11/). Ps values in our data were higher with increased stress. Peak Ps value in the vowel preceding the stops were on averag for Icelandic (data set 1), and about 4 cm Aq in Irish (data set 3). Emphatic tokenswere 8 cm Aq higher again. Averaged Ps values for data set 2 are indicated in Fig 2. However, it is very unlikely that the differences in glottal opening
degree are. passive consequence of the ps level, judging from an experiment by Lofquitst et al. $/ 3 /$. Sudden pressure changes, induced during PEG recordings by unexpected j abs in the subject ${ }^{-}$ chest, made very little difference to the PE
race. Furthermore, the double peak glottal opening of the Irish emphatic stops can not be attributed to pressure variation. Although Ps is
higher for the emphatic tokens (see Fig $)$ there higher for the emphatic tokens (see Fig 2), there
is no additional sudden increase during stop closure which could account for the second pat

On balance therefore, it would seem that the served differences in laryngeal behaviour are nder active control. It may be the case that ncreased activity of the laryngeal musculature is ancrease in abductive activity but with an additional possibility of initiating a second abductive gesture when necessary). Thus, one could adopt the viewpoint that stress is potentially level of production; the respiratory $/ 10 /$, the laryngeal, and frequently, at the level of supralaryngeal articulation $/ 12 /$.
These differences in laryngeal behaviour might not however be best regarded as correlates of stress as strategies to ensure maximally equivalent output under differing aerodynamic conditions. To produce (depending on context) the cre are potentially 1) Sufficient glottal
voicelessness. (Note: this excludes from consideration glottalised stops, as occur certain dialects of English.) The transition from (Westbury /13/ describes a "voice instantaneou 40 ms for voiceless stops in American English) and it can be very slow indeed when the vocal tract is ot greater degree of glottal abduction were not used might be delayed or prevented. Note that in the data presented, the higher the PS, the greater appears to be the amplitude at which voice offsets. vocal fold vibration at the apprion of time subsequent to closure release point in onset, the initiation of vocal fold vibration results from glottal adduction and the Bernoull vocal folds which this happens depends on two fart point at in an inverse relationship: the air flow rat through the glottis, and the degree of glotta arrowing. the data i is the same across different stress onspiration even though glottal aperture at stops seem to be quite different. Glottal closure in the igher stress tokens may simply be "stealing a Bernoullis affer on the higer airflow and rates, wider glottal opening may and airflow tolerated, but actually necessary if VOT is to remain constant. At lower stress levels, too much lottal opening may be counter indicated as it

Emphatic stress for the Irish medial stops may represent a particularly demanding articulation given that they have both some pre-and
postaspiration. Peak glottal opening occurs early during stop closure, as with preaspirating stops
generally. If the ballistic opening closing gesture were to proceed uninterrupted the degre of glottal opening at stop release might not be sufficient to ensure the appropriate duration of postaspiration; hence the double opening. In different, as only one of the targets is relevant: appropriate voice onset. This may leave more freedom to use the additional strategy of delaying the peak glottal opening t overshort aspiration at higher respirator pevels.

CONCLUSIONS
To conclude therefore, I would suggest that the controlling voice onset and offse times acros differing aerodynamic conditions. When necessar or possible, the additional strategies of a second opening peak or of a change in peak timing can also uses more than one control parameter the larynx the crucial targets of voice offset and voice onset are maintained.
The fine interplay between laryngeal behavior and active monitoring of suggests that there may b

REFERENCES

REGULATION OF INTENSITY AND PITCH IN CHEST VOICE

HELMER STRIK and LOUIS BOVES

Institute of phonetics, Nijmegen University,
P.O. Box 9103, NL-6500 HD Nijmegen

The Netherlands

ABSTRACT

The simultaneous control of fundamental frequency and intensity of phonation was investigated frequency and measures were obtained of laryngeal muscles and the respiratory system. An inverse relation between intensity and activity of vocalis and cricithyroid was found at high pitch
chest voice

INTRODUCTION

Studies of the simultaneous control of fundamental frequency (Fo) and intensity of phonation have dealt with either the intrinsic laryngeal muscles $[1,2,3,4]$ or with the respiratory
system $[5,6]$. In one study $[7]$ subglottal pressure $-P s)$ was measured simultaneously with electromyographic (EMG) The purpose of and extrinsic laryngeal muscles for singing The purpose of the present study is to reexamine the simultaneous control of Fo and intensity in speech. To that end Ps, lung volume, and EMG activity of cricothyroid (EGG), vocalis (VOC) and sternohyoid (SH) were obtained while the subject sustained the vowels /e/ and /i/. These physiological in the control of both intensity and pitch. No to to be important used because jaw opening may influence the intensity of the radiated sound and the EMG-activity of certain laryngeal

METHOD

Speech Material

instructed to wreath a male native speaker of Dutch. He was possible at a constant Fo. This task was repeated five tong as each of twelve different conditions: intensities (soft, normal and loud) and 2 frequencies (low, 3 high), making a total of 60 phonations. The intensity level (II) of the soft utterances was approximately 7 dB below the 5 dB above the normal IL The audio signal was led
could see the Fo level on a oscillos-extractor, and the subject Fo, viz. a low pitch level of 116 Hz and a high pitch level for
160 Hz , were indicated the subject could control his Fo.

Recording and Processing of Data

Subglottal air pressure was recorded using a Millar pressure glottis into the trachea. The pressure and fed through the calibrated by recording the signal while the subject held wa pressures of up to 20 cm H 2 O against a water-filled U-tub manometer [8]. The catheter, situated in the posterio commissure of the glottis, did not have a noticeable effect on phonation. The perimeter of the thorax and abdomen were volume was calculated from the weighted sum of these two signals. Special calibration manoeuvres yielded the two weighing factors. The EMG activity was recorded with hooked-wire electrodes [9]. All electrodes were inserted monitoring an oscilloscope duriment was confirmed by manoeuvres [9].
The physiological signals, the audio signal an octal code and a iming pulse were recorded on a one inch, 14 -channe instrumentation recorder (10]. The processing of the data wa system [11]. The voice signal was sampled data processing 10 kHz rate, Ps and EGG at a 5 kHz rate and EMG digitized at abdomen signals at a 200 Hz rate. The mean glottal flow (Ig) was obtained by taking the derivative of the lung volume. The vocal intensity was evaluated from the audio signal. The IL. The Fo was derived from the EGG in owest measured whether the Fo of the utterances remained roughly to verify levels. The EGG signal was also used to obtain the open quotient (OQ), which is defined as the time during which the signals of six physiological EMG activity of VOC, CT and SH) (viz. Ps, Ig, IL and processing.
sing the voice onset as a line-up point the six physiological averaged signal forentitions were averaged, resulting in an of an artefact in the recordinity and each condition. Because some of the tokens had to be discarded EMG activity of the SH least four tokens remained for processing and averaging. For 2 and 10 seconds mentioned below, the mean value between and 10 seconds after voice onset was calculated for these of the six quantities in each of the twelve mean values for each

RESULTS AND DISCUSSION

The duration of the sustained vowels varied between 10 and 20 seconds. While phonating the EMG-activity of VOC and CT, the Ps, Ig, IL and Fo were approximately constant. The onset of phonation. Collier [12] and Hirose and Sawashima [13] also observed SH activity just before voice onset an assumed that the SH helps in preparing the larynx for the "speech mode." The peak value of SH activity depended on the frequency and intensity of the vowel that had to be produced. The largest peak values were recorded in the low
frequency - high intensity condition, while the peak was almost absent in the high frequency - low intensity condition. In al utterances the EMG activity of the SH had levelled off to a more or less constant value 2 seconds after voice onset value was or each measured physiological quantity the mean mentioned above.
The mean values of the average signals are shown in the igures 1 to 4 . For each repetition the mean value between 2 and 10 seconds after voice onset is also given. The results are physiological quantities.
$1 . / \mathrm{le} / \mathrm{vs}$. f / l
A comparison is made between the data of the vowels /e/ and id. Both are closed vowels and therefore the jaw opening was vowels is a difference in their formants, caused by a different vocal tract shape. This did not result in big dissimilaratie between the recorded signals, but some differences did occur. P_{s}. At equal intensity levels the Ps was always slightly位 when the vowel $i /$ was produced.
bout the same for both vowels, but for high Fo the CT wa the CT was less for the vowel $/ \mathrm{i} /$. This can be a compensation to keep Fo constant, because an increased Ps could raise the
Fo o.

VOC and SH. These two muscles showed more activity for he vowel /i/ when phonating at low Fo, and approximately the same activity when phonating at high Fo.

2. Foregulation

or the same phonetic condition and intensity, the signals

e and $C T$. From the Figures 1 to 4 it can be seen that he activity of VOC and CT was substantially higher in honh-pitch chest voice than in low-pitch chest voice. This rimary previous findings that the VOC and the CT are the [3,4] muscles in regulating Fo, especially in chest voice equency The activity of the SH decreased with increasing The Figures. 1 to 4 show that the decrease of SH activity was more obvious at the high IL.
Ps. Across different fundamental frequencies Ps was that Fo and Ps are positively related [12,15]. In this case the Fo
is not raised by increasing Ps, but probably by an appropriate
adjustment of the activity of CT, VOC and SH

3. intensity regulation

Since the vocal intensity is also a function of the acoustic impedance of the vocal tract, comparison of intensity is onl done between two states in which the shape of the vocal tract is approximately thes same vowel
consistent with thas always positively related to Ps. This $I \mathrm{~g}$. The ghtor tesults obtained by Isshiki [5] and Baer [7] intensities. The EGG recordings rer less constant for differen with increasing intensity. Therefore although Ps decease with increasing intensity, Ig could remain fairly constant [5] I the chest register glottal flow is not dominant in controllin pulses are more important pulses are more important.
SH
activity A positive relation between intensity and the EMC active and CT was found. were found Gay of the VOC and CT as a function of intensity all five intrinsic laryngeal muscles, remat muscle activity, across changes in vocal intensity.
At high pitch chest voice a negative relation between intensity and the EMG activity of VOC and CT was found. Th compensatory mechanism is necessary to keep Fo constan because some of the factors that increase intensity also increas

CONCLUSIONS
First of all, it appears to be possible to maintain a constan subglotal pressure during a prolonged uterance, regardess of constant without the need of apparent actions of $C T$ vo ke SH. Thus there seems to be no reason to assume that the of observed declination in speech is an involuntary effect of the decreasing lung supply.
The findings of this study are in agreement with those o previous studies: VOC and CT are the primary muscles i less constant for different intensities in the chest register. Müller found that an increase in vocal intensity without a associated rise in Fo had to be accompanied by a decrease in CT activity [16]. Rubin also speculated on a decrease i intensity of contraction of the CT with increasing loudness, if
Fo is to remain constant [17]. Hirano actually measured tha CT activity changes often varied inversely with the vocal intensity $[1,2]$. In the present study it was found that the increasing Ps can be compensated, not only by a decrease of study is needed to explain why this compen acionty. Furthe study is needed to explain why this compensation mechanism

 the EMG activity $(\mu \mathrm{V})$ of SH ($(\square), \mathrm{CT}(0)$ and VOC (O) are plotted as a function of $\mathbb{L}(\mathrm{dB})$. The open symbols represent

REFERENCES

[1] Hirano, M. and Ohala, J. (1969). The function of larynge muscles in regulating fundamental frequency and intensity in phonation. Joumal of Speech and Hearing Research (3) 616-627.
[2] Hirano, M.; Vennard, W. and Ohala, J. (1970). Regulation of register, pitch and intensity of voice. Folia Phoniatrica
[3] Sawashima, M.; Gay, T.J. and Harris, K.S. (1969) Laryngeal muscle activity during vocal pitch and intensit hanges. Haskins Laboratories Status Report on Speec Research 19/20: 211-220.
[4] Gay, T.; Hirose, H.; Strome, M. and Sawashima, M muscles during phography of the intrinsic laryngea nuscles during phonation. Anna
[5] Isshik La Isshiki, N. (1964). Regulatory mechanism of voice intensity variation. Journal of Speech and Hearin
Research 7: 17-29.
[6] Isshiki, N. (1965).
[6] Isshiki, N. (1965). Vocal intensity and air flow rate. Folia
Phoniatrica 17: 92-104.
[7] Baer, T.; Gay, T. and Niimi, S. (1976). Control of
fundamental frequency, intensity and register of phonation fundamental frequency, intensity and register of phonatio Haskins Laborato
[8] Cranen, B. and Boves, L. (1983). A set-up for testing the validity of the two mass model of the vocal folds. In: Titze I.R. and Scheren, R.C. (eds.), Vocal Fold Physiology.
[9] Hirose, H. (1971). Electromyography of the articulatory Laboratories Status Report on Speech Research 25/26: 73-86.
[10] Port, D.K. (1971). The EMG data system. Haskin Laboratories Status Report on Speech Research $25 / 26$
67-72 Kewnals at Hort, D. (1973). Computer processing of EMC signals at Haskins Laboratories. Haskins La
tatus Report on Speech Research 33: 173-183
[12] Collier, R. (1975). Physiological correlates of intonation patterns. Journal of the Acoustical Society of America 58 patterns. Journal of the Acoustical Society of America 58
$249-255$.
13] Hirose laryngeal muscles in speech. In: Stevens, K.N. and Hirano, M. (eds.), Vocal Fold Physiology.
[14] Ohala, J. (1972). How is pitch lowered? Journal of the
Acoustical Society of America 52: 124.
laryngeal muscles by sudden induced subglottal pressure changes. Journal of the Acoustical Society of America 65: 1271-1275.
[16] Müller, J. (1843). Elements of physiology. Trans. by
Wm. Baly, Philadelphia. Wm. Baly, Philadelphia.
nd inter studies on vocal pitch and intensity in phonation. The Laryngoscope 8 973-1015.

INVESTIGATION OF THE VOICE SOURCE MODELS

A.M.Smetanin

Department of Technical Cybernetics Mechanical Institute Ustinov, USSR, 426069

ABSTRACT

An experimental research of conformity of the forming voice source impulse models to real process is carried out. The technique of the research is based on the analysis of power spectra of the actual and synthesized voice signal with using the linear prediction. The synthesis model of the vocalized speech signal accounting the influence of the voice source upon the voice canal is proposed.

INTRODUCTION

Before now the accepted notions about the speech forming process of the vocalized speech sounds proposed the excitation of the voice canal by quasiperiodic impulses of air stream such as the smooth unimodal time function. Proceeding from these notes it is obvious that the excitation of the voice canal must start near the moment of glottis opening. However, at present it is known that the start of the excitation of the voice canal coincides with the vocal chords closing moment [I]. The causes of this obvious contradiction weren't analised in literature about speech forming. In this paper the experimental researches were carried out in order to analyse real processes of the excitation of the voice canal by the voice source and build the model of synthesis of vocalized voice wave based on received results that is adequate
to real speech signal forming. The carried out researches concerned only the interaction of the voice source with the voicecrnal and didn't discuss those processes as the loss in the canal, nasalization, radiation etc.

THE TECHNIQUE OF RESEARCH

The research method of the processes of the vocalized speech signal forming is based on analysis of power envelope spectrum of signal. Because of problem statement the speech wave analysis synchronous with the pitch was to be used, that involves application of the methods of increasing the resolution of the frequency. And at last the unstationary variant of the linear prediction was used [2]. The part of apparatus of the research complex contains mini-computer SM-4 supplied with the device of the analogous signal input. Special research software based on the program complex for processing and signal modelling included the following main modules: "visible speech" forming, calculation of the linear prediction coefficiente, calculation of pover spectrun by means of fast Fourier transformation, the impulses of different form excitation forming, the speech canal model ling, speech wave synthesis. The programming language is FORTRAN, the operational system is RAFOS.

A. REAL SPEECH SIGNAL

A speech signal. put into computer (frequency range - 5 kHz , quantification frequency - IOkHz, the number of quantification levels by amplitude - 256, signal-noisy rolation not worse than 40dB) was accumulated on the magnetic carrier of the computer. Speech material consisted of the words pronounced isolatedly by three announcer. Quasistationary parts of stressed vowels were subjected to the analysis. In calculation the prediction order was $P=12$, coefficients of the linear prediction were averaged by three-four samples taken within the interval of analysis. Typical example of the evaluation of power envelope spectra is shown in Fig.I, where I measured along the whole period of the pitch; 2 - during the closing interval; 3 - during the interval of vocal chords opening (the fragment of sound /i/ in the word "electrichestvo").

Fig.I. The power spectrum of the real signal

The experiments have shown the following [3]; I) envelope spectra during the inter vals of vocal chords closing and opening are distinguished essentially by frequen$c y$ and width of the spectral maximums band (formants); 2) the spectrum during the whole period of the pitch is more close to the spectrum during the interval of vocal
chords closing. Thus there is sufficient variations of the voice wave parameters during the period of the pitch that is explained in general by the voice source influence on these parameters in the phase of glottis opening. The carried out calculations by the numeral evaluation of influence of the voice source on the speech canal parameters have shown that with normal conditions of pronunciation: I) the absolute changes of frequency of the foments achieve the quantity about IOOHz ; 2) the absolute changes of the band width of for-mant-quantity about 300 Hz [4].

B. THE SYNTHESIZED SIGNAL

Let us consider the model work of the synthesis of the vocalized voice signal with the excitation of the voice canal by smooth unimodal impulses. The raised cosinusoid with duration of $0,3 \ldots 0,7$ from the pitch period was used as the impulse. The voice canal was presented in the form of cascadely connected digital resonators corresponding to the formants [I]. In table I the parameters of the first of five formante are given, used at the synthesis of vowal/i/.

Table I
Frequency and width of the formant band

Formant	$F_{i}, \mathrm{~Hz}$	$\boldsymbol{B}_{i}, \mathrm{~Hz}$
I	440	90
2	1800	50
3	2550	300
4	3410	300
5	4400	310

The character of the time function of the synthesized speech signal has already shown the sufficient quality difference from real signal. The typical analysis of vowal /i/ are show in Fig.2. The notations correspond to Fig. I. The duration of the pitch is I2O counts, the duration of
the excitation impulse for Fig. $2 a-40$ counts, for Fig. 2b - 80 counts
Let us compare Fig. 2 and Fig. 3 where the spectrum of impulse reaction of voice canal with parameters of table I is given. The calculation of this spectrum has been made also by means of written technology under the excitation of canal model by the single impulse. The comparing results illustrate that cosinusoidal impulse of excitation distort the spectrum of frequency of the synthesized signal. The typical results have been obtained under the other forms of the excitation impulse triangle, in particular.
The carried out experiments and modelling say about nonadequancy of model excitation of the canal by smooth unimodal impulse. Besides, you may conclude that excitation of digital model of the voice canal by the single impulse is more close to real process of speech formation.

THE SYNTHESIS MODEI, OF SPEECH SIGNAL
The carried out investigations allow to formulate two main demands to the synthesis model of vocalized speech signal:
I) the excitation of the voice canal should be produced by short at the moments of vocal chords closing; 2) during the interval of the vocal chords opening the change of the voice canal parameters must be carried out, modelling, the influence of the voice source upon the speech wave parameters. The model illustrated in Fig. 4 meets these requirements. It is the development of the model examined in [I].
According to the given model the voice canal in the form of a filter

$$
V(z)=\frac{G}{1-\sum_{k=1}^{D} a_{k} z^{-k}}
$$

Fig.2. The power spectra of a synthesized signal with cosinusoidal source of the excitation

Fig.3. The impulse reaction spectrum of the voice canal
is excited by $\delta^{2}(\Omega)$ signal at time moments t_{1}, t_{3} etc. The parameters of the canal are changed in accordance with the function $f(n)$ during the interval of opening [t_{2}, t_{3}] . For the formant model, in particular, frequency F_{i} and width of strip \boldsymbol{B}_{i} are these parameters counted in $V(Z)$

Fig.4. The synthesis model
Fig. 5 illustrates the power envelope spectra synthesized by means of the suggested model signal (Fig.I). The parameters of formant during the interval of the vocal chords closing are given in table I. The duration of the pitch period was equal to I20 counts; the duration of the opering period was equal to 80 counts; the absolute changes of frequency of 5 formants during the opening interval - IOOHz ; the absolute changes of the band width - 200H2 Comparing figures I, 2, 3 and 5 we see that a given model at the spectral level is much closer to the real process of speech formation than a traditional model.

Fig.5. The power spectra synthesized by means of the suggested model signal
In the time domain the character of the synthesized speech wave is also close to real signal. It may be supposed that such model of synthesis will allow to raise naturality of synthesized speech, to model
some individual peculiarities of voice. The examination of these assumptions is not included in this paper.

CONCLUSION

In consequence of carried out experimental investigations it is shown that the imagination about the excitation of the voice canal by smooth unimodal impulses of air stream are not adequate. The excitation of the voice canal by single impulses during the period of time corresponding to vocal chords closing and modelling of change of speech wave parameters as the smooth unimodal function during the phase of vocal chords opening is more close to real process of speech formation In our opinion well known, so called, impulses of the voice source are the form of power accumulation for the next excitation of the voice canal at the moment of vocal chords closing

REFERENCES

[I] L.R.Rabiner, R.W.Schater, "Digital processing of speech signals", New Jersey.
[2] Y.Makhoul, "Spectral analysis of speech by linear prediction", IEEE Trans. Audio and Electroacount, I973, vol.AU-2I, N3, p.I40-I48.
[3] В.Б.Гитлин, А.М.Сметөнин и др., "Выг бор интервала измерений частоты и щирины формант", материалы Всесоюзной школы-семинара АРСО-I0, Тбилиси, октябрь I978,
c. 20-22.
[4] В.Б.Гитлин, А.М.Сметанин, "О повышении точности измерения параметров формант", "іІроблемы построения систем пони мания речи", М.: Наука, 1980, с.IO9-II5.

Boris Chernov	Valentin Maslov
Dozent	Phoniatric
Conservatoire	Policlinic No 1
Novosibirsk, USSR 630099	Novosibirsk, USSR 630099

ABSTRACT

Only aural transmission from man to man of the oldest form of creative activity brought to us the method of phonation of the genetic period of an inarticulated speech. Millions of years have passed till the entrance to larynx was excluded from the process of phonation. The beginning tone of vocal folds got the possibility to be formed into vowel and consonant sounds of speech. From whistle to voice-whistle and articulate speech that's the way of evolution.

INTRODUCTION

Nowadays on vast territories of the Centre and the South of Asia among Turkish and Mongolian peoples there remained the most ancient forms of the organisation of sound formation in normal larynx that demonstrate an active participation of vestibular folds at the expense of sharp contraction of the larynx entrance, such as larynx whistle and phonation simultaneously through the two barriers of vocal and vestibular folds.
Larynx shows the capacity of a doublesound generator and clearly demonstrates the mechanism through which the formation of an articulated speech is impossible. The peoples of Mongolia, Touva, Bashkiria managed to preserve the ways of phonation peculiar for the genetic period of an
inarticulated speech in the form of traditional singing folklore that have passed through centuries thanks to living transmission.
The most stable are the methods of doublevoice singing in four styles: Syghyt, Ezingeler, Kargyraa and Barbbannadyr of the Touvinians.
The first notes of the Bashkirian style Usllau date to 1897. Folklorist Rybakov S.G. has characterized it as Forest Wildeness. The forms of Touvinian doublevoice singing were studied by musicologists and folklorists beginning with 1900. The analysis of Touvinian guttural singing was made by the Soviet composer A.N. Aksionov during the 60-th. The acoustic analysis of Triple-voice singing of Tibet lamas was made by English scientists H . Smith, K. Stevens, R. Tominson in 1967. In 1973 at the YIII allunion acoustic conference of AS of the USSR A.A. Banin and V.N. Lozhkin reported the results of acoustic analysis of Tou vinian larynx singing made with Sona-Grap-7029 A apparatus in diapason of 40-4000 Hz. They found the characteristics of low tone from 60 to 220 Hz and high pitch from 2000 to 3000 Hz . But it appeared to be impossible to explain the physiological mechanism of larynx with the help of acoustic analysis.

Special research group of the authors of this report was made at the initiative of Ministry of Culture of Touvinian ASSR and rectorate of the Novosibirsk Conservatoire.
The first examination of vocal apparatus of Touvinian singers showed that they have no abnormal deviations of anatomophysiological character. When the singer began double-voice regime of phonation the before seen vocal folds entirely disappeared off the investigator's sight. The source of the second sound appeared to be a round whistle hole of $\mathrm{Da} 1,5-2 \mathrm{~mm}$ formed by (false) vestibular folds.
In $1975-.76$ unique photographs of the sources of the high-frequency whistle of $2000-4000 \mathrm{~Hz}$ were made (Fig. 1). The following methods were used: filming of singers; indirect laryngoscopy; film-
ing of the functioning of the larynx in indirect laryngoscopy; tomography of the larynx; tele-X-ray cinematography; videomagnetic recording from TV screen; recording of various styles of double-voice singing.
In the Syghyt atyle, a singer begins the first phrase of the song with words in an ordinary manner with his face relaxed and his articulation and breath having no visible signs of effort. After finishing the phrase sung naturally the ainger takes a new breath and begins double-voice singing which excludes the possibility of using words. So the vocal organs start working like a peculiar double-voice mu sical instrument (fig. 1). To the ear double-voice singing presents itself as two melodies the lower of which is of ostinato character and keeps the pitch

of the octave. The second melody is heard as a kind of whistle complicated by flowery decoration and lies in the sphere of the third and fourth octave.
The transition from usual single-voice phonation to double-voice singing is followed by abrupt changes in the functioning. of the larynx. The larynx quickly pulls up and the loose margin of the epiglottis becomes visible deep in the mouth cavity, with the tongue not being stretched at all.
Indirect laryngoscopy shows that in this position the vocal folds become invisible as the upper opening of the larynx narrows to $1.5-2 \mathrm{~mm}$ because of all the formations arranged at this level. The tuberculum epiglotticum draws near the apex of the cartilagines arytenoideae. From the sides, muscles of the ventricular folds and fibres of the musculus aryepiglotticus par-
ticipate in narrowing.
The upper opening of the larynx begins to function according to the 'nozzle' principle producing a whistling tone resounding in the pharyngeal cavities.
This process of changing the larynx into a double sound generator was clearly observed in sagittal X-ray cinematography that shows the rise of the larynx as well as its narrowing and the sharp exact movements of the tongue which are synchronous with the changes of pitch of the whistling tones leading the ornamental melody.
The formation of two narrow passages in the larynx in accordance with the sounds produced by it in double-voice singing can also be observed in tomograms (fig. 2). In the frontal tomograms two narrow passages are seen: the first is due to the closure of the plicae vocales, and the second is formed by closing the
ventricular'folds and musculature in general and other muscle elements of the upper opening of the larynx, with the ventricles of Morgagni being relaxed. The second passage works like a nozzle or a whistle. It creates high-frequency vibrations which then resound in the pharyngeal cavities, forming sounds of various pitch.
The larynx of a Touvinian singer who sings in the double-voice manner is a twosound generator in which the pitch of the low tone is created by the vocal folds, while the pitch of the whistling tone is a result of the activities of the nar-
rowed entry to the larynx (nozzle) and of the resonator cavities of mouth and pharynx. These uses of the larynx and of the mouth and pharyngeal cavities demonstrate amazing functional possibilities of the vocal organs for creating sounds and exclusive abilities to govern their pitch and duration.
As a result of long and thorough examination of physiological mechanism of larynx singing of Touvinians, Khakassians and Bashkirs a new capacity of larynx unknown to science was opened - the capacity to form mechenism of aerodynamic whistle.

Literatur.
I. Wendler, W. Saidner. Lehrbuch der Phoniatrie. Leipzig, 1977.
A. Banin, V. Lozhkin. VIII th All-Union Acoust. Conf. Reports. Ser.G. (AS SSSR, MOSCOW 1973)
V. Maslov, B. Tchernov. Le secret du solo en duo "Sov. Ethnographis". No. 1 M., 1980.
B. Tchernòv, V. Maslov. Fenomen of Touvinian double-voice singing. "Natur" No. 6. M., 1978

Fig. 2. Tomogram of the larynx in double-voice singing showing the presence of two narrow passages, one on the level of the true vocal folds and the other on that of the ventricular folds. Ventricles of Morgagni remain relaxed. 1 = Closed ventricular folds participating in the formation of a narrow opening to the larynx; $2=$ ventricles of Morgagni relaxed; $3=$ true vocal folds closed; 4 = aperture of trachea.
igital new method for the high-speed vibration was developped using a solid endoscope and an image using a solid signals from the image sensor digitized and stored in a digital image memory. Stored images are displayed on monitor oscilloscope. Frame rates of 2000/sec and $4000 / \mathrm{sec}$ are realized for the images with 100×37 and 100×17 picture ordinary, respectively. Compared to the ystem, the present system is compact and nables flexible data collection.
was also developped. using a fiberscop the fiberscope are darker, a frame by of 2000 per second was achieved for the images with 100×17 picture elements. The system makes it possible to observe consonants. Preliminary during the the transitional characteristics of the vocal cord vibrations during the mesion and explosion of the consonants Introduction

This paper presents a new technique igh-speed digital image recording or the observation of vocal cor For the study of the voice source haracteristics, it is essential to ecord the vocal cord vibratio to analyze the with the speech signal and pattern of the vocal cord vibration and the acoustic characteristics of speech ignal. Observation of the vocal cor sing a high-speed been performed However, that method requires picture equipment and is not suited for flexibl ata collection under various modes o phonation. For the simultaneous considerations are necessary, specia coustic shielding of the mechanical noises from the high-speed camera. high-speed digital study, a system of
developed. The sytem is small and compact and, thus, enables flexible dat speech and other taneous recording of speech and other physiological signal

Solid endoscope system
Fig. 1 shows a block diagram of the system. The system consists of an body containing an image sensor and an image processor. The output video signal from the image sensor is fed into the image processor through a high-speed A/D displayed on a CRT monitor as an array of small images which represent sequential time frames
images is also possible to display stored image processor in the present syst contains about 750 k byte of image memory Generally, for one shot of image image recording, about 100 frames of image data are sampled and stored by the image Maximum
alized by frame rate that can be determined by the brightness of the image obtained through the endoscope and the speed of scanning the picture elements in the image sensor.
new model of the get a brighter image, a constructed. The diamet endoscope was was larger the diameter of the scope was larger than that of the ordinary
scope for the clinical use. The cross

Fig. $1 \begin{gathered}\text { Blockdiagram of the solid endoscope } \\ \text { system. }\end{gathered}$ system.
ection of the tube of the scope is an the center of the tube and on both sides the center of the tube and on both sides two light guide cables are connected to the separate light sources.

Table 1 summarizes basic haracteristics of the present system. Light sources are the two 250w halogen lamps. Number of the picture elements in the image sensor is 100×100 and the sampling rate is 10 MHz . When entire picture elements are scanned, the second. In order to achieve a higher Table 1 Basic characteristics of the endoscope system.

Light source	250W halogen lamp $\times 2$. MOS type
Image sensor	
	100×100 picture elements
Clock 10MHz	

Scan elements ${ }^{\text {Srame }} / \mathrm{sec}$. Storage | 100×37 | 2000 | 20 |
| :--- | :--- | :--- |
| 100×17 | 4000 | 450 |

(b)

Fig. 2 Examples of the recorded image of the vocal cord vibration.
$/ \mathrm{sec}$ (b) 4000 frames $/ \mathrm{sec}$
frame rate, a special scan method was devised in which only the selected scan lines were sampled. When 37 scan lines
are sampled out of 100 scan lines, the frame rate is 2000 per second. A higher frame rate of 4000 frames per second is achieved by sampling only 17 scan lines. As far as the brightness of the image is concerned, this frame rate appears to be
nearly the maximum that can be achieved for the most subjects. Naturally, the brightness of the image varies, depending on the laryngeal view of the individual subjects. The image memory can store
the image data for the period of about 200 msecond .

Fig. 2 shows examples of the image recorded at a rate of 200 and 4000 frames per
cord
second. The pibration of a male subject during the sustained phonation of the vowel le:/. Fundamental frequency of the voice was about 200 Hz . The images of the maximum glottal opening are observed a Fiberscope system

It is very valuable if a similar system can be constructed using a
fiberscope. fiberscope. Such a system makes it vibrations during consonants. In the present study, a pilot, system of high-speed image recording using fiberscope was also developed

Fig. 3 shows a block diagram of the system. In this system, a video camer is connected to the finder of a single-lens reflex camera to monitor and record the glottal following the short period of high speed imaging. The image is sent to the image sensor for high-speed image recordin only when the shutter of the camera is open. This monitoring is necessary beacause the fiberscope system glotti during the running speech and the perio f high-speed imaging is very short.
In order to obtain a brighter image,
a new fiberscope was also constructed the

Fig. 2 Blockdiagram of the fiberscope system.

(a)

(b)

Fig. 4 Vocal cord vibration during transition from vowel to $/ \mathrm{h} /$

Table $\overline{2}$ Basic characteristics of the fiberscope system.

Fiberscope	diameter 4.8mm view angle 43
distance $7-70 \mathrm{~mm}$	

diameter of which was slightly larger than that of the ordinary scope. At the same time, a CCD type image sensor was
employed in this system, because the image by the new fiberscope was still image by the new than that by the solid endoscope,. The sensitivity of the CCD image sensor
is generally higher than that of the MOS type imagr sensor which was used in the solid endoscope system. However, the comercially available CCD sensors
generally generally contain a large number of picture elememts, 500×500 for example.
Thus, in order to realize a high frame rate, it was necessary to develop a special scan method to sample only a very imited portion of the image sensor and

Table 2 summarizes basic characteristics of the system. The light source is a 300W xenon lamp. The sampling rate of the picture elecording is about The period of image recording is about 200×34, the frame rate is 1000 per second. A frame rate of 2000 per second can be achieved with the picture elements of. 200×14

By using this system, preliminary tests on the recroding of vocal cord
vibrations during consonants were performed. A special triggering method was employed to record the glottal images for the selected period of the consonant from the camera shutter sets the entire recording circuit ready. Then, the subject start the utterance. When the detected, a trigger pulse is generated. Actual sampling of image signal is started with a delay of the specified interval. By using an appropriate delay time, it is possible to record the consonantal period in the vCV utterances.

Fig. 4 shows an example of images recorded by the fiberscope system at a
rate of 2000 frames per second. Vocal cord vibration during the transition from the vowel [i] to the consonant [h] in the utterance [pi:hi:] is shown. Fig. 4 (a) represents the stationary vibration during [i:]. During (b), the transition cartidges gradualiy seperate and the maximum glottal opening is getting larger. At the later period in the vibrating but the right and left vocal cords do not contact. It can be seen in the speech wave that, corrsponding to the observed vocal cord vibration, there is a modulation of the amp.

Summary
We have developed a new method of high-speed digital image recording system using laryngeal endoscopes and image sensors. The system is compact and simultaneous recording of speech and performed very easily. The system using fiberscope realized observation of the vocal cord vibrations during consonants. We believe that the system is useful for tharacteristics in the various mource phonation.

References

1) K. Honda, S. Kiritani, H. Imagawa and H. Hirose: "High-speed digital recording of vocal fold vibration using a solidstate image sensor."' and Respiration, Acollege-Hill Publication, 485 (1987). 2) S. Kiratani, K. Honda, H. Imagawa and digital recording of vocal fold vibration and speech signal:", Proc Tokyo, 1633 (1986).

MICROPHONEMICS - HIGH QUALITY SPEECH

 SYNTHESIS BY WAVEFORM CONCATENATIONKonrad Lukaszewicz
liomed. of Bicybernetics and Biomed. Eng., PAN, Warsaw Poland

ABSTRACT

Speech synthesis by waveform concatenation has been the subject of many attempts with fairly low quality results. We have personal-sounding speech by rule-based synthesis. Our study in Finnish and Polish shows that the method called microphonemics could be implemented by standard micro-processors and D/A
erters without any expensive signal processing hardware.
The main problems to be solved in the microphonemic allophone units in wide formant transitions, the synthe and fricatives and some other consonant classes, and the control of pitch and intonation. We found that the waveform interpolation vorks if the formant transitions are narrower than 2 Barks (crical bands), which implies the use of intermediate units in selection of 10 ms signal units from 50 ms unvoiced prototypes. Pitch and intonation problems can be solved by several windowing techniques in the formation and concatenation of poses synthesis-by-rule strategies for our experiments and pro-

INTRODUCTION

The methods of speech signal generation in speech synthesis are often divided into two main classes: model-based source-filter models (formant and LPC-synthesis) and waveformbased time-domain synthesis methods. The advantage of modelof signals according to paramerric controls that infinite number by rules, tables etc. This has become the major method especially speech synthesis by rule.

Time-domain synthesis can be based on a collection of periods, sound seecm signal units like waveform cycles, pitch taken from real speech. Concatenation of spe, syllables etc., simple method that has been used in synthesis experiments of is oroderate quality. In principle the sound quality could be very ee stored and carefully coubgh samples of natural speech to memory than the model combined. This method takes more complex and arithmetically intensive.

A well known
he Mozer method $/ 1 /$, where pitch-period-sized speech synthesis is eal speech are manipulated to take as little memory as possible moderate quality, low bit rate method is intelligible form. This vocabulary synthesizers. Our experiments show thome limited like zero-phasing the signal to lower the bit rate tend to remark

Matti Karjalainen

Helsinki Univ. of Technology
Acoust. Lab., Otakaari 5 A, Espoo Finland
ably reduce the quality and speaker identity. The phase properties are important to be retained for very high quality, natural sound
ng speech in a similar way as in multipulse LPC-coding /21.
The term "microphonemic method" that is used in our Poland. Pa tryn 13 mon early experiments of similar principles in transitions and pitch changes. His work was conts without Kielczewski in his doctoral thesis (1979). This microphonemic method applied pitch changes for intonation and transitions by et al. have of neighbouring phoneme prototypes. Lukaszewicz cybernetics, Warsaw, since 1980 applications in a talking typewriter and a talking calculator

The quality of speech in all of these synthesizers has bee low to moderate. The objective of our study was to find methods oo overcome the inherent difficulties in concatenating speech simple and inexpensive synthesizers that it is feasible to develop human-like characteristics. This concerms also speech symality by rule with unlimited vocabulary

PROBLEMS TO BE SOLVED IN THE USE OF
SPEECH WAVEFORM CONCATENATION
The microphonemic method is based on modelling the time domain signal by using a dictionary of prototypes. These ar derived from natural speech utterances and their size can be of
different lengths. It is possible to store whole words; syllables phonemes (allophones) or shorter segments. Using a dictionary of microphonemes and several rules it is possible to generate Synthetic speech by concatenating prototypes one after another. Waveform interpolation and concatenation are applied to realize the transitions between consecutive units. There are several problems that need to be solved in order to obtain high quality
synthetic voice, e.g.:
realizing dynamic and static variations of the units, especiall consecutive seg of smooth and natural transitions betwee synthesizing conents and phonemes,

- modifing parameters to control intonation (Finnish / r), etc.,
determining the prototype set which is needed for a. good
representation
* extracting the
speech exampse prototypes and their positions in the uttered nation for a good strategy when using waveform concatenation for synthesis by rule

Some of these problems were studied by us at the Helsink University of Technology, Acoustics Laboratory, by using the following experimental techniques.

WIDE FORMANT TRANSITIONS
The first problem to be solved in high quality waveform ike /ui/ in honemic method) and in glides. The original idea of the micro one pitch prototype to another by amplitude mixing (see Fig. 1) he glide in formant frequencies is less than 2 Barks (critica bands). In wider transitions, the amplitude-based interpolation is not sufficient to introduce a perceptually acceptable forman ovement effect. For highest quality speech even 1 Bar ransitions may be needed.

Fig. 1. Linear amplitude-based interpolation between two pitch-sized prototypes to simulate formant transitions.

If the formant distances between sound segments larger han 2 barks are needed, some intermediate prototypes should be used to interpolate through (see Fig. 2.). It was possible for all way. gain

Fig. 2. Linear amplitude-based interpolation between
two pitch-sized prototypes with an intermediate prototype.

SYNTHESIS OF CONSONANTS
Many consonants need special processing. Short nonrepetitive units like bursts in stop consonants can be stored as different wowels segments and as several variants in the context of different vowels or vowel groups. Sometimes the effect of stored for synthesis.
Fricatives need special treatment, too. Prototypes of about
50 ms in total length were found to be suitable and 10 ms units from them were randomly taken for concatenation. The same
interpolation rule as in vowels can be applied. Most voiced variability according to the context is only highels except that the

PITCH AND INTONATION CONTROL

Prosodic features reveal some difficulties in concatenation. A simple and fairly successful method to contro
intonation is the use of minimum-pitchsperion and insertion of zero-signal mum-pitch-period-sized prototypes effective pitch for each moment (Fig. 3). A suitable wind technique and the overlapping mixing of pitch periods could improve the results still further (Fig. 4). Timing is controlled by counting a proper number of pitch periods.

Fig. 3. Zero signal insertion as a method of controlling pitch in concatenation.

pitch period windows
roising pitch - ,
Fig. 4. Overlapping window summation in pitch control.

EXPERIMENTAL STUDY

About 70 Finnish and Polish phoneme pairs, concentratin on the synthesis of diphone-like transition segments, were studie experimentally by the microphonemic method. Some other large A
A microprocessor-based signal editor (SPS-02) was used ystem was further applied to scale the amplitude adjust the pitc period and to mix the prototypes for concatenation and synthesis experiments. Another analysis system, ISA /4/, with auditor spectrum and spectrogram display was used to pick up the be positions of the prototypes and to compare the original against the for this analysis is presented in $/ 5 /$.

Prototypes from the onginal speech were used to model the phoneme pair transitions with two different principles of prototype selection. The first one was for producing intelligible moderate quality speech with a minimum number of prototypes phonemes and one prototype in the middle of the transtion

The other method was to produce higher quality speec with a larger number of prototypes. This was accomplished by
choosing the prototypes at each point where the forman frequencies started to change. If the change was larger than 2 Barks an extra prototype between the starting and ending point was taken. The maximum difference in any formant transition to be interpolated was always less than 2 Barks. A prototype was
selected also at the points where the formants changed their direction of movement. For a full synthesis system some of the intermediate prototypes may be selected so that they can be used everal contexts.
As an example, the number of prototypes in the Finnis diphthong/ia/ was three for intelligible and seven for high quality speech. the ne maximum number of prototypes was never larger usually equal to one pitch period. However, in the case of stop ansonants the length of a prototype was two to five times longer five times longe
Fig. 5. shows the auditory spectrogram of the origina diphthong utterance /ia/ with the related loudness function the prototypes in the lower-quality experiment. The auditory spectrogram of the synthesized version is shown in Fig. 6. Lines related to digits 1 through 7 in Fig. 5 indicate the places of the corresponding auditory spectrogram is in Fig 7 .

$$
\text { mg dis specrogram in Fig. } 7 .
$$ herit some speaker-specifict features and personality of the y in The time-domain signal carries the tone quality features related to he detailed amplitude and phase spectrum. Our experiments show hat the phase, especially rapid phase transitions can be very etc.) and their combinations. The prototypes (nasals, liquid inherent pitch and amplitude data of the allophones that include modified according to the context during the resynthesis.

MICROPHONEMIC SYNTHESIS BY RULE

Lukaszewicz et al. have implemented a low-to-moderate quality rule-based microphonemic syntesizer in Polish with some ind the feasibility of the microphonemic method in high-quality synthesis by rule. Because of the relative high storage required suited to limited vocabulary preparation the method is not as wel

Oncatenation of precompiled prototyphonemics consists of the dependent modification rules prototype units with some context compared to traditional model-based parametric synthesis this means more like operating with discrete symbol-like units instead numeric computation can be parameters. Some arithmetic and

The higher levels of
The higher levels of text-to-speech synthesis transform the anguage dependent. In Fhonnish it is almost a one-to-oness is very from grapheme string to phoneme string with some prosody complicated task. The assemb. in English it is a much more signals by phonemic level control information follows the same guidelines in all languages. A set of rules defines how the same ypes are to be modified and concatenated and how the prosodic

In our semimen account
In our semimanual experiment we used a special notation forms were used:

Fig. 5. Auditory spectrogram of the original speech, (Finnish /ial)

Fig. 6. Auditory spectrogram of the lower-quality reconstruction by the microphonemic method
with three prototypes (A, B, C in Fig. 5.)

Fig. 7. Auditory spectrogram of the higher-quality with 7 prototypes (1 to 7 in $F i g$ 5.)
x means a phoneme
$\mathrm{x}_{1} \mathrm{x}_{2}$. is one prototype (one pitch period) which was taken is one prototype (one pitch period) which was take
from the beginning of a transition between x_{1} and x_{2}.
one prototype taken from the middle of the transition
x_{1} between x_{1} and x_{2}
$\mathrm{x}_{1} \mathrm{x}_{2}$ one prototype from the end of the transition between
$\mathrm{n}(\ldots) \quad \begin{aligned} & \mathrm{x}_{1} \text { and } \mathrm{x}_{2} \\ & \text { integer to }\end{aligned}$
x_{1} and x_{2} integer to show the number of repetitions of som
units, e.g. 5($\mathrm{x}_{1}: \mathrm{x}_{2}$)
n (integer) periods of linear interpolation of two
neighbouring prototypes, e.g. $4(-)$, - equals to $1(-)$.
By using this notation we can express phoneme strings in way of the following (Finnish) examples:
tail $\quad->$ 12(.@a) 5(-) a.i 5(-) 10(i.@)
lanna/ \rightarrow 17(.@a) 15(.an) 9(na.) - n.a - 15(a.@)
/olli/ -> @.o 5(-) ol. 5(-) 6(.ol) 5(-) 6(ii.) 3(-)
where symbol @ denotes space (pause).
This notation could be developed towards a formal rule language to be used in the implementation of the rule-based
synhesis. It should also be possible to express the prosody related conrol information, durations of the concatenated units (instead of counting periods), relative pitch and amplitude, special event and relations.

The automatic generation of speech from phonemic code could proceed as follows. A rule-based match of the phoneme code to a set of templates is carried out to give the best candidate string of allophonic units and corresponding microphonemic
prototypes. Slot values related to prosodic features are filled based on context-dependent prosody rules. An experimental study of this kind is under development.

IMPLEMENTATION ASPECT

An estimate of the memory capacity that is needed for prototypes in a moderate-quality synthesizer (Finnish) is: some 30 "phonemes", in average 8 variants (vowel contexts), and the same amount of intermediate prototypes. This results in a total number
of about 500 units, each of 12 ms in duration times 14 samples sec (8 bits), which amounts to less than 100 kilobytes. At the level of present ROM-memory technology it is feasible to use up to 256 kbytes of memory for the prototype storage and synthesis sounding voice. sounding voice.

A single microprocessor like the Motorola 68000 is capable of doing this synthesis in real time. Serial and/or paralles ports are reconstruction filter may be used to form the analog output. Another possibility is to design with multiplying D/A-converters interpolation. The microphonemic method is also well suited to software-based speech synthesis in microcomputers with special D/A-hardware to support fast analog output. The software for the microphonemic synthesis by rule can be based on the maniputhon of prototypes along the guidelines stated earlier

The selection of the prototypes during the development of automated. A semiautomatic segmentation algorithm and pitch period detector could help if the voice of several speakers must be modeled. We are working to create two different development
systems to continue the studies on the microphonemic method. One will be based on a personal computer, another in an artificial intelligence programming environment.

CONCLUSIONS

Our experiments showed clearly that the microphonemic method by waveform interpolation and concatenation has potentia or high-quality speech synthesis by rule. Its main technic required. To achieve the highest-quality results optimal extraction of prototype segments from real speech and a good strategy for ule-based concatenation is needed. Auditory spectra and spectro grams were found important in the extraction process to find the perception.

REFERENCES

/1/ Costello B.C., Mozer F.S., Time-Domain Synthesis Gives Good-Quality Speech at Very Low Data Rates. peech Technology Sep//Oct. 1982, p. 62-68.
1/ Atal B.S., Remde J.R., A New Model of LPC xcitation for Produchg Natural-Sounding Speech at Low
B/ Patryn R., Transitionless Synthesis of Speech. Acoustica 1) no. 4, p. 275-276.

4/ ISA, Intelligent Speech Analyser, Instruction Manual, Vocal Systems, Finland, 1987.
15/ Karjalainen M A New Auditory Mod for Evaluation of Sound Ouality of Audio Systems. Proc the ICASSP-85, Tampa 1985, p. 608-611.
$16 /$ Karjalainen M., An Approach to Hierarchical Informatio Processes with an Application to Speech Synthesis by Rule Ma 29, Acta Polytechnica Scandinavica, Helsinki 1978.

Abstract

An experimental high-quality speech syn thesis system ts described. Demisyllables are use as phonetic units for concatenation; in a first step it is shown that 1665 demisyllables requiring about 0.5 MByte of memory at a data rate of $7.2 \mathrm{kbit} / \mathrm{s}$ are sufficient to synthesize a very large German special variable-frame-rate vocoder synthesizer

.

Text-to-speech synthesis systems principally conist of three major components: 1) an orthographic to-phonetic transcription (including prosody con-
trol); 2) the concatenation block; and 3) a vocoder ynthesizer. Usually the output of the orthogra-hic-to-phonetic transcription block is a string of ers for prosody control. The concatenation comonent converts this string into a data stream o ocoder parameters which are then transformed
nto synthetic speech by the vocoder synthesizer into synthetic speech by the vocoder synthesizer.
In the last years work on speech synthesis has oncentrated upon higher-level tasks, i..., ortho-
graphic-to-phonetic transcription and prosody con-graphic-to-phonetic transcription and prosody con-
trol. Nevertheless, there are still a number of unsolved problems in connection with a number of and even with the vocoder synthesizer; due to
these problems, the quality of synthetic speech mase prioblems, the quality of synthetic speech
may se unsatisfactory even for synthetic
utterances with and atterances with a well-modeled pron for synthetic This paper
deals with possibilities of improving the quality of deals with possibilities of improving the quality o
synthetic speech by optimizing the concatenation synthetic speech by optimizing the concatenation
block (Dettweiler, 1981 , 1984) and by designing a
vocoder that is speech synthesis system by well adapted to a
2. Concatenation System for Demisyllable Elements Concatenation is a central problem in any system between the phonetic level'and the parametric leve of the system. In practice concatenation is controlseech data. This data base may contain experimenowever, it may tables of formant frequencies however, it may also consist of (parameterized
natural speech. The design of the concatenation component is determined by a tradeoff between the on the one hand and the size of the memory re-
quired for the data base on the other hain. rucial question in this respect is that of the phon etic units to be applied.
2.1 The Demisyllable Approach

Besides phonemes and diphonemes, syllabic units supply a viable data base for high-quality synthe (Fujimura, when a syllable boundary is crossed (Fujimura, 1981; Ohman, 1966). When syllabic units are used, the number of elements is minimized
when the syllables are split up into demisyllables (DSs). Demisyllables as units of speech processing
were first proposed by Fuimura both for speech recognition froposed by Fujimura both for speec
(1975) (1976). For German DSs were taken up by Ruske
and Schotola (1978) for a speech recognition sysand Schotola (1978) for a speech recognition system; for synthesis by rule they were first used by
Dettweiler $(1980,1981)$. Usually a syllable is defined to consist of the
syllabic nucleus (in German this is always a or a diphthong) which is preceded and followed by a number of consonants, the so-called consonant clusters (CCs). The consonants preceding the syl-
labic nucleus form the initial consonant cluster and the consonants following the nucleus represent the final consonant cluster. A syllable is subdivided into demisyllables by cutting it within the syllabic syllabic nucleus form the initial demisyllable whereas the remainder of the nuleus and the final
CC make up the final demisylable
2.2 The DS Inventory. Synthesizing Monosyllabic
Words

A representative DS list for German was compiled 1984). The initial CCs contain from also Schotola ants, whereas up to 5 consonants may exist in a final CC. The number of CCs is rather limited due 51 inguitial and constraints: we have to deal with only cerning the syllabic nuclei, 23 vowels, 1984 3 . Ciph-
thongs must be taken into thongs must be taken into account.
Contrary to speech recognition,
labic nuclei and the CCs can be treated sepe syl(Ruske and Schotola, 1978 , the transitions between the syllabic nuclei and the CCs are essential for be generated by rule and must be available as stored data. For the complete DS inventory the
number of elements thus becomes
$\mathrm{Nc}=26$.
Since coarticulation has a strong tendency (Delattre, 1968; Fujimura, 1981) it is ant gestures establish the DS boundary within the first part of
the vowel. Fujimura's proposal (1976) to place the the vowel. Fujimura's proposal (1976) to place the part of
boundary 50 ms after the begining boundary 50 ms after the beginning of a vowel is
also applied in our system (Dettweiler, 1981; cf Fig.1).
 Fig.la-c. Concatenation within the syllabic nucleus
(rule CR1). (a) Initial DS, (b) final DS; (c) complete word after concatenation. The thick vertical line
indicates the interconnection point; the smoothing interval is indicated by the dashed lines. Th asterisk in the phonetic transcription refers to the position of the syllabic nucleus

2.3 Inventory Reductio

To reduce the number of DSs, two ways seem feas ible: 1) vowel substitution, and 2) further splitting of CCs. Both these possibilities have been used in
our system; the most important rule being the prin
ciple of rudiment and suffix our system; the most important rule being the prin-
ciple of rudiment and suffix
(Dettweiler, 1981 ciple ${ }^{\text {a }}$.
Certain consonants, when occurring in final
position of a DS, may be split off from the DS and form separate units, the so-called affixes (Fujimur et al., 1977). As the experiments suggest, fricative
and stops in final position, like vowels in the syland stops in final position, like vowels in the sylrier; i.e., sounds following this barrier do not
(substantially) affect previous sounds. A splitting scheme which is particularly efficient for German is the principhe of rudiment and suffix (Dettweiler
1981, cf. Fig.2). A suffix is defined to consist of 1981, cf. Fig.2). A suffix is defined to consist o
any (existing) any (existing) combination of the four consonant
/f/, /s/, /S/, and /t/, whereas the remainders of
the final DSs form the rudiments. The linguin the final DSS form the rudiments. The linguistic
constraints of German state that once a suffix conconstraints of German state that once a suffix con-
sonant, $i . e .$, cone of the 4 consonants named above has occurred in a final CC, the following conson ant(s) of that final CC, if existing at all, must be In practice the rudiment is formed by uttering a DS that contains the remainder of the consonan final /t/ and then removing the /t/ together with final /t/ and then removing the /t/ together with
the pertinent silence before the burst Fig. 2 b)
Since the Since the rudiment contains all the coarticulatory influences by the following /t/, it is easy to see
that the rudiment and the final $D S$ containing an identical consonant cluster without the /t t are different (cf. Fig.2a,b). Any rudiment and any suffix
may be simply concatenated without any smoothing may be simply concatenated
at the interconnection point.
Using all these possibititite
Using all these possibinities of inventory reduc-
tion, the total number of elements now decreases to $N_{R}=1665$. Note that these inventory reductions do not degrade the quality of the synthetic speech.
With an average duration of 0.3 s per element the menory required for this inventory is less
than 0.5 MByte if a vocoder at $7.2 \mathrm{kbits} / \mathrm{s}$ is used.

Fig. $2 a-\mathrm{c}$. The principle of rudiment and suffix. (a) Ordinary consonant cluster: example /*am/. (b) the rudiment $/ *$ am. $/$ / and the suffix $/ t / /$ (the dotted line represents the boundary). (c) Concatenation using rudiment and suffix: $/ *$ *am./ it $/ S / \rightarrow / *$ am $/ /$ are needed to complete the word, but do not per ain to the DSs involved in rule CR2

2.4 Synthesizing Polysylabic Words

Polysyllabic words contain intervocalic consonant clusters between subsequent syllabic nuclei. This requires additional rules for the concatenation of
CCs (Dettweiler, 1984). The procedure is carried out in two steps. First an intervocalic CC is split up into a final CC followed by an initial CC, and the CCs are joined to the respective syllabic, nuclei
to form DSs. In the second step the DSs are concatenated.
The ICCs are split according to three rules Firstly, an intervocalic CC must always be split up regarded as valid if it is contained in the DS invenory. If this rule does not yield a solution, the $D S$ this rule provides several solutions, a second rule states that the one solution is selected where as many consonants as possible are grouped within
the initial CC. This "pragmatic" boundary takes the initial CC. This pragmatic boundary takes
into account the anticipatory effect of coarticula-
tion; even when a DS boundary as established by tion; even when a DS boundary as established by
this rule, differed from a given morph boundary. These two rules thus represent an adequate means to split up intervocalic CCs without requiring mor phologic knowledge at this level.
When the intervocalic CC only contains one consonant, a third rule switches the system into a diphone mode by assigning this consonant to both The way in which intervocalic CCs are concatenated strongly depends or the consonants involved be discussed here. A flow diagram is depicted in Fig. 3 ; the labeling of the concatenation rules (CR 3-12) corresponds to that in (Dettweiler and is referred to that publication.

Fig.4. Vocoder configuration for speech synthesis Fig.4. Vocoder configuration for speech synthesis
by rule. The analysis
dashed line) is done offline dashed line) is done offline

Fig.5. Example for the evolution strategy for a VFR
vocoder system. After Heiler (1985)

In subjective listening experiments Heiler (1985) showed that, compared to a vocoder with constant principle permits reducing the bit rate by a factor of 3 without a perceptible loss of quality

Discussion and Conclusiona

The work descibed in this paper concentrates on quatimizimp the front-end steps, i.e., the concatena on block and the vocoder synthesizer.
ge great advantage that about 20 rules and 1650 the great advantage that about less than 0.5 MByte are sufficient to synthesize (nearly) unrestricted
German text. A special variable-frame-rate vocoder ynthesizer provides an optimal quality at a give data rate and helps minimizing the required amoun At the
At the moment the synthesis system by rule and
he VFR vocoder still exist as separate units. Efforts are under way to combine the two systems,
thus improving the quality of the vocoder in con nection with the stored data. A signal bandwidth of kHz requiring a sampling frequency of 16 kH the fricatives / $\mathrm{f} / \mathrm{and} / \mathrm{s} / \mathrm{present}$ in the actua $5-\mathrm{kHz}$ system, and a VFR scheme permitting a minithe overall amount of memory will particularly in
prove the quality of synthetic stop consonants.

Acknowledgement. The major part of this paper wa extracted from the Dr.-Ing. dissertations b
Dr. H. Dettweiler and Dr. J. Heiler. References
Delattre P. (1968): $\begin{gathered}\text { From acoustic cues to distinc- } \\ \text { tive features." } \\ \text { Phonetica } 18, \quad 198-230\end{gathered} \quad 703-706$ (VDE-Verlag, Berlin)
Dettweiler H. (1981): "An approach to demisyllab ettweiler H. (1981): "An approach to demisyllabee
synthesis of German words." Proc. IEE synthesis
IIASSP-81, $110-113$
etweiler H. (1984): Automatic synthesis of German wettweiler h. (1984): Automatic synthesis of German
words by means of sylable-oriented segments
Dr--Ing dissertation, Technical University of Munich (in German)
Dettweiler H., Hess W. (1985): "Concatenation rules for demisyllable speech synthesis." Acustica 57
ujimura O. (1975): "Syllable as a unit of speec
Fujimura O. (1976): "Syllable as the unit of speech synthesis. Unpublished
ujimura 0. (1981): "Temporal organization of articulatory movements as a multidimens
al ujimura O., Macchi M.J., Lovins J.B. (1977): "Demi
syllables and affixes for speech synthesis. sylables and affixes for spech synthesis."
Proc. ${ }^{\text {th }}$ Int. Congr. on Acoustics, Madrid 1977, paper 1107
iler
J. (1982): eiler J. (1982): "Optimized frame selection for vari-
able frame rate synthesis."
ICroc.
IEEE ICASSP-82, Paris 1982, 586-589
eiler J. (1985): Minimization of the memory requirements of speech synthesis systems by optimizing
the parameter approximation. Dr.-Ing. dissertation, Technical University of Munich (in German)
Huggins A.W.F., Viswanathan R., Makhoul J. (1977): Speech-quality testing of some variable frame
rate (VFR) linear predictive vocoders." Acoust. Soc. Am. 62, 430-434
speech recognition using An approach to
 chotola Th. (1984): "On the use of demisyllables in 3utomatic speech recognic 3, 63-87

HIGH QUALITY SYNTHESIS OF VOWELS

Leonid Chudnovsky, Vecheslav Ageyev

Institute for Information
 Mransmission Problem

abStract
A problem concerning synthesis of isolated Russian vowels is described. Approximation of excitation source functioning is at the centre
of attension. f attension.

During vowel synthtsis attention is focuse on vocal tract (mocies) freciuency values. Excita tion source is approximated by a triangular function subjected to three jurns of a derivative vide a hich cuality synthesis and thus causes intelligibility derracation in additive noises. Sonewhat better synthesis results are achieved for a nore composite tiole function of the vowel excitation source $[2]$
Natural sounding and intelligibility of syn-
thesized vovels can be improved dither into consideretion the real features of vowel excitation sources. One may get an'idea of the excitation sources from vowel oscillograph traces using the inverse filtering technicues. To know such vocal tract parameters as a quality factor and noda frequency. A compensating method based on instant frequency 'measurement of filtered speech signal has been used for noda reguency calculation [3]. It was continued by formant-oscillations. Low-pass filters have been used for the extraction of the first formant and band-pass filters for the extraction of other formants. The cut steepness of a filter less than $48 \mathrm{~dB} /$ octave outside the accounted for no band. A quality factor of the extracted formant ical sitions has been calculated using an analyical signal envelone [4]. Algoritra $[4]$ has been modified to improve conputins accuracy of a oscillation $\dot{\rho}_{k}(t)$ and the calculation formant freality factor Q_{k} and the vocal tract moda frequency ω_{k} it is possible to regenerate the
moda excitation moda excitation source from the follo-
wing equation [2] : $P_{k}^{\prime \prime}(t)+\frac{\omega_{k}}{Q_{k}} P_{k}^{\prime}(t)+\omega_{k}^{2}\left[1-\left(\frac{1}{2 Q_{k}}\right)^{2}\right] P_{k}(t)=f_{k}(t) \quad(1)$ The excitation source of the formant oscillati-
on $f_{k}(t)$ is related to urce $f(t)$ in the followins way excitation so

$$
\begin{equation*}
f_{\kappa}(t)=\int_{-\infty}^{D_{\infty}} L_{\kappa}\left(t^{\prime}\right) f\left(t-t^{\prime}\right) d t^{\prime} \tag{2}
\end{equation*}
$$

where $L_{k}(t)$ - is a filter pulse response for ex.traction of
formant oscillation.
quation (1) may be used for speech synthesis well.
Excitation sources of 5 Russion vowels "a", ed. The extracted excitation sources of the first formant oscillation car be conventionally evided into two groups: the first group for he sounds "a" and "3", and the second grous for the souncs " o ", " y " and " 4 ". The first group of excitation sources represents \ddagger wo succestire. interval 4-6 ms and each pulse duration $1-2$ ms. The second pulse amplitude and its delay tine with respect to the first pulse are related to the quality factor and the first moda frenuency in such a way that the second pulse
stops its free oscillations which appeared afer the first pulse. The second group of excitation source is represented either by a single pulse with $1.5-2$ ms duration or by two multy-or unidirectional pulses of the same duration with the second pulse time delay $1.5-2 \mathrm{~ms}$, or by the
three pulses of alternating direction with the duration $1.5-2 \mathrm{~ms}$ and the time delay $1.5-2 \mathrm{~ms}$ and $3-4 \mathrm{~ms}$ correspondingly. Excitation source of the sound "y" has one peculiarity. The regenerate excitation sources of the first moda and he extracted signal of the first formant oscilins are identical.
ve been approxinate by the following function ha-$\tilde{f}(t)=\eta(t+T)[1-\eta(t-T)] \cdot \exp \left\{-\left[1-\left(\frac{t}{T}\right)^{2}\right]^{-1}\right\}$ where $2(t)$-is a pulse duration $\eta(t)$-is a unit function. of the vowels "resulted in high intelligibility by single formant ,o " ${ }^{\prime}$ ", when represented nurber of formant oscillation causes ince in the bility improvement. For acceptable intelligibility of the synthesized vowel " 4 " it should be eepresented by two formants. The first mode extion have been with the reduced pulse duration have been used for higher vocal tract moda
freruencies (3). The duretion

Fig. 1 shows the excitation sources oscillograph $\tilde{f}_{10}(t), \stackrel{\text { fres }}{ }$ the first formant $(t), \mathcal{F}_{14}(t), \tilde{F}_{19}(t)$ and of the second for-

Fig. 1. The excation sources of the synthesized
"о","у","и".

The oscillograph traces of the synthesized sing-
le-formant vowels "a", " 3 ", "0", "y" and the twoformant vowel " " " are shown in Fig. 2.
Natural sounding improvemt of the synthesized vowels is achieved with due regard for time va-
riation of the excitation source parameters of each moda $f_{k}(t)$. Test data analysis has shown that the vowels excitation sources are subjeced to different transformations, i.e. abrupt transformations with the time interval of ol 100 ms and slow period-by-period transforma-
ions. The vowels excitation sources which difer in their voice onset time with open or close vocal bands are well differentiated.

Fig. 2. The synthesized sounds "a" "э","о","у","и"

Fig.3. shows the extracted excitation sources Fig. 3 shows the extracted excitation the
of the first moda $f_{i}(t)$ and $f_{i n}(t)$ of the vowls " a " and " 4 ". The phonation of the vowel "a' initiates with close and of the vowel "u" with open vocal bands. Due to the extracted excita ce onset time with open vocal bands and the cessation of phonation (Fig.3) have the same time structure and are practically speaker independent. To achieve the vowels high quality synthesis with due regard for the source signal varia the help of the tables

$f \operatorname{fin}(t)$

Fig. 3. The regenerated excitation sources of the first moda of the sounds "a" and " L ".

The usage of excitation sources peculiarities and their relationship with vocal tract paramters gives an opportunity to achieve the high quality synthesis of vowels and speech as whole.

REFERENCES

 речи",М.,СвяЗь,1968.
$[21$ В.Н.Соронин "Теория речеобразования",М., Радио и Связь, 1985.
[3] Л.С.Чудновсний, В.М.Агеев "Анализатор речевых сигналов", авторсное свидетельCTBO :101275527, MKU GIOL9/00, ВИ 1-45 I986.
[4] В.С.Пичқур, А.Ф.Приставка "Определение текуцих параметров частотньх составляющих речевых сигналов", тезисы донладов и сообщений I3-ой Всесоюзной школы-семинара "Автоматическое распознавание слуховых образов", Новосибирск, 1984.

A HARDWARE-SOFTWARE SYSTEM FOR DESIGNING HIGH-QUALITY SPEECH COMPILING SYNTHESIZERS

ALEXANDRE GORODNIKOV
All-Union Research Institute for TV and Radio Broadcasting Moscow, USSR 123298

MEELIS MIHKLA
TOOMAS TAGO

Computer Design Office, Institute of Cybernetics, Tallin Estonia, USSR 200104

ABSTRACT

Nowadays, the highest possible phonetic quality of synthetic speech can be provided by compiling speech synthesizers. Proposed is an appropriate hardware-software system for their computer simulation and design. As an example of practical implementation, basic parameters of a high-quality speech synthesizer of the "speaking clock" type to be used in radio broadcasting are presented.

INTRODUCTION

Of different types of synthesizers available, it is the so-called compiling synthesizer which guarantees the highest possible quality of synthetic speech, and, consequently, boasts the greatest versatility. The synthesizer is based on a solid-state memory containing speech signals in a digital form. The set of signals consists of specially selected speech elements like phrases, words, syllables, or coarticulation units which, being read out from the memory in a pre-
set order, permit to synthesize a certain number of utterances.

Designing a compiling synthesizer, the key problem is how to compromise among different and even somewhat antagonistic technical requirements, such as the quality of synthetic speech, the volume of the vocabulary, the complexity of the hardware part, dimensions, weight and cost. To provide an effective solution to the above problem, we have developed a hardware-software system that serves well for both research purposes and practical applications in creating compiling synthesizers. The system's hardware also includes a compiling synthesizer of the "speaking clock" type for high-quality speech synthesis.

THE HARDWARE-SOFTWARE SYSTEM

The system is based on a minicomputer EC-1010, operating together with 12bit A / D and D / A converters, a bank of filters, a tape recorder, and other peripheral equipment. The system's features
include: digital input of a speech signal, extraction of the synthesizer vocabulary units from a speech signal, computer simulation of the synthesizer operation algorithms, comparison of different methods of speech signal coding and redundancy reduction, objective analysis and comparison of prosodic characteristics and coarticulation joints of synthesized phrases. It is also possible to prepare and store in the solid-state memory bulks of labelled digital data and to check by listening the acoustic quality of synthetic speech. Sampling frequency of the speech signal input can be - depending on the application - 10,16 or 20 kHz . A segmentation program makes it possible to extract the wanted sentence, word, or syllable from a continuous speech signal. Thus derived speech elements are stored in a database on disks. The next step consists in the analysis and optimization of the vocabulary by means of synthesis. The prosody of a synthesized sentence and the intensity of the speech signal are compared to the corresponding parameters of an originally spoken sentence. According to the context of the sentence, the database is searched for speech elements whose main pitch contour and intensity most closely resemble those of the original sentence.

WORD SELECTION FOR THE SYNTHESIZER VOCABULARY

The highest possible quality of synthetic speech can be achieved in case the vocabulary consists of words and phrases. However, this requires a largecapacity solid-state memory, otherwise the synthesizer shall have a rather limited vocabulary. As an example, we may consider the vocabulary of a high-quality speech compiling synthesizer to be used for time announcement in radio broadcasting (the so-called "speaking clock"). The general structure of the Russian time announcement is as follows: "Moscow time is ... 10 x (hours), 1 x (hours) ... 10 x (minutes), $1 \times$ (minutes)" or "It is noon/ midnight in Moscow". Thus, in order to announce time with a minute's precision round the clock one would need 1440 announcements, each structured according to the above pattern and being 4-6 words long. The entire file of speech units used for time announcements would comprise 8592 words with a total duration of 183 min . Obviously, the vocabulary of a "speaking clock" should be considerably smaller in order to provide both a tolerable degree of complexity and a reasonable cost of the synthesizer.

A prosodic analysis of the original time announcemets carried out by means of our hardware-software system showed that
abrupt changes in the pitch contour are observed mainly in the middle of the sentence in the words "time" and " (10 x)
hours, (1 x)hours", where the pitch rises at the end of the word, and also in the sentence-final position in the words "(10 x) minutes, (1 x) minutes" where the pitch falls. The words carrying quantitative temporal information (i.e. numerals) can be divided into stressed and unstressed ones. In long words, however, changes in the pitch and signal intensity are relatively small, therefore the stressed vs. unstressed dichotomy is not worthwhile in this case. The above findings, alongside with the fact that most of the words display a high repetition rate across different announcements enabled us to considerably reduce and optimize the synthesizer vocabulary. The resulting vocabulery for round-the-clock time announcement service in Russian comprises 43 words with a total duration of 293 sec .

THE COMPILING SYNTHESIZER OF THE "SPEAKING CLOCK" TYPE

Prior to its practical implementation, the "speaking clock" design was simulated and optimized by means of our hard-ware-software system. The high acoustic quality of the announcements was achieved by 12-bit digital speech conversion with the 16 kHz sampling frequency. In order
to economize the solid-state memory storage capacity, speech signals were DPCMcoded. The data-transmission rate was therewith $128 \mathrm{kbit} / \mathrm{sec}$ and speech signals were digitally encoded in the format of 8 bits per sample.

Figure 1 represents the block diagram of the compiling synthesizer. There are four main units: an electronic clock and a keyboard controller based on a onechip microcomputer, a control and display panel, a CPU, and a solid-state memory. The overall dimensions are $475 \times 280 \mathrm{x}$ x 440 mm , the power consumption is 60 W .

Fig. 1. The structured scheme of the compiling synthesizer.

G.D.FROLOV

16th Parkovaya Str. 27-205 Moscow, USSR, 105484

The compilation synthesis of speech based on clipped signals is founded on a detailed analysis of the mutual position of zeros of a speech signal.The information used for the synthesis of speech is extracted from the speech signals of a definite speaker. Different minimal items are used for the compilation synthesis - words, syllabels,segments,phonemes.The best diversity of synthesized speech is achieved with tiny items, such as syllabels, segments, phonemes.To obtain high quality synthesized speech it is necessary to do the following preparatory work: define the stressed voWel of the word; define the prosodic features; define the syntactic stress.The preparatory work with the original text is carried out according to the syntactical, grammatical and phonetical rules of the Russian language.
As the pronunciation of a separate letter in the Russian language depends not only on the surroundings but also on its relational position to the stressed vowel, it is necessary to single out, in the original text,groups of words having similar stresses.Such a group of words corresponds in oral speech to a phonetic word. We call it a stressed group.To single out these stressed groups and to define the stressed vowel in them we must prepare the following starting data:

1. Multitude C of permanent components of a Word form, where $c(1)$ is an element of multitude C.A permanent component is understood

I.M.YEFREMOVA

Zhukovskaya Ave. 13-75
Zheleznodorozhny 2
Moscow Region, USSR, 143980
as a most frequent beginning of the grammatical forms of the given word. Fach element $c(1)$ is put into correspondence with the number of the stressed vowel of the word (or with the number zero if the number of the stressed vowel changes at changes of the word form) and with a reference to the reciprocal element of the multitude V, described below.
2. Multitude V that consists of variable components of the form of a word.A variab] component of a word form is understood as a complex of all parts of a word form after depriving it of its permanent components. If in a word form there is no variable component,the sign " + " is inserted at its place in multitude V. If the stress in the word form changes, the element of the variable component is put into correspondence with a number that shows the stresse vowel number of the word form.
3. Multitude H of auxiliary words (prepositions, conjunctions,particles) that precede the significant word in the stressed group.
4. Multitude E of auxiliary words that stand after the significant word in the stressed group.This multitude includes only particles.
5.Multitude W of combinations of auxiliary words with significant words, where the sress is put on the auxiliary word. Each element of the multitude W is put into correspondence with the number of the stressed vowel.

For the description of the algorithm of automatic determination of stressed vowels we introduce the following designations: NS - empty word; $G(\dot{N})$ - isolated stressed group.The original text is understood as an aggregation of words $p(1) \ldots p(i) \ldots$ $p(m)$. Words are separated by blanks or by marks of punctuation and blanks. Further we bring the algorithm metioned above: 1.Assume: $\mathrm{L}=1, \mathrm{~N}=1$
2. Check: if I is bigger than $m, g o$ to 14 3.Check: if $p(J)$ is an element of H, enter $P(L)$ into $G(N)$ and go to 4, otherwise go to 5
4. Check: if $p(L), p(L+1)$ is an element of W, the number of the stressed vowel is take from multitude W and go to 13
5.Check: if $p(L)$ is an element of F,enter $p(L)$ into $G(N), p 1:=p(L-1)$, go to 6.0 therwise check: if $p(L+1)$ is an element of E , enter $p(L), p(L+1)$ into $G(N), L:=L+1$,
$p 1:=p(L)$, if $p(L+1)$ is not an element of E, enter $p(I)$ into $G(N)$, $p 1:=p(L)$.
6.Check: if $p 1$ is an element of C,go to 12 take number of stressed vowel from C. Otherwise perform: c1: $=p(L)$
7.Take the last letter of the word c1 from the right side and add it to the left side of the word v1.
8. Check: if $c 1$ is an element of $c, g o$ to 7 9. Check: if $v 1$ is an element of Q, where Q is the sequence of elements of the variable component corresponding with the permanent component c1,go to 7
io. Find the number of the stressed vowel in the word p1 as follows: if in the multitude C the number of the sressed vowel, which is not zero, corresponds with the element ch, then the number of the stressed vowel in the ord p1 is found. If the number equals zero, take the number of the stressed vowel from the corresponding element of multitude ∇. 11. Compute the number of the stressed vowel in group $G(N)$.Add to the number of the stressed vowel of the word p1 the quartity
of letters in all auxiliary words that precede the word p 1 in the stressed group $G(\mathbb{H})$
12. Compute: $\mathrm{N}:=\mathrm{N}+1$
13. Compute: $\mathrm{L}:=\mathrm{L}+1$. Go to 2
14. End

After the automatic distributionof stresses in the original text has been accomplished, the automatic transcription of th this text is performed. The primary data for the algorithm of automatic transcription are:

1. Number of stressed vowel in the word. 2.Alphabet A of Russian letters and corresponding digital codes.The letters are coded in such a way that operations of substitution of symbols can be performed as arithmetical operations.
3.Alphabet T of transcriptional letters and corresponding digital codes.
2. Multitude S, containing words that form deviations from the rules of transcription, numerals in the form of numbers, special signs and symbols. Each word of this multitude is put into correspondence with its transcribed word.
3. Function $F(a)=t$, that transforms words written in letters of the alphabet A into transcribed words in letters of the alpha bet T. Further we bring the algorithm of rapid transcription:
4. From the original text a word is separated. If there remain no more words,go over to position 6.
5. If the separated word belongs to multitude S, it is replaced by the correspondigs trasscribed word and we go over to 1. 3. Fach letter of the separated word is substituted by the digital code that corcesponds with the letters of alphabet A. The stressed vowel of this word is replaced by the corresponding digital code and after it we add the digital code 100 Now we designate the digital code of the replaced letter or the digital code of the
replaced letter and the code determining the character of the stressed vowel with $a(i)$, where i represents the sequence number of the letter in the given word.
6. In the coded word $a(1) \ldots a(1) \ldots a(n)$ we replace $a(i)$ or the aggregation $a(i)$ in accordance with the value of function F, that is specified in the table for the code, or the aggregation of codes of the transcription alphabet, designating them by $t(J)$, where J represents the sequence number of the letter in the transcribed ord.
7. In the succession $t(1) \ldots t(j) \ldots t(m)$ we replace $t(j)$ by the corresponding letter of the alphabet T, regarding the character of the sressed vowel.
6 . End.
The described algorithm allows to perorm the transcription of any Russian text at random according to the rules of Russian phonetics.
The most important word in a syntagm or parase, the stressed one, tends to occupy a place in the end,that is why the definition of the syntagmatic stress is mainly accomplished with an algorithm of derivation of syntagms in the original text. The algorithms developed for the derivation of syntagms and the definition of prosodic features are founded on the morphological, syntactical and semantic analysis of the text.The system of compilation synthesis of speech includes moduli of derivation of segments, estimationof main tone frequency and also a modulus for adaptive connection of segments and means of developing, storing and reflection of Obtained information about the speech signal.

LEIGH LISKER

University of Pennsylvania

Haskins Laboratories

ABSTRACT

A most convincing way to demonstrate that an acoustic property is a cue for the listener would be to find speech events that, constitute minimal pairs with respect to that property, but in nature such pairs are most un minimal pair at the level of the segmental phoneme, and are near minimal at the level of the phonetic feature, but as many as sixteen acoustic properties are candidate cues to the lexical
distinction. Three properties lend themselves distinction. Three properties lend themselves
to simple waveform editing: the duration of the to simple waveforme duration of the closure, and the glottal buzz vs silence of the closure signal. Listener responses to stimuli having natural values of these properties show that, with a single exception, there was effect on word in the value of any one property. At least two properties had to be changed to achieve any significant effect.
Phonetic research nowadays considers the prowide variety of perspectives, but a central concern remains that of identifying and charact erizing those features of the speech processe that serve a message-differentiating function. The phonetic analysis of a speech signal into a eemporal sequence of sounds, as well as provide a framework within which to specify the distinctive properties that determine a particular interpretation of the signal. A coherent account of a given. speech event, considered as representative of a set of linguistically equi-
valent events, states the interrelations among physiological, anatomical and acoustic patterns, and the nature of their connection to the listener responses they elicit. By far the most attention has been given to finding the acoustic cues to the linguistic message conveyed by a
vocal tract emission. The search has involved the acoustic analysis of signals, the selection of promising cue candidates, and the empirical assessment of their cue value by the methods of speech synthesis. Such evaluation of a feature's cue value typically has involved the use of set
of acoustic patterns designed to maximize the
ikelihood that the feature of interest will affect listeners' response behavior. The found to have measurable cue value is uncertain, and presumably with continued research along established lines that number will only increase. Clearly it is easier to show that a feature has cue value than to justify a claim to the contrary Most of the acoustic cues so far uncovered are referred to as segmental cues, or even as cues particular phonetic feacures their identification re derived via some variant of the linguist's "minimal pair" test. A most convincing way to show that an acoustic property is a cue for the istener would be to find speech events that constitute minimal pairs with respect to that property, but in nature such pairs are very
unlikely. The English words rapid rabid make a minimal pair at the level of the segmental phoneme, and an almost minimal one at the level of the phonetic feature, but as many as sixteen acoustic properties are candidate cues to the lexical distinction. It is not certain, however, that any one of them is an independent cue, i.e. one that itself. Even if a given acoustic property can be shone to have such power to affect perception, it need not be true that this property functions independently in nature
Here I want to report some listener responses to sets of stimuli derived by waveform editing of same naturally produced tokens of rapid and rabid. Three properties served as experimental variables buzz/silence difference during closure, and the duration of the pre-closure vowel. Unlike many tests of this kind, in which the values assigned a variable range over a span in steps of a size designed to establish category boundaries, in th tests reported on here each variable was given just two val
A token of each of the sentences 1 think it's rapid and I think it's rabid was recorded by American English and stored on computer. A wave form editing program was applied to produce a total of sixteen different acoustic patterns. Th totarations of the different acoustic patterns.
abial closures were set to values of 60 and 120 secs, these being typical of $/ \mathrm{b} /$ and $/ \mathrm{p}$ / sures for the speaker. The closure intervals either acoustically blank or filled with buzz dived from the original /b/ closure. The preclosure intervals, from the cessation of the nois interval marking the posure were set at the folowing values:-for derivatives of rabid: $: 270 \mathrm{msec}$, he original value, and 230 msecs ; for rapid erivatives: 190 msecs, the original value, and 230 msec . The common value of 230 msecs was selected because it fell within the range of acurext used. (Shortening the pre-closure span to duration of 190 msecs effected a noticeable shift in vowel quality.) A test order in which ach of the sixteen stimuli was presented five times, i.e. a random order of eighty items, was presented to twelve native American English naive. Each test item was composed of an acoustically invariant carrier I think it's followed by the target word to be identified. Listeners' responses were the following:

rce: rabid		Operation	\% "rabi
	1)	none	100
	2)	-voicing	95
	3)	+long closure	100
	4)	-long vowel	100
	5)	+long closure -long vowel	97
	6)	-voicing -long vowel	93
	7)	-voicing + long closure	15
	8)	-voicing +1ong closure -long vowe 1	8
Source: rapid		Operation	\% "rapid"
	1)	none	100
	2)	+long vowel	100
	3)	-long closure	98
	4)	+voicing	12
	5)	+long vowe 1 -long closure	62
	$6)$	+long vowel +voicing	10
	7)	-long closure +voicing	13
	8)	+ long vowel -long closure +voicing	8

or each of the variables a change to a value
stimulus type has, with one exception, no grea effect on labeling behavior. Only when glottal buzz replaces the silence of the /p/ closure i there a decided shift to "rabid" judgments.
It does not follow, of course, that tice three features are of negligible importance for the perception of the two words. Thus a combination of devoicing and lengthening of the /b/closur result in conformity with earlier findings. A shortening of the /p/ closure together with lengthening of the preceding vocalic interval yielded mostly "rabid" responses. Original "rapid was heard largely as "rabid," while "rabid" went to "rapid" when all three variable features were The results summarized above indicate that an acoustic feature to which cue value has been effect on linguistic labeling behavior; its effect is quite context-dependent. Indeed it may well be, in the case of certain properties, that the context in which it can be decisive can only
(?) be contrived in the laboratory. The status of (?) be contrived in the laboratory. The status of different from that of a phonetic feature, which we generally suppose to possess the power, for at least some natural phonetic system, to mark differentially some words from others, and to do

WORD-INITIAL CONSONANT LENGTH IN PATTANI MALAY

ARTHUR S. ABRAMSON

The University of Connecticut and Haskins Laboratories Stors, CT, USA New Haven, CT, USA

ABSTRACT

Pattani Malay has distinctive length in all wordinitial consonants. Earlier work showed that variations in closure-duration yield perceptual shifts between "short" and "long" phonemes for all sentence-medial intervocalic consonants but only for sentence-initial consonants with acoustic excitation before the release. For words, however, with initial voiceless closures but no pre-release excitation, which are identified well in isolation, where are the cues to the "length" distinction? In the belief that the underlying mechanism is the temporal control of closure, two hypotheses are tested here acoustically: (1) For all consonants, the closure-durations differentiate the short and long categories. (2) The ratio of the amplitude of the first syllable to the second syllable is greater in disyllabic words with long plosives than in those with short plosives.

BACKGROUND

The use of time and timing [1,2] for phonological distinctions is still an important topic for research. This study tries to shed further light on the acoustic durations of vocalic and conts in which the relative have a distinctive function. Insofar gestures seem to have a distinctive function. Insofar as it might be a phonetic matter rather than an abstract phonological one, the question of whether to treat long segments as "geminates" will not be handled here.

Treatments of phonemic consonant length usually discuss intervocalic consonants, as in Estonian and Italian, where it is easy to show the physical reliability and perceptual relevance of durational differences in closures and constrictions. A language with this distinction in word-initial, and thus potentially, utterance-initial position, is rare.

The Language

Pattani Malay, spoken by some 600,000 ethnic Malays in southeastern Thailand, has a length-
distinction for all consonants in word-initial position [3]. (The language was first called to my attention by Christopher Court and Jimmy G. Harris.) Here are some word-pairs with the contrast:

$$
\begin{array}{ll}
\text { /make/ 'to eat' } & \text { /make/ 'to be eaten' } \\
\text { /lama?/ 'late' } & \text { /l:ama?/ 'to make late' } \\
\text { /siku/ 'elbow' } & \text { /s:iku/ 'hand-tool' }
\end{array}
$$

$$
\text { /dzale/ 'way' } \quad \text { /dz:ale/ 'to walk' }
$$

/buto/ 'blind' /b:uts/ 'a kind of tree' All of the foregoing examples have acoustic excitation during their closures or constrictions, but there is none in the voiceless unaspirated plosives, as in these examples:
/6uyi/ 'to rob' /t6:uyi/ 'robber'
/tawa/ 'bland' /t:awa/ 'to show wares'
Recent work [4] has shown the power of closureduration as an acoustic cue to the short-long duration as an acoustic cue to the short-long
distinction. Incremental shortening of acoustically excited closures yields perceptual shifts from long to excited closures yields perceptual shifts from long to
short consonants. Voiceless plosives with their silent short consonants. Voiceless plosives with their silent
closures can be tested only in utterance-medial closures can be tested only in utterance-medial
intervocalic slots; there, shortening or lengthening a intervocalic slots; there,
silent gap induces shifts.

Goals

The justification for the perceptual experiments [4] was impressionistic observations of length and a small body of instrumental measurements. The first goal here was to determine the statistical reliability of closure-duration as a differentiator of the categories. The second goal was to explore the possible role of overall amplitude in the distinction. That is, for utterance-initial voiceless plosives, something other than audible differences in closure durations must convey the distinction. Although other acoustic features, such as fundamental-frequency shifts and formant-transition rates, are not ruled out, the hypothesis considered here was that the aerodynamic consequences of the apparent articulatory mechanism would cause a higher amplitude upon the release of a long plosive.

Fig. 1. Means and one-standard-deviation error bars for Speaker PCM. Initial: $C, n=28 ; C:, n=28$. Medial: $C, n=44 ; C=, n=44$.

Data

Recordings were made of several native speakers, but only those of one man, PMC, were analyzed for this report. Minimal pairs of disyllabic words, two tokens of each, were elicited in isolation and in a carrier sentence. These utterances were digitized for measurement in a waveform editing program and for spectral analysis.

DURATION

The durations of all closures and constrictions were measured for all utterance-initial consonants-except, of course, for the voiceless ones--and all utterance-medial consonants. This was done by examining the waveforms for acoustic signs of forming and releasing obstructions in the supraglottal vocal tract; these were mainly release bursts and sudden changes in amplitude. Occasional difficult cases were checked against spectrograms. The data are summarized in Figure 1.

An analysis of variance showed duration to be highly significant for initial consonants $[F(1,26)=$ 49.40, $p<0.0001]$ and medial consonants $[F(1,42)$ $=185.19, p<0.0001]$. To measure durations of initial voiceless closures would require either a direct look at articulation or perbaps, measurements of buccal air pressure. The robustness of the difference for medial voiceless plosives, in conformity with the graphs for the medials in Figure 1 and the data in both positions for all other consonants, suggest the high probability of a closure-duration difference for high voiceless plosives too.

AMPLITUDE

Since the major concern was with initial voiceless plosives, measurements of amplitude were limited to isolated words. Pilot work with rise time, peak value, and average amplitude of the first syllable relative to the second gave useful results only with the third method.

A program with variable window-settings, designed by Richard S. McGowan, was used to derive the average root-mean-square (RMS) amplitude of each syllable in the disyllabic words recorded. (Apparently, monosyllabic words are rare.) The results are given in Table 1.

As expected, the most promising set of data in Table 1 is for the voiceless plosives (stops and affricates). In the analysis of variance of the underlying data, the interaction between consonant length and syllable approached significance: $F(1,14)$ $=4.36, p=0.056$. Indeed, post-hoc simple-effects tests showed that the difference between the short and long consonants with respect to amplitude-ratio is strongly significant: $F(1,14)=11.037, p=0.005$. Although the continuants (nasals, laterals, and fricatives) showed a slight tendency in the same direction, the effect was not statistically significant. Compared with the continuants, the voiced plosives present a stronger case in the simple-effects test: F (1 , 24) $=4.24, p=0.05$. With its greater number of degrees of freedom, however, this category underwent a more powerful test than the voiceless plosives and yielded a weaker although significant effect.

TABLE 1
Means and Standard Deviations for RMS Amplitudes in dB

Short Consonants

Type	Syl. No.	n	M	SD	n	M	SD
Plosives							
Voiceless	1	16	47.5	3.0	16	51.0	2.2
	2	16	45.0	2.8	16	45.0	2.3
Voiced	1	14	46.8	3.9	14	49.5	3.5
	2	14	43.3	3.4	14	44.4	2.9
Continuants	1	14	45.1	3.9	14	48.1	2.8
		14	46.1	3.4	14	46.9	3.4

CONCLUSION

That the phonemic distinction between "short" and "long" Pattani Malay consonants is based on the quantitative feature of articulatory timing is abundantly clear from the data of Figure 1. Indeed, the perceptual efficacy of closure-durations has been demonstrated for medial position and for initial consonants with audible excitation [4]. (Of course, the value of this cue has been demonstrated for at least medial position in some other languages [e.g.,5].)

Even if, as seems likely, the underlying mechanism for this length distinction is articulatory timing, there may nevertheless be more than one acoustic cue involved. That is, temporal control of closures and constriction, intersecting with states of the glottis, may engender not only. varying spans of silence or appropriate sound but also, perhaps, variations in air flow and pressure with certain acoustic consequences. The data in Table 1 show that for long voiceless initial plosives the average RMS amplitude is significantly higher in the first syllable than the second. There is also a significant but somewhat smaller effect for voiced plosives. We may speculate that although both categories involve complete momentary obstruction of the oral air flow, the presumed greater impedance at the larynx for the voiced plosives lessens the effect. For the continuants, however, which always have a by-pass for the air, there is no effect.

The amplitudes of PMC's embedded words remain to be measured. In the meantime, a cursory look at the productions of three other native speakers of the language seems to support the findings. Their utterances, too, will have to be measured. Finally, to round out the first experiments on perception [4], the plan is to produce stimuli with controlled variations in amplitude on disyllables.

ACKNOWLEDGMENTS

The work was supported by NICHD Grant HD 01994 to Haskins Laboratories. I am grateful to Mr. Paitoon Masmintra Chaiyanara of The Prince of Songkhla University, Pattani and Dr. Theraphan L. Thongkum of Chulalongkom University for their help and to their institutions for their warm hospitality. The advice of Dr. Richard S. McGowan and Professor Leonard Katz was most helpful.

REFERENCES

[1] I. Lehiste, Suprasegmentals. Cambridge, MA: MIT Press, 1970.
[2] L. Lisker, On time and timing in speech. In T.A. Sebeok et al. (eds.), Current Trends in Linguistics, 12 (pp. 2387-2418). The Hague: Mouton, 1974.
[3] P. Masmintra Chaiyanara, Dialek Melayu Patani dan Bahasa Malaysia: Satu Kajian Perbandingan dari segi Fonologi, Morfologi dan Syntaksis. Master's thesis, University of Malaya, 1983.
[4] A.S. Abramson, Distinctive length in initial consonants: Pattani Malay. J. acoust. Soc. Am., 79, S27 (abstract), 1986.
[5] A. Lahiri and J. Hankamer, Acoustic properties of geminate consonants. J. acoust. Soc. Am., 80, S62 (abstract), 1986.

KATSUMASA SHIMIZU

Dept. of Languages
Nagoya Gakuin University
Seto City, Aichiken, Japan

ABS'IRACT

The present study is concerned with the perception of synthetic speech sounds of [r - l] continuum by speakers of different languages. Specifically, the study examines how the differences of the linguistic function of liquids in English, Spanish, Japanese, Hindi, Korean, and Chinese affect the perception of the synthetic continuum and reports the results of identification and discrimination tests. The results indicate that different modes of perception appeared depending on the phonemic functions of liquids in each language. The boundary between $/ r /$ and $/ 1 /$ differed systematically in each language and the speakers having a phonemic function of /r/ and/l/ showed a categorical mode of perception and differences of linguistic experience cause those of perceptual modes.

INTRODUCTION

It is generally known that speakers of different languages show some different characteristics in the perception of speech sounds. Among the cross-language studies on speech perception, the study on [r] and [l] has been of considerable interest among reneticians since the $/ \mathrm{r} /$ - /l/ contrast has often been a choice to study the effect of linguistic experience and they have unique articulatory and acoustic features which can be defined as an intermediate between stop consonants and vowels. There have been several reports on the experiments of the perception of [r] and [1] using synthetic speech sounds. Miyawaki et al.[1] studied the effect of linguistic experience of English and Japanese in the perception of synthetic [r - l] continuum and mentioned that the difference of linguistic experience is specific to perception of speech mode. Furthermore, Mochizukil2] and Shimizu and Dantsuji[3] carried out Che experiments of speech perception to English and Japanese speakers by using natural and syntinetic speech sounds and re-

MASATAKE DANTSUJI

Dept. of Linguistics
Kyoto University
Sakyoku, Kyoto 606 Japan
ported that English speakers perceive the [r - l] continuum categorically, while Japanese speakers do it continuously, and the difference of the perception mode can be attributed to the one of the linguistic function of the liquids in these languages. It is well known that the /r| - /l/ contrast is functional in English but not in Japanese and different function of the liquids in these languages cause some learning problem for Japanese speakers.
Although the difference between English and Japanese speakers in the perception of [r-l] continuum has been accepted, the experimental data on other language speakers are very scarce, and it will be necessary to examine other language speakers in order to clarify the relationship between linguistic experience and the mode of speech perception. Viewing from these points, the present study aims at examining how the difference in the linguistic function of liquids in other languages affects the perception of [r - l] continuum and how linguistic experience affects the mode of perception.

EXPERIMENTAL PROCEDURE

Subjects

The subjects composed of speakers from six language groups: English, Spanish, Japanese, Hindi, Korean, and Chinese.

English: 7 native speakers of American English took part in the experiment. They had lived in Japan for a certain period, ranging from three months to three years.
Spanish: 4 native speakers of Spanish took part in the experiment. They were undergraduate students at UCLA. Japanese: 23 native speakers of Japanese were tested in a classroom. They were undergraduate students in an introductory phonetics class at Sugiyama Joshi univ. Hindi: 2 native speakers of Hindi took part in the experiment. They were graduate siudents in physics and journalism at UCLA.

Korean: 3 native speakers of Korean took part in the experiment. They were Chinese: 3 Chinesel from Hong Kong. from Mainland Chinal took part in the ex periment.

Stimulus Materials
The stimulus were prepared on the OVE III 10 step [ra at Haskins Laboratories. The frequency values of F2 and F3 with in the initial state portions and the transition portions. F2 values varied in almost qual step from 951 to 1404 Hz and F 3 were kept constant for 10 stimil values stimulus with 1404 Hz of F 2 and 3246 Hz 951 Hz was a good /la/, while the one with /ra/. The 2 and 1488 Hz of F 3 was a good Two types of dest wation was 377 msec . identification test and an prepared: an in the former test, each stimulus was re tation 100 times, making the total presenarranged. The he stimuli were randomly sec. and the blecktimulus interval was The oddity discrimination of 18 repetitions of each of consisted pairs(1-4, 2-5, 3-6, 4-7, 5-8, 6-9 mulus pairs 126 traids in all. an members were were arranged such that 10 step stimuli. For apart along the were constructed by dupulicating, traid each of the pair, and six permutations 1-4 companion were included; iens 1-4, and $4-4-1$. A 1-4, 4-1-1, 1-4-1, $4-$ recorded on audio tape for materials were to subjects.

Results

Results of the identification and discri nation tests can be shown in Figures

igures 1 a shows the results of the Spanish speakers show a similar pattern of identification curve. Subjects in both groups identified stimuli ${ }^{5}$ as $/ \mathrm{ra}$ and stimuli 8 to 10 as /la/, and showed an abrupt shift of the ourve in the stimulus range from 6 to and 7, though there are slight discre pancies in both groups of subjects. gure uncrimination for both groups, and both accuracy. The accuracy was belterns i pair, but sharply rose to about 90 ccuracy at the pairs which are consider ed to be in the phonetic boundary between ects discriminat both groups of sub stimuli drawn from different between ategories but very poorly between stimuli from the same phonetic category. Both identification and discriminatio curves show that both subject groups ir - llcontinuum catego
igure 2 a shows the identification curves or Japanese Hindi speakers. Unlike the results in figure 1a, both Japanese and identification curve as the stimulus shifts from 3 to 8 . Japanese subjects identified stimuli 1,2 and 3 as /ra/ and stimuli 8, 9 and 10 as /la/ with $60-70 z$ speakers identified these stimuli ${ }^{\text {Hind }}$ much higher rate than Japanese e-eakers Figure 2b shows the discrimination curves froups discriminat groups. Both subject groups discriminated the stimuli with an accuracy rate ranging from 50 to $70 \cdot \%$ the 2-5 pair. Although there moderate increase in discrimination of stimulus pairs 3-6, 4-7 and 5-8, there is no noticeable change in the accuracy ween categories. It can be said betthese results indicate that Japanese and Hindi speakers perceive the $[r-1]$ continuum continuously

Figure 3a shows the identification curve or Chinese and Korean speakers. The and Spanish similar to.the ones of Enclis abrupt shift speakers, but with les and /1/ lies between stimuli 6 and 7 fo pooloups of subjects. Figure 3b show groups. Both groups show sharp rise the pairs of 5-8 and 6-9. Examinin Chinese and rore it can be said that r-1] continuum speakers perceive the manner.

DISCUSSION

We have examined how speakers of six languages perceive the [r-l] continuum and how the differences of linguistic experience affect the mode of speech perception. Examining the results of identification and discrimination tests, it has become clear that the speakers of six different languages show different patterns of performance. It can be said that familiarity with the [r-1] distinction has an impact on the perception of the continuum.
English and Spanish speakers show a peak of accuracy at the point where stimuli from different phonetic classes are being contrasted. Japanese and Hindi speakers are unable to discriminate [r] and [l] over the continum. The results on Japanese subjects conform with the previous studies(Miyawaki et al.[1]) and are in harmony with what is known about linguistic function of the liquid in Japanese. The finding that Hindi speakers can not discriminate [r] and [l] over the synthetic continuum indicates that stimuli are not similar to the phonetically realized forms of the Hindi contrast of lateral and tap.
As shown in figures $3 a, b$, Korean and Chinese speakers discriminate the continuum in a near categorical manner. It is known that Korean has no phonemic contrast of $/ r /$ and $/ 1 /$ and has only one phonemic /l/, but /l/ has allophonic variations of [l] or tap in some phonetic environments. The finding that both groups of subjects can discriminate [r] and [l] indicates that the stimuli are similar to the allophonic variations of liquids in both languages.
These results of experiments indicate that different perceptual modes appeared depending on the phonemic functions of liquids in each language. The boundary between /r/ and /l/ differed systematically in languages, and the speakers having a phonemic contrast of $/ \mathrm{r} /$ and $/ 1 /$ showed a clear categorical mode perception. It can be said, therefore, that the differences of linguistic experience cause those in the perceptual modes.

REFERENCES

[1] Miyawaki, : K. et al. "An effect of linguistic experience: The discrimination of [r] and [1] by native speakers of Japanese and English," Percep.\& Psych., 1975,18(5).
[2] Mochizuki, M. "The identification of /r/ and /l/ in naturai anl synthesized speech," J. Phonetics, 1981, 9.
[3] Shimizu, K. and Dantsuji, M. "A study on the perception of $/ r /$ and $/ 1 /$ in natural and synthetic speech sounds," Studia Phonologica,1983, 18:

- FORMANT TRANSITIONS AND RELEASE BURSTS AS PERCEPTUAL CUES FOR RUSSIAN VOICELESS PLOSIVES

V.N. LOZHKIN

Department of Applied Linguistics
Moscow State University
Moscow, USSR

Abstract

The present study attemi:3 to investigate the significance of the release burst and the formant transitions in the serception of Russian voiceless plosives by native listeners. The method involved deleting of releases in some consonants, it resulted in worsening recognition of these sounds - 34\% for initial plosives, 60% and 70% for intervocalic and rinal plosives respectively. Thus, it is stated that release segments carry important informati ion bearing on the place of articulation of Russian stops. The results of the study are in agreement with those obtained on the material of English and Hungarian stops and defy the prevailing significance of CV-transitions in voiceless plosives recognition.

INTRODUCTION

Al though the history of experimental studies stimulated by the development of the 'Visible Speech' Sound Spectrograph dates back to the 40 ies, it is hardly possible to say that the distinctive features of phonemes are fully investigated. It is not surprising since the acoustic features of sounds in fluent speech can vary dramatically due to the context, the speaker's peculiarities, the mode of articulation, etc. Besides, the speech signal is highly redundant and possesses a great variety of distinctive features.

Quite a number of works have been dedicated to the distinctive features of plosives. It is a stated fact that infor-
mation about the place of articulation of a stop can be found in the formant transition of adjacent vowels as well as in the stop burst. The relative significance of release and transition in the stop identification, however, is to be further investigated.

This problem is rel evant for the systems of automatic speech recognition and high-quality speech synthesis. Another important problem concerns the search for invariant (i.e. independent of a context) reatures of the place or articulation/I/ /2/.

There exist at least four estimates of the relative significance of the release and transition cues.

On the one hand, under the influence of the studies carried out in Haskins Laboratories in the 50 s on the material of synthesized syllables the view of the dominant role of the CV-transitions for the place of articulation identification has been adopted(The bulk of the results that became classical can be found in $/ 3 /$). On the other hand, there are many indications that a formant transition might be of a smaller importance since the crucial infor mation about the place is in the release. Such evidence has been obtained in some early studies of human speech/4-7/. One can argue that the transition and release cues are functionally equivalent, the former may be dominant in one case and the latter in another/8/. Finally, one can also argue that it is not correct to oppose transition and release since they may become inseparabie in the case of a prevocalic position of a plosive/9/. It seems that all the approsches are surficiently grounded (comparative analysis of various approaches is to be done el sewhere).

Keeping in mind that the results obtained in one language are not necessariiy relevant for others and since much of the available information concerns English consonants we attempted to investigate the problem on the material of the Russian initial, intervocalic and final voiceless plosives. The relative significance of the transition and release oues in the perception of the place of articulation is discussed here. The problem is of particular interest since palatalized stops are very characteristic of the Russian language (we could mention only few articles dealing with the subject/IO-I2/)

METHOD

The model of a voiceless plosive is used according to which the four segments can bear information about the place of articulation of an intervocalic plosive:
I) the segment of VC- or final transition; 2) the closure; 3) the release after an abrupticlosure breaks;4) the segment of a CVor initial transition. The VOT was taken
for a release end. In a more detailed noa starting ispuise;b) frication; c)aspiration(cf./I3/). A certain amount of residual noise may add to the voiced beginnig of a following rowel/IO/. Since these peculiarities of the Rnssian language are not phonerically relevant they are not considered here.
nce of the trate the relative signififor prevocalic, intervocalic and postvo calic plosives sone meaningless successions or 'non-words' (=nonsense words) of nant teifg the same in the one case (e.g. 'papap', 'totot', etc) and different in the other (e.g.' 'pstak', 'ropot', etc). the vowel has been taren out of the set ($a, 0, \mathrm{a}, \mathrm{i}, \mathrm{e}$), the second syllable of each 30 non-ris stressed.
le non-mords were tape recorded by two spearers mas to atter the stimali distinctly without changing the quality of vowels. The interval between the stirnli us 5 seconds.
of the tape rigings were migde of the copies segrentation by reans of the lownaisent electronic separator described elsewhere 14/.
A release for one of the plosives (inital, central or inal) has been deleted in every ron-word by means of the separat.
or. The fregsents of non-words with a release deleted were used as test stimali. hus the relative significance of the CV transition, VOV-transitions and VC-tranitions in clace identification mas studied.
ollej anretion procedure has been contilloscope. ecorded on the test stinuli have been ash iragnent was recorded three times on time ring. The triads of the identical tone markers. The presentation rate of the test stizuli which depended on the 3.8 secords. and the tape speed was about . 3 secords.
Non-words with release deleted were fresented to ten listeners (students, thus coratory assistants etc.) without hesring ons. Yost or the iisteners were erperienced in listening to articulatory tests and synthesizeu speeci patterns. The sigquiet poon. Each listener could adjust the volure in his head-phones.
The instruction given to the listeners of the cvovo-tye, Younill hear non-words flosives - /p/, /p; /here C is any of th Flosives - /p/,/p'/,/t/,/t'/,/k/,/k'/.

Each non-word is repeated 3 times. After listening to a triad you are to wite it ample). If inary letters ('papap' for exged) consonant please anderline it as ghom bellow: (patat), or 'rutur', or
(kakak' ${ }^{\text {(}}$)
rakak'
Notice: the soft /k'/ may occur in a Notice: the soft position that are not typical for
final

The instruction was presented by the experimenter orally and then its printed tert was distributed among the listeners. The nature of the damage was not revealed to the listeners as well as the consonants of a non-word being the same $C_{1}=$
$C_{2}=C_{3}$ or different $C_{1} \neq c_{2} \neq C_{3}$. Having le arned the instruction the listeners began to listen to the test for a few minutes and then to listen and fix their judgertened to every test 3 times with 8 few days intervals.
A test consisted of 120 randomized non-words out of which 30 were not damased, Fhile 90 contained a stop with a deleted release. Thas a test contained in all 270 undamaged and 90 damaged stops. ferent stimuli order, the first list was read by speaker L, and the second ty speaker 5 .

RESULTS

The resilts of these tests are conpasion matrices. A sample of such a matrix is given in the table below. The right and wrong judgements for the $/ \mathrm{p} /$, $/ t /, / \mathrm{k} /$ stimuli (with rel ease deleted) ing session (speaker L) are preserited in the table.

Table
perceived

The judgements are summerized for ten isteners in every matrix. The - - "-sign stands for refusal. The left matrix cor responds to the initial position of a stop, the second and the third - to the
central and the final fositions, respectively. It can be seen that in two presentat-
ions of a daraged initial (non-words ions of a daraged initial /p/ (non-words
${ }^{71}$ It is necesssry to cention that ligteners detected daraged stops very poorly, marking the right consonants and mis-
bements were correct and 4 were substitutions of $/ \mathrm{k} /$ for the initial /p/. There were also 2 refusals. It foliows from thatat' and (takap') was given only 4 correct judgements, II responses were misjudgements for $/ \mathrm{p} /$, 3 - for $/ \mathrm{k} /$ and there were also two refusals. The numerals in the bottom row of the first matrix
show the number of judgements of the $/ \mathrm{p} /$, / $\mathrm{t} / \mathrm{m} / \mathrm{k} / \mathrm{or}$ or $\mathrm{n}-\mathrm{n}$-type in all 60 presentations of the initial voiceless plosives preceding /a/ (speaker L). There were 38 $/ \mathrm{p} /$-judgements, $8-/ \mathrm{t} / \mathrm{l}, 9-/ \mathrm{k} / \mathrm{F}, 5-$ there were also 20 correct judgements (the sum along the main diagonal). The seted in a similar way. There are 30 tables of the kind (2 speakers $x 5$ vowels $x 3$ presentations). For the sake of brevity all tables are not presented here.

For getting more reliable results the data for every speaker (3 presentations the data for both speakers, data concerning different vowels, etc. to answer the question - in what way a release deletion may influence the plosive recognition in vowel context and the place of articulatvowel context and the place or ajor result of the experiment. The graphs show that the place of articulation of damaged stops for central plosives is recognized nal plosives better than for central ones. At first, we assumed that greater intelligibility of central and final plosives on the second syllable being stressed. The analysis of non-words with the first stressed syljable reveal ed a similar tendency vity more'detail ed data of the relative significance of transition and release in stop recognition is omitted here).

Fig. 1, 6

Graphs a and b show the percentage of correct judgements as a function of the position of the damaged plosive. a-data for the speaker L; b - data for the speaker S. 'I' stands for the initial position
 numbers of correct judgements is plotted along the ordinate on the left, while the percentage of these judgements is to be found on the right. Curves I, 2 , 3 corresening to the non-words with the stress on the second syllable. Curve $L^{\text {the }}$ shows the analogous results for the non-words with the rirst syllable stressed. Horisontai
dash-line corresponds to guessing level
Thus, the resuits of the tests show that in human speech a stop release carriletion may result in worsening recognizability of the place of articulation or voiceless plosives, especially of the initial ones. In the last case the recogni tion does not exceed the guessing level by VC-transition may provide higher recognizability for intervocalic plosives (60\%) and for final plosives (~70\%).
DISCUSSION
The results of the present study agree with the results of the other authors. Thus in /I5/ the relative significance of
${ }^{7}$ It is not quite correct to mention the guessing level since the listener judgements in thiss case were not mere /p/-type. The explanation might be that the release for /p/ is very short and faint so listeners may misjudge any voiceless plosive as /p/ when the release is absent.
ion of the place of English vaiceless stops preceding $/ 1 /, / \mathrm{a} /, \mathrm{lu} /$ vowels has been studied. It has been found that the voiced segment of the initial transition is neither a sufficient nor necessary cue for the place identification in the initial position, and it is the release that accounts for a correct consonant identification.

Similar conclusions were made for the Hungarian voiceless stops in VCV-syllables/i6/. The release was judged to be the most informative among the segments of closure, release and transitions due to $/ 7 /$, where the distribution of stop cues has been studied.

A few studies of Russian voiceless stops have been described in /IO-I2/. It was found that in the final position of a stop the release is more important cue than the transition(the method consisted in transplanting bursts from one context into another)/I2/. The significance of bursts and finai transitions in final positions of stops has been studied in de-
tail in /IO/ on the CVC-syllables. It was shown that in most cases an isolated burst of final stops was sufficient for the identification of place. Finsl transitions can also carry information about the place of articulation.

In the article/II/, however, VC-transitions were not found significant in the perception of plosives. (A more detaled comparative analysis is required to explain the disparity between /II/ and the present stady).

The question remains - which of the tro transitions, $C V$ or $V C$, is more informative in the place identification of the plosives? The results of the present study suggest that VC-transitions is more informative than CV-transitions. Similar conclusions can be found in /I7/, where the role of CV- and VC-transitions in the place of articulation of English stops and fricatives in syllables with neutral /Z/ in natural speech was determined.VCtransitions proved to be more informative than CV-transitions especially for voiceless stops: VC-transitions accounted for 92\% of their intelligibility whereas CVtransitions accounted for only 32\%. The corresponding values for voiced plosives were 92% and 7I\%. According to the authors the reason for VC-transitions being more informative is their better physical manifestation. The conclusion has been substantiated by inverse listening aata in particular.

SUMMARY

The results of the present study provide further evidence of the relative significance of transition and release as perceptual cues for Russian voiceless plosives. The regularities which have been found may prove useful in developing more effin.
cient automatic recognition systems and high-quality speech synthesis.

REFERENCES

I.K.N. Stevens, S. E. Blumstein. Invariant cues for place of articulation in stop consonants. J.Acoust. Soc.Am. I978, v.64, N5, 1358-1368.
2.D.Kemi ey-Port, D.B.PIsoni, M. StuadertKennedy. Perception of static and dynamic scoustic cues to place of articulation in initial stop consonants. J.Acoust. Soc.Al., I983, v. 73, N5, I779-I793.
3.J.L. Flanagan. Speech analysis, synthesis and perception. Springer Verlag, I965
4.M.Halle, G.W.Hughes, J.-P. A. Radi ey. Acoustic properties of stop consonants. J. Acoust. Soc. Am. , I9 57, v. 29 , NI, IO7-II6.
5. A. Malècot. The role of releases in the identification of released final stops. Language, I9 58, v. 34, N3(part I), 370-380.
6.W.S.-Y. Wang. Transition and release as perceptual cues for final plosives.J. Speech Hear. Res., 19 59, v. 2, NI, 66-73.
7.P.W.Guelke, E.D. Smith. Distribution of information in stop consonants. Proc. IEE, I963, V.ITO, N2, 680-688.
8. K. F. Dorman, M. Studdert-Kennedy,L.J. Raphael. Stop consonant recognition:release bursts and formant transitions as 8 functionally equivalent, context-dependent cues. Perception and Psychophysics, 1977, v. 22, N2, IO9-I23.
9. S.E.Blumstein, K.N. Stevens. Perceptual invariance and onset spectra for stop consonants in different vowel environment. J.Acoust. Soc. Am., I980, v.67, N2,648662.
 ши речєвого потока. М. - Д. घЗД-во АН СССР. I962.
II. Лоблинсная В.В. Распознаванше артикуляторннх признаков смычннгх согласннх по переходу от гласного к согласномх. Акуст. журнал, I966. т. I2, выш. 2,213-221.

I2.0харєва Н. Г. Взрнв как основной показатєль места образования конє чнвх гдухих взрывннх согласных. "Исследованин
 J. I981, c.I40-I48.
43.G. Fant. Stops in CV-syllables. Speech Transmission Laboratory. Quarterly Progress and Status Report. STL-QPSR 4/I969, I-25.

I4. Рөчь. Артикулядия д восприятив.M.J. Наука, I965, с. 62 .
15. C. LaRiviēe, \bar{H}. Winitz, E. Herriman. Vocalic transitions in the perception of the voiceless initial stops.J. Acoust. Soc. Am. , 1975, v. 57, N2, 470-475.

I6.K.Vicsi. The most televant acoustical micro segment and its duration necessary for the recognition of unvoiced stops. Acustica, I98I, v.48, NI, 53-58.

IT.D.J.Shari, T.Hemeyer.Identification of place of consonant articulation from vowel formant transitions.J.Acoust. Soc. Am., 1972, v. 5I, N2 (part 2);652-658.

PERCEPTUAL RELEVANCE OF ACOUSTICAL WORD BOUNDARY MARKERS

Hugo Quené
Institute of Phonetics, Utrecht University the Netherlands

Abstract

Nieasurements of segment durations in contrastive word boundary positions support the claim that acoustical boundary marking is realized differently among speakers. A tentative explanation of subjects' high accuracies in boundary detection experiments, viz. their ability to rapidly evaluate speaker-dependent boundary markers ("tuning in ") was investigated. Ambiguous word pairs realized by 2 males and 2 females were presented either in lists of items realized by one speaker, or in a list of items of all 4 speakers randomized. From the results, it is concluded that subjects' simultaneous attention for multiple cues, rather than their "tuning in" to single cues, is responsible for the high boundary detection accuracy.

1. INTRODUCTION

Speech segmentation, the division of the continuous fluent speech signal into discrete words, is one of the most outstanding characteristics of human speech perception. Despite the numerous lexical ambiguities in the acoustic signal, listeners usually perform this task (as a preliminary for, or in interaction with word recognition) without much difficulty, although occasional errors do occur (2;7). Apparently, listeners are helped effectively by such top-down information as syntactic, semantic and contextual constraints, phonotactic restrictions of word structure, and sandhi phenomena. Besides, there are also bottom-up or acoustical phenomena related to word boundaries. Thus acoustically marked word boundaries in the fluent speech signal may help listeners in their segmentation. Among these phenomena, the following have been identified for English or Swedish by various researchers over the past decades as being functional in this respect: lengthening of pre-junctural consonant, aspiration of word-initial voiceless plosives, glottal stop or laryngealization of post-junctural vowels, and allophonic differences for $/ 1, \mathrm{r} /$ in pre- or post-junctural positions (13;8;14).

In previous word boundary detection experiments (15), subjects were able to reach an overall accuracy of about 80% under conditions where no top-down information could have played a role (listening to ambiguous two-word sequences, not providing contextual or phonotactic cues). Contrary to e.g. (12;4), these results, as well as those by e.g. (10) show that listeners are able to make effective use of these acoustical word boundary markers as cues for speech
segmentation, even without additional constraints based on top-down cues. Results of these previous experiments also suggest, that the following boundary marking phenomena had played a major perceptual role: (1) variation of word-initial vs. -final consonant allophone, (2) duration of ambiguous boundary consonant, (3) rise time of post-boundary vowel. Besides, (4) VOT of ambiguous plosives was observed to differ as a function of the intended boundary position.

Before establishing the perceptual relevance of these boundary markers more thoroughly, however, a rather unexpected finding from these experiments had to be further investigated, viz. the significant differences between speakers with regard to the produced acoustical (durational) boundary markers. Since such speaker effects (as well as language-specificity of these cues, as observed by (1)) have strong implications for the perceptual validity of the boundary markers mentioned above, we decided to investigate this matter first; the experiment reported here investigates subjects' ability to perceive speaker-dependent word boundary markers.

2. PRODUCTION

2.1. Material

Twenty-two word sequences were selected (2 word sequences with each of the 10 consonants $/ \mathrm{p}, \mathrm{t}, \mathrm{k}, \mathrm{d}, \mathrm{f}, \mathrm{s}, \mathrm{x}, \mathrm{m}, \mathrm{n}, 1, \mathrm{r} /$ which may occur word-initially as well as word-finally in Dutch, with this intervocalic ambiguous 'boundary consonant' in both word-final and word-initial position. (From (15) it was observed that word-final devoicing of /d/ did not affect boundary detection accuracy). The resultipg 44 word sequences (11(consonants)x2 (sequences) $\times 2$ (versions)) were embedded in sentences which disambiguated the word sequence.

2.2 Procedure

The 44 sentences were read aloud by 2 males and 2 females at a subjectively fast speech rate (to avoid pausing within sentences). Subsequently, the 4 (speakers) $\times(44$ word sequences) $=176$ ambiguous word sequences were spliced out of the original sentences by means of a computer programme (with visual and auditory feedback; sampling frequency $10 \mathrm{kHz} ; 12$ bits resolution) and stored digitally.

Durations of the relevant speech portions (boundary consonant, VOT, and rise time of post-boundary V_{2} were measured and analyzed.

2.3 Results

The data obtained show, that the four speakers produce the same durational difference between three and $H \mathrm{Cl}$ boundary positions, for each of the three significance level of these differences is clearly speaker-dependent, as can be seen from Table I below. Only one speaker, M2, produces significant differences for all three parathers produce some highly significant and some insignificant differences between significant and $/ \mathrm{NH}$ CV/ boundary positions.
$\frac{\text { Table I: }}{\text { Resulting }}$
Resulting t-values (matched observations, pairwise deletion) of the durational differences between (C\#/
and $\# C /$ boundary positions, for (1) duration of the and $\# \mathrm{CC}$ boundary positions, and (3) rise tlme of post-boundary vowel, for 4 speakers separately.

variable	M1	M2	F1	F2
(1)	- . 132	-2.103**	$-2.694^{\text {- }}$	--5.616 ${ }^{\text {axx }}$
(2)	$2.436{ }_{\text {*** }}$	2.865**	. $108{ }_{\text {*** }}$	1.899*
(3)	4.806***	$2.22{ }^{*}$	5.483	2.103

*=p<.05; **=n<.01; ***=p<. 001
In short, the durational observations suggest that acoustic marking of word boundaries is speaker-de-
pendent. However, in (15) using a subset of these word sequences as stimuli, subjects obtained detection accuracies of over 75% with all four speakers. That is, although the acoustic marking of word boundaries is different among speakers, subjects were able to use
these speaker-dependent markers to a considerable extent (as they were the only systematic cue). This high accuracy in boundary detection can therefore best be explained as a consequence of subjects' ability to evaluate these speaker-dependent acoustical cues
rapidy, i.e. to "tune in" to them (analogously to feature adaptation in phoneme perception (5)).
In the following word boundary detection experiment, speaker-dependency in word boundary marking was further investigated. Presumably, it would be eas-
ler for listeners to
$n_{\text {tune }}$ in" to speakers if they hear ler for listeners to "tune in" to speakers if they hear
more stimuli realized by one speaker in a row, as more stimuli realized by one speaker in a row, as
compared to a listening situation in which they hear stimuli by several speakers in random order, and thus have to "tune in" to a different speaker for each new
stimulus. This view construtes stimulus. This view constitutes the major hypothesis of
the following detection experiment.

3.1. Design

In order to establish the effects of subjects' rapid evaluation of speaker-dependent word boundary marking, each subject had to perform boundary detection under-lists of stimuli realized by the same speaker ('Sequences'), and (2) presentation of a randomized list of stimuli realized by all four speakers ('Randomized'). Thus, each subject had to perform boundary detection quences) $\mathbf{2}$ (boundary positions).

The relative order of these two presentation conditions was co-varied between subjects with the intended boundary position in an ambiguous word sequence (/VC\#V/ vs. /V\#CV/), yielding 2 different test tapes.
Four sub-tests were designed, with different inter-
Four sub-tests werdering of the 4 same-speaker sequences, in order to neutralize interactions between the different samespeaker sequences. Thus, the experiment yielded 8 different test tapes, all containing the same 176 stimuli (word sequences) but different with respect

3.2 Material

The 176 digitized stimuli were DA-converted $10 \mathrm{kHz} ; 12$ bits) and re-recorded onto 8 separate audio apes. Test items were preceded by 4 trial items and 10 filler items, and followed by another 10 fille items; trials and fillers were identical for all tapes. each test tape was about 14 minutes.

3.3 Subjects and Procedure

Six (native Dutch speaking) subjects listened to each tape, yielding a total of ($8 \times 6=1$) 48 subjects. Mos of them were undergraduate students in various
guistics and Language studies. Their participation was voluntary, but they were paid a small amount (Hfl. $5,=$) for their services. Subjects were assigned at ran dom to one of the test tapes.

- Subjects received written instructions, as well as a response booklet. For each stimulus item, this bookle
gave two possible responses from which a forced binary choice had to be made. It was emphasized that they should not allow themselves to be influenced by the sometimes contrastive orthographies of the tw possible responses (e.g. "zeis om" vs. "zij som"). phones binaurally. Nine of them listened in a none-to quiet room, the other 39 in a sound-treated booth After the 4 trial items, the experimenter checked whether the instructions had been understood and the playback volume was comfortable, and gave addition oral instructions if necessary.
Responses agreeing with the boundary position as
as alternative responses as 'wrong'.
3.4 Results

Miean accuracy percentages for the various condiMean accuracy percentages

Table II:
Table I: Observed mean word boundary detection accuracies in percentages. Means for each bottom cell are calcu

presentation	speaker	/va\%V/	/v\#cv/	mean
Sequences	M1	91.8	66.4	
	M2	88.1	73.0	
	F1	87.0	73.0	
	F2	83.5	71.8	
		87.6	71.0	79.3
Randomized	M1	93.8	71.0	
	M2	86.2	78.0	
	F1	90.5	74.5	
	F2	84.0	74.5	
	mean	88.6	74.5	81.6
mean		88.1	72.8	80.5

The dependent variable in the present experiment, viz. correct or wrong response, establishes a discrete
i.l. binary) random variable, following the binomial (h.l. binary) random variable, following the binomial
distribution with $p=.5$ and $\mathrm{N}=24$ (subjects). However distribution with $p=.5$ and $N=24$ (subjects). However,
since $\mathrm{N} . \mathrm{p}>10$, this distribution approximates the normal ince N.p>10, this distribution approximates the norma (11).

Separate three-way analyses of variance were car ried out with Speaker, Presentation and (intended Boundary Position as main factors, integrating ove ubjects and words, respectively. From ratios, the minF' was calculated (3).
The SPEAKER variable yields
effect with minF' $(3,82)<1$. The same applies to the main variable which was of prime interest in this ex periment, viz. PRESENTATION with $\operatorname{minF}^{\prime}(1,3)=1.367$ (insignificant). Thus, no significant difference in the
proportion of correct responses (detection accuracy) proportion of correct responses (detection accuracy)
could be observed between the two presentation condi tions. Besides, the observed difference tends to be opposite to the prediction: subjects word boundary
detection is slightly more accurate in the Randomized detection is slightly more accurate in the Random
condition as compared to the Sequences condition.
The only main factor yielding significance was
BOUNDARY POSITION: $\operatorname{minF}(1,13)=8.899 ; \quad \mathrm{p}<.025$. As can be seen from Table II above, boundary detection accuracies were considerably higher in the /VC\#V/ Signifis compared to those in the / $\mathrm{NFCV} /$ context. Significant interaction occurred between the factors
Speaker and Boundary Position: $\min F^{\prime}(3,90)=2.919$ p<.05. Thus, detection accuracy between the two boundary positions (or contexts) was significantly dif erent for the 4 speakers; the lowest difference was found for female speaker F2 (10.6%) and the highest ifference for male inl (24.1%). Other interactions did not reach significance.
4. DISCUSSION

Results of the present experiment show no signifiant effects of either Speaker nor Presentation Although each of the four speakers under investigation
employed to some extent different acoustical durational) means to mark word boundaries in his (her speech, these differences are not reflected in subjects accuracy in word boundary detection. Listeners do not
yield higher accuracy when listening to stimuli realized by one speaker to whom they could "tune $\mathrm{in}^{\text {" }}$, as compared to the "Randomized" condition in which stimul ealized by four different speakers were presented.
These results allow for two possible explanations:
a) Although word boundaries may be marked differous attention to all phenomena that may provide cues to word boundary location. That is, they do not focus on one acoustic cue which marks word boundaries for one speaker, switching attention to speaker are presented. Instead, listeners simultaneously focus on several phenomena which may or may not function to mark word boundaries, depending on who is speaking. Thus, they are sensitive" to any of the cues the current speaker might possibly use. When switching to another
speaker, they simply discard information provided by phenomena which do not help them, and rely more heavily on the phenomena which for this speaker assume the function of boundary markers.
Since all possibly relevant acoustical information
for word boundary detection is monitored and for word boundary detection is monitored and
evaluated continuously, the switching to different speakers has no effect on subjects' detection accuracy.
The acoustical phenomena under investigation bear no perceptual relevance at all for word boundary
detection. Although the four speakers realize significant differences for these acoustical markers (between /C\#/ and \#C/ positions) to a different degree, these differences are perceptually irrelevant.

This interpretation of the results implies, that there are other acoustical cues, consistent between peakers, that systematically mark word boundary locations in fluent (Dutch) speech. These cues, yet to be further investigated.

Since it is a quite common phenomenon that different acoustical cues simultaneously contribute to speech perception (as e.g. vowel length, VOT and F all contribute to the voiced-voiceless distinction (9)), we feel that explanation (a) is the most likely. In a broader view, people generally use multiple cues to evaluation of other people, for example, is based on simultaneous impressions about their face, physical posture, what they say and how, and on their furtier behaviour. Probably, as in word boundary detection, well. However, in order to accept explanation (a), we must disprove (b), i.e. it must be shown that the du-
rational differences observed (viz. duration of the ambiguous intervocalic boundary consonant, and rise time of the post-boundary vowel) are perceptually relevant. If manipulation of these two parameters can be demonstrated to influence subjects' boundary detection, then explanation (b) must be discarded and (a) gains plausibility. Preliminary results suggest that this indeed seems to be the case; a more extensive study will be reported in the near future.

References

(1) BARRY, W.J. (1984) Perception of Juncture in English. In: M.P.R. van den Broecke and A. Cohen (eds.), Proceedings of the Tenth International Congress of Phonetic Sciences. Dordrecht/Cinnaminson NJ: Foris.
(2) BROWMAN, C.P. (1980) Perceptual Processing: Evidence from slips of the ear. In: Fromkin (1980), pp. 213-30.
(3) CLARK, H.H. (1973) The language-as-fixed-effect fallacy: A critique of language statistics in psychological research, J. Verbal Learning and Verbal Behaviour, 12:335-59.
(4) COLE, R.A. and J. JAKIMIK (1980) Segmenting Speech into Words, J. Acoust. Soc. Am. 64(4): 1323-32.
(5) COOPER, W.E. (1979) Speech Perception and Production: Studies in Selective Adaptation. Norwood NJ: Ablex.
(6) FROMKIN, V.A. (1980) Errors in Linguistic Performance: Slips of the Tongue, Ear, Pen and Hand. London: Academic Press.
(7) GARNES, S. and Z.S. BOND (1980) A Slip of the Ear: A Snip of the Ear? A Slip of the Year?. In: Fromkin (1980), pp. 231-39.
(8) G\&RDING, E. (1967) Internal Juncture in Swedish. Traveaux de l'Institute de Phonetique de Lund, VI. Lund: Gleerup.
(9) HAGGARD, Ni., Q. JUNiNERFIELD and M. ROBERTS (1981) Psychoacoustical and cultural determinants of phoneme boundaries: evidence from trading F_{0}-cues in the voiced-voiceless distinction, J.Phonetics 9:49-62.
(10) HARRIS, M.O., N. UMEDA and J. BOURNE (1981) Boundary perception in fluent speech, J. Phonetics 9:1-18.
(11) HAYS, W.L. (1973) Statistics for the soclal sciences. London: Holt, Rinehart and Winston. second edition.
(12) KLATT, D.H. (1980) Speech Perception: a model of acoustic-phonetic analysis and lexical access. In: R.A. Cole (ed.), Perception and Production of Fluent Speech. Hillsdale NJ: Lawrence Erlbaum Associates.
(13) LEHISTE, I. (1960) An acoustic-phonetic study of internal open juncture, Phonetica 5(suppl):5-54.
(14) NAKATANI, L.H. and K.D. DUKES (1977) Locus of segmental cues for word juncture, J. Acoust. Soc. Am. 62:714-19.
(15) QUENé, H. (1985) Word boundary perception in fluent speech: a listening experiment, Progress Report Inst. Phonetics Utrecht 10(2):69-85.

TIIT-REIN VIITSO

Department of Finno-Ugric Languages
Institute of Language and Literature
Tallinn, Estonia, USSR 200106

ABSTRACT

Investigation of historical phonology of a language group may include several cycles each consisting of five stages. Main problems concern the correctness of phonological solutions for source langueges and the typological reliability of reconstructed phoneme systems and phonological changes. Perspectives of predictive historical phonology are discussed.

INTRODUCTION

Historical phonology stems from the socalled historical phonetics. Despite its name, historical phonetics, actually, had to manage without any objective phonetical data about most languages whose history was dealt with. On the other hand, several historical phoneticians of the prephonological period possessed a remarkably good understanding of the possidle directions of sound changes, of the conditioning role of the sound system in particular sound changes, and of the variant/invariant relationship. Hence it makes no sense to try to draw a strict borderline between historical phonetics and historical phonology on the basis of different authors' terminology. What is far more significant, is the existence of cycles and natural stages of investigating the historical phonology of related languages.

1. STAGES OF HISTORICAL INVESTIGATION

Ideally, any exhaustive study of the historical phonology of a set of related languages (e.g. of a language family) should begin from investigating groups of closely related languages (the first cycle) and then unite these groups and more remotely related languages step-bystep into bigger groups in order to repeat the procedure until all the related languages are included. Each such cycle consists at the utmost of five stages. (1) Establishing for each positional
(paradigmatic) class of phonemes (consonants or vowels) or phoneme sequinces its set of correspondences on the basis of the cognate set of the langage group.
(2) Reconstruction (a) of positional phoname classes of the protolanguage *I of the language group on the basis of the correspondence sets and (b) of the consonant and vowel systems of $* L$ on the basis of the reconstructed positional classes.
(3) Reconstruction of lexical items of the protolanguage ${ }^{*}$ I in terms of the reconstructed phonemes on the basis of the cognate set.
(4) Reconstruction of the sets of ordered phonological changes necessary to derive all positional phoneme classes and all phoneme sequences of each langage I of the language group from those of the protolanguage *I.
(5) Building a family tree or a family-tree-based net for the language group on the basis of ordered phonological changes.
The interrelations of a cognate set and of the five stages are presented on the following scheme:

Note, however, that any further stage of a cycle may cause corrections at some earlier stage.

2. PROBLEMS OF PHONOLOGICAL RECONSTRUCTION

The quality of an" investigation depends on several factors:
(a) on the choice of the most realistic phonological solution for each relat ed language (on a stage preliminary
(b) on the exhaustiveness of the phoneme correspondence sets and on the quality each correspondence (stage 1);
(c) on the amount of regular correspondences actually included in the reconses of the protolanguage *I (stage 2); (d) on the typological reliability of the reconstructed consonant and 2 and 4); (e) on the typological reliability of reconstructed phoneme sequences (stage
(f) on the typological reliability of all
(g) on the choice of the most reliable
historical solutions out of the set of competing solutions.
Note that the reliability of reconstructions does not guarantee their correctness Nevertheless, only a reliable reconstruction can be correct although there are no correctness criteria for reliable reconstructions. Still, among several competing eliable reconstructions one may prove to 2.1. There exist languages whose phonology presents no or few real problems at least within the scope of historical comparative studies. On the other hand, there are lanany phonological school pretending to psychological reality of its solutions. E.g., there have been long-lasting discussions about the phonemic system of Estonian. One of its several nontrivial phonomonophthong + stop pattern series, cf. the meries of minimal pairs (presented in the finno-Ugric transcription) in Table 1 .

Table 1

21	naGì	makki mäkki		makkǐ mak $\mathrm{c}^{\text {chi }}$	
82	mäGi				
	máGí		màkkĭ		
	mâGí	mAk̆kĕ			

In Table 1 vowel and consonant length is indicated by means of upper diacritics, vowels: $\begin{gathered}a \\ a \\ a\end{gathered}$ (b) long vowels: \hat{a} à \bar{a} a (c) strong single consonants: $k \hat{k} k$; kk kk $k k$; (e) heteromorphemic stop cluscomponent in a heteromorphemic stop cluster begins in implosion. In addition to words with heteromorphemic stop clusters
also the words mâci and mâke belong to also the words mâGi and mâkke belong to
dimorphemic patterns with a root morpheme ending in a (super)long monophthong. All the words have stress in the initial syl-

Lact that Estonian has also a complicated system of diphthongs (26 types in my pronully to cally to the with there own problems; still most consonant clusters behave analogically to geminates when preceded by a short monophthong. All the monophthong + stop patterns participate in morphophonolive grammars of Estonian group all the patterns mars of three distinctive quantities, of. Q1, Q2, and Q3 in Table 1; each quantity has, alongside the durational characteristics, also a character byicic pitathors.
In any case, a complicated language like Estonian has many phonological solutions. Most of them are wrong and thus serv as a source of a wrong history. 2.2. phone whose functional properties are unphown. Hence, an exhaustive set of phoneme correspondences should not include corre spondences established on the suspicious or ambiguous cognates. Inclusion of suspicious or ambiguous cognates and aberrant correspondences in the data body covered by reconstructions would probably falsify the history. There are, environments of observable correspondences have been lost in the course of later changes. In such cases the reliability of reconstructions depends first of all on the number of correspondences covered by tively big cognate set is ignored. Cf., e.g., the set of Permic. (Finno-Ugric), i.e.'Proto-Komi (the 1st row) and ProtoUdmurt (the 1 st line) correspondences of
the vowels of the first syllables in Table 2. i e s and u o are, correspondingly, illabial and labial are, correspondingly, are rised mid vowels. For each correspondence, the number of reliable cognates is indicated. The number is underlined if the correspond

Table ${ }^{2}$

2.3. The problem of typologically reliable reconstructed phoneme systems usualnumber of attested correspondences whose former complementarity has been eliminated by some later innovations. In such cases usually either the actual number of protophonemes will be multiplied or the fantastically distorted in the course of reconstruction. E.g., for Proto-Permic vowel systems containing $12-15$ short vowtions are clearly unreliable.
There has been a lasting discussion about a typologically reliable Proto-Indo-Euro pean stop system. The discussion has conness the probn olottalization, and murmur of stops both in Indo-European and in other, relatively badly investigated lan guage families. Interesting enough, the discussion has not lin investigations of do-Europesn dialects, e.g., the Armenian ones. In other words, even the typology of the historically most interesting dialects of the world's best inves igatedions and not on firm data.
The situation is still worse in the field of the typology of changes. Although there has been steady progress in the liegy of the theory of change, the typomost nonexistent. We know, e.g., that long non-high vowels tend to rise, and not vice versa. On the other hand we kno phthongized. According to Z. Zinkevičius the Lithuenian correspondence series uo $\sim 0 \sim$ ov $\sim \bar{u}$ represents the Proto-East-Baltic
not $*$ ou from Proto-Indo-European not *ou from Proto-Indo-European
 The South Estonian long mid vowel rising
 els are lowered high vowels, contrasted to
high vowels \bar{u} it in quantity 3 , cf. 2.1. and the North Estonian diphthongization of long mid vowels into uo üo ie both in quantity 2 and quantity 3 are usually considered to represent the same change chrin with a specion of vo üo ie into $\overline{\mathrm{u}} \mathrm{i}_{\mathrm{i}}$ [2]. This contradicts the facts (1) that South Estonian has retained long mid vowels in quantity 2 Whereas no Estonian dialect has diphthong3 and (2) that in quantity 3 the second components of the North Estonian uo u io ie seem to be somewhat. longer than the first ones and tend to lower. Besides, in Kodavere (East Estonian) described by L. Ketmerged in $\overline{\mathrm{u}} \overline{\mathrm{u}} \overline{\mathrm{i}}$ in quantity 3 and di-
phtongized to ua üa ia in quantity 2 ; at diphthongized to us is both in quantity 2 and quantity 3. Hence, both Kodavere and South Estonian indicate that rising and diphthongization of long mid vowels and 3 differ both in duration and in pitch. Likewise, it is possible that these prerequisities are to some extent universal, and probably there exist also condidency to change. Probably there are also everal other changes or tendencies that can be actualized only under certain hidden" conditions.
In view of that it is meaningiul to look for such conditions comparing both dialects that have retained an old feature y, often conditions are preserved after he change has taken place. E.g., in Livoian (a Baltic Finnic language spoken in he northern tip of Kurland, Latvia) all hort vowels were lengthened (also in diphthongal nuclei) before a short vocalic or sonorant coda after the Livonian coda polarization had taken place in long syl phthong. Later u (except after i) and i (after è) were dropped after such lengthened vowels. Now a new round of yowel lengthening is in progress, trastive pair beginning in a long component tend to lengthen [4]. This tendency concerns alongside syllables with plain tone also those with st ϕ in diphthongs not morphophonologically alternate with v or j. Cf. Table 3 with Livonian polyphthongs. The lengthening tendency conerns diphthongs of classes 2 (tend to shift to class 3) and 4 (tend to shift to mains in the framework of subphonemic free variation, Livonian must have retained the conditions necessary for such a lengthen ing for a considerable stretch of time.

Estonian, on the other hand, reveals no tendency to lengthen the initial components of diphthongs even when they have a relatively short final component (in quantity 2). North Estonian dialects rather represent different stages of lowering of the final components u and i under the influence of the quality of the following consonants.

3. PREDICTIVENESS IN HISTORICAL PHONOLOGY

Apparently, establishing the necessary conditions of changes like those discussed in 2.3 is a task of historical phonology. Such a task means that historical phonology must become predictive at least in the weak sense of predictiveness: it must be capable of estimating the possibility or impossibility of one or another change. Doubtiess, predictive historical phonology has higher requirements for the quality of syachronical phonological studies than does the current synchronical phonology. Synchronical phonology can often well manipulate any data of a local dialect or a standard language having only an impressionistic knowledge of manner and place of articulation. Predictive historical phonology needs considerably more concrete knowledge. One must be able to satisfactorily characterize the differences of "the same phoneme" (a) in different positional classes of the same language or dialect and (b) in similar positional classes of different languages or dialects. Nevertheless, collecting the relevant data on different phonological changes and their prerequisities is a task of typology rather than historical phonology. Hence, phonological typology must change from a branch that eagerly deals with collection and classification of both correct and incorrect impressionistic data into one that carefully checks up the correctness of the data it manipulates.
The perspective of predictive historical phonology demands that the role of abduction in phonological changes must be reviewed. Abductive changes, singled out by H. Andersen, are claimed to be unpredictable [5]. Actually there are maybe only two classes of unpredictable phonological changes: (a) sporadic and (b) those con-
ditioned by speech disorders of a prestigious member of a little language community. The most striking examples of abductive change are rather chains of entirely natural single changes. The output of other examples of abductive change still contains features known from the input stage of the change. Such changes resuil from the effect of a set of universal tendencies whose actual number, scope and structure is still unknown. E.g.:
(1) The number of phonological rules in a grammar tends to be minimal.
(2) The domain of a phonological rule tends to be minimal.
(3) The phonological complexity of a phoneme sequence (syllable, stress group, word) tends to vary periodically.
(4) The number of phonemes in a phoneme system tends to be minimal.
(5) The length of allomorphs of a language tends to be minimal.
(6) Phoneme mergers tend to follow the principle of minimal articulatory efforts.
The first three tendencies are, probably, consequences of the tendency to minimize the volume of brain work. Thus it is more economical to memorize frequent inflectional forms and phrases than to compose them again and again. Tendencies (4) and (5) have partialiy opposite effects: tendency (5) may cause an increase both in the number of phonemes and in homonym. As these tendencies act persistentiy they must be considered both in historical and synchronical phonology.

REFERENCES

[1] 2. Zinkevi夭ius, "Lietuviu kalbos dialektologija", Vilnius, 1978.
[2] I. Kettunen, "Eestin kielen äannehistoria", Helsinki, 1962.
[3] L. Kettunen, "Lautgeschichtliche Darstellung uber den Vokalismus des kodaferschen Dialekts", Helsinki, 1914.
[4] H. Pajupuu, T.-R. Viitso, Livonian polyphthongs. "Estonian Papers in Phonetics 1984-1985", Tellinn, 1986. 96-134.
[5] H. Andersen, Abductive and deductive change. "Language" 49 (1973). 765-93.

HERBERT PENZL

Dept．of German
University of California
Berkeley，CA 94720

1．Realitätswert der Rekonstruktionen

In einem von der Forschung wenig beachteten Buch habe ich Typen und Methoden der Rekonstruktion aus－ führlich behandelt．Der Ausdruck Rekonstruktion ＂Wiederherstellung＂）wird meist für das Erfassen der schriftlich unbelegten sprachlichen Vorgeschichte， also von Lauten，Phonemen，Morphemen，Wörtern，Fle－ xion，Syntax，Wortschatz aus späterem belegtem Mate－ rial verwendet．Haupttypen wie innere（interne） Rekonstruktion，vergleichende Rekonstruktion，umge－ kehrte Rekonstruktion，Prärekonstruktion sind in der Gegenwart öfter beschrieben worden（Penzl 1972， S． 116 ff ．）．Die früher allgemeine Praxis，Rekon－ struktionen，ob es nun Einzelphoneme，Phonemverbin－ dungen，Wortformen usw．sind，von den tatsächlich belegten durch ein Sternchen zu unterscheiden，hat man im allgemeinen beibehalten．Es bleibt oft un－ －klar，ob Weglassen der Sternchen Hypostasierung aus gro3em Vertrauen auf die Methode oder nur Ungenauig－ keit der Bezeichnung bedeute．Bei jeder Rekonstruk－ tion ist die Frage des Realitätswerts，der ge－ schichtlichen Wirklichkeit，wichtig．Die Einstel－ lung der Forschung zu besternten Formen hat zwi－ schen＂blo3en Formeln＂，＂Abstraktion ohne Realität＂， ＂formelhafter Zusammenfassung sprachlicher Entspre－ chungen＂，＂Annäherung an die geschichtliche Wirk－ lichkeit＂，＂Art phonemischen Diagramms der Grund－ formen＂geschwankt（Penzl 1972，S．113）．Hermann （1907，S．62）schlug vor，ein Kreuz für＂wirkliche Rekonstruktion＇wie idg．＋esmi＇bin＇，ein Sternchen für blo3e Formeln zu setzen．Aus der Summe all dieser Einzelrekonstruktionen ergibt sich die gene－ tische Rekonstruktion einer historischen oder prä－ historischen Sprachstufe，Ursprache oder Zwischen－ ursprache wie Indogermanisch，Urgermanisch，West－ germanisch，Voralthochdeutsch aufgrund von belegten Formen in Tochtersprachen，Dialekten．Was den Be－ griff Ursprache（engl．proto－language）anbelangt， so dringt in letzter Zeit die Einsicht durch，da3 sie nur dann als natürliche Sprache anzusehen ist， wenn zumindest e $i n$ Text，also das pragmatische Resultat einer Sprachhandlung eines Sprachträgers vorliegt．Das trifft wegen der einen Satz langen Inschrift auf dem Horn von Gallehus von 400 n ．Chr． für das Nordisch－Westgermanische zu（Penzl 1975， S． 69 ff ．）．Wir können mit unseren Rekonstruktions－ methoden wohl Grammatik und Sprachregeln，aber keine prähistorischen Texte（trotz A．Schleicher und H．Hirt）rekonstruieren，weil auch Sprachträger und Sprachakte weder vergleichend noch intern rekonstru－ ierbar sind．
Wenn hier auch nur von phonetisch－phonologischer Rekonstruktion die Rede sein soll，so ist die
morphologische Rekonstruktion eigentlich miteinbe－ griffen，weil phonologische vergleichende Rekon－ struktion stets im morphologischen，sogar lexika－ lisch－semantischen Rahmen erfolgen mu3．Innere Rekonstruktion kann synchronisch und diachronisch sein und ist auch oft für die historische Zeit，d．h． die Zeit mit Textbelegen notwendig，wenn System， Variation，Wandel，Verbreitung nur lückenhaft schriftliche Bezeichnung gefunden haben．

2．Phonologische und phonetische Rekonstruktion

Die Unterscheidung zwischen phonologischer （phonemischer）und phonetischer Rekonstruktion ist wichtig．Phonologische．Rekonstruktion bedeutet das Erfassen von Phonemen und Phonemsystem mit den wichtigsten distinktiven Merkmalen（Eigenschaften）． Phonetische Rekonstruktion hat als Ziel die Be－ schreibung von Lautwert und Lautinventar，die akus－ tisch，auditorisch，organogenetisch erfolgen kann． Wenn wir nach dem letztgenannten Typ verfahren， kann jeder Laut einer Sprache beschrieben werden， wenn wir（1）Artikulationsorgan，（2）Artikulations－ ort，（3）Artikulationsweise，（4）Artikulations－ energie，（5）Artikulationsdauer und（6）eventuelle Koartikulationen angeben können．Von mhd．／d／in der，das mit dem lat．Zeichen d geschrieben wird， nehmen wir an，da3 es（1）apikal oder dorsal， （2）dental oder postdental oder alveolar，（3）Ver－ schlu3laut，（4）lenis，（5）stimmhaft oder stimmlos （Artikulation der Stimmbänder）war．Schreibung， Vorgeschichte，nhd．Weiterentwicklung，Alternanz mit t im Auslaut（mhd．lant，Gen．landes）lassen keine weitergehende Bestimmung zu．Im Falle der ahd．，mhd．Sibilanten，die $\langle s\rangle$ und $\langle z\rangle$ geschrieben werden，z．B．ahd，thaz，mhd．daz＇das＇，ahd．thes， mhd．des＇des＇（Gen．）ist nur die phonemische Oppo－ sition bis zum frühnhd．Zusammenfall deutlich．Die Zeichenwahl mit häufigem 〈zz〉（mhd．wazzer＇Wasser＇， germ． H_{t} ）deutet auf stimmlose Fortis gegenuber einer Lēnis 〈s〉（mhd，wesen＇sein＇）．Der Zusammen－ fall erfolgt nach der mhd．Entwicklung eines Schi－ bilanten aus ahd．／sk／：mhd．waschen．Aus altslo－ wenischer Orthographie und gegenseitiger Wiedergabe slawischer und ahd．Sibilanten in Namen geht nur hervor，da3／s／einem Schibilanten näher als／z／ war．Sonst versagen die weiteren Quellen für Laut－ bestimmung wie．Reime und Assonanz，Weiterentwick－ lung，Herkunft；orthoëpische Beschreibungen fehlen überhaupt（vgl．Penzl 1971，S．71f．，Penzl 1986， S． 38 f ．）．Im Altfranzösischen scheint es ein glei－ ches Sibilantenpaar gegeben $z u$ haben．M．Joos sah in／s／apikale und in／z／dorsale Artikulation，die aber in der Gegenwart auditorisch schwer zu unter－

enthalt den einen Laryngal, der aüfgrund der tradi-
tionellen Entsprechungsmethode des Rekonstruierens 'schützen', lat. pâsco 'lasse weiden', (Lindeman 1970, $\frac{\text { Sasco }}{}$. 28). Dasse weiden', pāstor 'Hie Entsprechungen nicht zahlreich und für den Anlaut z.B. von Heinz Kronasser angefochten worden. Ein einsames *H wäre , aryngalen: ${ }^{*} H_{1} * H_{2} * H_{3}$. Laryngalen: ${ }^{*} H_{1}{ }^{*} H_{2} * \mathrm{H}_{3}$. Die Theorie geht auf die
Bemühung von Ferdinand de Saussure zurück, den idg blaut, besonders den mit Langvokal als Grundstufe n schweren Wurzeln", phonotaktisch zu erklären. voridg. Vorstufen der Prarekonstruktion von
 eruktion der Kurzvokalvariation $*_{e} / *_{o}$ und seltenem *os $/ *_{a}$ im Ablaut durch Einwirken eines idg. iese Prärekonstruktion (Penden Laryngals.
aese frarekonstruktion (Penzl 1972, S. 135ff.), die struktion (*e *o usw.) aufgebaut ist, nimmt also ine Dekonstruktion nicht nur aller idg. Langovale Kurzvokale ($\mathrm{te}_{*_{0}} \star_{\mathrm{a}}$) mein idg. geschwundenen Laryngalreike ($\forall 1$ aige an. So ergibt sich für ein Urururidg. ein ein einsame Kurzvokal ***e, für den man durchaus trotz typo-logisch-universalistischer Bedenken Realitätswert Parallelen anführte. w. F kakasische Sprachen als ging für sein Urururidg. ("pre-stress stage of pre-1E") noch weiter, indem er neben vier allerding "laryngeals" ein überhauptisch bezeichnete
einem "non-segmental struierte. Diese Wendung ins Abstrakte sialle pran eigentlich nicht überraschen. Auch für die La gale war zuerst die Bestimmung nur phonemisch mit Gegner der Lscher phonetischer Beschreibung. späteren erweiterten Form sie als reinders in ihrer inguistik ohne historischen Realitätswert charakEs ist aber (Penzl 1972, s. 136f.).
namhaften Indogerkmanisten wie viele Anhänger unter den hat. Auch die Einvokalthese Anhanger. Gilt etwa Vokalarmut als primitiv und archaisch? Soll ein allmählicher Zu entwicklung inktiver Sonoritat die sprachliche Ur nenschliche Sprache zuerst Nonst, man an, da3 die kation verwendete? Kann etwa prähistorische Dekon-
 ien auf Konsonantentypen auch andere Sprachfamifürbar machen? Die Geschichte der dem Idg. zurickie zeigt, da tatsächlich mit dem Ansetzen von aryngalen auch Beziehung zum Semitischen und Ur honetisch erkst rurde. Oder sah man in den glen (wie auch einal bid beschiebenen Laryn ers "primitive", also zur Prärekonstruktion) besoners geeignete Laute? Die Ansicht, da3 ein Ein"exotisch" vom Standpunkt der idg. Sprachen als
erscheint, unterstreicht einers glaubwürdig primitiv der Rekonstruktion, der m.E. kaum vertretbar ist.

7. "Exotische" Rekonstruktion?

Es war wohl vor allem die angesetzte Reihe der aspi rierten Medien (siehe 5. oben) die Ursache, da3 in
steigendem Ma3e seit den letzten Jabren phent steigendem Ma3e seit den letzten Jahren phonetische
Umdeutungen des idg. Konsonantensystems veröffentUmdeutungen des idg. Konsonantensystems veröffentdistinktive Merkmale verbunden. damit auch neue Einwand gegen die phonetische Realitat der tradit nellen Rekonstruktion des Konsonantensystems wird allerdings in keiner Umdeutung behoben, ja die Dis
tanz zwischen System der Tochtersprachen scheint nur noch und System der den, so da3 wir kaum noch einen Rekonstrukt kel ansetzen können. Polomé (1982, S. 54f.) erwähnt einschlägige Vorschläge von Joseph Emonds, Paul J. und als besonders wich Romhard V. V. Ivanovs Artikel (1973). Vennemann, früher (1979) die Aspiraten des Sanskrit nach P. Ladefogeds Forschungen als glottalisiert analy sierte, begrü3te enthusiastisch die neuen RekonMedia durch glottalisierte Verschlu3laute ersetz wurde. Phonetische und universalistische Forschung letzten Jahre hat die Typen und weite Verbreitung der Glottallaute zeigen können (Greenberg "Inventare der glottalischen Rekonstruktion" Ian Maddiesons Lautstatistiken (Maddieson 1984). im setzen in unseren Rekonstruktionen voraus, da kustischen Voraussetzun tahren die physiologischgleichen sind. Es gibt für die Zeit der menschlichen Sprache kein anatomisches oder sonstiges
 einen Beweis dafür, da3 das Ansetzen von "exotibelegter Artikulationsweise eine Auswirkung idg. ansicht ist, da3 wir mit physiologisch-anatomische nderungen rechnen sollten. Vielleicht überschäten aber manche Forscher die Wichtigkeit au3eridg. as mag für die erwähnten baskische Rekonstruktion. ie Schibilanten des Paschto, kaukasische Eine esteme und die Glottallaute in Südasien und Afrik sogar im Sindhi gelten.
Dies ist nicht die geeignete Gelegenheit dazu, als er idg. Obstruenten vom Standpunkt des Germetion chen an Stelle der oben besprochenen vorschlagen, chon deswegen nicht, weil. ich genaue phonetische Bestimmung prähistorischer (und oft historischer)
Laute für unnöglich und irrelevant halte. lärung der germ. Luntverschiebung halte. Zur Er Gesetz") würde ich aber folgende Allophone ür die Tenues, wie bereits erwähnt, stark aspirierte; aber noch nicht affrizierte Allophone, für
aspirata auch frikative Allone, für die Media den Methoden der Entfaltungstheorie uberein und schlie3t auch glottalisierte Allophone wegen des soll ja nicht nur für das. Aber das Indogermanische für das Germanische die Grundsprache sein. auch
> mit

Gamkrelidze, T. V. und V. V. Ivanov. 1973. Sprachtypologie und die Rekonstruktion der gemeinindogermanischen Verschlüsse. Phonetica 27, S. 150-6.

Greenberg, Joseph M. 1970. "Some generalizations concerning glottalic consonants, especially implosives." IJAL 36, S. 123-45.
Hermann, Eduard. 1907. "Uber das Rekonstruieren." ZfvglSpf. 41, S. 1-64.
Hopper, Paul J. 1973. Glottalized and murmured occlusives in Indo-European. Glossa 7, S. 141-66.

Lehmann, W. F. 1952. Proto-Indo-European Phonology. Texas University Press.
Lindeman, F. O. 1970. Einführung in die Laryngaltheorie. Sammlung Göschen.
Maddieson, Ian. 1984. Patterns of sounds. Cambridge University Press.
Penzl, Herbert. 1955. A Grammar of Pashto. A descriptive study of the dialect of Kandahar, Afghanistan. Washington, D. C. ACLS. - 1971. Lautsystem und Lautwandel in den althochdeutschen Dialekten. München, Max Hueber. - 1972. Methoden der germanistischen Linguistik. Tübingen, Niemeyer. - 1975. Vom Urgermanischen zum Neuhochdeutschen. Eine historische Phonologie. Berlin, Erich Schmidt Verlag. - 1986. Althochdeutsch. Eine Einführung in Dialekte und Vorgeschichte. Bern, Peter Lang.
Polomé, E. C. 1982. Germanic as an archaic Indo-European language. In: Festschrift für Karl Schneider, S. 51 ff . Amsterdam, Benjamins. Vennemann, Theo. 1979. Grassman's Law, Bartholomae's Law and Linguistic Methodology. In: Linguistic Method, Essays in honor of Herbert Penzl, S. 557ff. I. Rauch und G. Carr, Hg. den Haag, Mouton Publishers.

- 1986. Neuere Entwicklungen in der Phoṇologie. Berlin, Mouton de Gruyter.

Herbert Galton

The University of Kansas
Lawrence, Kansas, U.S.A.
Abstract
In der Erklärung historischer Lautentwicklungen ist man letzthin zu sehr von den Beziehungen innerhalb des phonologischen Systems ausgegangen, d.i. der paradigmatischen auf Kosten der syntagmatischen Stellung der Laute. Es ist Zeit, die letztere wieder in ihre Rechte einzusetzen, und zwar in der Form der Silbenstruktur, innerhalb derer die Laute allein ihre Wirklichkeit haben. Dies wird am Gemeinslavischen illustriert, die Sonorität den gemeinsamen Grundsatz sowohl für die Einteilung der Rede in Silben wie auch für die Entwicklung des Silbenkerns, dem keine Coda folgte, abgab.

Phmetic explanations of sound changes have samewhat gone out of fashion of late. Perhaps this is a natural reaction to the fact that with the advent of structuralism, it was discovered that the speech ommds of a language hang together in a sort of system regulated by a eet of internal relations. What more natural then to believe that these relations also preside over the evolution of the systems, thus endowing them with a sort of creative force of their oum, working in the direction of a closer integration. It was also obvious that in languape, the sexpmental phonemes would be" the likeliest objects of such an approach, since they are farthest removed from the representation of our untidy thoughts on the one hand, and on the other are
subject to the constraints of the vacal organs with their limited number of positions. With the further refinement of technical data, acoustic classes emerged beside the traditional physiological ones, seemingly capable of a much higher degree of abstraction from theactial phonic material (even though nobody has ever heard compactness or diffuseness). The substance se med to fade beside the network of relations, the uni linear sequence of sounds receded as against the par digmatic arrangements of the elements.

I may be permitted to point out that in.natural science, taxonomy has never. to my knowledge, been credited with a driving force of its amm. What it re presents is verv largelv the record of the interactio of its elements - plants struggling axainst plants. animals struggling against animals, the whole subject to the varying conditions of the envimonent. Few people still believe that the mole of the natural kingdom rose into being by figt and then came to fill in the environment. Rather on the contrary, we belieFe that the enviroment created the speciessr at least changed them into what they are now, There never was a stage in which they were not profoundly affected by their environment, which includes every other species of plants and animals as well. Underlying it all is the great will to live (Schopenhauer, thaugh he was unaware of evolution).

Underlving all language is the will to communicate. But as is well known, the other great force in nature, including human, is inertia, which evolution, under the dire threat of necessity, has to overcome. We are well aware that inertia is a powerful force also in the evolution of language, where it constantly has to be overcome by the need to express oneself. and the expression must take place by means of discrete and distinctive elements. Inertia would merge them in one inarticulate primeval cry.

Here we are back to the distinctions which, as we know, can be arranged in a "meaningful" pattern, the parts of which hand together in certain (cor) relations. But all relations in the phonological system bear on sets of phonemes and their realizations; it is not as individual entities, though correlated, that they developed. Exactly as plants and animals, all the way up to man (who became man through the social use of language), developed in a particular habitat, did sounds develop in their natural environment, and this natural environment is the word, or more precisely the syllable within the word, if it has more. All phonemes are abstracted from the positions in which they occur, and it was those which have shaped them, unless we want to go all the way back to Bruemann and assume with him that "der Anlasz zur kinderung des Lautes in seiner Eigenart zu suchenijist." We might as well assume that the incentive for the evolution of natural species lay in their specific nature. When we compare stage B of a lanouage with stage A, represented by their phonoigical systems, we are almost unavoidably subject to an optical illusion, and that is, that the system as such has changed somehow on its own account. Especially if we find so-called fuzzy points at one place, gaps in another, a more systemic relationship in a third, we are bound to credit the system itself with a driving force, forgetful of the fact that all the phonemes are abstracted from the concrete (phonetic) words where they occupy a specific position in the syllable. Such an approach would, therefore, overemphasize the paradigmatic aspect, against which it can be contended that the syntagmatic aspect, allowing for the con-
catenation of sounds in their natural sequence, should be asserted as an equal partner in evolution. Much of this has been worked into the history of linguistics and does not, therefore, amount to a basically novel discovery, but a caveat may seem in place all the same.

Thus, it has been suggested that e.g. the /r/ is articulated with greater care and precision in the Czech-language as an apical trill, because there it is held in place, as it were, by two one-dimensional oppositions: $\stackrel{\stackrel{r}{r}}{\underset{r}{r}-1}$, opposing it to the fricative $/ \bar{r} /$ and to the lateral / / within the system; on the other hand, the German (or English, for that matter)/r/ is said to have a weaker position in the network of relations, being largely characterized negatively as a non-lateral liquid, hence a non-nasal resonant, and therefore not an occlusive (1). Yet there are Slavic languages in which the $/ r /$ is in no better a systemic relationship than in German, while in Dutch e.g. the /r/ is regularly pronounced in final position as well as preceding a consonant either in the same or at the onset of the next syllable. Admittedly there are two kinds of $/ \mathrm{r} /$ in German taken as a whole, the tongue-tip trill and the uvular variety. but neither of them is slurred in intial position in the word or syllable. On the other hand, in Coumon Slavic as reflected in old Church Slavic, the final $/ \mathrm{r} /$ did drop out e.g. in the word for the "mother", mati, and this although it occurred in all other cases, Gen.Sg. matere etc. Not only that, but in the place (not only, of course) of the Czech $/ \mathbf{r}$), Slavic had a palatal $/ \mathbf{r} /$ which should have helped to keep the $/ \mathrm{r} /$ in position everywhere, as a member in a paradigmatic network. Indo-European certainly had the final -r (2). The same final $\underline{\underline{r}}$ was lost in other Slavic kinship terms like *bhrātēr or *dhughatēr, obviously because of its final position in the syllable. (If it still is there in the remodeled form of Czech bratr, one cannot help thinking that, ironically, what kept is there alone among all Slavic languages including Slovak was precisely the symbiosis in which the Czech and German languages lived in Bohemia.)

It would, of course, be perfectly true to say that even if the Germanic/r/is still always there in syllable-initial position, its incidence as a clearly articulated trill has nevertheless been seriously impaired. Yet we surely cannot on the one hand blame the statistical recession of the $/ \mathrm{r} /$ in the inventory of some Germanic languages on its allegedly isolated place in the system and on the other proclaim the emergence of $/ \bar{z} /$ in the phonemic system of English as well as marginally in German loanwords from Romance as being due to an emoty slot for it in the system despite its low frequency in the text. Be it not denied that the Enclish /z/might not have come into existence without the drag-chain (3) of its pre-existing voiceless counterpart /s/, but it exists, after all. onlv in a few wards such as vision, leisure, azure etc. The incidence of a phoneme should, accordingly, not amount to a major criterion in the establishment of a phonological system, any more than that, of a grammatical category in the morphological system. A certain tense may be actually quite rare (e.c. in Bulcarian), but nevertheless occupv an important place in the system and endure for many centuries.

We have seen that the weakening or even loss of the $/ \mathrm{r} /$ in the two I.-E. language groups discussed seems to be due ultimately to the same cause, i.e. the position in the syllable. and cannot be generalized at all as proceeding from the paradigmatic place in the system. If isolation within the system were a valid criterion, the English $/ \mathrm{h} /$ would have been subject to a much wider loss than merely in some Cocknev and other dialects. But an $/ \mathrm{h} /$ even occasionallv comes into existence at the expense of another phoneme much better integrated with the others. in particular $/ \mathrm{s} /$; this is what happened in ancient Greek in initial and intervocalic position, it has arisen in some Slavic languages in the place of a well-connected / $\alpha /$ and we can see it spreadine before our eyds in a widely prevalent varietv of Latin American Spanish, here akain onlv in certain svllabic positions; in Spanish itself. $/ \mathrm{h} /$ arose out of $/ \mathrm{f} /$ oreserved in Judeo-Spanish (Ladino). Alas, the system does not seem to be working consistentlv in the direction of its closer integrat-
ion; these features are not entirely absent, but we must never forket that, as de Saussure has pointed out (4). the ohonemes are really abstracted from their concrete position in the syllable. and cover an exolosive and an implosive species. Only these actually occur in the chain of speech.

If in the Slavic kinship terms referred to above. the final $/ r /$ disappeared. then it shared this fate with all other implosive consonants. and the result was a rising wave of sonority, not followed by any coda. The svllables thus created mav not correspond to Stetson's chest pulses (5) effectivelv criticized by Ladefoged (6), but they certainly constituted the best syllabic division, and division is the raison d' être of the syllable much more than any intrinsic nature of its own, hence the difficulty phoneticians have experienced in defining it. With some phenomena. their delimitative function is more important than their substance (if anv), of which perhaps the most telling example is the present tense, which, looked at more closely, fades into nothingness except preciselv as a dividing line between past and future. Hence also its flexibility (not as a "non-past":)

We can, therefore, unfortunately, not agree with Martinet that the opening of the Slavic syllable indicates some mysterious "affaiblissement général des articulations implosives" (7), because the reason for such a negative development seems entirelv unclear. Rather, it was the positive effect of an effort to mark off the syllables maximally from each other, as is the case in a seauence V / C. If, on the other hand, the same author savs, "la syllabe est le segment du discours où l'unité d'intensité trouve le plus naturellement sa place", then it would seem to follow that they were fairly even in intensity and rather dominated by a musical intonation. In Sievers' distinction, thev would be Schall- rather than Drucksilben, and with this it is not onlv the loss of ALL svllable-closind elements (including the second part of diphthongs) which is in agreement, but likewise the treatment of the svilabic nucleus - the vowels themselves. Their treatment was strictlv in accordance with their inherent sonority; the closest, $/ \mathrm{i} /$ and $/ \mathrm{u} /$, became further
reduced to $/ \mathrm{b} /$ and $/ \mathfrak{b} /$, being able to keep their timbre only under length, which favored areater sonoritv; /e/ and / / kept their place, though not without some vicissitudes, being of the middle derree of sonority as well as of length, while their long dearees $/ \mathrm{e} /$ and $/ \mathrm{o} /$ increased their averture to $/ \mathrm{a} / \mathrm{l}$ and $/ \mathrm{a} /$ respectively, the latter in agreement with the original $/ \bar{a} /$. Short $/ a /$ and $/ \bar{\sigma} /$ fell together, i.e. sonoritv and length went hand in hand. It is as part of the same principle of unimpeded sonority that all I. - . diphthongs were homogenized, thereby entailing further changes in the phonological system including the consonants, which therefore can be seen to be uitimately due to syntapmatic and not paradigmatic features. The syllable is the natural syntama of the phoneme. Within it, all maior sound changes of Common Slavic that give it such a different appearance from closely related Baltic were contained, while the one or two exceeding the limits of the syllable, like the Third (Baudouin de Courtenay's): Palatalization effected the breach precisely at the point of least resistance involving the least sonorous $/ \mathrm{i} /$ and $/ \mathrm{u} /$. It was also at these weak points that the syllabic structure of Common Slavic eventually brake down.

The maximal assimilation which prevailed in Common Slavic in the sequence CV (tautosyllabic) (B) the reverse of the principle of the open syllable; hence the recurring palatalizations of the welars with their typically shifting locus (hab); the combinations of consonant + yod establishing new phonemes, the velarization of the $f 1 /$ etc. From the very opposition of the sequences CV and VC there evolved in Slavic their most consisfent consequences in a truly dialectic harmonv. The Comon Slavic syllable was maximally horogeneous within, maximally delimited without,' and only against this background do the individual changes make any sense.

References

1) N.S. Trubetzkoy, Grundzüge der Phonologie, Travaux du cercle linguistique de Prague VII (1939), p. 14.
2) *mätēr, cf. 0 . Szemerénvi, Einführung in die vergleichende Sprachwissenschaft ${ }^{2}$, Darmstadt 1980. p. 109; T.V. Gamkrelidze - V.V. Ivanov. Indoevropejskij jazvk i indoevropejcy I, Tbilisi 1984, D. 184.
3) André Martinet, Economie des chanfements phonétiaues. Berne 1955, 0. 59; on the double pressure on each phoneme from context and system cf. $\mathbf{n} .25$.
4) F. de Saussure, Cours de linguistique générale, Paris 1922, P. 79 ff.
5) R. H. Stetson. Motor Phonetics ${ }^{2}$, Amsterdam 1951, pessim.
6) Three Areas of Experimental Phonetics, Oxford University Press 1975. p. 23.
7) op. cit., p. 345; for the following cf. pp. 129, 252.
B) cf. L.V. Bondarko. Struktura sloga i xarakteristike fonem, Voprosy Jazykoznanija 1967, 1, p. 33-16.

VYACHESLAV VS. IVANOV

Institute of Slavonic and Balkan Studies Academy of Sciences of the USSR, 125040

Abstract

The interconnection between the events usually described as supersegmental (such as phonemic tones) and segmental units is atudied mainly on the example of phonologioal systems with laryngealization and pharyngealization used as supersegmental features in a syllable or a word. Synchronic and diachronic typology of prosodic systems with laryngealized and pharyngealized tonemes are discussed in connection with those phonetical data that give experimental support for the reconstructed historical evolution.

The problem of the relation between segmental phonemes and tones in diachrony is of utmost importance for the correot theoretio distinction between those aspects of speeoh sounds that are grasped by means of phonetic equipment and the purely functional use of the same sounds.

One should atress the importance of the problem for the general phonology sinoe many other facts too point to the interconnection between the events usually described as supersegmental (particularly phonemic tones) and those phonetic manifestations that are considered mostly as segmental ones, cf. /I/, /2/.

In the recent studies on the tone phonology two results have been deduced that may be connected with each other. First in a lot of languages the segment inventory of the ayllable phonemes can influence in unforseen degree the supersegmental characteristics of the tone. From the point of view of natural phonology stressing (as the academician shcherbats conception has done) the importance of the phonetic substance one might speak about the phonologization in separate languages of those regular relations that on the phonetic le-
the feature voicedness-unvoioedness of stops and the feature high-low in the ad-. joining vowel/3/. From many diachronic consequences of this universal one might give only one example: Verner's law may be interpreted as the continuation of the old differences between the high and the low tones (and between the unvoiced and voiced cosonants in Proto-Germania) in the given forms /4/ of. the typologically similar opposition between /polù baok' and /bólu/ 'his baok' in Kpelle (the group Mande, Liberia), where according to Welmer in the second form the low tone is reconstructed that could cause voioing. In the synchrony the causal link between supersegmental units and the complex oharaoter of prosodemes are found: in them the features are phonologized that oan be described as phonologically segmental.

Secondly it is found that phonological oppositions of supersegmental units -tonemes (or prosodemes) in a number of languages are formed by differences not only in pitch and melody but also by some other features: quantity (for example in some Chinese dialeots such as Shang-Khai and Amui, in Burmese, modern Yenissey languages), intensity, laryngealization and pharyngealization etc. These features are intertwined with those of pitch and melody. That makes the notion of tone in such a classioal tone language as Chinese much more complicated than it had been supposed earlier.

From the point of view of general phonetics most understandible is the functional similarity between pitch and melody differences and the glottal stop since the glottalization is localized in the same part of the vocal mechanism where the different types of phonation are produced. For the concrete understanding of these phenomena important are the results of the investigation of the relation between the low tone and the voicedness of the consonant which is conneoted with the non-tenseness of the vocal chords. The suggestion according to which the pitch is becoming higher due to the growth of the tenseness
of the vocal chords (and of the subglottal pressure) can be verified experimentally In th is connection one should study the possible link between the glottal stop and first. in "Indo-Pacifio" language Kate. In the slottal stop takes part in tone oppo sitions. The causal link between rising melody and the glottal stop was proved long ago by studies in experimental phothe synohronic phonologioal description of languages where this relation is given phonological status to. In Kachari (the Bodo subgroup of the Tibeto-Burmese, Assam) the glottal stop and the rising tone teo dialeat of Santo Thomas Oxtepec the tone is higher in the verbs with the seoond syllable beginning in a glottal stop; in the Ayutle dialeot of the same language a similar rising of the tone takes tal stop follows. Particularly interesting are the data of the Northern Thai dialect of Tang-pa. In it the tones of the high series (the first one and the fifth one) and the glottal stop are united and glottalized oonsonants (ib, initial precan think that the glottal stop and the voioed preglottalized consonants are always similar as to their influence on the they can rise it. In Ngizim (Chad subgroup of Afroasiatic, Nigeria) the implosive (infective) b (67) that is pronounced with ingressive in-taking of the air With the
olosed vocal chords, does not cause the olosed vocal chords, does not cause the other voiced cosonants. This can be related to the data of experimental phonetios according to which implosive (preglottalized) consonants might rise the tone more definitely than all other types of consont from the other cont they are diffeusually lower the tones. From that point of view the facts of such a Modern IndoAryan language as Gujarati are important in which the implosive character of the be linked to the relation consonants may pitch during the closure and the growth of the number of vibrations. It oan be supposed that fust such artioulation may lead to the rising of tone found in some in the Eastern Bengalian dialeot of Dacca) in connection with the implosive character of oonsonants (in Sindhi) or the developt of tones.
The universal that leads from the existhe of the glottal stop to the rising of tions. Among them most interesting is the du (the Loio divisiong rising tone in Lasubgroup of Tibetosubgroup of Tibeto-Burmese). The Proto-Lo-

10 *-p.*-t.*-k of Proto-Lolo-Burmese med merged in a glottal stop due to the law tha artioulation in the mouth that can be gi-beto-Chinese aming them. Sinoe in Lolo (as also in Proto-Lolo-Burmese) a number of words have initial glottal stop $/$?/ in lahu the dissimilation of the old initial glottal stop and of the new final one deYeloped by merging of neutralized innal on might be to a principle according to on might be to a principle according to in the same morphs as it can be seen in Kartwelian and some Amerindian languages glottal stop in some ribeto-Chinese lan guages in which later laryngealized (glotgaages in which later laryngealized (glot and Lolo stopped tones appeared. Iater in Lahu in morphemes of this type the dissimillative disappearence of the glottal stop consonants structures and supersegmental tone systems. The Vietnamese 5-th tone (săc, rising) corresponds to the final $/ \%$ in other Austro-Asiatio languages of the group Palaung-Wa. One may think that here the phonetio events that were caused by the glottal stop have become phonologized: stop the rising melody has become phonologically independent. Acoording to the viet namese diachronical model similar process might be reconstructed also for the old Chinese. It is supposed that in it the ris tal stop. According to the theory about the Indo-European laryngeals developing into Balto-Slavic syllabic intonations the rising intonation has arisen from a
lost laryngeal (a glottal stop consonant lost laryngeal (a glottal stop consonant Way the disappearance of a glottal stop might lead to a rising tone in Triqué ac-
cording to its comparison to other Mixteo cording to
dialects.

The inverted relation between the glotinto a glottal stop may be supposed in la ter periods of the history of the same Baltic languages: Latvian, where the interrupted intonation (lauzta) has developed from the ancient rising (acute) one in mobile acute paradigms with the movement fore the accentuated one. A similar process of developement of the interrupted intonation from an acute rising one is found in North-Western-Lithuanian (zhea glottal stop) is traced (phonetically rising tone. But from the point of view of the Indo-European phonology it can bave developed from an old glottalized cosodialects only in in Danish but in English etc.

With this type of synchronic and diachronic events telling about the functional line between the glottal stop and the the possibility of the use of the glottaifzation (as a part of a more complex ariculation) as means of syntactical intonation in those sentences particularly in terrogative that are usually marked by a ising melody in many languages lian lanuage Nyangumata glottalization is used for the most part in the nd of the interrogative sentences with the rising intonation.
The connection between the glottalization and the rising melody as well as with dialects, Yenissey an languages) might b counted among the universals that might find the general phonetic explanation in mechanism of the production of the source this universal is manifested in a number of languages either in synchronic events or in diachronic developement at different levels starting from the segmental phonemic up to the supersegmental (toneThe use of laryngealization (or pharyn ealization) as a supersegmental feature in a syllable or a word is functinally different from its application as syntaotic intonational device which (expecially h the 1 nal position in a sentence) is but in both use of pitch and melody contours is striking. One might distinguish the symmetrical prosodic systems with the equal or gultiple relation of the laryngealized tothe and can find empirically that larymgealization is connected with the differential feature of the brevity of the vowel (ShanKhal dialect of Chinese, Burmese, the enisseyan ket dalects. . iact develop the asymmetrical systems might develop zation the number of the tonemes in the syllable ending in a voiceless stop (developing later into the feature of laryngeames in the other syllables (as in Middie mes in the other syllables as in Midale guages such as Atsi). For Twi, Livonian, sone Yenisseyan languages and for the earliest periodes of the history of Tibe-to-Burmese and Chinese it appears possible to trace the line between the development mes and the decrease in the differential potentialities of the phonemic inventory: \{ust as in the history of nasalization opposed to laryngealization in some Ian guages such as Haimu in Melanesia) the ties of phonemio components of words is compensated for by the expansion of su-
persegmental features. In different perioes of history of Tibetan, Burmese and some cognate languages laryngealized toneme yngealization as such persisted, but later it manifested itself in different morphs if compared with the older epochs. one might add that in many lianguages the glottal stop should be considered as phosodic) feature of glottalization or laryngealization stretching on the whole syllable, the whole morph or the whole word. In the languages in which tonal differences exist glottalization and laryngealization (as well as also pharyngealization) dy differences that build one system with them. Many examples of suoh prosodic sys-
tems have been analyzed $/ 6,7,8,9 \%$.

REFERENCES /I/ Maddies on I. Tone effects on conso-
nants. - Journal of phonetice, I 978 , voI. 6 , p. 327-344.
$2 /$ Maddieson I_{0}. The effects of F_{0} of a voicing distinction in sonorants and their Journal of phonetics, I984, vol.I2, N I, p.9-I5.

3/W.Dempwolff Grammatik der Jabem-Sprache auf Neuguinea, Hamburg, I939.
4/ Ivanov V. D. Die historisch-vergletchende Indoeuropaische Sprachwissenschaft und die Typologie. - Zeitschrift fur Phonetik schung, I98I, Bd.34, Heft 4, ss.415-4I7. T. $5 /$. C, Ivanov V.V. Indo-European and IndoT.V., Ivanov V.V. Indo-European and Indo 1984. Ivanov V.V. On the interrupted intonation (in Russian). - In: Rakstu krajums. J. Endzelins-Festschrift. Riga; Latvian Academy of soienoes, I959.
7/ Ivanov V.V. On the origin of laryngea-lization-pharyngealization in Yenisseyan languages (in Russian). - In: Phonetics. schrift. Moscow; Nauka editors, I97I. 18/ Ivanov V.V. On synchronic and diachronic typology of prosodic systems with laryngealized or pharyngea phzedology of oriental languages. Moskow, Nauka, I975. /9/ Ivanov V. V. On the functions of the glottal stop (In Russian) - In: Sound patschrift. Moscow: Nauka, I979.

prosodie als linguistische gestalt

herbert pilch

Englisches Seminar
Albert-Ludwigs-Universität
Freiburg i. Br.

1. PROSODISCHE MERKMALE

In ihrer grundlegenden Monographie zur Intonation fürt Ceplitis /2/ eine Liste von acht "Intonationselementen
schen an. Sie sind ausgewählt einerseits nach ihrer "Semantizität" (d.h. als voneinander unabhängige, bedeutungstragende Elemente), andererseits nach den vier kennEigenschaften:

1. Intensität kennzeichnet die Elemente Pause, Lautstärkeregelung (z.B. slur $/ 2$, p. $85 /$) und logische Betonung (d.h. Hervor-
hebung eines Wortes im Syntagma $/ 2$, p.89/).
2. Frequenz kennzeichnet Melodie und Stimmlage.
3. Zeit kennzeichnet Sprechtempo und mphatische Länge.
4. Spektrum kennzeichnet Stimmqualität.

Vom allgemeinen (damaligen und heutigen) Diskussionsstand aus gesehem, geht als sie nicht einfach akustische Eigenschaften mißt, sondern zuerst nach den linguistischen "linguo-akustischen") Elementen fragt, die sie messen will. Mit Recht weist sie die verbreitete vorstellung zuruck, zunächst sei spektralen Merkmale definierten) "Lauten" gegeben, denen dann suprasegmentale "akustische Modifikationen" von Grundfrequenz, Intensität und Dauer beigegeben würden /2, p. takogo rjada Ihren Schritt voran geht Ceplitis einerseits gegenüber den messenden Experimentalphonetikern und den testenden Psychoakustikern. Bei diesen beiden Gruppen herrscht die Zuversicht, wenn man nur Populationen teste, werde man am Ende alles Wissenswerte herausfinden.

Genauso läßt Ceplitis andererseits die konventionelle linguistische Typologie hinter sich, die Ton, Akzent und Intonation als die
drei suprasegmentalen Kategorien postuliert und letztere auf die drei "prosodischen Merkmale" Tonhöhe, Lautstarke und Dauer reduzieren möchte $/ 4$, p.22; 5, pp.77-90; 6, p. $55 /$. Insbesondere analysiert sie für das Lettische fünf sie den fünf (inzwischen sieben) "Intonationskonstruktionen" des Russischen (nach Bryzgunova $/ 1$, p. 86 / gegenüber. Damit tut sie den entscheidenden Schritt von der Intonation als Menge fallender und steigender Kurvenstücke zur intonation als pho

2. Prosodische gestalten

Wir gehen in der gleichen Richtung och einen Schritt weiter. Erstens lösen wir aus ihrer traditionellen Bindung an bestimmte akustische Merkmale und begreifen Prosodien als Ganzheiten ("Gestalten"). Ihnen können wohl akustische Merkmale zugeordnet werden, sie lassen sich aiver nicht auf bestimmte akusti-
sche Merkmale reduzieren. Auszugehen brauchen wir deshalb nicht mehr von jener schier unübersehbaren Menge akustischer (und sonstiger) Eigenschaften, wie sie immer wieder in der iteratur aufgeführt werden, als da sind Gaundfrequenz, Intensität, Tempo, Rhythmus, samtintensität, Steigungswinkel usw. /2, p.62/. Im Gegenteil - Prosodie als einzelsprachliches System definiert sich nicht akustisch, sondern durch die Unterscheidbarkeit der zum System gehörigen Einheiten ("Prosodien"): "Dans /18, p.166/.

Zweitens präzisieren wir die allgemeine Kategorie Semantizitat einerseits als zeichenunterscheidende Denotation (Distinktivität), Diskursivität (kommunikative Funktion /14/). Es ist eben nicht dasselbe, ob ich durch bestimmte Prosodien zwei schwedische Wörter wie anden 1 'Geist' und anden ${ }^{2}$ 'Ente' unterFunktion. Das ist ein Wortakzent mit distinktive eine Antithese andeute (urch andere Prosodien
beider Wörter als minimales Paar). Das sind Intonationen mit diskursiver Funktion. Letzter berührt die Identität der beiden Zeichen nicht; denn eben mit ihrer diskursiven Funktion grenzt sich die Intonation kate goriell $a b$ vom distinktiven Ton /15/

Kleine prosodische Einheiten, die wir als Ganzheiten begreifen, nennen wir Figuren und 2 war im Anschluß an Mulder $/ 6$, p. $43 /$
und Hjelmslev $/ 3$, p. 43%. Im Gegensatz zum Zeichen mangelt es der Figur an denotatio nicht aber an Diskursivität. Im Gegensatz um Phonem (bzw. distinktiven Merkmal) braucht die Figur keine distinktive Funktion auszuüben (sie tut dies nur als Ton bzw. als distinktiver Akzent). Es genügt die diskursive Funktion. Im Gegensatz zum Bedeutung ("intonacionnyje jedenicy, každaja iz kotorych obladajet opredeljonnym znaعenijem" /2, p.160/).

Genau wie andere phonologische Einheiten bilden auch die Figuren Hierarchien. In einzelsprach/ich sehr unterschiedlicher Weise wie Konturen $/ 10 / \mathrm{bzw}$. Konstruktionen $/ 1 /$ Umgekehrt lassen sie sich in kleinere Teilstücke segmentieren, z.B. die aus der griechischen Grammatik bekannten Teilstücke Proklise, Tonségment, Enklise. Die ProsoKorrelationen, aus denen sich ihrerseits distinktive Merkmale abstrahieren lassen, 2.B. die drei gebrochenen gegenüber den drei kontinuierlichen Figuren des Kymriderum in einzelsprachlich sehr unterschiedlicher Weise) den segmentalen Einheiten wie Silbe, phonologisches Wort, Diskurseinheit ("sentence" im Sinne Mulders $/ 6$, p.56/) zuordnen. Die dem Wort zugeordnete Prosodie inheit zugeordnete Intonation. Das ist häufig die gleiche Prosodie (z.B. das Tonsegment des Russischen, vgl. unten Abschnitt 4) je nachdem, welche Zuordnung wir im Einzelfall betrachten. Die Diskurseinheit braucht kein segment wie These : Antithese in der bekannten rhetorischen Figur. Nur bei der Leseintonation fallen Diskurseinheit und Syntagma zusammen (daran erkennen wir alle den vorgelesenen Text)

Unsere prosodische Analyse bestimmter Sprachen (besonders des Englischen, Deutschen, Kymrischen und Bretonischen) haben wir an anderer Stelle vorgelegt $/ 7 / / 10 / / 13 / / 17 /$, ebenso unsere Typologie prosodischer Systeme ahrungen berichten, einmal didaktisch von der Erlernbarkeit prosodischer Systeme sodann von der Zuordnung russischer Prosodien zur Kategorie Akzent.

3. ERLERNBARKEIT

Aus der Auffassung der Prosodien als Ganzheiten folgt, daß sie nur als ganzes rlernbar sind. Das erweist sich sowohl mit ihrer Muttersprache(n) lernen, als auch im Sprachunterricht. Niemand lernt z.B. gerennt erst Tonhöhenbewegung, dann Lauttärkeregelung, dann Rhythmus, Sprechtempo .dgl. Kinder lernen das alles im ganzen. ie spielen mit prosodischen Gestalten, ordnen u, erst allmählich Wörter und Diskursein eiten. Die Wörter und Syntagmen, die sie Laufe der Zeit erlernen, ordnen sie den Lereits erlernten Prosodien zu. Deshalb

Der Schulunterricht geht dagegen umgekehrt vor, beginnt mit Wörtern, Sätzen und (segmentalen) Phonemen und läßt die Proso-
dien bis zum Schluß. Im allgemeinen werden dien bis zum Schluß. Im allgemeinen werden sie dann nicht mehr gelernt, weil die Proso est in die Fremdsprache übernommen sind Meinen (deutschsprachigen) Studenten, die Englisch lernen wollen, rede ich deshalb zu unachst den amerikanischen Touristen zu arodieren, we er Deutsch sie englische ls richtiges Englisch, weil es Spaß macht. Als nächstes parodieren sie den amerikanischen Touristen mit dem gleichen "Akzent", aber mit englischen (statt deutschen) Wortern. Damit lösen sich ihre Ausspracheprobleme sowohl im segmentalen als auch im supraphonetischen Kleinkram verzichten /9/.

Wer eine Tonsprache lernen will (z.B. Chinesisch), bekommt im allgemeinen gute Fallen der Melodie achten müsse. Erfahrungsgemäß nützen solche Ratschläge nichts. Warum nicht? Weil es um ganze Figuren geht, nicht um steigende oder fallende Melodiestücke. Tatsächlich bewegen sich die Figuren nie sotig aufwarts oder immer sehr unregelmäßig. Sonst klänge die Figur nämlich nicht wie gesprochen sondern wie ein glissando. Wenn wir von den "steigenden" oder "fallenden" Tönen iner Sprache sprechen, so meinen wir damit gung nur im hoch stilisierten Sinne des distinktiven Merkmals, und dieses hören wir nicht von Natur aus, sondern müssen es erst "hören" lernen

Das ist der Übergang vom angeborenen audiometrischen Hören zum erlernten, phone matischen Hören /8/. Deshalb müssen wir auch die steigenden und fallenden Figuren für jede Sprache eigens neu lernen. Wenn ch z.B. den fallenden Ton des Mandarin kann kann ich deshalb noch nicht den fallenden

Ton des Thai, geschweige denn das fallende onsegment der ersten Konstruktion des tilisiert für jede der drei Sprachen eine prosodische Gestalt sui generis - typologisch vergleichbar, aber nicht akustisch gleich

4. RUSSISCHER WORTAKZENT

Hören wir flüssiger russischer Rede u in der Absicht festzustellen, welche Silben betont sind! Wenn wir uns dabei von der Lehre vom "Intensitätsakzent" des RussiAkzente nicht (es sei denn, wir wissen schon im voraus, wo sie liegen). Dagegen höre ch den russischen Akzent leicht, wenn ich auf die Vokalqualität achte, auf den vollen betonten Vokal. Auf manchen (aber nicht hinaus das Tonsegment einer Intonationskonstruktion (d.h. den "udarnaja とast" der Konstruktion $/ 1, \mathrm{pp} .17,23$ passim/). Nur wenn einzelne (phonologische) Worter vorgesprochen werden, so trägt der betonte Vokal der unmittelbar vorangehenden Wortsilbe dagegen nur bei besonders "deutlicher" Aussprache (es geht hier um das erlernte, phonematische Hören!). Auf Grund der unter schiedlichen Wortgrenzen kann ich deshalb (für die etwas minder deutliche Aussprache) Intonationskonstruktion): da ${ }^{1}$, buldet \neq dobuldet. In gleicher Weise hörbar sind die "Nebenakzente" in Komposita kirchenslavischen typs wie bogomater , mnogou$\frac{\text { vazajemyj. Auch fur }}{\text { Paare erfinden wo bo }{ }^{1} \text { ga malter }} \neq$ bogoma ${ }^{1}$ ter'. Ich brauche $\frac{1}{\text { dazu nur meinem }}$ "Hauptakzent" ein Tonsegment zuzuordnen, meinem "Nebenakzent" nicht - auch wenn die genannten Wörter keineswegs immer s gesprochen werden

Der russische Akzent ist also weder ein "Druckakzent" noch ein "melodischer Akzent" (im Sinne der klassischen Lehre), sondern "betont" ist per definitionem jeder volle. Vokal (und kein anderer Vokal). Der kann außerdem das Tonsegment einer Inton tionskonstruktion tragen. Wir halten das Russische für die Akzentsprache par excellence weil jedes russische Wort genau eine Tonstelle hat (wir sprechen lieber von Tonstelle als gehende, "nebentonige" Silbe mit zur Tonstelle gehört). Anders als im Englischen und Deutschen gibt es (mit Ausnahme des genannten Kompositionstyps) keine Nebenakzent m (isolierten) Wort. Anders als im Schwedichen und Norwegischen kommt es nicht Anders als im Französischen und Kymrischen (und teilweise im Englischen) liegt die Akzent
stelle lexikalisch fest, d.h. die jeweilige (phonologische) Wortform (flektierte Form, präpositionale Gruppe) hat jedes Mal, wenn sie in der Rede auftritt, den Akzent and selbstverständlich vor, ist es aber in anderen Sprachen nicht (wenn wir nur flüssiger ked zuhören statt isolierten Wörtern $/ 12 / / 16 /$).

Gewiß ordnen wir auch dem russischen Akzent Meßwerte für Intensität, Dauer, Grundfrequenz u.dgl. zu - genau wie alien seg
talen Einheiten auch $/ 2$, p.65/. Die volle Vokalqualität bringt sogar im allgemeinen höhere Meßwerte mit sich als die reduzierte Nur macht das solche Meßwerte nicht zum definiens des Akzents. Im Gegenteil: "Odnako nasko ko nam izvestno, metodiki, pozvolja opredeljat', javljajetsja li dannyj segmen udarnym ili bezudarnym, poka jesto net" /2, p.90/. Eine solche Methode wird es auch nie geben. Der Grund dafür ist einfach: Prosodien definieren sich als phonologische Ganzheiten, nicht als reduzierbar auf bestimme akustische Eigenschaften.

Literaturverzeichnis

/1/ Bryzgunova, E.A., Zvuki i intonacija russkoj re C_{i}, Moskau 1969.

Ceplitis, L.K., Analiz rěevoj intonaciji, Riga 1974.
Hjelmslev, L., Omkring sprogteorien grundlæggelse, Kopenhagen 1943.

Jakobson, R. und Halle, M., Fundamenta of Language, Janua linguarum, series minor 1, den Haag 1956 .
5/ Martinet, A., Eléments de linguistique générale, Paris 1960.

Mulder, J. und Hervey, S., The Strategy of Linguistics, Edinburgh 1980.
7/ Pilch, H., Baseldeutsche Phonologie auf Grundlage der Intonation -, Auditory
--., Intonation als Grundlage der Ausspracheschulung, Festschrift Wächtler, d. P. Kunsmann und O. Kuhn, Berlín 1980, 221-232.
/10/ , English Intonation as Phonological Sructure Word 31 (1980) 55-66.

11/ Pilch, H., Der phonologische Bau des russichen Wortes, Gedenkschrift bach und F. Keller, Bern 1981, 497-511.

12/ --., Les mots anglais à accent mobile, Festschrift George Faure, ed. P. Lé
und M. Rossi, Brüssel und M. Rossi, Brussel
/13/ ---, The Structure of Welsh Tona 234-252.
/14/ ---, Intonation als kommunikative Funktion, Festschrift F. Link, 1984, 195-210.
/15/ ---, La tonalité linguistique, La
/16/ ---, Tonal Cues in Welsh Discourse, Studia celtica (erscheint).

17/ ---, L'accentuation de la langue bretonne, La Bretagne linguistique (Brest 1987), 1-26
/18/ de Saussure, F., Cours de linguistique générale, Paris 1949.

SEGMENTAL AND PROSODIC VARIABILITIES IN CONNECTED SFEDCH
 AN APPIIED DATA-BANK STUDY

GUNNAR FANT, LENNART NORD, ANTTA KRUCXENBERG

Dept. of Speech Conmunication and Music Acoustics
Royal Institute of Technology (KTH), Box 70014

ABSTRACT
As a subset of the KTH data bank, we have recorded several subjects reading the same passages from a selection of various texts. We have studied variations in the realization of segmental and prosodic characteristics and to a less extent
reading style. Data is reported on the degree of closure of voiced consonants, ambiguities in segmentation and vowel durations. Vowel-consonant contrasts may be highly reduced even in non-weak
stress forms. The multi-cued realization of symstress forms. The multi-cued realization of syn-
tactic boundaries are discussed in relation to subjective assessments and to rhythmical structures. In addition to physical pauses, final lenghtening, formant-pattern changes and intonation contours, there are also local voice source
features other than Fo to consider, voice junctures.

introduction

Advanced work on text-to-speech sunthesis and speech recognition demands a continuous updating, analysis. We have to adopt a rule-oriented search to efficiently encode phonet ic features, speaker processing system of Carlson and Granström and have provided a format and practical tool. A more complete account of the work is given in a report by Fant et al. / $2 /$ which contains observations of speaker behavior under various conditions, not within thi
fresh insight in several fundamental acousticphonetic problems and a view of what kind of problems we will encounter as the analysis prounderlying variabilities in articulatory gestures and, furthermore, the realization of syntactic boundaries, and how subjective juncture assessments correlate with acoustic factors. Our overlity on all levels as well as potentials variabituring variabilities. one prevailing impression is that segmentals and prosodics share a common bhould be treated torrelates. Therefore; they lying model of speech production. our study has also provided some limited data on vowel durations and prosodic realizations which can be extended to support the up-dating of our synthesis rules.

When instructing subjects, we laid an emphasis on attaining a neutral but semantically emphasis reading. In addition, we have also recordings of more engaged readings, occasional mannerisms and deliberately dramatized versions. However, even in the more normal readings, we observed a rather patterns. Deviations from average and preferred patterns attain a subjective personality marking which attracts our attention without affecting the interest to certify which prosodic factors remain intact and which are allowed to vary.
In the present pilot study we have concentrated on 14 subjects' readings of two sentences. Spectrograms and associated oscillograms, intensity and FO plots were produced by means of our labora-

SEGMENTAL STUDIES

We have studied various coarticulation and reduction phenomena that affect the segmental boundary assignments.
Boundaries are more clearly realized by changes in "manner" cues than in. "place" cues. Thus, it is easy to find the boundary between a fricative
and a vowel but we have no clear rules for finding boundaries between vowels or between voiced consonants like $/ \mathrm{v} / . / \mathrm{j} /$ and $/ \mathrm{r} /$ and their combinations with vowels. A voiced intervocalic stop is not ly unvoiced attain voicing. Iack of oral closure may affect hasals as well as stop sounds or any may affant and an incomplete abduction of the glottis in an $\mathrm{h} /$ causes a continuation of voicing.
In order to understand these ambiguities, we should consider a basic parameter of speech proconstriction targets are reached in connected speech. This parameter which has a strong de contrast" or more could be labeled "articulator contrast" or more generally, "dynamic contrast". but also the glottal articulation. Thus, a suffilent adduction/abduction contrast is needed for preserving a voiced/voiceless boundary. Also, the vowel becomes obscured by $/ \mathrm{h} /$ and a following sufficient glotta contrast.

Articulatory contrast implies acoustic contrast in terms of envelope intensity modulation as well as an extended range of formant pattern dymamics. Decreased contrast, thereby, also affects the rate ries. ries.
honetic these phenomena are by no means new in extent of their we had not anticipated the full did not produce a full closure Thus, most speakers $\mathrm{g} /$ in "legat". For one speaker, LN , the intensipattern that was marginal only and the formant

ig. 1. Three degrees of articulatory contrast The same word "legat" from three sub jects' readings.

This is typical of voiced stops in fluent rapid arech and probably dependent on both the place of articulation and the vocalic context.

Fig. 2. Two subjects contrasting in oral closure of consonant [n].

Another example of incomplete closure is in the nasal consonant / n / in the word "fönster" which nly, see Fig. 2. The appearance of an orally frequent segment for the $/ \mathrm{n} /$ of " i en" was even less frequent which is to be expected since "en" is a
function word. on other occasions we have not thistion word. On other occasions we have noticed strings consisting of vowel-nasal-fricative. For
merican English, Maléeot described this phenomenon in word pairs with nasal-homorganic unvoiced nasalization only $/ 3 /$. The two-word string "han hade" in the initial part of the sentence "Han hade legat och skrivit det " is produced out fof focus vette mot Klarältempo and reduced articulatory contrast with higher is realized by nasalization only, and the second / h / is hard to detect being glottally coarticulated with the following vowel /a/. The second hy aspiration of the following vowel. A fealized complication is that nasalization and aspiration share cues, e.g., the reduced Fl intensity. only few speakers produced a sequence of clearly idenfiable segments.
The Swedish $/ r /$ /-sound appears in a variety of trill to a slight $/ \mathrm{r} /$ coloring of a neighboring vowel. $/ r /$ also occurs frequently in consmant clusters with subsequent forms of coarticula.ion and reduction as a result /4/.
sounds are often reduced and segmentation the $/ r /-$ a problem. The acoustic cues become diffuse, brief constriction phase is often found, but not always, and the same is true of the F1, F3 and F4 lowering cues. When present, the constriction boundary of an inserted vowel after. $/ \mathrm{k} /$. It may also reside in the unvoiced k-release. Segmentation rules for $/ r /$-sounds are still undefined. Shall we concentrate on the stop gap if it is
present or should we choose a larger domain of perceptual importance including a possible inserted vowel or a short segment of the same nature?

With the latter choice, the segmentation principle will deviate from that of handling stop
sounds where, by convention, the voiced part of a following transition goes with the next segment. When the acoustic cues become weak, the auditive impression of the /r/ prevails though weakened. realizations and segmentation ambiguities will be discussed in connection with the study of syntactic boundary regions in the following section.

SYNTACTIC BOUNDARIES AND PROSODICS

Our standard sentence with each word assigned a lexical stress pattern according to SAOB* attains

This transcription of each word read in isolation is irrelevant to connected speech. Following realistic form omitting the stress into a more words except the pronoun "det" which function attains the prominence of its substitute.
*Swedish normative word dictionary

"i en stor sal" is a preposition phrase. Crosses denote grave accent. A vertical short bar
denotes acute accent, if above the line, and the denotes acute accent, if above the line, and the
secondary syllable of grave accent, if below the line.
one object of the study was to study the realization of the syntactic boundaries before and after the preposition phrase. We found a consijective impressions. In a listening test, ten subjects assessed the degree of perceived boundaries on a scale from 0 to 5 . The first boundar ot an average rating of 2.2 with a standar eviation of 0.8 whilst the second boundary wa the jury. The standard deviation between speaker was 1.1 and 2.2, respectively.
The most prominent acoustic cue appeared to be gnental durations. Since the three words "det n" in several cases with no clear boundaries, especially not in the formant juncture between / e / and /I/, we selected an interval from the onset of vicing in the /e/ of "det", to the onset of the s/ of "stor", thus potentially including final noted that three of the 14 speakers omitted the / t / of "skrivit" and produced a voiced stop gap of $40-70 \mathrm{~ms}$ duration for the /d/ of "det". The remaining 11 speakers spectrograms showed an unvoiced stop gap of $70-140 \mathrm{~ms}$ duration approwhether the /a/ was realized at all and if so with no obvious boundary towards / $\mathrm{t} /$. According to the sandini rules of Garding, $(t+d /$ are transformed to unvoiced / d/ /5/.

Fig. 3. Subjectiondion (d)etion ure of the first phrase boundary.

Fig. 3 shows a fair correlation between boundary region duration and the subjective boundary as
sessment. A tendency may be observed of a dou bling of the subjective rating per 200 ms in crease of the juncture duration. Deviations from
this trend are within the standard deviation of listener judgements. A most apparent trend as sociated with more marked boumdaries is the appearance of creaky voice, i.e., glottalization at the end of the /e/ which causes a local drop of FO glottal excitations which is especially apparent in the second and higher formants. These boundary cues have earlier been noted by Gårding $/ 5 /$, Le histe / 6 / and Kreiman /7/. These alternations may couse an ambiguity in the derighest boundary rating produced a proper pause at the phrase boundary. A general phonological rule is to omit the / t / of "det". only one of the speakers, $E J$, had a proper combination of / t / unvoiced stop gap + release at the following vowel. Fleven speakers proper pause after "det" omitted the / $t /$.
In absence of glottalization, most speakers produced a level or slightly rising FO contour at the juncture. An exception was subject BB who had falling FO into the beginning of the second phrase. His reading style was in
As a durational measure, for the second phrase boundary "-----sal vars-----" we selected the $/ 1 /+o c c a s i o n a l ~ p a u s e+/ v /$. There were seven subjective ratings between 3.0 and 3.6 with a duration of about 120 ms and six with a rating between ms . Of the later, four of these included a proper pause and two displayed a brief $/ 1 /$-release. The F0-contour was mostly a fall+rise at the boundary with some correlation between magnitude of the movement and subjective rating. Here again, subNone of the subjects displayed a glottalization. wo subjects, however, had shown such tendencies in earlier informal recordings.
From a second sentence containing a sequence of numerations, we found similar correlations between subjective boundary impressions and
tional measures. Rather constant subjective ratings independent of durational measures were found when a boundary was terminated by strongly stressed syllables on either side.
Our data on vowel durations are summarized in Table I. They are compared with data from carlson
and Granström (ref. $11 /$) and from the text-tospeech (Rulsys) generated version of our sentence (in May 1986). A correction for overall tempo has been made, the Rulsys sentence being 20% longer. This comparison confirms our awareness of the insufficient contrast between present Rulsysvowels, see ref. $/ 2 /$ for further details. This restricted study can only provide a tendency and more representative data will eventually be gathered

Table I. Vowel durations in milliseconds

	Short unstressed	Short stressed	Long stressed
Present study	42	105	155
Rulsys	78	93	134
C \& G (ref. $/ 1 /$)	60	90	125

The average reading speed was five syllables or 4 phonemes per second. The standard deviation We have looked into the rhythmical structure of the sentence. A rhythmical unit, "stress inter val", has been defined as a subpart of the uttervowels carrying main stress. Since function words are down graded, the main stresses are confined to content words. We find an overall tendency of two main stresses per second. Similar findings have been made by Goude and Malmström /8/ and Dauer syllables are, thus, of the order of 500 ms but vary with the number of phonemes typically from 350 ms for three phonemes to 600 ms for nine

phonemes per stress interval
Fig. 4. Duration of stress intervals versus number of phonemes contained. Stress intervals that cut across a phrase boundary are
lengthened.
phonemes. The weak tendency of isochrony in reading, see also the study of Strangert, is probably more a matter of constraints in number of phonemes per stress interval than an intention of the reader $/ 10 \%$. As an average for the nine sentences of phonemes per stress interval. It remains to quantify the actual performance of the reading of this and more extensive tests. Even though Fig. 4 refers to a single sentence, it exemplifies typical trends such as the relative weight of stressed phrase boundaries are longer whereas the sentence initial group, leading up the first stress, is shorter than within phrase stress intervals /11/ Further studies along these lines might give some insight in reading behavior.

References
/1/ R. Carlson, B. Granström, "A search for durational rules in a real-speech data base" 12/ G. Fant, L. Nord, A. Kruckenberg, "Individua variations in text reading. A data-bank pilot study"
13/ A. Malecot, "Vowel nasality as a distinctive feature in American English", Language 36, 222-229, 1960.
/4/ L. Nord, "An acoustic and perceptual study of /r/ varieties in Swedish" forthooming
E. Gårding, "Internal juncture in Swedish
I. Lehiste, "Perception of sentence and paragraph boundaries", in B. Lindblom, S. Ồman eds., Frontiers of Speech Communicatio
search, Academic Press, 191-201, 1979.
search, Academic Press, 191-201, 1979.
graph houndaries in natural conversation", J. of Phonetics $10,163-175,1982$.
/8/ G. Goude, s. Malmström, "Ett exempel pa experimentalpsykologiskt studium av rytmupp levelse av
1970. RM.
ing reanalyzed", . J. of phonetics 11, 51-62 1983.
/10/ E. Strangert, "Swedish speech rhythm in a cross-language study", Almqyist \& Wiksell
Int., Stockholm, 1985.
/11/ I. Lehiste, "Isochrony reconsidered", J. of Phonetics 5. 253-263, 1977.

TATJANA NIKOLAYEVA

Institute of Slavistics and Balkanistics;
Academy of Sciences of the U.S.S.R.
Moscow, USSR,125040

The study of the intonation system is efficient if the distinctions are made fic phenomena.The report sets out some data on the prosodic units from this point of view and the ways of reconstruction intonation system of different languages. Some phonetic laws are reconis put to discussion:increase of information per speech unit leads to the development of the suprasegmental sentense features(presuppositions and intonaman perception capacity is limited.
1.1. We consider the intonation system as complex of three functional prosodic patensity.
1.2. At the contemporary stage of intoto distinguish two complementary plans: 1/ synchronic intonational typology. 2/ diachronic intonational typology. fierentiate such three is necessary to ditypological and language specific one This distinction is not an easy one, and we have to elaborate a method for it. Let shenomena: intention to one of prosodic in a sentence. We know that in a word and intensity curve is usually declined, so in Slavic languages the stressed syilable occupying the last place (or the penultimate syllable) can be a little lower than the Polish word zakdadzie has such intensity curve (in mm): $15-13 / 12 / 8$; the Ukord ubezáal has $9-8 / 7-3 / 2-3$ and so on. The ata other languages confirm this re-
me premises to consider the intensity deis easy to find an explanation for it in communication and articulatory programmes Yet in Turkish languages the stituation is quite different 131 . The intensity has ra the word. Moreover, it turns out, that in Turkish environment the slavic speech is influenced by this Turkish tendency (we ave Russian Volga dialects) Tanguage and ty curve in them may. be risen either to the stressed syllable or to the end of the word end (Bulg. papagal - $30 / 45 / 50$; Russian Volga dialectal: topota - $6 / 2 / 8$; ge neral Russian: the wota $-\overline{6} 44 / 4,1 / 4 /$). Thus versal but a typological phenomenon. And now let's analyse the sentence intensity curve. All languages known (Turkish inluding demonstrate a clear tendency to on t know any other data. In any case we intensity curves - in a word and in a sen ence- are factors of different character. he former is typological, the latter is universal.
tions vs in declarative opition (in quesbeen interpretated many sentences) has eality the solution is not quite so trivial. Namely: 1/ the falling melody in declaratives is universal; $2 /$ the question First of all, iserally speanterest. is no guestion as such: we have some types of questions each with its own function and specific melody. And thus we have certain correlation between two sets: number of questions types. In the the set we should in the first place separate the wh-question which has a quasi-universal intonation type with a falling end/7/. 2.3. The second is
one. What is namely issue is an ontological For example, there are rising melody? of questions melody in Slavic languages: they split the Slavic group into two sub Eastern one.
The first type is characterized by the
ising tone in the final unstressed syl lables (boundary tones) including the sed syllable (under sentence stress) can take a lower position.
high steep rise on the stressed sed by a post-stressed syllables have a falling ter dency, thus the whole contour has a low end. West Slavic languages use the first type in general (yes-ne) questions and ated questions. South Slavic in and repeand, specially, East Slavic languages, the contrary, use the second type in general questions and the first type in repeated questions /8/. Now. if we are to terally, then we may have two answers: 1/ the first answer is: no, the second figure is not rising one, if rise means to be rising to the very end;2/ the second onswer is: yes, it is, if we treat questi-high-low interval in East-Slavic (Russian) yes-no question is very large and the stressed syllable is intoned very high.

And now we propose to replace the oppo-tion-declarative opposition) to the oppo-
sition:high-low (with rising-falling as part of it).
Thus the intonation types are heterofur llowing and may be represented in the fo-
Melody curve in declaratives is Univer-
sal;
Melod
Melody curve in Wh-questions is Univer-
Intensity curve in declaratives is Uni-
versal; Intensity curve in words is Typological; Melody curve in not-Wh-questions is Typological
This list may be continued in fact).
the description of language reality is not simple, it may be contradictory and not at all economic.
2.3. In our description the term "typothat the intonation system of a language is to be correlated with a certain set of eatures which it can share with another language. This set is not always conditiople, it is known that in African languages with lexical functions of tones the differentiation of questions and declaratives is realized oy pitch registers, and not y contours /9/. R. F. Paufoschima has fosian dialects /10\%. Later in the same dilects she has discovered the register
ype opposition between questions and deypolorives typological correlations
I. Lehiste and P. Ivic recently have intro duced a new hypothesis about the existen n intonation type $/ 12 /$. Here we have a case of areal convergency.
2.4. Some years ago I discovered a striic coincidence between the second Slapoststressed syllables) and the yes-no question melody in Finno-Ugrian language the V International Finnougrian conicess in syktyvkar in 1985 (Komi Republodies of Finnish, Estonian, Hungarian, Sami, Udmurt, Komi, Mordva and Mari questions. We investigated the melody of the following question types: general, wh-qusing questions and repeated questions. It turns out that the main types of question melody in Russian and Finnougrian coinci de. (I would not like to discuss the reasons of this coincidence now. And yet this coincidence being systematic, we ought to discover the really rising ques tion in Finnougrian languages /13/, other wise we won't be able to formulate the und this rising-to-the-end-melody in fopeated questions, echo-questions, questions with the word "and" (And mama?) at the initial position
3. We have so far.discussed the ford unction correlation. Yet we have found one very important criterium comparationis: the force (or weakness) of influence of sentence prosody on the word prosody. how the word prosody is modified in to know ent sentence positions. We have experimenal data that there is a regularity of the hanges in the word prosody due to the poition of the word in the sentence (the tence type and so on). There may be strong sentence positions and weak sentence positions / 14/. But this prosodic change is aximal in some languages and minimal in others. In the second case we may speak ealizations, in the first case - about strong grammaticalization of the intonaion type, thus the word is no longer a larger unit, i.e. syntagm, or a sentence
4. The criterium discussed above deals with an idea of diachronical intonation typology. This is a new problem and has not deal with sentence intonation reconstrucion.Linguists do not yet possess any direct evidences for it. But intonologists are capable to draw conclusions from indirect proofs of archaic intonation stahypotheses now. In my opinion it is high
a certain wire upon which words stressed and unstressed are moving. It is not the to have its autonomous structure and its own autonomous history as segmental phonetics has. And we have to reveal it and to describe it.
discuss? 1) The nologist can music and folk songs. The into word prosody, stress and pause means. $2 /$ Church music and church reading. For example, in Russian church reading there structural unit for reading which corresponds to a sense group. In ${ }^{\text {Vadyshevskaya }}$ (F) and very important role of T-struc3uch data.
號 gends, etc. These texts have specific prosodic form even to-day. 4/ Signs on manuscriptsin In this case the pretation.
5/ Re-interp retation of well known "pho netic laws" from the prosodic point of vi ew. For instance, to my mind, the famous stressed words in the second position can be re-formulated. I assume that it was not the words themselves but the position itself was so weakened, unstressed /17/that it was hardly audible.
tic accentology. For instance, the data the the verb in the main clause was unstressa and in the subordinate clause- it was not. It can be explained in the following way: usually preceded the main clause. So when the verb was in the end in both cases it had a rising melody in the end of the irst. clause and the fal
end of the main clause.
end of the main clause. I mean the location of the semantically loaded words to the initial position). Meillet underlined that in Old Greek the mportant word can occupy the initial po-
 Vedic /18/.It means that the beginning of the sentence was distinct, prosodically oaded.
The experimental investigation of poetry data. Experimental observations of Russian model quite similar to the Ukrainian lan uage intonation, which is, so to speak, moor its similarity feature ind languages essary to note that Ukrainian has nonSlavic contacts to the last degree. phonetics such as compensatory segmental ning in some languages, prosodic oriented
manipulation in word paradigms in Greek,
 avpe-arepos f.They proved thé proods: Phonetic evolution of different parts of speech conditioned by their different syntactic position. For example, initial (indoeuropean particles changed very little nant iñ word initial position. Thus the sea tence beginning was tense and sharp.
11/ The spoken language phenomena. We know that spoken syntax of many languages has similar structures. The syntactic relations
of spoken speech demonstrate the proximi ty to the "pragmatic code" speech model, as it was described by T. Givon / 20 ; ; the syntactic features can help io reconstruct the intonation

The above mentioned considerations lead ges in the prosodis about different sta ssary to understand that we should distinguish between the unidirection of prosodic evolution on the one hand and the absolute other. Fory example, the North Russian dialects (see above) have a word-by-word prorunciation, relicts of lexical tones and register oppositions in intonation. This which has a syntagm speech unit contrary to word-by-word pronunciation, has no pro ved tones and has large sets of grammaticalized intonation configurations. important hypothesis. In my fopinowing very main diachronic universal of intonation ty pology is a movement in three stages: 1/before-word stage; $2 /$ word stage; 3 ipostword stage. At the first stage the unit is utterance, which is perhaps syllable divised and has a certain metric model. It gnomic or gimnic character, rithmically convenient for memorizing /21/. The word period (for many languages even to day) is connected with understanding the wordform as an autonomous and well-formed The post-word period embraces languages with ancient traditions the sentence prosody of which is characterised by wellloaded, and by lar contours semantically meaningful juxtaposition of these prosodic units.
We dont want to impose the obligatory uniformity for all languages and their prosodic evolution. Languages can stop thetr can develop some compensatory means. This naturally calls for future investigations. In fact all recent interesting works on to nogenesis cannot explain why some languatres have conserved tones, and others
6. D. Bolinger recently has named intona-
tion the linguistic "Cinderella"/22/.I invite to review this name and propose for discussion the law of language evolution based mostly at the prosodic data. In other and more information in one unit. Because of the double articulation language has two possibilities of information augmenting: to increase the semantic seadse compressing and the speech rate,i.e. sense compressing and phonation compresas flexions from pronouns, prepositions from nouns, compounds arising, etc.) ar sense compressing. Yet perception capacity sing: that is we cannot speak faster than $50-60 \mathrm{msec}$ per sound. Consequently language should develop all suprasegmental phenomena in a broad sense: presupposition
grammaticalized melodic of prominence,
All these factors hip to creats, etc. mentary sense lines,i.e. supersegmentals of content plan.

ferences

See:T. M. Nikolayeva. "Frasovaja intonacija slavjanskich jazykov", Moskva,
2/ 1977 , Chapter 2.
; Mass.-L., 1970.
T.M.Nikolayeva, Op, cital kaja characterisenova, "Foneticheskij status kalmycko i fonologichesgo jazykov, "Fonetika jazykov-Sibiri rsk,1986. ${ }^{\text {s }}$, nych regionov", Novosibi-
/4/ T.M.Nikolayeva.Op.cit, p. 64.
/5/A.N. Nurmachanova, "Ob intonacionnych osobennost ach tipov predlože-
nij v t urkskich jazykach", UCenuje nij v t' urkskich jazykach", UCenuje
zapiski MGPIIJA, $1971, t .60$.
/6/ See, specially: D. Bolinger, "Intonation across languages", Human languages,
Standford, 1978 ; J. Ohala, "CrossStandford, 1978; J. J.Ohala, "Crossview", Phonetica, 1983, N 1.
/7/See, specially:Svetozarova N. D"Intonamisskogo jazyka".
/8/ T.M. Ni kolayeva , Op.cit., Chapter IV. V.I.Petr ankina, "Funkcional'nuj aspect intonacii i tipologija jazykov",

10/R.Paufoschima ," Sledy muzikal'nogo udarenija v sovremennom vologodskom
govore", Dialektografija russkogo jagovore", Dialektografija russkogo
zyka, M. 1985 .
11/ R.F.Paufoschima," Ob ispol'zovanii
registrovych razliXijv vusskoj fra registrovych razlizij, v russkoj fra-
zovoj intonacii", Slav anskoje i bal-
kanskoje jazykoznanije. Prosodija/in
$112 /{ }^{\text {Print }}$. Lehiste, P. Ivic., "The intonation of yes-orrno questions $\overline{\text { nin }}$ a new Balka-
nism?

13/ See the opposite opinion: A.Iivonen, Is there interrogative intonation in
/14/T. M. Nikolayeva, Op.cit.
15/ We use now L. Shcherba's term without 116/ ${ }^{\exp }$ Taining it.
vizantijskich ja, "K voprosu o roli vizantijskich i nacional nych russvenija drevnerusskogo cerse vozniknoni Ja, M. 1983. 17/T.M.Nikolay
skazyvanii", M., 1985, pp. $116-27$ chastic v vy
18/ A. Meie/Meiliet/, "Vivedenije v sravnitel noje izuchenije indoevropeiskio
/ 19/L. V.Zlatoustova, "Izuchenife svuchashchego sticha i chudozestvennoj
prozy instrumental nymi metodami", prozy instrumental nymi metodami",
/20\% Talmy Givon," On understanding grammar, N.-Y,etc, 1979 prozaicheskaja stroki:pervichnoje modificirovannoje", Balcanica, M.,
/22/ D. Bolinger, "Intonation and its parts. Melody in spoken English", Standford, Californija, 1986, p. 3 .

N.D.SVETOZAROVA

Department of Phonetics
Leningrad University
Leningrad, USSR 199034

ABSTRACT

The paper deals with various linguistic factors of sentence stress assign Russian texts.

The aim.of the study is to test such different factors as "parts of speech", mantic structure of the word", "rhythmic patterns", "newness/givenness of information" and "actual sentence division" for their reliability in real text conditions and thus to establish a hierarchy of these factors both in production and per

INTRODUCTION

This paper deals with sentence stress which is understood as a system of ac -
cents varying in relative strength (prominence) and quality (melodic shape). The system of sentence accents is treated as part of the intonation system of langu-

The

consists of 4 types of speech this study consists of 4 types of speech material:
a) spontaneously spoken texts (monologues and dialogues), b) written texts on different subjects which were read aloud, c) summarized tonetic transcriptions of tex fragments, d) listeners reactions to The spocial aim of the study is to summarize various factors influencing the distribution of sentence accents within to two practical tasks: teaching of sentence stress assingment and detection to foreign language students and working out rules for automatic sentence stress as signment and detection in the systems of speech analysis. and synthesis.

BACKGROUND

A great deal of experimental research has been done, and is still being done, on intonation. However, within the intonation system it is specifically sentence stress which lacks experimental data bot of the work on this subject is done not by phoneticians, but by syntacticians, especially those who study word order and Functional Sentence Perspective. Iet one may recognize that the importance of acin these studies. It is impossible to cite all of the most valuable works pertaining to our subject matter. From Western authors I will mention just a few whose ideas and data are especially relevant to my understanding vious studies. These are: D.I.Bolinger Vious studies. These are: D.L.Bolinger
$11,2 /$ D. D .Ladd $/ 3 /$ A. Fuchs $/ 4,5 /$ C.
Keijsper $/ 6 /$, C.Gussenhoven $/ 7 /$ I. FougeKeijsper $16 /$, C. Gussenhov
ron $/ 8 /$ A.Lötschers $19 /$.
ron $/ 8 /$, A. Iötscher $19 /$. In the Soviet Union research on sentence
stress is not a new phenomenon. L . V.Shchestress is not a new phenomenon. rased his linguistic analysis of poetic works on the detailed transcription of various degrees of prominence $110 /$. ne notion of the accent in a sentence plays an important role in the works
I. $\mathrm{I} . \mathrm{Kovtunova} / 11 /, ~ V . E . S h e v ' a k o v a / 12 /, ~$ G.A.Zolotova $/ 13 /$ ' D.N.Shmelev $/ 14 /$ and E.V.Paducheva 115 / on communicative aspects of Russian syntax.
One of the most inspiring books on the T.M.Nikolaeva $16 /$.

Recently some experimental works on sentence stress in Russian have appeared, and especially those by O.F.Krivnova $/ 17 / 1$ Paviova /20/ pertain to this paper.

FACTORS INFLUENCING SENTENCE STRESS In the search for factors which determine different kinds of sentence accentuation within a text, the investigator may come to the conclusion that these factors are various and occasionally contradictory.

The well-known controversy. initiated in "Language" in 1971-1972 as to whether acby semantics has not been satisfactorily resolved J汒: compare the recent polemics etween D. Bolinger and C.Gussenhoven in "Journal of Linguistics" /2,7/.
In trying to isolate one factor which gorisk oversimplification. In admitting a et of equally important factors we can not explain cases in which different factors are in opposition or even in conierarchy of factors to account for experimental data. I will now turn to the linguistic factors which will figure in the paper and present each of them separately beginning with those which are mo-
easily formalized.

1. Parts of speech

In Russian, as in other languages, nouns, verbs, adverbs and other so called "full" words usually carry stress whereas most of the "function" words are unstressed, tress. This rule held for the texts studied in ca. 90% of cases, but it does not account for words carrying different degrees of stress. Both "fuil" and "func tion" words in Russian carry various denot be explained by such a simple rule. Thus it is not only the part of speech that determines the degrees of prominence, ut also its function in a given word group.
2. The syntactic factor

In Russian, as in many other languages, there exist rules which assign accent patterns to different kinds of senience constituents. Thus in subject-predicat sroups, nouns are usually more weaksed than verbs, whereas, conversely, in Predicate-Object groups nouns are
stressed more than verbs:
Ivan chitáyet - chitayet knigu
John is reading - (he)is reading a book/. cases was only ca. 75% of all word-group and the percentage seems to be very sensi tive to the kind of the text - spoken or written, literary or scientific. The fre quent deviations from the standing rules rect (or too rouch), or that other factors influence sentence stress, or both.
3. Word order

In Russian there exists a strong tendency for words and word-groups to receive stronger stress in certain sentence posi tions. Thus sentence-final and initial positions are most often connected with stronger stress, whereas sentence-medial

It is obvious, however, that word order in Russian - flexible as it is -is govemed by various influential factors and self that determines sentence accentuation (for example in enumerations).
It is not the task of this study to accout for the complicated system of word or er in Russian. There is a great body of so on the complex relations between word order and sentence stress (which is in my opinion the only eyplanatory way to discuss word order. Here it is important to tween word order rules for written and spoken texts in Russian. When writing, it is obligotary to follow word order rules if one wants his intended emphasis to be the word in a sentence is one of the primary means to detect the degree of its prominence. In oral speech, however, the re is a possibility of expressing one's intentions directly by prosodic means. In our texts, neutral (non-emphatic) sense final position in ca. 90% for scientific texts and in ca. 70% for dialogues.
4. The rhythmic factor

Strongly connected with all the factors the rhythmic factor, i.e. tendency to alternate accents of different degrees. In Russian, this tendency is most obvious in spontaneous speech analyzed we found that non-final strong analyzed we found that non-rinal seceded by relatively weaker accents or followed by them in ca. 95% of cases. Our data indica te that the structure of accent pattern is asymmetrical in Russian, that is, that accents following the main stress are Compare:
On chitayet knígu/He is reading a book/ On chitáyet kigu/He is reading the book It is clear that the rhythmic factor can one word in the presence of a stronger accent on another, because due to the rhythm all words within a Russian senten ce cannot be equally accented. This factor also explains how deaccenting of one word in the sentence results in the accause again for rhythmic reasons, all words cannot be equally unstressed. But which word will be stressed depends obviously now turn.
5. The sementic factor

The fact that some words in Russian are more likely to be accented because of their inherent meanings has not until recently been properly considered by re -
searchers. Recent investigations $/ 16,18$, 20/ have shown that in many cases it is the peculiarity of the meaning of a given word which forces the speaker to stress it more than other words in the sentence. word is especially evident for those words which do not bear the main accent due to the factors discussed above. Such words are in Russian, for example, ad ectives before nouns and verbs wi have been jective complement. cent by T.P. Skorikova /18/, the latter by A.V.Pavlova $120 /$.
Adjectives and verbs in Russian which normally do not bear the main accent in such word-groups contain the meaning of evaluation: novaya kniga /a new book/
prekrasnaya kniga /a wonderful book/.
Factive verbs, verbs with the meaning of
reaction, retrospection, contrast, tion (both grammatical and inherent) usu-
ally bear a strong accent /20/:
IVan vspomnil o kníge
/John remembered the book/
Ivan zabýl o knige
The semantic complexity of such verbs is often combined in Russian with definiteness or even "emptiness"of the nouns:
Eto raznye véshchi
These, are different objects/.
/It's quite different
In an experiment made by A. V. Pavlova, subjects read sentences of this type with different accent patterns.
In the texts analyzed, cases of verb accentuation due to semantic factor were
quite numerous. The lack of accents on quch verbs must be accounted for by the operation of other factors, which in my
opinion, can also be formalized. opinion, can also re detail see $/ 20 /$.
6. Given/new information
and words accented and words expressing given information are either accented and pronounced with rising tone or left unaccented. There are not enough experimental data on kinds of new and given information (for English see /22/).
I will not discuss this apparantly universal tendency any further. My concerm is to test the possibility of formaliza-
tion of the given/new distinction in Russian texts. That is why I put aside such hardly formalizable concepts as presupposition and the so called "fund of common assumptions".
In the experimental material only ca. 75% of "new" words had the main stress and on "given" words despite the formal in-
dication of their givenness in the con text. Thus the degree of accent.
Many of the deviations from the noted ten dency can be explained by the factors dis cussed above. For example, if a new concept is expressed not by one word but by a word-group, then only one word of the group will get a stronger accent accor indicates that the word-group is understood as a whole. Otherwise the unity of the concept is destroyed.
Other deviations can only be explained if we consider new factors. Both deaccenting the "new" and accenting the of the concept of "focus", which is closely connected with the theory of Functional Sentence Perspective (in Russian linguistics commonly "Actual Sentence Division")
7. Actual sentence division

This universal and high level factor in fluences both the placement of accents and their type (thematic vs. rhematic cents) in Russien. Sentence stress patterns are essentially different in undivided" utterances. In both kinds of structures a further subdivision into different "degrees of importance"/23/ or "information centres" /24/is often possible. In oral speech the main means of exof sentence accents which is far more common than either the syntactic or lexical means of distinguishing the theme from the rheme.
n the texts studied, the coincidence of ponding ASD types was very high. As for the formalization of this factor we must admit the free choice of the author in selecting the type of ASD (divided/undivided) and the type of focus (broad or ted. Certain communicative conditions show a high degree of affinity to certain ASD types. For example, when the speaker wants to express the meaning not only o contrast but also of result, reaction use a narrow focus, thus singling out a part of the whole by means of a "special" stress. Lack of emphasis, on the opposite, leads to the use of neutral stress, that is, to accenting the word-group as a whole.

CONCLUSION

This pilot study of the distribution of sentence accents in Russian has shown that the place and the type of sentence stress in Russian texts is to a certain izable, but only with due regard for the highly complicated interplay of various
actors which expose different hierarchies under different communicative conditions. In reading - both by man and machi-ne- we proceed from word order, consti tuent structure, lexical meaning and othe formalizable factors to the underlying actual sentence division type and from move from the perceived accent pattern to the intended actual sentence division and from that to communicative meaning. In speaking - from communicative meaning relization of an to

ACKNO WLEDGEMENTS

The author is very much indebted to all colleagues who have participated in the experiments and in the discussion of the nas'uk. I am also very grateful to Mr. John bailyn for help in reading the English ersion of the paper.

REFERENCES
$1 /$ D.L. Bolinger Accent is predictable if Jou re a mind reader).-Language, 48, /2/D.L. Bolinger Two views of accent, Journal of Linguistics, 21,1985,79-123 13/ D.R.Ladd The structure of intonatio/4/ A. Fuchs. "Normaler" und "kontrastiver akzent.-Lingua, 38,1976,293-312 15 /A.Fuchs "Deaccenting" and "Default Accent".//. Intonation, Accent and Rhythm. Gibbon and H . Richter. Berlin, New York, 1984, 134-164
6/C.E.Keijsper Information structure. ith examples from Russian, English an datch. Amsterdam, 1985
cleus. - Journal of Focus, mode and the nu-/87-417.Fougeron Les moyens prosodiques dans I'organisation du message. // III olloque de linguistique russe. Paris 19/A. İ̈tscher le Satzperspektivatzakzent 1 and Funktiona1983
$10 /$
10/ L.V.Shcherba / Selected writings on Russian language/.Moskva,1957,26-44, 97111/I.I.Kovtunova /Word order and actual sentence division in modern Russian/. Moska, 1976 /in Russian/
/12/V.E.Shev'akova /On logical stress/.oprosy jazykoznanija,1977,N 6,107-118 /in/Russian/
3/G.A. Zolotova/Communicative aspects sian/ D.N.Shmelev/Syntactic division of the sentence in modern Russian/. Moskva 1976 /in Russian/

115/E.V.Paducheva /The utterance and it reference to reality/. Moskva, 1985 /in /16/T.M.Nikolaeva /Semantics of accentual prominence/. Moskva, 1982 /in Russian/ o. F.Krivnova /On the accentual fun/17/ O.F.Krivnova /On the accentual fun ction of melody/.- In: Intonacija. Kiev,
$1978,119-143$ /in Russian/ /18/T.P.Skorikova Frunctional capacity of the intonation pattern of word-groups in speech-flow/. Cand.of Sci.Diss. Mosk*a, 1982 /in Russian/
/19/ T.M.Nadeina Accentual structure of the utterance, 1985 /in Russian/
$/ 20 /$ A.V.Paviova, N.D.Svetozarova /Fac-
tors determining the degree of accentual prominence of a word in an utterance/. In: Slukh i frech v norme i patologii. Le /21/N.N.Rozanova /On dynamic instability of words in spoken Russian/.- In: Sintak sis teksta. Moskva, 1979 /in Russian/ /22/G. Brown Prosodic structure and the given/new distinction. // Prosody: Models
and Measurements. Ed. by A.Cutler and D. R. Ladd. Springer Veriag, 1983, 67-77 R23/I.G.Torsueva Intonation and the meaning of an utterance/. Moskva, 1979 /in Russian/
/24/0.A.Lapteva /Syntax of colloquial Pussian/. Moskra, 1976 /in Russian/

WORD STRESS IN PROSODIC CONTEXT

A.M. SLOOTWEG

Institute of Phonetics, Nijmegen University Erasmusplein 6500 Nijmegen, The Netherlands

SUMMARY*

This contribution deals with the acoustic realisation of primary' versus 'secondary' stress in monomorphemic and compound words in Dutch, and with the effect of sentence accent on the acoustic realisation of syllables carrying lexical stress in simplex words. Measur ments show a linear phonetic factor interacting with phonological variables to determine the important
realisation of lexical stress. Also, the in coustic correlates of stress turn out to react ifferently to phonological prominence on higher ,rosodic levels. The unit under investigation is the sylable with main stress; we banifested.

INTRODUCTION
Most phonetic work on stress has involved the search for the acoustic manifestations of lexical stress, and number of acoustic parameters which have come to be associated with stress. Stressed syllables differ from unstressed ones in that they show longer duration, specific pitch movements and more intensity. The difference between stressed and unstressed syllables Niemi (1984) for an overview). However, we know of no systematic investigation as to the influence of prosodic levels higher than the word on the realisation of lexical stress.
In phonological theory, the prominence relations on these higher levels have been specified, albeit in non-
acoustic terms. Pertinent to the present study are acoustic terms. Pertinent to the present study are
such relations on the word-formation level, the level of the phonological phrase, and sentence level.
Whenever two words are joined to form a compound, one turns out to be stronger, and the other less in phonology captures this generalization by always grouping constituents into binary pairs, within which the strong-weak relation is formally defined. Thus, it is impossible to end up with two 'primary' stresses.
Under the shorthand name of 'status', we studied the acoustic difference between identical syllables in the
weak parts of compounds or as the stressed syllable of simplex words.
This material was embedded in the higher-level prosodic structure known as the phonological phrase. Within this type of word group, there also exists a strong-weak relation between constituents. In accord
with Liberman \& Prince (1977)'s Lexical Category Prominence Rule, the second part of Dutch phrases is more prominent than the first The rule operates
without regard to the internal structure of the constituents, so that the weak element in the compound retains its status of being weaker than the first element In the experiment reported on here, the phonological phrase is the context with which phonetic conditions were rigidly controlled.
The highest level where prosodic prominence relations occur is that of the sentence. Sentence accent distinguishes strong and weak (more prominent or less so) intonational phrases, on pragmacic and syllables of bases. The effect the second issue that was studied. Traditionally, sentence accent is primarily associated with specific prominence lending pitch movements, while acoustic features like intensity and syllab duration are affected to a lesser degree. In two context of the present
questions to be answered. syllable assigned phonological main stress and the sam syllable bearing 'secondary' stress in the weake phonological environment formed by the second part a compound?
2) How does the presence or absence of sentence accent affect these characteristics? were performed on some 500 syllables, pronounced controlled phonological and phonetic contexts. Along with providing insights into the acoustic effects of status and sentence accent this setting disclosed the status and sentence accent, this setting elscer namely the position of the syllable within the word.

THE EXPERIMENT

Material
Speech material was devised to study the influence of Speech material was devised to study the influence of variable, the position of the lexical stress within the word. The material was based on fifteen tri-syllabic target words with lexical stress on the first, middle or last syllable, five times each. The phonetic variable of
position of the target syllable in the word stall be called 'type n ', the numeral indicating first, second or third position. To minimize acoustic differences caused by syllable make-up, we strove for uniformity in the consonant-vowel structures. Accordingly, (almost) all syllables consisted of one consonant and one long vowel. Five vowels occurred, balanced across word
position types. The words are listed at the end of this paper.
To form two kinds of word groups in which the target
word would be either strong or weak, we embedded that word in an adjective-noun phrase, where the target would be strong, and in a nominal compound,
where it was the second element and, thus, weak. So, the syllable could end up in a monomorphemic word ('main stress') or in the weaker part of a compound secondary stress'). For example (the target syllable is he middle sylable ode kimono'
(secondary stress): 'die modet red kimono)
kimono)
As the examples show, the phonetic context within the phrases was kept as similar as possible. The number of syliables preceding the stressed one was kept constant
through the introduction of the adjective. The CV structure of all syllables within the phrase was the same, with identical vocalic segments.
In order to study the effect of the presence or absence of sentence accent, we used two differen entences of which the phonological phrase could be accent on the phrase in question. In the other sentence the phrase was relatively unimportant; it was easy to pronounce it without sentence accent. Th sentences were:
accent): 'Vergeet niet die in je toespraak te noemen. Con't forget to mention that _in your speech.) aanprijzen.'
(I don't care AT ALL for that _- they're selling there.)
Both sentences were to be pronounced as one Both sentences
intonational block.

Speakers, instructions and the recording session
peakers were 8 males, who pronounced the set of sentences presented to them in random order. Each peaker produced 60 utterances: the product of 15 conditions. After some training, they were all able to produce the accent patterns desired. This does no mean they delivered exact replicas of an example performance was checked on the basis of perceptual equivalence. Recordings were madiment, the session led by the experimenter.

Measurements and computed values
Acoustic measurements were performed on the syllables with lexical stress with and without accent both in compounds and phrases. 1) For each syllable, number of values to capture pitch, duration thre new sity features were obtained. From into account Variables were computed, takng wnomic speech characteristics.
-The new duration variable expressed syllable duratio as a proportion of the sum of the four unreduced syllabes in the compound or comparable phrase.
-Syllable intensity was expressed in dB above the intensity baseline. This was defined as the lowest mean speaker and condition separately.
-To arrive at a new pitch variable, the aim was to express pitch changes rather than absolute values These changes were then to be related to speakers
melodic ranges. Pitch range was defined as .the
difference between highest pitch observed on stressed difference between highest pitch observed on stressed unstressed syllables in a condition without accent, both mean values for each speaker and condition separately The pitch change was chosen as the largest pitch movement occurring on a given syllable, and expressed variable names of 'pitch', 'duration' and 'intensity' reference is made to the variables defined as above. Mean values were computed for these new variables, to gain an overview of the acoustic differences in each linguistic condition. Analyses of variance served
to determine which of the independent linguistic variables (status, accent and the linear phonetic factor described above) most influenced the dependent acoustic variables.
RESULTS
The results for the three variables are presented separately. An overview of the results of the analyse separately. An overvew ormary Table of Effects, given in the final section.
Intensity
As Figure 1 shows, there is an effect of word type on the values of the intensity variable. They range from means of 7.7 to 7.5 to 4.7 dB above the baseline for final position in the word leads to low intensities. This tallies with suggestions made in Pierrehumbert (1979), where the phenomenon of amplitude downdrift sentences is described.

```
- Isyllable in phrase
- osyllable in compound
- syith sentence accent
owithout sentence accent
```


Figure 1: Mean intensity, expressed as distance $\mathrm{fr}^{\prime} \cdot n$ speaker's intensity baseline, of stressed syllabies in without sentence accent

The status of the stressed syllable also produces clear difference in intensities: means of 7.1 dB for syllables with primary stress, against 6.2 dB. This difference, too, was statistically significant F(1,384)=17.77,p.001.
The presence of sentence accent resulted in higher intensities. The mean values are 7.5 dB for accented and 5.8 dB for unaccented items. Again
difference was significant $F(1,384)=72.50, \mathrm{p} \cdot 001$. There were no interactions at the significance leve employed in this study
Proportional syllable duration
The results for the duration parameter are presented in igure 2
he most striking effect on the durational parameter解 syllable is stuatedion increases from 25% via 29% to 30% This fully agrees with the observations in ooteboom (1972), where vowel duration is a function the number of syllables to follow in the word. The duration of non-identical syllables: $F(2,384)=63.73$, p.001 the factor status also causes a significant effect The factor status also causes a if stressed syllable forms part of a simplex strong element in the phrase, its duration is longer than if it is in the weak part of a compound: 29% and 27%, respectively.
Remarkably, the presence or absence of sentence in the analysis of variance the effect of accent was not significant
There were no significant interactions between the independent variables. This means that the actual
increase of the proportional duration across word increase of the proportional duration across word two factors of type and status operate separately.

Figure 2: Mean proportional syllable duration of stressed syllables in various pesitions, in compounds
and phrases, with and without sentence
itch movements
The mean values for the proportional pitch movement

Figure 3: Mean pitch movement, expressed as a proportion of the speaker's pitch range, for stressed phrases, with and without sentence accent
has an effect on the size of the pitch movements. Disregarding the direction of the movements, (and the mportant effects of status and accent) they take up
$23 \%, 15 \%$ and 8% of the speaker's pitch range for types 1,2,3, respectively. This effect was found to be significant $F(2,384)=12.78$, p.001. 4)
A strong effect was caused by the factor status: if the word was itself the head of the phrase, the mean pitch movement on the stressed sylable was pange, while it was only 8% on the syllables in the second elements of compounds. Also, in the latter case, the direction of the change was falling rather than rising, as in the former. The analysis of variand yielded a significant effect: $\mathrm{F}(1,384)=90.05$, p. 001 .
Accentuation within the sentence causes clear pith Accentuation within tise sentence causes clear pilch
movements, both rising and falling, with an overal mean of 11% of the pitch range. Syllables in unaccented words showed falling pitch through 3\% (mean) of the pitch range. The effect of act of course, significant: $F(1,384)=28.04$, pr. 001
irst order interactions play a part in the variance of
this variable. The values for status depend on the word type, as figure 3 shows: from type 1 to 3 , the difference between 'secondary' and 'primary' stressed elements diminishes. This is a significant effec $\mathrm{F}(2,384)=10.19$, pr.001.
Also status
Aso, status and accent cooperate to produce
significant differences: $F(3.384)=84.52$, p. 0001 . The effect of accent on pitch changes is much more marked on syllables in simplex words, than on the 'secondary' stresses.
The second order interaction of type and status and accent yielded si
$\mathrm{F}(8,384)=11.61, \mathrm{p} .001$.

Table 1 below gives the results of the analyses of variance, with a significance level of pr.001. 4) significant the target syliable within the word had a figures showed, this effect was not the same for the three variables; duration increased towards the end of the word, pitch movements got smaller, while intensity was negatively affected by the final position in the word. The status of the syllable had an effect as well. f a syilable was embedded in a compound, as the
east prominent element, its intensity was lower, its duration is (generally) shorter and its pitch movements were smaller than in a simplex word. As to sentence accent, notice how this increased syllable pitch and incensity, but not duration. Higher order interactions the three variables studied dur

effect	$\stackrel{\mathrm{P}}{\square}$	${ }_{\text {d }}$	$\stackrel{i}{\text { i }}$
type	*	*	*
accent	*	ns	*
type x status	*	ns	ns
statusxaccent	*	ns	ns
typexaccent	$\stackrel{\mathrm{ns}}{*}$	ns	ns

Table 1: Summary of the analyses of variance
performed on the Plitch) D(uration) and I(ntensity) data performed on the P(itch), D(uration) and I(ntensity) data
straightforward'. Only type and status play a role in the values obtained. Intensity is also affected by sentence accent The pitch movements constitute the most complex variable; not only are status, accent and interactions of these variables further determine the behavior of the pitch variable.

The results of the present study show unequivocally that what is loosely referred to as (relative) prominence in prosodic literature, can be specified in production aspects of prosodic structures. The cover all term prominence can be split up into a number of separate acoustic correlates of stress and accent, each which reacts differently to another phonetic arameter, namely produced in speech would be to find out which of the observed regularities are also perceptually relevant, and to what extent. Currently, we are investigating preferred interaction of syllable position and size experiment with naive listeners. It is only on the basis of results in the perceptual realm that we can realistically assess what is essential in higher leve rosodics.

NOTES
This research was supported by the Foundation for inguistic Research, which is funded by the Netherlands WO. Thanks are due to Jip Wester for criticism and patience, and to Bert Cranen, for help with the measuring procedure.

1) Measurements were performed by means of a seeech editing system and the IS speech analysis ystem.
No claim is made as to the perceptual relevance of this variable's definition. It could be argued that conferring Hz to semitone values would be a way to arrive at a direct coupling of measured acoustic paper we leave the matter undess differences. We have compared the ecided
movement variable to that of the absolute pitch reached in he syllable. Effects of type, status and accent were present, with this difference: from types 1 to 3, the pitch peak was somewhat lowered, while Examination of the measurements revealed no inconsistency: in final positions, the pitch peak wa reached via earlier steps on preceding syllables, so tha the final step was indeed the smallest
2) in spite of our efforts to rule out speaker-related variation in the variables computed, the factor o intensity. Also, two-factor interactions of 'speaker' and ther independent variables occurred in the values o

REFERENCES

Liberman, M. \& Prince, A.' On stress and linguistic hythm. Linguistic Inquiry (8) pp. 249-336, 197\%. mi. J., Word level stress and prominence in Finnish Humanities, Joensuu, 1984. Nooteboom, S.G Production and perception of vowel duration. Unpublished doctoral dissertation, University of Utrecht, 1972.
, J., The perception of fundamenta of America, 66, pp. 363-369, 1979.

LIST OF WORDS USED

tress on first syllable: bariton, risico, dominee, genius, Stress on second syllable: dynamo, familie, kimono, omedie, illusie. tress on third syllable chocola melodie mirabeau defilé, residu.

KATARZYNA DZIUBALSKA-KOモACZYK

Department of English
Adam Mickiewicz University
Poznañ, Poland

ABSTRACT
Lx waveforms and, consequently, fundamental frequency histograms manifest charhealthy speakers. It has been found out, however, that there exist differences in preferred Fx modes depending on a language. Also, learners of foreign languages may de-
viate from their Fx patterning when speaking from their $F x$ patterning when speakThe paper aims at di those differences and deviations by means of analyzing the data resulting from an experiment conducted with 15 Polish and English speakers, in which an electrical imbration was used.
O. The healthy larynx of any speaker pronouncing e.g. a clear long a sound proa waveform, has a characteristic shape with recognizable and repeatable features (the so-called Lx waveform). Consequently, funfrom Lx wavequency (Fx) histograms obtained istic properties similar for characterhealthy speakers. This, however, might not be the case when speakers of different languages are involved. Differences have been modes in particular This, among others, could be the reason for learners of foreign languages to deviate rom their characteristic pattern while The paper laims ange learned.
disconfirming the existence discovering or differences and deviations with some of those to Polish and English. No matter the nature of the results, the study might prove language acquising up a theory of second may be insightful for the consequently, it trastive and foreign language teaching purposes.
In what follows, first, an electrical impedance methoi of observing vocal fold vijects, conditions, apparatus ana procedure
applied in the experiment will be present ed; third, both a statistical and visual finaliy, a aiscussion ot the results against the background of some other experiments administered by the author will end the paper.

1. An electrical impedance method of observing vocal folds activity possesses several advantages: it is non-invasive and thus
relatively easily applicable (although relatively easily applicable (although
still sone speakers are hard to persuade still some speakers are hard to persuade
to place the electrodes correctly); a reto place the electrodes correctly); a re-
sulting Lx waveforra is unaffected by any sulting Lx waveforn, is unaffected by any
acoustic noise; and, Lx can be recorded on unsophisticated equipment.
A device used to monitor the varying impedance of vibrating vocal folds is an electrolaryngograph consisting of two electroth sides of the thyroid cartilage. The resulting output waveform is recorded on one track of a tape while the other track is occupied by a speech wave form (Sp) from
a microphone.
The Ix waveform manifests characteristic features indicating the voice quality used by the speaker (e.g. normal, breathy, creaky cal deviations from normal speech and individual idiosyncrasies. Lx also provides a basis for the analysis of fundamental frequency patterning (Fx) for particular
speakers: perieds of vibration of the vocal folds are easily convertible into Fx values so that an Fx histogram is obtained. This frequency distribution of vocal folds vibrations also manifests a characteristic Shape with speaker-specific ranges and prefrom single, double or triple period analysis, increasingly emphasizing the modal values against frequency irregularities indicated by low probability figures. Fx distribution can also be presented in the form tween subsequent larynx frequencies (for a better visual presentation a scattergram might be converted into a 3D plot).
2. Fifteen Polish and English speakers asked to read an IPA demonstration passage ("The north wind and the sun...") to the microphone while having laryngograph electrodes on. Polish subjects were asked to read both an English and Polish version of subjects read their native text twice. A double reading was elicited in order to: a) obtain a sufficiently long speech sample b) allow for a degree of text customization through the second reading which was thus peringlish a more relaxed manner.
broadly defined RP i.e. with, at the most slight residues of a different accent. Among the Polish subjects, three were formal setting learners (they learned English learners acquiring English in England.

All recordings were done on a professional Marantz cassette recorder with the use of a dynamic microphone and a lar yngograph set designed in the Department of corded waveforms were analyzed by means of a waveforms and Lx distribution programme on a BBC Master Series microcomputer with the input coming from an Uher CR 240 filtered through telequipment $S 61$ due to which a seen. The analysis was conducted at the UCI phonetics laboratory.
The output of the analysis for each subject consisted of:

- an exemplary speech waveform (Sp) of a selected clear vowel sound
- 1st, 2nd and 3rd order Fx histograms
- a statistical table including calculated mode, mean, variance, standard deviation, distribution an Fx scatte
an Fx 3D plot

3. The shape of Lx for a healthy larynx is relatively stable. Therefore, its funsesses characteristic fixeúfeatures: modal peaks and sharp edges. The node values and reguency ranse are speaker-specific. Irregularities in the overall shape, however, like laryngitis or speech patiolouies. Can they as well occur as a consequence of cificulties a learner encounters when speaking a foreign language? Still further, is the same speaker depencient on a language for is using? What kina of a relationship holus between physiological limitations on the laryngeal apparatus anó linguistic strucures? ine above might ive guiding questions o the type of experifuent discussed in this tongue, anc Folish learners of English.
a) In orajer to verify a null hypothesis about Polish and English demonstrating similar tencencies for preferred fundamenindependent samples was used. It forts the significance of differences between two eans.

where
\bar{x}_{1} and \bar{x}_{2} are sample means
x_{1} and x_{2} are variables
N_{1} and N_{2} are sizes of sanple 1 and 2
t was calculated three times using diffrom Fx histograms for Polish and for English of the Poles and of the English spectively. In all cases it proved non-sig nificant. Rhus, the above null hypothesis cannot be rejected: linguistic structures enough to introauce significant difference between Lx's (and, consequently, Fx's) of the respective native-speakers of these languages.
lish or the English also used to compare English or the English subjects with English was that ?oles in general do not alter the output of their vocal folds activity when s: aking English. Again, there was no sigtive hypothesis.
c) A study of correlation between Polish and English of the Polish subjects, however, did show a certain tendency for different Fx patterning for some speakers dementing on a language spoken. The assesscases: correlation between Polish and Enclish for all polish subjects together; correlation for Polish formal setting learners, and correlation for natural setting learners. efficient was calculated with Fx 3rd order riean as a variable.

$$
r=\frac{N \Sigma x y-\Sigma x \Sigma y}{\sqrt{\left\{N \Sigma x^{2}-(\Sigma x)^{2}\right\}\left\{N \Sigma y^{2}-(\Sigma y)^{2}\right\}}}
$$

where

X and y are variables

The results are the following:
$r=0.84$ for the whole group of Poles,
i.e. a correlation is significant at i.e. a correlation is significant at
0.05 level
2) $r=0.999$ for formal setting learners, i.e. shows a strong positive correlation 3) $\mathrm{r}=0.879$ for natural setting learners - significance at 0.20 level only, i.e. the probability for correl
most 20 it lower than in 2).
Visually, English Fx histograms for Poles show some minor divergencies from their English counterparts, namely: from their ities in lower frequencies, or higher probabilities for lower frequencies, or a Compare an exty range.
Probabilites

An Fx histogram of a natural setting learner based on the Polish text.

An Fx histogram of the same learner based

A bilingual speaker demonstrates a simi-

Probability

An Fx histogram of a bilingual speaker

An Fx histogram of the same speaker based on the Polish text.
4. On the whole, English and Polish turn out to be similar enough to manifest no significant difference between Fx distri-
butions for the native-speakers of the two languages. Particular speakers, however, vary with respect to the amount of irregularity present in their foreign language production. The irregularity itself might be due to natural difficulties faced by the being limited by his phonatory mechanism he attempts to produce an auditorily acceptable foreign output. There is, therefore, a degree of a conscious control infor being a non-native speaker recompense gether with foreign linguistic. This, towhich themselves require minor (for a of the English pair, at least) modification of the native Fx , leads to some deformation

It appears that natural setting learners tend to deviate a great ceal more from characteristic to them Fxdistribution than fornal setting learners do. This suggests phonatory mechanism to function appropriately in a foreign tongue without former preparation, which in effect gives a phonetically unsatisfactory output (in terms of segments, segment sequencies and supra-
segments) whose only aim is communicativeness. Formal setting learners usually ex ercise their vocal folds, together with the whole articulatory structure, to let the gradually accommodate to the new, foreign Lx patterning remains relatively stable.

The above oistinction between forual vi natural setting learners is confirmed by other experiments conducted by the author which all point out to: firstly, different the process of the accuisition of SL phonology; seconcily, formal setting learners being, in general, nearer to success in producing a phonetically acceptable foreign Natu

Naturally, an observation about the lack of statistically significant difference be quency distributions which woula be attribu table to language does not presuppose the same state of affairs for any siven pair of
languages. For instance, one could expect differences in ix patterning between expect guages which are typologically distinct like tone vs. stress languages, especially when the speakers are also anthropological to be investigated this, however, remains
y differentiated.
to be investigated.
*I would like to express my gratitule to all speakers who kindly agreed to serve as abjects in the experiment and to the staff supplying me with a necessary equipment.

EFERENCES

Borden, G.J., Harris, K.S. 1984. Speec Science Primer. London: Williams $\frac{\text { and }}{}$

- Butler, C. 1985. Statistics in Linguis-
tics. Oxford: Basil Blackwell. "First Abberton, E., Fourcin, A. 1971. "First applications of a new laryngograph."
Medical and Biological Illustration 21, Medical and Biological Illustration 21
. Abberton, E., Fourcin, A. 1972. "LarYngographic analysis and intonation.
The British Journal of Disorders of Com$\frac{\text { The British Journal of Disorders of Com- }}{\text { munication 7, 1, 24-29. }}$

5. $\frac{\text { munication } 7,1,2429 .}{\text { Abiberton, E., Fourcin, A. 1976. "The }}$ laryngograph and the voiscope in speech therapy." XVIth International Congress of Logopedics and Phoniatrics, Interlaken 1974. 116-122
6. Abberton, E., Fourcin, A. 1984. "Electrolaryngography." In: Code, Ch., Ball, Mondon: $\frac{\text { Cxperimental Clinical Phonetics }}{\text { Croom Helm. } 62-78 \text {. }}$
7. Fasold, R. 1985. The Sociolinguistics of Society. Oxford: Basil Blackwell. Fourcin, A. 1974. "Regularity of vocal fola vibration." 8th Internat. Congres
Fourcin, A. 1974. "Laryngo
ination of vocal fola vibration." In: Wyke, B. ed. 1974. Ventilatory and Phonatory Control. OUP. 315-333.
O. Fourcin, A. 1981. "Laryngographic sessment of phonatory function." proceeaings of the conference on the as
sessment of vocal pathology. Maryland 1979. ASHA Reports 11. 116-127

ON THE PERCEPTUAL EQUIVALENCE BETWEEN JAPANESE AND SPANISH SOUNDS

satoru aiba

Dept. of Behavioral Science hokaido University Sapporo, Japan

miguelina guirao

Laboratorio de
Investigaciones Sensoriales CONICET
niversidad de Buenos Aire Buenos Aires, Argentina

JUN-ICHI ABE
Dept. of Behavioral Science hokporsity Sapporo, Japan

ABSTRACT
Identification tests were performed with apanese listeners using Spanish sounds consisting of V, CV, CVC, CCV syilables and CVCV words. A1l five vowels were correctly identified. Nine of the reached over 80% accuracy. One $/ \mathrm{x} /$ scored 75% (taken for /f/23\%). Liquids $/ 1 /$ and $/ \mathrm{r} /$ were nutually confused with $/ 1 /$, being twice more ecognized as $/ r /$ than vice versa. Unvoiced stops (average correct 40%) were changed for their voiced
 responses syllables CCV were transcribed as CVCV hen unvoiced stop-vowel syllables were in the econd position in CVCV words, all responses rated nearly 100\%. For another group of listeners /d resulted in 100% accuracy and unvoiced stops rated
between 80 and 90%. Both Japanese and Spanish isteners seem equally good in identifying sounds of the other language, while misidentified phonemes are different for the two languages.

introduction

Working with Spanish speaking listeners, we have reviously presented some evidence on th sounds (Guirao. M., 1978; Guirao, M and Spanish R., 1982). In the experiments described here, C. Spanish speech material was presented to Japanese isteners.

PROCFDURE

Two speakers, both native of Argentina, recorded solated syllables and words. Speech sound consisted of the following syllabic typech : a) five owels /i,e,a,o,u/, b) eighty five CV combining seventeen consonants with each one of the five
vowels, c) seven CVC, starting with ending with $/ \mathrm{m}, \mathrm{n}, \mathrm{s}, \mathrm{l}, \mathrm{r} /$, d) twelve $\mathrm{CCV}, \mathrm{m}, \mathrm{s}, \mathrm{f} /$ and six stops and /f/ with $/ 1, \mathrm{r} /$ as in /pla/ /pra/,/fla/ and /fra/. Eleven words, formed by coplo/, were V combinations, as in /dote/, /dike/, The material was prese
tudents of Hokkaido University ho were instructed to listen and to write down the sounds in kana characters and in romanized

RESULT
Vowels /i,e,a,o/ were 100% identified. Vowel u/ resulted less familiar, being 60% correctly reproduced and written ou by the rest of the cases. or the CV syllabic types, nasals $/ m, n, n /$, voiced stops $/ \mathrm{b}, \mathrm{g} /$ and fricatives $/ \mathrm{s}, \mathrm{f}, \mathrm{z}, \mathrm{if} /$ were 75% was perceived of the cases. Sound $/ x /$ rated
 voiced counterparts $/ \mathrm{b}, \mathrm{d}, \mathrm{g} /$. In turn, voiced $/ \mathrm{d} /$ was misidentified for $/ \mathrm{r} / 17 \%, / \mathrm{b} / 9 \%$ and $/ 1 / 6 \%$. Liquid $/ 1 /$ and $/ \mathrm{r} /$ rated 42% and 62% respectively. Sound $/ 1 /$ was taken for $/ \mathrm{r} / 42 \%$ and rounds in CVC and CCV syllabies. We tested these two the identification of $/ 1 /$ improved to about 80% but $/ r /$ remained close to 50%. When in the second position of syllables CCV, $/ 1 /$ was confused with $/ \mathrm{r} /$ twice as much as $/ \mathrm{r} /$ for $/ 1 /$.
Unvoiced stops were also tested at the onset of voiced stops. transcribed CCy Moreover some of the subjects transcribed CCV type as CVCV, e.g gara instead of gra.
CVCV woiced stops and / $\mathrm{d} /$ were presented again in .CVCV words. In this case / $\mathrm{t} /$ and $/ \mathrm{d} /$ reached 100%. Recognition of $/ \mathrm{p} /$ and $/ \mathrm{k} /$ improved to 83 and, 90%
respectively in the initial word position and to 93 and 100% when located in the second syllable.
An extra experiment was run presenting unvoiced stops and /d/ in CV and CVCV combinations to listeners trained in phonetics. This time $/ \mathrm{d} /$ $/ \mathrm{p} /, 86 \%$ for $/ \mathrm{t} /$ and 90% for $/ \mathrm{k} /$. gave about 80% for

FINAL REMARKS
It is observed that in general Japanese listeners gave equally good performance as the sounds. It is also noted that when sounds are confused, tendencies are different for the two language groups.
 C.R., 1982) vowel /u/ does not seem to have as other four. Among
Spanish speaking periodic non vocalic sounds, the Japanese sound $/ \mathrm{r} /$ into converted most of the showed the opposite tendency making more bias in Spanish /1/ toward/r/

With respect to fricative sounds (bands of noise) consonant / $\mathrm{f} /$ was somewhat changed for / x / bisteners. While the Spanish participants found it more difficult to label some fricative sounds such as $/ 3 / / \mathrm{f} / / \mathrm{z} / / \mathrm{ts} /$ and $/ \mathrm{S} /$, the last three nonexistent in Spanish, Japanese speakers could no easily recognize the unvoiced sounds (bursts) sounds of the same acoustic group.

REFERENCES

(1) Guirao, M.
Spanish sounds", Similarity between
The Study of
Soundse and
Sounds Spanish sounds", The Study of Sounds $\frac{18}{\text { St }}$. ${ }^{\text {Proceedings of the 3rd World Congress }}$ of Phoneticians, Tokyo, Japan, 1976), 211-216, 1978. (2) Guirao, M. and Luis, C.R. "Identification of apanese syllables by Spanish speaking listeners" Journal of Acoustic Society of Japan. (E), 3, No. 1

A CONTRASTIVE PHONETIC STUDY

of Japanese and dutch

TJEERD DE GRAAF

Institute of Phonetic Sciences roningen State University The Netherlands

ABSTRACT

As part of a research project on the pronunciation of Dutch by foreigners (representing more than 20 languages), we have paid special attention to the contrast
between Japanese and Dutch. This contrast forms a factor to explain the pronunciation of Dutch by Japanese speakers. For a period of more than 200 years. Dutch was the only European language known in Japan and during that time this language had an culture. Many loanwords of Dutch origin wero introduced. for which the pronunciation and writing in Japanese rraphemes were adapted to the Japanese sound system. In our study the phonetic to the results of the present contrastive honetic investigation. contrastiv

1. INTRODUCTION

During the last decades, large groups of foreigners have sectiod, in the Nroups of
lands. Many of them use Dutch with lands. Many of them use Dutch with a very
strons accent, which makes communication difficult and can be felt as a strons instruction to foreigners is often language for heterogeneous groups, where motevided attention is paid to wharmatical and lexical aspects of the Dutch language. In many cases, the pronunciation errors (which not taken into account sufficien group) are

In order to analyse these problems for various groups of non-native speakers. we (1980) in example of Garding and Bannert archives : recording up foreign accent representatives of 23 Dutch spoken by These recordings consist of a text read loud, isolated words and spontaneous speech (for more than 80 subjects). For separate languages, whose phonology differs analysis is made and typical errors are collected and classified. In this classification we distinguish vowels. further aspects. prosodic properties and
2.DUTCH SPOKEN BY JAPANESE SUBJECTS

One of the groups of foreigners we paid special attention to in our projec This choice was motivated by the largo differences between both languages, the historical importance of the Dutch language in Japan and the existing collaboration we have with Japanese institutes. In Figure and Dutch, illustrating the differences between both languages.

Figure 1

Japanese vowels and consonants

The most important differences are

> for vowels:
(2.1) the Japanese vowel system, with five owels only, is much less complicated than the Dutch system
(2.2) in Japanese, the phoneme /u/ is rea-
2.3) there are no rounded front vowels in Japanese
for consonants:
(2.4) The fricatives $/ f / / / v /, / x /$ and $/ \gamma /$ do
not exist in Japanese
(2.5) $/ \mathrm{h} /$ is realized as an unvoiced palatal fricative before $/ i /$ and as a
(2.6) $/ r /$ is realized as an alveolar flap; there is no separate phoneme $/ 1$
(2.7) $/ t /$ becomes [$t \int$] before /i/ and [ts]
before $/ u /$
(2.8) $/ \mathrm{n} /$ undergoes regressive assimilation of place, e. g . to $[\mathrm{m}]$ bef ore $/ \mathrm{p} / . / \mathrm{b} /$ and /m/ It is the only consonant that can and is considered as a separate syllable
(2.9) there are no clusters of consonants Within a syllable: these have the structure V (only vowel) or CV (consonant-
3.COMPILATION OF PRONUNCIATION ERRORS

We analysed the sound recordings of Japanese speakers who read the Dutch text, the isolated words and produced spontaneous conversation. Firgt, a phonetic transcription was made of the material and of the main pronunciation errors for each speaker. Afterwards, their common errors we summarized in a compilation that can be considered as a typical pattern representative of the speakers of Japanese. vowel diagram with the Dutch vowels in a the typical deviations of the vowel pronunciation are indicated by arrows.

Figure 2. The pronunciation of Dutch vowels by Japanese speakers

The following differences can be observed
for the vowels:
3.1) the pronunciation is in general
higher and more fronted
(3.2) short vowels are too long in general
(3.3) the vowel /I/ is pronounced like [i]
(3.4) lip rounding is not realized in the
pronunciation of $/ \mathrm{L} /$
(3.5) the Dutch diphthongs are produced as monophthongs, e.g./ oy/becomes [ϕ :] or
for the consonants:
(3.6) aspiration of initial voiceless plosives takes place
(3.7) $/ \mathrm{h} /$ is realized as a palatal or velar fricative
(3.8) /f/ or /v/ are produced as a bilabial or as a glottal fricative
(3.9) $/ r /$ and $/ 1 /$ are realized in the same way: namely as an alvelar flap; they can (3. (3.10) $/ x /$ or $/ \gamma /$ can be pronounced as a
volar plosive $[k]$
(3.11) the velar nasal becomes (ng)
for clusters of consonants
(3.12) vowel insertion, like in [satura:t]
for straat (Engl.'street') takes place (3.13) deletion of consonants, like [sat $: k$]

The above changes can be explained by the roperties (2.1)....(2.9) of the Japanes system (Section 2)

4．DUTCH LOANWORDS IN JAPANESE

For a long period in the history of Japan， visit dutch were the only Europeans who could seclusion from the outside world by the Tokugawa government，this isolation started in 1639 and it lasted until the second half Of the 19th century（Vos，1963 and 1978）． European culture from their settlement on Deshima and the Dutch language was used by Japanese interproters．A special field of Dutch studies（Rangaku）devoloped and Japanese publications like＇Rangaku kaitei＇
（＇Guide to Dutch Learning＇）by otsuki Gentaku（1783）appeared，providing a Dutch vocabulary and a concise Dutch grammar．

Figure 3．Fragment from the＇Rangaku kaitei＇

mén leeren．	
人	我 照 你
	dell dag mynheer．
Hy brengt gant	
Lche nagten inet	峨 者 你 臣
leefen door．者謮 徹	
	Oúden zal mén
後詮夜	老 可 人
	eeren jongenzal
我 悉 吾	喔 少 可

In Figure 3，we reproduce a section from this book．where the Dutch sentences are writing with Chinese characters）and into the katakana（one of the syllabic writing systems where the sounds of the ayllables are reproduced）．The katakana represent the possible pronunciation of the Dutch words by the Japanese speakers，like Dutch text，wo have compared the katakana writing to the original Dutch words and we also collected a number of loanwords from Dutch in the Japanese language．These occur in particular in the terminology of science quite general new words have been
introduced into Japanese through their Introduced into Japaniese through their Dutch equivalent．According to Vos（1978） more than 160 words of Dutch origin are

5．COMPARISON OF PHONETIC DIFFERENCES

In order to demonstrate the phonetic changes，we quote the following examples of Dutch loanwords with their Dutch origina

1．biiru，＇bier＇（beer）．The English word beer＇is found in biiya－hooru（beer－

2．bisuketto，＇beschuit＇（rusk）．
3．garasu，＇glas＇（plate glass）．
4．gasu，＇gas
5．inki，＇inkt＇（ink）．
6．karan，＇kraan＇（tap）．
7．karuku，＇kalk＇（lime）．
8．koohi，＇koffie＇（coffee）．
9．kokku，＇kok＇（cook）．
10．madorosu，＇matroos＇（sailor）．
11．masuto，＇mast＇（mast）．
12．mesu，mesu（knife）．
13．orugooru，＇orgel＇（organ）
14．pisutoru．＇pistool＇（pistol）．
15. ponpu，＇pomp＇（pump）．

16．porudaa．＇polder＇（polder）．
17．ranpu，＇lamp＇（lamp）．
18．ransetto，＇lancet＇（lancet）．
19．renzu，＇lens＇（lens）．
20．sukoppu，＇schop＇（shovel）．

In these words，we can observe the following changes when comparing the Dutch originals and relating their deviations to the rules（ 3.1 ）．．．（3．14）following from our
contrastive study：
（5．1）final consonants are followed by a vowel cf．examples 3，5．11；see rule（3．14）
（5．2）vowels are inserted in consonant clusters cf．examples 10．13．14：see rule（3．12）
（5．3）final－ar and－2l become $-V$（vowel）．
ch．example 16；see rule（3．9）
（5．4）the alvoolar consonant 1 becomes r ，
cf examples 17．18．19：seo rule（3．9）
（5．5）diphthongs are replaced by monophthongs，cf．example 2； see rule（3．5）
（5．6）fricatives are realized differently． ［f］as $[\mathrm{h}]$ ．$[\mathrm{x}]$ as $[\mathrm{k}]$ ，cf．examples 2,20 ： ［f］as［h］$[\mathrm{x]}$ as $[k], \mathrm{cf}$
see rules (3.8) and (3.10)

6．CONCLUSIONS

The structure of loanwords in Japanese deviates considerably from the Dutch much more numerous and more recent English loanwords（cf．Pierce，1971，Vos 1963）．We could compare the deviations with the Japanese subjects and find similar properties in our contrastive study．Both can be explained by taking into account the ifferences between the phoneme systems of Japanese and Dutch

LITERATURE

E．Garding och R．Bannert：Praktisk Lingvistik； Institutionen fur Lingvistik． Lund（1980） 347

Y．Igarashi：Basic Phonological Problems Confronting the Japanese Speaker of in Japan；Eichosha Publ．Comp．Ltd．； Tokyo（1978） 346
J．E．Pierce：Culture，Diffusion and Japlish； Linguistics 76（1971）45

G．Sampson：A mixed System：Japanese Writing； in：Writing Systems．Hutchinson， London（1985） 172
F．Vos：Dutch Influences on the Japanese Language：Lingua 12 （1963） 341
F．Vos：Dutch Words in Kimono：Dutch Influ－ ences ：．the Japanese Language： in：A Contribution to the Historical Relation between Japan and the ation of Japanese Studies（1978） 41

ЯВЛЕНия САНдХи и РиТМичЕСКАЯ ОРГАНиЗАЦИЯ СИتТАГМЫ
В РУССКОМ и БОЛГАРСКОМ ЛЗЫКАХ
totya ctoeba

Первая кафедра русского языка Софийского университета
София，Болгария

На основе аудиторского и эксперименталь но－фонетического анализа русского и болга－ рского пубпишистического текста，в диктор－ ском его прочтении，рассматриваются явления сандхи на уровне фонетического слова и са－ ндхи между отдельнвми фонетическими слова－ ми в составе синтагмы，роль этих явлений в ритмической организапии синтагмы обоих язн ков．

Русский и болгарский относятся к типо－ логически разным структурным типам в груп－ пе славянских язнков，потому исследование особенностей стика слов и их роли в рит－ мической организании синтагмы обоих язн－ ков представляет большой интерес．

Учитывая тот бакт，что исхопной и ос－ новной епинипамд звучаме речп являотся中онетическое слово и синтагма，мв рассма－ триваем явления сандхи п ритжику речи на уровне этих единии，а именно：сандхи меж－ ду клитико華 и знаменательным словом в рам－ ках епиной акцевтно－ритмической структуры －оонетического слова－у сандхи между от－ дельными словами в составе синтагмы．
Наблодения и анатиз явлений осушествля－ лись на материале публицистического текс－ та и его перевода на болгарский язнк в дикторском прочтении．Тексты были начита－ ни на магнитнуш лентУ тремя болгарскими дикторами，являопимися носителями норма－ тивного литературного произношения совре－ менного болгарского язнка，и тремл русски－ ми－носителями московской произноситель－

ной нормв，в полном стиле п＂ппзношения．Ау－ диторский анализ каждого текс＇та ввполнялся тремя аудиторами по напечатанному тексту с петевой установкой на указание грании фоне－ тических слов，синтагм и фраз．Даннне в пропентах усреднены от трех дикторов．Вце－ лях виборочного экспериментально－қонетиче－ ского анализа речz，магнитофонная запись воспроизводилась и регистрировалась на бу－ маге с помопь．установки，вкпочающей осциғ лограмму，выделитель частоти основного то－ на，внделитель интенсивности．

I．Перед тем как рассмотреть явления сандхд на стьке клитики и знаменательного слова，необходимо отметить，что в болгар－ ском тексте 42.4% фонетических слов－это структуры，объединяютие от двух до четьрех словоформ；в русском－этот прогент почти в два раза меньше－ 22.5% ．Из них в бол－ гарском 24\％приходятся на структуря，объө диняюшие предлог с существительным или прилагательным，числительным，местоимени－ ем；в русском эта иифра－Іо\％．Большая раз нина－14\％в частотности структур，объепи－ няоиих предлог и именные формы，естествен－ но，коренится．в аналитическом выражении синтаксических отнопений имени в болгарс－ ком язнке，где распиряотся функции служея ннх слов．в результате аналитизма болгар－ ского язнка обнаруживается закономерность и в употреблении частип－актуализаторов－ проклитик и энклитик－при глагольных фор－ мах，как и употребление глагола－связии СБМ Эти данные заставляют нас сделать вакний вывод о том，что более частое присутствие

клитик в стуктуре болгарского фонетическо－ го слова，в сравнении с русскдм，является существенным фактором длл выявлөния спеди－ бики сандхи на стыке клитики и знаменате－ льного слова и роли явлений сандхи в про－ содическои организапии потока речи обоих язнков．

Іля болгарского языка характерно актив－ ное участие клитик，оканчиваюшихоя на гла－ сныи：тредлог $\mathrm{HA} /$ самвй частотный в качес－ тве клитики и составллоший 30% всех кли－ тик／，частицы ДА，СЕ，глагол－связка СА，Е и др．Џирокие гласнне［a］，［е］в этой пози пии способствуют увеличенио фонетической самостоятельности клитик в составе единой акдентно－рйтмической структури；увеличива－ ется частотность зияний на стынах，как на－ пржмер，в структурах типа：ндосновни， даукрепва，сеявява，саубедително，пока－ зателное и др．Очень часто отсутствие свя зываищего согласного в первом слове спосо－ бствует отделению его от последуюпего не－ большой паузой；в осдиллограммах регистри руется некоторый спад интенсивности перво－ го гласного и прекращение фонапии на 20－ 40 мс перед началом реализапии второго гла сного．Это явление способствует ослабле－ нк：коартикуллции слогов на стыках и реа－ лизапии более слабой степени редукции гла－ сних в структурах．
Тендениия фонетической выделенности кли－ тик в составе болгарского фонетического слова и ослабление ноартикуляции на стыках наблодается $\mathbb{\Sigma}$ при простых предлогах－клити ках，выраженных одним согласным звуком B ， C．В этих случаях очень часто встречается удваивание п вокализашия предлога，не всер да регламентированное нормами орфоэпии，
 СбС времето，сь孔 вероятности，удваивание и вокализация этих предлогов в норме произномения перед сло－ вами，начинаюшимися с того же самого сог－ ласного звука или его парного варианта по глухости／звонкости，мотивировано и выше－

изложенными тенденциямй явлений сандхи，па пример，съасьввза，съсззагубата，вь Іф С Ва－ ршава，въІІцфилиала п др．Отметим при этом，что звонкий согласный LbI в конце клитикп оглушается по общему правилу оглу－ шения звонких щумннх согласннх в абсолот－ ном исходе слова и перед паузой．Подобная реапизапия клитик является дополнительным свидетельством фонетической сакостоятель－ ности клитик в потоке речи в лингвистичес－ ком сознании носителя болгарского языка．

В отличие от болгарского，особенностьш русского языка является тот факт，что стру ктуры с клитиками в потоке речи характери－ зуштся слитностьр элементов．В некоторых случаях проклитики и энклитики имеют хара－ ктер подвижннх префхксов и суффхиксов；они как бы растворяются в структуре и слитная единица становится тождественной слову，на пример，в эпоху，६общем，со временем，кно－ внм，под оощим，рост

Необходимо также отметить，что в болгар－ ском языке из общего продента клитик на проклитики прпходятся 35.8% у на энклитики －6．6\％．Эта тенденгия развития проклитич－ ности в структуре болгарского фонетическо－ го слова влилет на увеличение предударных слогов структурн．В результате этого ослаб－ ляется начало слова，меняется интенсивная кривая в нем．И если сравнить даннне по распределению места ударения в фонетичес－ ком слове，то приходится констатировать， что процент ударности на первом слоге в структурах болгарского язнка во всех слу－ чанх меньше，чем в русском，а именно：двух сложные структуры с ударением на первом слоге в оолгарском тенсте－ 9% против II．©\％ в русском，трехсложнне－в болгарском 6.3% тротив 7% в русском，четырехсложные -0.7% тротив I．5\％．
Обобщая вышеизложенное，следует сделать вывод，что в потоке речи частое участие клитик и реапизапия различннх явлений санд хи в структуре фонетического слова болгар－ ского язвка способствуют развитио более

слаоой коартикуляции составных элементов и более слабой степени редукдии /полуредукнии/ гласннх; наоборот - сильная количественная и качественная редукция гласннх и слитность пропзнопения в русском развиты за счет меньшей частотности этих явленийв составе фонетического слова. В зависимости от этого определяются и спепифические особенности ритмической организашии этой единицы звучащей речи в обоих языках, т.ө. спепифическая для кажпого языка реализапия дараметров, выражаюиих объединение ударным слогом неударных.
II. Различия в сандхи медду отдельными фонетическими словами в составе синтагмы русского и болгарского язнков обоснованы структурными закономерностями и фуннционированием именных флексий обоих языков.

В боптарском языке, в анализируемых нами текстах, 85\% всех фонетических слов это структуры с открытыми слогами абсолютного исхода слова; в русском языке эта гифра 62.5%, на 23.5% меньше. При этом 34% всех открытых слогов абсолотного исхода слова в болгарском языке приходятся на флексии членной формы мужского рода -а, -я, женского -та, срепнего -то, множественного чи сла -те, -та. Членная форма образуя со сло вом фонетическое единство, сильно влияет на акшентную структуру болгарского фонетического слова, как и на характер стыка слов в составе синтагмы.

Во-первых, вокалический исход слова дает возможность кажцому из слов в синтагме стать фонетически более самостоятельным в потоке речи.

Во-вторнх, широкие гласные флексий членной формы [a], [о], [е] являотся более длительными и более интенсивными, чем русские в аналогичной позиции; в осшиллограмя мах болгарского материала наблодается меньпее их сокращение, чем в русском и ччень часто регистрируется отделение с.лова в членной форме от последующего небольшой паузой.

Система русских именннх /падежннх/ флен сий вносит большое разнообразие в их звукосочетаемость, а гласнне в них, как правило, находятся в заударной - Фонетически особенно уязвимой части слова в русском языке.

В русском тексте 37.5% всех фонетических слов это структуры с закрытым слогом в абсолютном исходе слова; в болгарском языке эта пифра - 15%, на 22.5% меньше. Кроме того, в рамках синтагмы консонантнал форма связывания слов в сандхи в потоке речи русского языка часто реализуется так, будто конечная согласная находится внутри одного большого слова, как например, рост_[иIх-мощи, в_общем ронке и др. В болгарском язнке при реализации стыкуощихся согласных часто наблодается полное их разделение, например, свят! без войни, капитальт: със_[фісички се_стреми й др.

Излагая выше наблюдения, насающиеся не которых явленин сандхи на стыке клитики и знаменательного слова, как и сандхи медду отдельными словами в составе синтагмы, мд попытались выделить пз общей картины тание закономерности на стыке слов, которые окажутся инвариантными по отношению к ритмомелодической организапии синтагмы и фразы в целом русского и болгарского языков, а именно:

- большая маркированность открытыми слогами клитик и конца фонетических слов в оолгарском языке - важннй параметр для появления внутрисловных и внутрисинтагменных пауз п нарушения слитности произножения составных элементов фонетичесних слов и синтагм; следствием этого в потоне речи является реапизапия меньшей степени редукшии и больпая фонетическая выделенность единин, по сравнению с русским, что прида ет болгарской речи своеоюразнуо четкост и "отрывистость"; в осциллографпческой за писи наблодается общая вировненность и "растянутость" фооры контура интенсивноі кривой и относительное сужение диапазона

частоты основного тона;

- в результате действия противополож ных тендендий - большей "свернутости" слова и слитности пропзношения синтагмы - в русской речи находят благодатную почву для реализапии более разнообразные мелодические контуры, что придает русской речи характерную ей музннальность и живость.

VOICE QUALITY JUDGEMENTS AND PHYSIOLOGICAL MEASUREMENTS IN

 ESOPHAGEAL SPEAKERS WITH AND WITHOUT A GRONINGEN BUTTON.
G.L.J. Nieboer

ENT-Clinic, Voice Res. Lab \& Centre for Voice, Sp. and Lang. Dis., Univ. Hosp., and Inst. of Phon. Sc., State Univ, Groningen, The Netherlands. ABSTRACT.
Physiological measurements have been performed on 26 esophageal speakers, both with and without a Groningen Button. The measured variables are: intratracheal, sub- and supra- pseudoglottic pressure, transpseudoglottic flow and sound pressure level. Of the same set of speakers, tape recordings were made in view of a perceptual evaluation by a group of 85 judges. The evaluations were done on 13 bipolar semantic scales. The results of both parallel experiments are presented in this contribution, as well as the first results of correlation computations.

1) INTRODUCTION.

The measurement of physiological characteristics of esophageal voice has had a lot of attention during the last years. Part of this interest is due to the development of tracheo ${ }^{-}$esophageal valve prostheses [1]. Besides the advantages of these prostheses, a few disadvantages emerged too: the need to use one hand to close off the tracheostoma, the need for cleaning and exchanging the device, and the fact that relatively much effort is needed to phonate

One more circomstance that leads to an interest from our side in this type of speech is the fact that in the Groningen ENT Clinic both injection- and button- esophageal voice are teached as a rule to the laryngectomees: this offers the opportunity to compare both types of speech on a physiological as well as on an evaluative level.

In the experiment reported on here this effort is assessed by measuring simultaneously the intratracheal, sub- and supra- pseudoglottic pressure, the trans- pseudoglottic flow, and the resulting sound pressure level. Furthermore, attention is payed to the
H.K. Schutte, M.D., Ph.D.

ENT-Clinic, Voice Res. Lab \& Centre for Voice, Sp . and Lang. Dis., Univ. Hospital, State University,
T. de Graaf, Ph.D.

Institute of Phonetic Sciences State University, Groningen, The Netherlands.
pressure loss caused by the button, with the simultaneously measured air flow rate. The efficiency of voice production was measured, but it will not be reported on here. In fact, due to the relatively high intra- tracheal and sub- pseudoglottic pressures we encountered, these pressures will say as much about the effort of phonation as the efficiency.

The same speakers were asked to read a number of standard sentences. This speech material was judged by a group of 85 listeners, both naive judges and speech therapy students. The last group happened to consist of 96% female judges. Correlational computations have been made to relate these judgements to the physiological data of the same patients.

2) PHYSIOLOGICAL MEASUREMENTS.

In total, 1357 measurements were done in the phonations of 31 esophageal speakers. Not all variables were measured in every measuring point: during injection- esophageal phonations, we did not register the intra- tracheal pressure. The flow was measured in only 496 of the 1357 cases; this was done because the sound pressure level is influenced by the flow mask. The supra- pseudoglotic pressure data have not been processed so far.

The intra- tracheal pressure was measured with an open catheter, held by the patient himself in the trachea, under the thumb closing off the tracheostoma. The sub- and supra- pseudoglottic pressures were measured by means of micro pressure transducers, mounted on a catheter which has a diameter of 1.65 mm in the 6 cm of it between the two sensors. It was introduced through the nose into the esophagus, about 40 centimeters, and then gently pulled back again during phonation. By monitoring
the signal on a scope, evidence could be attained as to the position of the proximal sensor. When this sensor stops showing up pressure offset during phonation, it means that it is situated in the suprapseudoglottic pharynx. Minor adjustments are sometimes needed in order to be sure that the distal sensor is situated in the air-filled sub- pseudoglottic room. The simultaneous registration of both suband supra- pseudoglottic pressure with high frequency sensors will enable us to investigate the acoustic phenomena occurring just below and above the pseudoglottis.

The spread in the data is quite high (see Table 1), especially in the sub- pseudoglottic pressure and the flow. The sound pressure level, on the other hand, has a rather small standard deviation, due to the generally small dynamic potential of these speakers.

When we consider the mean sub- pseudoglottic pressure, flow and SPL of our speakers it becomes clear which variables are able to differentiate between the two groups of injection- and buttonesophageal speakers. The sub- pseudoglottic pressure seems to do that quite well. The means differ by 1.4 kPa . Four of the five patients where measurements were done during both types of phonation, showed a higher sub- pseudoglottic pressure (see Table 2). On the right hand side, you see the P -values from a comparison of the means with a t-test.

Table 1: Mean values and standard deviations of the physiological parameters; comparison of the button group and the injection group.

MEAN VALUES OF SUB-PSEUDOGLOTTIC
PRESSURE, TRANS-PSEUDOGLOTTIC FLOW PRESSURE, TRANS-PSEUDOGLOTTIC FLOW AND SOUND PRESSURE LEVEL

physiological variable	all speakers	button group	injection group
Psub (kPa)	3.3	4.1	2.6
(S.D.)	(1.6)	(22)	(2.2)
Flow (ml/s)	108	131	82
(S.D.)	$193)$	$1112)$	(62)
SPL (dB(A))	66.6	66.2	67.0
(S.D.)	(9.5)	(9.4)	(9.7)

Table 2: Mean sub- pseudoglottic pressure values of 5 speakers, with the p-level of a t-test on difference of the means (between brackets).

MEAN SUB-PSEUDOGLOTTIC PRESSURE
VALUES + T-TEST; 5 SPEAKERS.

| speaker | button | injoction | $\rho<$ |
| :--- | :---: | :---: | :---: | :---: |
| spr 4 | 2.8 | <3.5 | .041 |
| spr 9 | 3.9 | >3.1 | .061 |
| spr 11 | 5.3 | >2.2 | .001 |
| spr 24 | 5.4 | >3.1 | .001 |
| spr 34 | 2.6 | >2.4 | .215 |

These differences ask for a physiological explanation. The question is: what will cause one and the same speaker to sustain two different pressures the same to vibre sound source. in order to vibrate one and the same sound source. In the first place the pressure build-up possibilities of the respiratory mechanism are responsible, allthough the pressure in the lungs and that in the sub- pseudoglottic room are not directly 1 to 1 related because the prosthesis is situated in between, and because the sub- pseudoglottic space is lying outside the thorax, hardly affected by the intrathoracal pressure.

The flow values too differentiate between both types of speech. The mean registered value was 108 ml / s. Again, a significant difference was found between the two groups. Allthough we know from Schutte's data [2] that, for laryngeal voices, mean flow values are not very useful predictors of voice performance, the found differences might possibly be related to another voice variable: voice quality.

SPL did not discriminate between both voice types: both reached about 67 dB at 30 cm .

We measured a rather high in vivo trans-button pressure. These measurements were done without a selection based on the age of the devices. The mean age was about 11 weeks, so more than two and $-a$ half months; also, at the time we made our registrations (end 1985), no patients had anti-fungus medication [3]. The high trans-button pressures, with medict must be respect to the in itributed to the deterioration of the devices by attributed to the deterioration of the devices by
fungal growth: it makes the material stiff, resulting fungal growth: it makes the material stiff, resulting
in a higher flow resistance [3]. Consequently,
research is going on at this moment to reduce the flow opposition of the prostheses.

3) PERCEPTUAL EVALUATION

Speech material of the same speakers was subjected to a perceptual evaluation by 85 listeners.. It was done by scoring one minute speech of each speaker on 13 semantic 7 -points scales. The one

Table 2: The set of 7-points semantic scales as used in the perceptual evaluation experiment (with English translation). The scales are adapted from Fagel et al., 1982.

minute speech was assembled out of the recorded material of read sentences. All pauses, coughs etc. were carefully cut out. We thought this useful to get right and reliable judgements, without the judges being distracted by all kinds of additional noises. In fact, it was not the noises that we wanted to evaluate, but the voices. The scales were 7 -point scales. Of course we included in this experiment those 5 patients who were able to produce both types of esophageal voice.

We performed factor analysis on the scores, and three main factors turned out to be important. As could be expected, the scales 6,7 and 11 formed one

Tables 3 a, b: Multiple correlations computed with the speaker mean values on the 13 scales and the speaker mean values of three (or five in the case of button- esophageal speakers) parameters from the physiological measurements. Flow is the mean flow, SPL the mean sound pressure level, Psub the mean sub- pseudoglottic pressure, Ptra the mean intratracheal pressure, and $d P b u$ the mean pressure difference over the buttons. The figures in italics point at statistically significant correlations ($\mathrm{p}<.10$) as found during the multiple correlation steps. As soon as one or more of the three physiological parameters are in the equation, the other figures in the row point to correlations of the rest-variance. In rows without italic figures, Pearson product moment correlations are printed. The figures in italics of the last column (between brackets) are the squared multiple correlation values (with $\mathrm{p}<.05$). Multiplied by 100 they give the percentage of the variation on that scale that can be predicted from the physiological measurement values.

Table 3 a: All speakers.

MULTIPLE CORRELATIONS (Italics: $p<.10$) COMPUTED WITH MEAN VALUES; ALL SPEAKERS.

PERCEPTUAL CONSEQUENCES OF EQUALIZING LOUDNESS DIFFERENCES

OF VOWELS VARYING IN VOICE QUALITY

PERTTI HURME

Department of Communication. University of Jyvàskyla

40100 Jyvaskyla, Finland

ABSTRACT

Listening tests were organized in which vowels varying in sound pressure level (SPL) and voice quality were rated. The vowels were produced at 60 , 70 and 80 dB ; the SPL differences were equalized for the listening tests. The following voice qualities were simulated: normal, nasal, strained, breathy, rough. The results show that original SPL differences are reflected in the perceptual ratings in a voice quality dependent manner.

INTRODUCTION

The preliminary observations reported here are part of a research project on the perceptual, acoustic and clinical properties of normal and dysphonic voice [1]. One of our methods is to study the effect of controlled variations in the acoustic properties of voice on perceptual dimensions. Data from such studies may be useful in the construction of tools for examining normal and dysphonic voices.

The human voice shows much variation. Voices differ in fundamental frequency (related to pitch), sound pressure level (to loudness) and long-term spectral characteristics (to voice quality [2], resulting from long-term laryngeal and supralaryngeal from long-term laryngeal and supralaryngeal
settings) as well as other properties (e.g. temporal). The object of the present study is to evaluate voices varying in sound pressure level (SPL) and spectral haracteristics on several perceptual dimensions.
More specifically, this paper investigates the perceptual impressions listeners extract from speech produced by simulating several voice qualities at three SPLs. Impressions of voices are certainly affected by voice quality. They are also influenced by

SPL: for instance, voices with high SPL are generally judged as more "carrying" or powerful than those with low SPL. However, does this also hold when SPL differences originally present in the voices are technically eliminated by equalizing the SPLs to a common level? If impressions of voices manipulated this way are affected by the SPL, this must be due to reasons other than absolute SPL, probably the relative spectral properties of the voices. This is possible, as both momentary spectra of individual sounds and long-term spectra of speech are highly affected by sound pressure level [3, cf. also 4]. In general, the fundamental frequency dominates the spectra of sounds or speech with low SPL, whereas in sounds or speech with high SPL higher harmonics (especially in the first formant region) are much more prominent

PROCEDURE

The vowel [a] was produced by the present author in five simulated voice qualities: normal, nasal, strained (or tense, pressed), breathy (with a strong high-frequency noise component) and rough, cf. [5]. These qualities were clear and extreme. The five qualities were produced at three sound pressure levels: 60.70 and 80 dB , by means of visual feedback from a decibel-meter when producing the 15 vowel tokens. Care was taken to produce the vowel in the same manner at all SPLs. The vowels were then digitally extracted from the master tape [6] and adjusted in SPL to the same level, i.e. the amplitude of vowels produced at 60 and 70 dB was raised to the level of those produced at 80 dB . Thus, the original loudness" differences were leveled out. These vowels were then recorded in pseudorandom order on a test
.
The vowels, presented at about 80 dB in the relatively small room where the listening tests were. conducted, were rated by two groups of students of speech communication and logopedics ($\mathrm{N}=28$) with some erperience in assessing voices. The vowels were rated on the dimensions good/poor, "carrying" (powerful, stentorian, tragend)/weak, powerless and pleasant/unpleasant by all listeners. In addition, the vowels were rated by half of the group ($\mathrm{N}=14$) on the dimensions nasal/normal, strained/normal, breathy/ normal and rough/normal. Scales of seven points were used in the assessment in the first three dimensions, e.g. extremely pleasant (3), moderately pleasant (2), slightly pleasant (1), neither pleasant nor unpleasant (0), slightly unpleasant (-1), moderately unpleasant (-2), extremely unpleasan (-3) and of four points in the latter four dimensions e.g. not at all nasal (0), slightly nasal (-1), moderately nasal (-2), extremely nasal (-3). The results of the listening tests were analysed statistically by means of Chi-square tests.

RESULTS AND DISCUSSION

Table 1 shows the results of the listening test for the five voice qualities on the seven perceptual dimensions (as median values, pooled for all subjects and the three SPLs). The median values are on the whole as expected: for instance, vowels produced
with nasal voice quality are on the average moderately nasal and those produced with rough voice quality moderately rough. Vowels produced with normal voice quality are rated as moderately good and pleasant, neither breathy, rough nor strained, slightly nasal.

Table 2 shows the median values of the ratings separately in the three SPLs in cases where there was a statistically significant difference in the perceptual ratings. The perceptual ratings are affected by the original SPL level in a different manner in the five voice qualities here investigated. Normal vowels appear to be most susceptible to the effect of SPL. High SPL (in the original signal) of normal vowels is associated with less good, less pleasant, more rough and more strained impressions. Normal vowels with low SPL show no difference to those with medium SPL. Nasal vowels with low SPL are associated with less carrying (weak) impressions whereas high SPL goes with more carrying (powerful) impressions. Strained vowels originally produced with low SPL were rated as more pleasant than those with higher SPL. Rough and breathy vowels generally give a negative impression on all dimensions; low SPL in rough vowels is associated with less strain.
The results imply that SPL information is important in perceptual studies of voice quality. SPL should either be standardized (for instance by means of visual feedback) when producing the sample to be

Table 1: Median values of the estimations of the stimulus yowels pro duced with five voice qualities (normal, nasal. strained, breathy, rough) on seven perceptual dimensions (good, carrying, pleasant, nasal, strained, breathy, rough) by 28 Ss ; column and row medians are also given.

STIMULUS VOWELS:
NORMAL NASAL STRAINED BREATHY ROUGH ALL

GOOD $(3 /-3)$	2	0	-1	-3	-3	-1
CARRYING $(3 /-3)$	1	1	1.5	-2	-2	0
PLEASANT $(3 /-3)$	2	1	-1	-3	-3	-1
NASAL $(0 /-3)$	-1	-2	-1	0	0	-1
STRAINED $(0 /-3)$	0	0	-1	-2	-2	-1
BREATHY $(0 /-3)$	0	0	0	-1	-3	-1
ROUGH $(0 /-3)$	0	0	0	-2	-2	-1
ALL	2	1	1	-3	-3	

Table 2: Mediạn values of the estimations on the perceptual dimensions with a statistically significant difference between stimulus vowels originally produced at 60 . 70 and 80 dB .

STIMULUS	PERCEPTUAL				
VOWELS:	DIMENSIONS:	p<	SPL 60	SPL 70	SPL 80
NORMAL	GODD/POOR (3/-3)	0.01	2	2	1
NORMAL	PLEASANT/UNPLEASANT (3/-3)	0.01	2	2	1
NORMAL	ROUGH (O/-3)	0.01	0	0	-0.5
NORMAL	STRAINED (0/-3)	0.001	0	0	-1
NASAL	CARRYING/WEAK (3/-3)	0.01	-1	1	2
STRAINED	PLEASANT/UNPLEASANT (3/-3)	0.01	1	-1	-1
ROUGH	STRAINED (0/-3)	0.05	-1.5	-2.5	-2.5

evaluated or measured as an independent variable when recording speech for perceptual ratings. This is especially important when assessing dysphonic voices as they show much variation in SPL.
On the whole, the results indicate that exiremes in the voice (here represented by SPLs of 60 and 80 dB) tend to be associated with less favourable ratings. However, the results presented here apply only to one speaker. Generalizations are perhaps to some extent valid for the Finnish speech culture as well. The cross-cultural comparison of voice quality (and presumably also the use of SPL) in different speech situations is a challenging but difficult task in view of the immense variation between languages and between cultures [7].

REFERENCES

[1] Hurme. P. \& A. Sonninen 1986. Acoustic, perceptual and clinical studies of normal and dysphonic voice. Journal of Phonetics, 14, 489-472.
[2] Laver, J. 1980. The phonetic description of voice quality. Cambridge: University Press.
[3] Fant, G. 1973. Speech sounds and features. Cambridge, Mass.: MIT Press.
[4] Hurme, P. 1980. Auto-monitored speech level and average speech spectrum. Papers in Speech Research (Jyvaskyla), 2, 119-127.
[5] Isshiki, N. \& Y. Takeuchi 1970. Factor analysis of hoarseness. Studia Phonologica, 5. 37-44.
[6] Karjalainen, M. 1980. A computer-based system for speech and audio signal research. NAS-80 (Turku), 291-294.
[7] Ladefoged, P. \& N. Antoñanzas-Barroso 1986. Computer measures of breathy voice quality. Working Papers in Phonetics (UCLA), 61, 79-86.

S.L. Taptapova, I.I. Yermakova

Serbsky Institute of General and Forensic Psychiatry Labor, of Speech Pathology
 Moscow, USSR 119839

ABSTRACT

The consonants of 26 patients, who had unergone partial resection of the larymx , were tested by the method of spectral analysis. The results of the test showed that the acoustic characteristics deviate from the norms lack of high singing formant, the main vocal tone is lowered, the spectrum includes some additional noise components. The course of recuperative phonotherapy, including the exercises for modulation improvement and vocal range expansion allow for the rounding spectrum to coincide with the norm. However, the change of timbre does not significantly influences its endurance. The patients can continue their work with full vocal load.

At the present time the efficiency evaluation of recuperative treatment has to be substantiated by objective values. The most adequate of modern methods of ana lysis of the physical features of the voice is the method of spectral analysis. The consonant spectrum of a normal voice has been investigated by many authors / 1 , $2,3,4,5,6,7,8,9,10,11 /$. Spectrographical analysis with vocal pathology was performed with cases of phonastenia /12,13/, of rhiniphonia $/ 14,15,16,17 /$, of pseudovoice $/ 18,19 /$, of functional larynx desease /20/.Any reference to investigations on acoustic vocal structure after larynx resection in the available literature has not been found.

The purpose of the present investigation was to determine objective criteria for evaluate of a restored voice after larynx resection of different modifications in case of tumors by the method of spectral analysis.

The investigation has been carried out according to standard procedure together with V.I.Konarev, the engineer. Spectral analysor $\mathrm{F}-4325$ and tape-recorder "Hayak-205" were used. The subject of analysis were frequency characteristics of
the fundamental vocal tone (FO), the first (FI) and the second (FII) formants, the most semantically important and constituting the base of a speech phoneme. There were 26 patients in the age groupe of 21 to 67 (21 men and 5 women). Most of the people were in their working age. 17 of them underwent front-side larynx resection and 9 - chordaectomy. All patients at the time could communicate in $\varepsilon_{\text {whis }}$ per.

The course of phonopaedy consisted of the formation of vocal sound (due to activization of the remainders of vocal organs), introduction of this voice into spontaneous speech and a course of vocal exercises aimed at development of modulations and range expansion. The results of recuperative therapy before investigations were defined as "satisfactory" and "good" by the audio method. "Satisfactory" was understood as sonorous, but low modulated voice, easily growing weak and unable to provide satisfactory communication. "Good" was understood as a sonorous steady voice, that allowed the patients to continue their work without any restrictions of their voice.

Spectral analysis revealed the following.

The main vocal tone varied within the range of 100 to 140 Hz . In the majority of cases (73\%) the main tone of male voices varied from $160-250 \mathrm{~Hz}$, of female voices - from $250-400 \mathrm{~Hz}$. The frequency of the main vocal tone coincided with the first formant of either the patients with low modulated, rated "satisfactory" voice, or the patients whose voice had been restored almost to the normal. In the first case the patients had to have an extensive larynx surgery, and the formants of almost all of their consonants coincided infrequency and were below normal. In second case, the formant characteristics of consonants coincided with the established standards which showed the compensating abilities of anatomic and physiological larynx structures.

The first formant of almost all pa-
ients was easily analysed. The great majority of its values (64.2%) corresponded
to the norm. 19.5% of patients with low to the norm. 19.5% of patients with low harsh voices were characterised by frequ-
ency decrease. In 16.3% of cases frequeny of the first formant was increased, hich was peculiar to all men and women who before the operation had a high-timbre voice.

The second formant was determined n patients with "good" modulated sonoroithin the normal range for some exepions (6.3).
The results of investigations also showed that consonant spectra of patients range of 100 to 1000 Hz . In the regions of high and low frequency there appeared additional noise spectra: single ones below 100 Hz and more often on the frequenclose to 10000 Hz .

After recuperative therapy, when
their spectrum remained wide, and thous it preserved its former noise components, here appeared the components within the cal range, the main tone and formants um within the vocal range was approachin normal.
oor The vocal spectrum of patients with poor speech before vocal exercises could oot even roughly match up with the norma nents at different spectrum sections evealed. After the treatment course with he significant voice improvement the pectrum was narrowed, adaitional hols Thus the sappeared.
consonants in the colloquacteristics atients who experienced larynx resection aifferent modifications and underwent a course of recuperative treatment, can he norm, and the rounding spection of totally coincide with it
fter surge of timbre of a voice restored after surgery can be accounted for the abspectrum, which makes the formant in the spectrum, which makes the voice light and tion frequency of the vocal source. Patithe range of $100-140 n e$ larynx resection the range of $100-140 \mathrm{~Hz}$ which almost matof $200-500 \mathrm{~Hz} / 6 /$. range of a normal voice ses to 100,200 or 160 Hz was also peculiar to patients who had extensive larynx esections, with harsh, low voices. modifications and quality of a resection modice confirm that the resulta of restored uperative treatment depend on the compenThe coincidence of patient.
rum of the first and sece rounding specwhich are semantically second formants
netically determining, with a variation of the norm allow to recommend the pati ents who underwent larynx resection and ecuperative treatment to continue thei work.

Thus, the spectral analysis of cononants in patients with larynx resection evaluation of the efficiency of recuperative therapy. Acoustic characteristics of he voice after larynx resection deviate mant, the main vocal tone is lowered, the spectrum includes some additional noise components. The course of recuperative phonotherapy, including the exercises or modulation improvement and vocal ranrum to coincide with the norm. However he change of timbre does not significany influences its endurance. The patints can continue their work with full rocal load
"Visibler, G.Copp, H. Green and others, I.I.Varshavsky, I.A.Chistovich,"Srednie spectri russkin glasnih fonem", Problemi fiziologicheskoj acustiki, V. 4 , 1959 , pant, 19.
cheobrasovaniya" D.Flanagan, "Anaiys, syntes i wospri yatiye rechi", M., Swyas, 1968 . diki", M., Pritriev, "Osnowi wokalniy metoV.P.Morozov, "Biophizicheskiye osnovi vokalnoy rechi", M. 1977 B.Cuerin, L.J.Boc, "Etude de lénfluence du couplage acoustique sourse" Phonet. Ramishyil ${ }^{\text {n }}$, p. 169 .
maticheskoye opoznavaniye goworyashchego po golo9/ V.N.Sorokin, Acusticheskiy J., 1981, V. V. 27 , V.3, P. 434-440.
now 11/ niya", M., Radio i swyas, 1985. V.I.Galunov, I. B. Trampel, Acustiches 12/ T.E.Shamsheva, V.P.Morozov, J. West 13/ nik otorinolaringologii, 1966, n.5.
/13/ nolaringologi1, $1986, n^{\circ} 4, p .32-34$. bota s bolnimi otkritoy rhinolaliey posle uranoplastiki, M., 1966.
$/ 15 /$ V.E.Ostanin, "K woprosu o funkzional noy ozenke lechenija wroshdjonnich rasshelin nyoba metodom spectralnogo 16/ E.Sedlackova, "Ein Beweis der Nasalität mit Hilfe der akustischen Analyse", Fol. Phoniatr., 1973, $\mathrm{n}^{\circ} 25$.
/17/ L.I.Vansovskaya, "Spektraihiye hara teristiki glasnin zwukov w rechi bol Sowremenniye problemi phiziologii i
patologii golosa i rechi, M., 1979,
P. A.Derevshchikiv, S.L.Taptapova, J. Westnik otorinolaringologii, 1971, /19/ ${ }^{\text {n. }} \mathrm{C}$. V .
19/ A.V.Dmitriev, "Spektralnie harakteristiki rechi laringectomirowannih fiziologii i patologii golosa i re-

DYSPhasia (speech disturbances), CAuSED BY hypoacusis

(Phoniatric aspects)

Iraida Krushevskaya, Nina Nadeina

Dept. of Oto-Rhino-Laryngology
 Minsk, Byelorussia, USSR, 220081

Ine clinic-social and pedagogic observations testify to the fact, that the absence of the auditory control in the formation of the communicative means is leading to the disturbance of the speech- and voiceformation. Due to the tedious work a hard hearing child may rehabilitate the speech communication and become social adequate member of our society.

People with the defect of hard hearing are regarded as people with damaged hearing in their speech communication, needing special measures for preventing these defects.
The communication abilities limitations, the decline of the working capacity and intellectual development of the people with defect of hard hearing are promoting the infringement of their psychosocial development. The aggravation of the defects of general and linguistic development is determined by the type, degree
and time of the beginning of the hearing damage, the individual conditions of life and the social-cultural environment, as well as by the inadequate level of education process at special schools and it demands a particular form of influence, corresponding to the modern stage of society development. The speech-vocal disturbances of people with the defect of hard hearing are serving as risk factors for preserving the full working capacity, their social adequacy and integration into the federation of hearers. With advance of the scientifictechnological progress the need of the national economy in the labour reserves has increased, thus the social and vocational rehabilitation of people with the defect of hard hearing is of spucial significance. The study of speech-formation process and its interdependence of the type and degree of bypoacusis is an urgent clinic-social and pedagogic problem.
The clinic-social and pedagogic observations testify to the fact, that the absence of the auditory control in the formation
of the communicative means is leading to the disturbance of the speech- and voiceformation.
There are no objective data in iterature allowing to judge about the functional condition of the vocal apparatus of people with defect of hard hearing and its interdependence with the degree and time of the hearing damage in the age groups of the pupils of special schools. The usage of the modern acoustic-physiological methods of investigation and the original methodical approach helped to study the interdependence of the functional condition of the vocal apparatus and the acoustic voice and speech characteristics of the condition of the auditory function in age groups of the pupils of schools for the deaf and weak hearers.
One can notice that the data, obtained as a result of the carried investigations are promoting clarification of the phoniatric and phonetic aspects necessary for the correction of the existing surdopedagogic methods, concrete for the definite

age group.

The study of the peculiarities of the speech of the earlier-and later-deaf pupils of special schools (who have earlier had normal speech function) has been carried out at the age of (7-I7). The determination of speech distinction has been carried out by the method of syllabic articulation with subsequent phonetic
analysis of mistakes and it has helped to determine, that in the result of hypoacusis is occuring in the deterioration speech distinction percentage, directly depending on the degree and remoteness of the hearing disturbance. Predisposition to the replacement of the soft consonants. by hard ones, the devoicing of the voiced consonants is typical. With the increasing degree of hypoacusis the deterioration of vowel distinction process (particularly \quad, e, b) is ohserved. It has been noted, that if within the range of $500-3000 \mathrm{~Hz}$ the hearing loss constitutes more than 30 dB , speech delay is taking place and its melodics and tone formation are broken. If the hearing loss is more than 60 dB the acoustic ways of normal communication are broken.
When studying the changes of the volume of the resonant cavities in case of phonation of the above said groups of the pupils in comparison with the control group it has been noted, that if hypoacus is has been acquired in the rearly childhood, the volume of the resonant cavities is not chenging, and as a result the articulation is indistinct. The difference in the volume of the resonant cavities during the phonation of high and 10 w sounds is very insignificant, thus the speech is monotonous, deprived of melodiousness ans accents. The later deaf pupils, especially in the control group
of children, during the pronunciation of the low sounds, the resonant cavities of the larynx are widening or are deeping, but in case the high sounds they are narrowing. The degree of volume changes of the resonant cavities is directly depending on the hearing acuity and the functional condition of the vocal apparatus.

The duration of the separate sounds and especially the vowels is shortened or lengthened, due to it the disturbance of phythmics is observed already at the age of 5-7. The melodics of speech is sharpIy changing since the ability to discern the pitch of the acoustic stimulus is being violated.
In case of the full absence of the hearing sensibility (the third and the fourth degree of hypoacusis), the rightness of stresses in the speech is violated. The disturbance of the hearing acuity with respect to the high and low tones are negatively influencing the function of the vocal folds right up to its complete cessation. The disturbances of the functional condition of the vocal apparatus, revealed during electronic laryngostroboscopy, expressed in the motor violations of the neuromuscular apparatus of the larynx of the functional character, the degree of which was not indirect dependence of the laryngoscopy data, but on the contrary it depends on the degree of
hypoacusis and the time of its acquisition, So, in case of the first and the second degree of hypoacusis the vibrations of the vocal folds, uneven and asynchronous in amplitude have been revealed, when examining the phonation phases hypokinesia of the vocal folds in case of the phonation has determined their incomplete closure, the presence of displacement of the mucosal membrane on their internal edge. In case of hypoacusis of the third and the fourth degree closure of the vocal folds is strong, that determines the hard attack of the voice.

The pressure of the expiratory air is diminishing with the increase of degree and time of hypoacusis, closure force of the vocal folds is cbanging, the detonation of voice is observed, falset sounding is becoming evident. The above-stated pathology of the voice formation process is ieading to the nodulation on the vocal. folds in the vibration centre.
The investigations data of the speech quality at different degrees of hypoacusis testify to the dependence of the speech distinction on the degree of hypoacusis. Predisposition of the replacement of the soft consonants by the hard ones and the devoicing of the voiced consonants, apparent already at the second degree of bypoacusis is typical.
The time of maximum phonation is representing a motley picture and it is in close
interdependence on an attack of the sound and correlation of inhalation time to exhalation. With the aggravation of hypoacusis and shortening expiration the time of maximum phonation has been decreasing.
Phonation coefficient of people with the defect of hard hearing is increasing with the bearing impairment.
The speech of people with defect of hard hearing is characterized by disturbances, concerning all the three types of stresses: rhythmical, dynamic and melodious. The investigations data of the external respiration function are testifying to the fact, that voice disturbances of people with the defect of hard hearing is connected to a considerable extent with disturbance of the phonation breathing. Often during the phonation an inhalation is being used, instead of exhalation, that it is distorting the articulation and is making it impossible, inspiratory phase is being shortened in this position.Coordination between expiratory phase and phonation is violated. During roentgenoscopy observations the paradoxical function and asymmetry between the right and left half of the diaphragm is being revealed from 12 to 14. The results of the carried investigations are indicating to the fact, that the phoniatric treatment of hypoacusis should be expressed in the elaboration of the
number of the conditioned reflexes: breathing, phonation and articulation. The results of speech rehabilitation are better, if logophonopedic treatment begins earlier, since in the peripheric department of speech-vocal apparatus, functioning quite satisfactorily at the beginning (up to 4-5), in due course
(at I4-I5 years and older) the mechanisms of speech formation are acquiring steady disturbances of phonation breathing, function coordination of the vocal folds, resonant cavities and articulation.
Due to the tedious and purposeful work of the specialists a hard hearing child may rehabilitate the speech communication and become a social adequate uember of our society, that will help.to expand the volume for the choice of professions during the vocation guidance.

ЭЛЕКТРОАКУСТИЧЕСКАЯ ДИАГНОСТИКА ПАТОФИЗИОЛОГИЧЕСКОЙ ФУНКДИИ голосовых СВязок

иосиф Пешак, Алжбета Поителшмидова

Университет им. Палацкого Оломоуц, чсСР

Современная практика обследования речи не располагает ни одним из методов облледования, который бы использовал выгодную возможность электроакустической записи и обработки акустического сигнала для диагностики дефектов речи. Имеется в виду то, что акустическии сигнал можно подробно анализировать с точки зрения физиологической акустики. Таким образом можно использовать информацию об изменениях инспираторного потока воздуха при разговоре и речи.

Каждыи элемент речевого проявления, который является продукцией Функций респираторного, фонетического и артикуляционного органов (рис. 1), можно изображать схематически и обратно преобразовывать в эти функции, иными словами, существует очень сложная координированная во времени дея тельность органов, участвутии при форми-

ровании речевого проявления. Картину функционирования всех связанных во времени составных элементов представляет приведенная на рис. 2 схема замешения произнесения речи. Легкие - респирация - замменены функцией источника, обозначенного отрицательным знаком, так как речь реализуется экспираторным потоком выдыхаемого воздуха. Голосовые связки - фонация - представляют генератор, связанный с очень важной функциеи выклоча-

теля, применяющегося в момент инициирования речевого акта. Совместное объединение полостеи рта и носа прислуховыми эамками обраэует схему артикуляции. Центром слухового органа является перекрытал правой мозговои полусферои большая невербальная область отрицательнои обратной связи и перекрытая левой мозговои полусферой малая, вербальная область отрицательнои обратной связи.

Визуализацию функции голосовых связок в момент инициирования фонации можно воспроизвести с помопью осциллоскопа, допол ненного высокоскоростной кассетой подобно аппарату для высокоскоростнои киносъемки. Таким образом, можно выполнить визуализацию очень быстрых процессов, в том числе изображения прошлых и непосредственно предшествуғпих процессов.

Итак, можно обсуждать меру патофизиологической реакции голосовой щели при инициации фонации у балбутиков. Мы выяснили, что в спектре итерационных интервалов существует кроме области, которая у заикающихся детеи определяет произношение эаикания, и итерационная инфраобласть. Под итерационннм интервалом мы понимаем временной интервал между повторяюпимися процессами. При инициировании Фонации у заикалиихся детей зачастую появляются перед началом фонации очень малые колебания с очень малой продолкительностью. Эти итерационные интервалы на порядок меньше, чем интервалы проиэносимого заикания. Описанное явление, которое схематически показано на рис. 3,

рис. 3

мы определили как "вибратио бревис". Частота схематически указанного явления приблизительно соответствует частоте движения губ. Инициирование фонации у индивидов без речевых затруднений зачастую связано с этими очень точными частотами.

Аналогичную аппаратуру можно использовать и для записи звука кашля. Таким образом, можно еще более надежно регистрировать паратипию голосовой щели, чем при обычной фонации. Практически речь идет об обнаружении явления снижения плотности закрытия сомкнутои посередине щели непосредственно при ее пробивании. Физиологически сомкнутая голосовая щель, у которои можно предположить наличие равномерно-распределенного удельного давления при пассивном пробивании быстрым экспираторным потоком воздуха, открывается мгновенно, как видно из записи фонограммы, приведенной на рис. 4.

рис. 4.
Угол отклонения от перпендикуляра в начале набега потока нарастающеи амплитудж эвука маля мал. у голосовоп щели заикаюмегося,

рис. 5.

состояние которой связано со сниженным удельным давлением и которая посередине крепко сомкнута, имеет место ее постепенное воронкообразное открывание, как видно из рис. 5. Угол отклонения от перпендикуляра в начале набега больше. Нарис. 6 обозначены допустимые пределы углов отклонения у заикаюмегося (1) и контрольного образца 60 детей одного воэраста (2).

На основе установленных отличии в положении голосовой щели у эаикаюихся детеи и у детей без речевых дефектов стало возможно высказать гипотезу, в соответствии с которой разговорные способности индивида определяются паратипическими изменениями голосовых связок

На рис. 7 приведены данные последствии иэмененного паратипического профиля голосо-
 рис. 6.

Рис. 7.

вои щели. Часть гортани с голосовыми связками иэображена в верхней части рисунка в продольном сечении, перпендикулярном голосовой щели. Обоими стрелками оєозначены основные функциональные положения голосовых связок. Влево - при легочнои вентиляции, вправо - в момент перед самым пробиванием голосовой щели экспираторнон струей воздуха при инициировании речевого акта. вцентре рисунка приведела большая часть увеличенного радіиуса закругления голосовых связок в месте их соприкосновения. Результаты соприкосновения голосовых связок с паратипичным профилем при инициировании фонации обозначены на рис. 7 а правой части, как мы уже отмечали. Следует обратить внимание на левую часть јис. 7, которая описывает процесс днхания заикающегося

Нами проведены измерения и детальныи анализ параіеетров функционального рассмотрения устройства органов дихания у раэлич-

ных групп заикаюнихся. Статистичесие результаты значения объемов легких, их взаимных соотношении и вентиляционнье значения можно сравнить с результатами обследования совокупности здоровых детей и несовершеннолетних. исследовали мв также объемы легких у заикаюцихся, вентиляцию легких и проходимость дыхательных путеи. Мы установили, что как витальная емкость, так и инспираторная емкость существенно понижаются с возрастом при сравнении сопоставленных групп детей. К наиболее достоверным исследованиям следует отнести найденные нами иэменения сопротивления потока и особенно последующее за этим иэменение проводимости. Существенным является также пони жение отношения инспираторнои емкости к экс

пираторному резервному объему. По нашему мнению, очевидно, что наши предположения подтвердились и что найдено достаточно докаэательств тому: что описанные изменения сигнализируют об аномальных функциях дыхания у заикающихся и у нормальных людей; что заикаюциися не становитсл заикаюпимся только при разговоре, а что у него нарушена легочная вентиляция. Мы предполагаем, что приведенные результаты являются параллельным проявлением одной и тои же перифериинои причины, которая способствует нарушению речевого пролвления в результате иного механизма, а ее проявления мы смогли зарегистрировать с помощью электроакустическои диагностики патофизиологической Функции голосовых связок

вЛИЯНиЕ ПАТОФИЗИОЛОГичЕСКОГО СОСТОЯНИЯ ГОЛОСОВЫХ СВЯЗОК

НА РЕчеВУЮ СПОСовНОСТЬ индивиДА

Алжбета Пойтелимидова, Иосиф Пешак

университет им. Палацкого Оломоуц, чсСР

наше сообщение касается исследования взаимосвязей физиологического функционирования фонетического аппарата - гортани и речевой способности индивида. Мы полагаем, что функциональная способность голосовых связок может быть оценена различнои мерой в зависимости от их паратипического состояния

Разговорную способность предполагаем необходимой, координированной во времени совокупностью всех органов, которые участвуют при звуковой реализации речи. Это означает координированное действие респираторного, фонетического и артикуляционного органов.

С точки зрения речевой способности главная роль принадлежит собственноп реакции голосовой ціели в момент инициирования речевого акта. Голосовая щель оєразована голосовыми сухожилиями, укрепленными на голосовых хрящах, как схематически показано на рйс. 1.

рис. 1.

незадолго до речи голосовые сухожилия занимают фонетическое положение, т.е. натягиваются и голосовал щель закрывается

Рис. 2.
(рис. 2). Струя выдыхаемого воздуха, которал обозначена на рис. 3 стрелкои P, про-

Рис. 3.

рывает голосовую цель в момент инициирования речевого проявления. Последукций периодический поток столба воздуха над голосовыми связками порождает ток, который усиливается в артикуляционных полостях, принимает окраску к приобретает характер человеческой речи

Предположим, что важной предпосылко хороших речевых способностей является достаточно тесное соприкосновение обоих сухожилии. Такое соприкосновение должно быть прочным и при этом сдновременно обеспечи вать готовность старта при фонации непосредственно после раскрывания голосовой мели выдыхаемым потоком воэдуха

Предположим, что отміченная предпо сылка прежде всего зависит от профиля голпсовых связок в месте их соприкосновения Вероятно, что чем меньше будет соприкасающаяся область утонченного профиля, тем проще достигается увеличение удельного давления между закрытыми голосовыми связками при достаточно тонком построении системы обоих голосовых связок (см. рис. 4).

Рис. 4.
Если радиус закругления голосовых связок в месте их соприкосновения будет достаточно большим, то их сопротивляемость в области соприкосновения увеличится и в результате этого удельное давление будет недостаточным и, очевидно, достигнет наиболее неравномерного распределения (см. рис. 5)

Рис. 5.

Каждый человек очевидно рождается с отмеченным профилем голосовых связок, име юцим большои радиус закругления. Само расположение гортани у новорожденного при имитированном приеме, пици и дыхании значительно повьшено. По мере того, как в про цессе дальнейшего развития индивида гортань опускается по направлению к трахее, дости гается, очевидно, и уменьшение радиуса закругления профиля голосовых связок, уменьшение их толщины и тем самым более плотное их смыкание, что является предпосылкой для хорошей будущеи разговорнои способности индивида. врожденное и затруднительное пе реключение условных акустико-артикуляционнах рефлексов в течение периода дальнение дислалии и итерации обусловлено физиологически недостаточным приспособлением рече вых органов, вследствие описанных нами причин.

в течение дальнейшего развития радиу закругления профиля голосовых связок умень ыается так, что уменьыенная по толцине голосовая щель под влиянием достаточно боль шого удельного давления в контакте с тончайними конвекционными соприкасаю иимися плоскостями становится достаточно прочнои. Ход уменьшения радиуса закругления профиля голосовых связок в месте их соприкосновения под влиянием сопротивления потоку воздуха показан на рис. 6.

до тех пор, пока детская речь разви вается спонтанно, требование определенног ограничения понлтия разговорных способностей не является актуальным. Дело обстоит иначе в противоположном случае, когда в течение раэвития индивида радиус про филя голосовых сэязок не достигает достаточного уменышения в месте их взаимного соприкосновения. для такого паратипического закругленного профиля голосовых связок имеет место качественное изменение условии при прохождении экспираторного потока воздуха. в предположении изменения давления и изменения скорости выджхаемого потока воздуха в области голосовой пели имеет место

Рис. 6.

увеличение общего потокового сопротивления дыхательных путей.

Качественные изменения первоначального временного стационарного состояния имеют место при поступлении струи к аналогичнои среде с постоянным потоковым сопротивлением, когда предельныи слои отделяюмегося экспираторного потока постоянен; при этом возникает выталкивание массы потока при нестационарном режиме при одновременнои потере энергии рассеяния и, как следствие, воэникает снижение относительнои влажности в области над голосовыми свяэками и те высыхают. Очевидно при этом возникает нарушение биореологического режима при выходе экспираторного потока воздуха.

Голосовые связки спаратипическим профилем, с больиим радиусом закругления вместе их взаимного соприкосновения не могут быть закрыты достаточно тесно при их взаимном сжатии. Пониженное удельное давление в наиболее критичном месте из-за этого не будет удерживать достаточно плотное закрытие, которое бы препятствовало начальному выдыхаемому потоку воэдуха перед пробиванием голосовой щели в момент тесного смлкания перед инициированием речевого акта.

Такая неблагоприятная ситуация может быть частично решена непроизвольнои коррекцией давления выдыхаемого легкими потока воздуха и дополнительной попыткой поввпения упругости соответствуюпих мускульных групп, участвуюцих в закрывании голосовои щели. Таким образом, отмеченные попытки часто связаны с различными проявлениями итерационных признаков заикания.

доказательства предполагаемого утверждения мы провели с помощью ряда несвязанных между собой методов, о которых докладнваем в докладе "электроакустическая диагностика патофизиологической функдии голосовых свяэок". На основе этих доказательств обращаем внимание на существование паратипических изменении речевых органов, которые обуславливают речевую способность индивида и проявляются в своей экстремальной форме заикании.

Своим сообщением констатируем в первую очередь существование приоритета патофиэиологии речевого аппарата на отмеченные дефекты речи, обусловленные невротическими симптомами. в настоящее время причины заикания часто противоположны и не дают исчерпывающего объяснения этиологии описанного мучительного дефекта речи - заикания.

ON A STRANGE FASHION OF RUMANIAN ACCENTUATION ABROAD. A CONTRASTIVE SKETCH WITH GERMAN AND ENGLISH

ana tãtaru

Heidelberg, FRG

Abstract

Each language has its own, particular ways of accentuation, which must be observed in emphatic speech too. Thus, according to their prosodic specificity, an additional first-syllable accent is frequentily allowed in German and English but not in Rumanian emphasized polysyllabic words.

Our paper presents a recent extreme development of an erroneous first-syllable accent in Rumanian words, affecting all prosodic features. It usually occurs in some western broadcasting programs, as a strange, deliberate speech fashion.

1. Introduction
1.1. A language is constantly undergoing change. But this change can hardly affect the specific physiognomy of the language, in general, thanks to its inner conservative tendencies and to the feeling for cor. rect idiom of the native speakers.An excellent example offers us the Kumanian language, which could preserve its Romanic character for almost two thousand years,in spite of having been cut off from the main part of the Romanic world, developing among foreign languages of other groups,e.g., Slavic,Germanic, Ugric etc. There seems no doubt that also in our times of immense change in the life of mankind, lancuages will keep on maintaining their particular characters, even if this becomes more and more complicated.
1.2. We must admit that our bright technical period,making possible most accurate research in many fields of human activity casts its shadows, by: the constant decrease of respect for and appreciation of everlasting human cultural achievements, deterioration of moral standards and of the sense of harmony and beauty (to consider just what is accepted for music and dance nowadays).
1.3. The positive and negative sides of our era have unavoidably touched the field of language as well: while sophisticated technical devices facilitate minute language research and language teaching/ learning, quite shocking negative tendencies -far from being grounded on deeper scientific research, rather disregarding language specificity - are developing in many countries;e.g.,strange speech fashions,adoption of unnecessary foreign terms, frequent use of wrong grammatical forms etc. As a rule, they are also far from being the result of natural interference of languages in contact.Most likely, the native speakers sustaining them are similar to the superficial "enfants terribles" of our days, who seek publicity for their extravagant originality at any price. 1.4. Undoubtedly,improper alterations of everyday speech have occurred in the past too, without influencing standard speech at all, as fashions come and go. But about that time mass-media possibilities of spreading such speech fashions were not at hand. Now they are and language misuse can influence the speech of millions of listeners and
can become a danger to the specificity of any language.
1.5. Let us concede that we,phoneticians, also deserve unfavourable criticism,as we have not at all done our best for the extension of useful pronunciation knowledge to the masses of language speakers. In general, even school and university handbooks still lack quite important information on the specificity of language, mainly in the field of pronunciation. Phonetics continues to be underestimated in the study and practice of language.
1.6. Under the circumstances, it seens to be high time for linguists and especially for phoneticians, joined in international associations, to unite their efforts, at least, to protect standard speech from deliberate alterations, chiefly in programs to be broadcast for radio or television all over the world. Our paper is meant to draw attention to this apparently overlooked problem of our days.

2. Main Features of German, English and

Rumanian Accent in Contrast

2.1.For space restriction, we shall pick out just a few main word/vs. sentence accentual characteristics of these languages. 2.2.Similarities
2.2.1.The accentual pattern of these languages is free, in the sense that the accent is not constantly placed on the same syllable in all words. But it is also fixed, as their accent has a fixed position in the lexical pronunciation of each word;e.g.,G. ${ }^{1 *}$ Vater, getan, ${ }^{2 *}$ E.abbot, abôve, R. pasaj, pasare.
2.2.2. They have a dynamic or intensity stress, but it is usually associated with pitch variation. More often, the stressed syllable is higher in pitch than the unstressed syllables.Thus, the term "accent" can be used to define the correlation of stress and pitch (the same in this paper); e.g.,G. Gattin, ${ }^{*}$ E. wbman, F . carte 2.2.3. Their accent can have a distinctive
function, a trait which increases the importance of learning each word of these languages with its proper accent; e.g., G. zu máchen, zumachen, E.forecast, forecast, R. copii, copii.
2.3. Differences
2.3.1.a) Most G.and E.words have their accent on their initial part -as the Germanic tendency is to place the accent to the beginning, not to the end of words; b) whereas most R.words have their accent on the final part (the penult) -because the Roman ic tendency is just the reverse.
2.3.2.a)G.and E.polysyllabic words often have a primary and a secondary accent; b) but this is a mere exception in Rumanian, where words normally contain a single accent.Compare the: G. Scheinwerfer and E. photograph with the R. fotograf. 2.3.3.a) Certain G. and E. compounds can have two primary accents (a double accent) but b) this is a rare case in R.compounds; e.g. G. hąarscharf, E. 11l-advised, R. reaua-vointy but rea-vointă.
$2.3 .4 . \mathrm{a}$) Although in all three languages form words are generally unaccented in the sentence, the G.and E.prepositions are frequently stressed and get a considerable bigh pitch. b)Since almost all R. prepositions are unaccented, even in emphatic speech, they are never given the high pitch of main words.Compare: G.Bleibe bej mir, E. Come with me, R. Vino cuvine.
2.3.5.a)Variation of pitch, length and vow el quality are frequent in G.and E. unstressed syllables.Thus, their unstressed syllables are often shorter or even elided and sometimes undergo a vowel quality change;e.g., E. he, hevis, dictionary, G. meine, meinen.b) But nothing similar happens in Rumanian:it does not have long and short vowels -like G. and E.- and the relative medium length of its vowels is not perceptibly shortened by the absence of stress. Moreover, unaccented vowels are not elided or replaced by other vowels
in Standard pronunciation.
3. About Common and Different Means of Emphasis in G., E., R. Standard Speech 3.1. When addressing large audiences, especially over the radio, not only correct but also distinct speech is required to support intelligibility. For that aim,several means of emphasis can be used, provided that they correspond with the prosodic specificity of the given language. 3.2.It is quite incorrect to simply transfer any means of emphasis from one lan guage to another,because some of them occur in many languages -e.g., to pronounce the most important words of the sentence slower, clearly,distinctly and with a stronf er stress -whlle others are usual in one language but unusual in another language. It is thus common in R., but uncommon in G. and E., to pronounce the emphasized words not only slower and more distinctly, but also by loosening the junction of the pretonic syllables without raising their low pitch level; e.g., in-gri-jo-rează b) In accordance with their specificity, it is possible in G.and E. to add an emphatic first-syllable secondary accent on certain polysyllabic words; e.g., G. die individuélle Opposition can be: die Individuelle Opposition,likewise E. the infèridrity cobmplex , can be:..inferibrity complex.c) But the same units can be in R. only: opozitia individuálă, complexul de inferioritate. If emphasized, the beginning of words can be uttered somewhat louder, but without a higher pitch.Otherwise we adopt the main error of the new speech fashion and would say: 8pozitia individuală, codmpléxul de inferioritate, what is quite opposed to the particular tune of the R. speech flow. As an exception, a secondary accent is possible in R. standard speech:1) when emphasizing the contrast between two terms,e.g., Am zis: prepozítie nu postpozítie; or 2) on very few prefixes of negation and repetition; e.g.,
neinceput but necaz, a rè-cita (to cite again), but a recita (to declaim).
4. On the Development of the Word-initial Erroneous Accent of Rumanian Abroad 4.1. The foregoing contrastive analyses allow us to conclude that it is as bad to impose one's native atress and pitch shapes on the words of a foreign language, as to adopt foreign shapes for the native speech pattern.But it seems to be even worse to deliberately develop the adopted foreign prosodic shapes beyond any boundary, led by an extravagant originality.
4.2. To avoid misinterpretation, it must be underlined that no animosity against persons or broadcasting programs,just respect for my native language determined me to research and present this topic. Moreover, I located the registered examples in time only and the negative examples on the recording tape are confrunted with some positive examples of an older western radio speaker not yet "infected" with that dangerous "virus".
4.3. The new speech-fashion,adopted at present by most R. broadcasting speakers from abroad, has developed approximately during the last six years. Unfortunately it is not only more and more imitated,but - having reached its extreme degrees - it also alters all other R.prosodic features. Let us briefly examine its development: Phase 1. A couple of western R. radio speakers occasionally began to add a first syllable secondary accent on some long R.
 Phase 2. Meanwhile, the relatively rare emphasis accent becomes more frequent, being adopted by some more of their colleagues. It is now used on shorter words as well; e.g., còtitüra, for cotitura.

Phase 3. The added secondary accent is intensified and becomes alpo primary. The words are thus double-stressed, with two zimilar high pitch levels. A very strange tune in R. indeed! e.g., liberali, oombiná-
tie, stabilitate, soliditate (II. 87). Phase 4.The unfortunate development reaches its first extreme point, namely, the wora initial accent is added even on such words which have their original accent on the second syllable. A sequence of two accented syllables is the result.Quite an absurd situation in R., where even at sentence level the succession of two accents is avoia ed,e.g., patile. But this change determines some other important change:two successive accents cannot be uttered within joined syllables, they must be disjoined, even separated.Thus the meaning of words is altered,e.g. relactile(5.87)f.redctiile Phase 5.The strong intensity of the added accent causes the decrease of the original primary accent, which becomes secondary and its pitch is lowered,e.g., cómbativitàte, spériàfi,f. combativitate, speriáti (II,87) Phase 6. The original accent is dropped out while the added, word-initial accent is maintained.This second extreme point of the $d \theta$ velopment is the cause of the low pitch le vel of the previously accented syllable; e.g., connferinta, probleme, danez(II.87) for conferinta, probleme, danez.As a conse quence, the intonation contours together with the rhythm are considerably changed. Even vowel change and reduction of syllables are resulting;e.g., sot1e(so-ti-e) becomes só-tie (6.86), retactiile (re-ǎc-ti i-le) becomes relác-ti-le (II.87).
Phase 7. The accentuation fashion has now reached ites third extreme point: because of the tendency to stress any word-initial syllable, even form words, which are almost never stressed,become accented,being given a high pitch level. By this drastic change two wrong ways are open: either to introduce a pause between the accented form word and the following content word -if the accented syllables follow each other or to maintain the strong accent on the form word and to make the content word unaccented, with a low pitch level,e.g.,
vor losntinua (6.86)f. vorcontinua, b|realistă for o realist larevedere (II.87). 4.2. Our division into seven phases of development is certainly subjective as their characteristics are co-existing and interchanging. But it helps us to briefly follow the negative influence of this prosodic error on all other prosodic features. Namely, it leads towards a new tune, opposed to the R. specificity. Thus, the relatively smooth speech flow, with harmoniously rising and falling pitch of voice and being more joined than disjoined, turns into a rather abrupt speech with many high pitch levels,sounding sometimes irritated or commanding.
4.3. No use to add that the radio speakers committing these prosodic errors pretend to be or even are Rumanians, who are thus very likely to be imitated by their fanlisteners.As a rule, a native is more often imitated by other natives than a foreigner and his unusual speech is not perceived as mistaken, even if it is so.

Remarks

1. * The terms:German, English, Rumanian occur very often in the text, so we use them abbreviated: G., E.,R.
2.* The accent is marked right above the stressed vowel letter.
3.* Signs:'=primary accent, ${ }^{*}=$ secondary accent, $\mid=$ pause, $v=$ junction, $\Gamma=$ high pitch, L_ = low pitch.
Reference
2. Tătaru,A.(1981),"A prosodic contrastive analysis of prepositions in Kumanian, German and English connected speech" in the Study of Sounds, XIX, Tokyo; likewise: Tătaru, A. (1983), Româna: Pronuntarea (Rumant an Pronunciation), Heidelberg, pp. 128-157.

FOREIGN LANGUAGE VOWEL PERCEPTION AND PERCEPTUAL SYSTEM OF VOWELS

G.N. LEBEDEVA

Dept. of Russian Language
Institute of Chemistry and Technology
Ivanovo, USSR 153460

ABSTRACT

The aim of this work was to study the mechanisms of a foreign language vowel perception by the native speakers of Russian and Spanish, to describe some universal and specific features of perceptual vowel system and new qualities of "phonological ear".

Introduction

There exist three opposite viewpoints on the perceptual abilities of a person According to one of them, traditional for linguists, a perceptual space is identified with a phonological one. I.V.Scherba thought a person distinguished as many different vowels as there existed phonemes in his language, all other differences were not "in the light point" of his language conscience /1/. The second viewpoint has been formed as the result of psychophysiological investigations of person's perceptual abilities. According to this standpoint the ability to discriminate various classes of sounds (vowels in particular) is universal, a perceptual space, thus, being independent of a particular phonological system $/ 2 /$.
On the basis of data obtained in phonetic experiments one can formulate a third approach to person's perceptual abilities. According to this viewpoint a person is able to distinguish more sounds than the number of phonemes in his native language system. This ability, however, is also conditioned phonologically /3/.
A description of a perceptual system requires, in our opinion, the solution of the following problems: a) exposure of those features by which the units of a system are discriminated and classified; b) establishment of correspondence between the relevant features of a phonological system and the meaningful features of a perceptual system; c) stratification of perceptual system units (the relation between the units of different levels is obviously most close here); d) description of both the universal features of a perceptual system and the specipic ones dependent on a concrete language system.

This paper presents a description of a part of a perceptual system functioning in modern Russian literary language, i.e. the description of foreign language vowel perception mechanisms (by the native speakers of Russian).
Such an investigation would allow us to specify such general concepts as the supposed foreign language vowel identification with the native language phonemes, the unification of "more or less resembling", and non-differentiation of what is indiscriminative in a native language. "A phonological ear" of the Russian language speakers is formed under the influence of an extremely interesting vowel system: with a comparatively smail vowel phoneme inventory there is a tremendous variety of their phonetic realization. This is due to the following two basic reasons: the influence of the neighbouring soft consonants and a considerable reduction in unstressed syllables. The problem of main principles of different sound realizations'perceptual unification into something resembling is of paramount importance for the Russian vowel system. As far as general characteristics of the Russian vowel perceptual system are concerned the following is known: vowels are actually organized in some "space"; the number of discriminated sound units being more than the number of phonemes, and the nature of each concrete sound phonemic interpretation depends on such factors as the length of a phonetic context, the type of a task being solved by identification, the participation of higher language levels. The specific character of "the Russian phonological ear" undoubtedly reveals itself by the analysis of natural vowel identification. The substantiality of investigation of a foreign language vowel perception depends greatly on the fact what language is to be chosen as "foreign" and what in this case is a native one. We examine a perception of English (the British variant) and Spanish (the Cuban variant) vowels by the native speakers of Russian. In our opinion, this is one of the "advantageous" experimental situations, the following circumstances
determining its preference: 1) considerable differences in the number of oppose phonemes in Russian and English, and minimum differences in Russian and of the nature of a native language vowel perception by the Russians; 3) great significance of data about the perception of English and Spanish vowels by the Russians for teaching English and Spanish phonetics.
In the present paper we'll also use the data obtained In groups of Cuban listeners /4/ since "from a linguistic point of view, what distinguishes the speakers of the same natural vowels and what can be interpreted as the influence of language phonology on speech activity is of prime importance" $/ 3 /$.
Let's examine Russian, English and Spanish vowels from the point of view of presents forment distributions of Russian, English and Spanish vowels used in experiments.

Fig. 1 Position of Russian (0), Eng-
ilsh (0) and Spanish (x) vowels on a formant plane $/ 5,6 /$.

Experimental Material and Listeners Tape recordings of Russian, English and spanish stressed vowels were used as a
starting material. The vowels were cut out of the words in which they were pronounced by three male speakers of Russian The listeners were 36 native speakers of Russian who didn't know either English or Spanish and 20 Cubans who were the beginners of Russian.
Stages of Experiment and Main Results pair comparison of the experiment was pair comparison of English and Russian could prove to be potentially indiscriminative. Besides pairs including basic
vowel allophones, also the pairs containing one of the coll Russian vowel al English vowels was presented in a pair both with different allophones of one Russian phoneme and with allophones of different Russian phonemes. The listeners had to judge each pair of vowels for per ceptual site "plus" if they considered the vo wels identical and "minus" if they thought them different.
Let's see how English vowels are placed in a perceptual space of Russian 1 isteners capable of discriminating 18 allo/7/.The pair comparison revealed the following (see the Table): only English $/ /: /$ is placed, in the area of Russian / //; English $/ /: /$ and $/ I /$ are placed in the
area of $/ 6 /$; English $/ e /$ in the area of area of $\mathrm{le} /$ English $/ \mathrm{Pe} / \mathrm{I} / \mathrm{a}: / \mathrm{l} / \mathrm{O} / \mathrm{M} / \mathrm{A} /$ are placed in the area of $/ a /$; English $/ 0 /$ and $10: /-$ in the area of $10 /$; English $/ V /$, $/ u: /$ and / $1 \mathrm{i} / \mathrm{/}$ are placed in the area of Russian /u/. Within these areas most similarity is found between an English vowe 1 and two appears to be one more proof of their close proximity (with the exception of Russian /ul, allophones of which are not discriminated from English (u:/). noticed between vowels presented in pairs are connected with i- like soundings of Russian ' V and ' V ' allophones, therefore, comparison with such allophones is the best situation for perceptual discriminaComparison of these data with the results of the analogous test carried out in a group of Cuban listeners shows the following: as a whole the Cubans discriminate the same vowels better than the Russian listeners they differentiate Russian $[\sigma y$ and English /I/, Russian [a] and English / / /, Russian Ce / and English /e /, Russian [a], [a'] and English $/ 0$ /, Russian $[0]$ and English /0/. Common features revealed in a pair comparison test are English $/ 1: /$, Russian [Cr] and English $/ 1: /$, Russian $[a]$ and English $/ x /$ and,$~$
$l a: /$ Russian $[0],\left[0^{\prime}\right]$ and English $/ 3 /$, Russian $[0]$ and Engiish /u:h, Russian [u], ['u], ['u'], [u'] and English /u:/, Rus-
sian' u] and English $/ v /$ and $/ 0: /$. Both the Russians and the Cubans discriminate Russian /i/ from English /I/, allophones of Russian $10 /$ from English $/ 3 . \%$.
The results of this experiment teatify to the fact that even in case of pairly preof the latter are far from playing a leading part in vowel discrimination as it could have been expected. Speakers of different languages distinguish the se sounds differently /8/.

In another test the listeners were presented for identification only non-nativ either by means of their native alphabet of by means of transcription. Several different types of answers turned out to be possible in this test: 1 unanimous is the native of an ang one

table
Position of non-native vowels in a perceptual space of Russian and Cuban listeners (results of 3 Tests: o-pair comparison; - $^{-}$
asthe Russians

$\frac{\text { Russian }}{\text { English }}$	i	$b l$	e	a	0	U
$l:$	$0 \Delta \square$	$0 \square$				
l	Δ	0Δ	Δ	Δ	Δ	Δ
e			$0 \Delta \square$			
\mathscr{X}			$\Delta \square$	$0 \Delta \square$		
$a:$				$0 \Delta \square$		
Λ				$0 \Delta \square$		
∂				$0 \Delta \square 0 \Delta \square$		
$3:$					$0 \Delta \square$	0Δ
$U:$					0	0Δ
$v:$			Δ	Δ	Δ	

b) the Cubans

2) phonetic interpretation of a vowel corresponding to its articulatory an acoustic qualities and reflecting ability for a more subtle analysi ers ability for a more subtle instance

 roneous interpretation of a vowel testify-
ing to the fact that a listener is not able to correlate a perceived sound with one of the Russian phoneme or with any terpreting this vowel the listeners use 20 different signs, and to $/ I /$ where they use 6 signs; 4) refusal to identify a vowel, the main motive being n there's no such the main motive

Identification of English vowels as Rus sian phonemes presents additional dat perceptual boundaries. It's evident that the area of Russian $|a|$ is characterized by the most extensive boundaries, includ ing English $/ a: /, / a /, / 0 /, / x /$, partial ly characterized by the of most and narrow boundaries: only English / /i/ is identified as Russian /i/, and only in isolated instances the realizations of some vowels are classified as /u/. The areas of Russian le/flol position.
ification ex, for comparison, the idenuban list of the same English vowels by號 be divided in 4 groups: 1) unanimous identification of English vowels as one of
 luil; 2) phonetic interpretation of vowels, for example, identification of Eng-
lish $/ 0: /$ as $[u 0\}, / v / a s ~[i o l, ~ / O / a s ~$ [ao]; 3) erroneous interpretation of vo identify a vowel.
In order to extend our knowledge of Rusgian vowel perceptual boundaries one more test was carried out. Spanish vowels (the Cuban variant) separateantification to the native speakers of Russian.

Fig. 2 Identification of Spanish
vowels by native speakers of Rus
sian (dotted line in a figu
As shown in Figure 2, Spanish /i/, /a/ , As are identified by Russian listeners better than Spanish $/ e /$ and $/ 0 / 0$ In most cases Spanish $/ i /$, $/ a /$, $/ u /$ are placed in the perceptual space of Russian $/ i /$ cual, identify their native $/ u /$ vowel worst of all other vowels. Identification of le/ and $/ 0 /$ by Russian ilisteners is accidental. This fact is manifested in that, on the one hand, they are identified at the same time with several Russian phone-
mes, on the other hand, their phonetic interpretation is extremely various.
For further elucidation of the features of a perceptual vowel system ABX-method tests were carried out. In such experiments the stimuli are presented in triadso The listeners are asked to determine which of the first two vowels (A or B) the third vowel (X) is most like. As A and B stimuli we used only those English vowels which in previous tests were identified with one of the Russian X vowel. The results of this test are of prime interest in two respects: 1) to what extent the correlation of native and non-native rowel depends on the type of a task; 2) what new characteristics of Russian rowels are revealed in this case. Quite a number of facts shows that a perceptual eatimation does not depend on the type of a task. Thus, it's revealed that Russian $/ i /$ and $/ 6 /$ are close to English $/ 1: /$ and not to /I/ (it's also obvious from other tests). The listeners consider Russian la/ vowel similar to English $/ x /, / 0 /$, $/ 1 /$ and $/ a: /$, i.e. extensive boundaries of a vowel area identified with Russian /a/ are also present here. When estimating /e/. $10 /$, ful sounds, the listeners' res ponses give some new knowledge (see the Table). The ABX-comparison does not reveal similarity between Russian [u] and English $/ V /$, also between Russian $[u]$ and English/u:/ though in previous tests these vowels are identified. Comparing ['0] and ['0'J allophones with English /3:/ the iisteners consider them equally alike what is not observed in other tests The same vowel triads were presented for $A B X$-comparison to the Cubans (see the Table). In contrast to the Russians the Cubans estimate as most resembling vowels $/ G /$ and /I/ (in a pair comparison test these vowels are also confused; English /I/ is classified as Spanish /e/ in an identification test).
Discussion
The study of foreign language vowel perception is only one of possible methods to obtain data for the description of a perceptual system. The results received are still insufficient for the presentation of this system in terms of quantitative correlations between perceptual and phonological units. However, one can draw quite definite conclusions as far as qualitative characteristics of the system are concerned: a) a perceptual system is more rich than a phonological one. The influence of a native language phonologia cal system on non-native vowel perception is not ebsolute. The listeners always use the greater number of units than the number of native language vowels. Therefore, the phonology of speech hearing is not only the ability to identify a non-native sound with a native one, but also the ability to understand that it's not a na-
tive language sound; b) comparison of vowel perception results with vowel formant characteristics shows that vowel identification is far from being always explained only by their position on a formant plane. This testifies in favour of the fact that distances between the perceptual system units are determined by the properties of a mother tongue; c) comparison of both group results makes it possible to reveal certain universal and specific features of a perceptual system. The universal features are evident in that, first of all, the vowels located in the apexes of the cardinal vowel triangle (i-a-u) appear to be perceptually most "adaptedn to this system; secondly, Russian vowel allophones with i-like transitions reveal perceptual independency: both the Russians and the Cubans are not inclined to identify English vowels with Russian ' V or 'V' allophones even in case when close acoustic proximity may be expected. However, this universal perceptibility to i-like transitions of Russian vowels reveals itself rather specifically when speakers of different languages identify Russian "soft" allophones/8/; d) foreign language vowel perception study gives an opportunity to expose those sound features which are alien to the perceptual system of speakers of a given language. Thus, English /I/,/3:7 and partially /V/ do not"go in"the perceptual system of Russian listeners.
The data obtained testify to the complexity of a process providing non-native phonological system vowel perception and to the importance of its further study and comprehension.

REPERENCES

/I/ Щерба Л.В. Русские'гласные в качественном и количественном отношении. Л., I983.
/2/ Чистович Л.А., Кожевников В.А.Восприятие речи. - В нн.: Вопросы теории и методов исследования восприятия речевых сигналов. Л.,I969.
/3/ Бондарко Л.В. Фонетическое описание языка и фонологическое описание речи. Л., I98I, с. 188.
4/ Бондарко Л.В. , Лебедева Г.Н., Лейва Х. Восприятие гласных неродного языка и механизмы фонологического слуха. - В сб.: Фонетическая интерференция. Кваново, 1985. 5/ Јебедева Г. Н. Восприятие гласных неродного языка. Канд. дис. Л., I982.
$/ 67$ Лейва Х. Фонологический слух и восприятие гласных родного и неродного языков /7/ Бондарко Л.В., Вербицкая Л.А., Зиндер Л.Р., Павлова Л.П. Различаемые звуковые единицы русской речи. - В кн.: Механизмы речеобразования и восприятия сложных звуков. М.-Л., I966.
/8/ Лебедева Г.Н. Универсальное и специфическое при обработке фонетической информации. В печати.

SOME OBSERVATIONS ON PHONETICAL HISTORY OF MELANESIAN PIDGINS

VLADIMIR I.BELIKOV

Dept.of Linguistics
Institute of Oriental Studies Academy of Sciences of the USSR Moscow, ul.Zhdanova, I2

Abstract

The analysis of phonetic correspondences in two Melanesian pidgins (Tok Pisin and Bislama) against the background of English data is undertaken. The phonetic correspondences are shown to be regu-lar for the modern state of the vocabulary, i.e. with all loans considered, and display almost no regularity for the early pidgin stage.

Linguistically Western Melanesia seems to be the most heterogenous part of the world. The total number of languages spoken here reaches nearly a thousand. Bi- and multilingualism was widely spread here, but there had been no linguae francae known on large territories up to the end of the nineteenth century. From that time on the official functions in the area have been hold by the metropolitan European languages: German succeeded by English in New Guinea, English in Papua and British Solomon Islands, English and French in New Hebridies. Yet the natives acquired almost no knowledge of the European languages, the function of interethnic communication media being gained by the English-based pidgins. All those pidgins descend from Bichlamar, a trade jargon spread during the middle of the last century on the Melanesian seashore, in Micronesia and Western Polynesia. In the second half of the nineteenth century Bichlamar arose as the
only means of communication between the Melanesian labourers on the European plantations in Queensland, Samoa, Fiji, New Caledonia. Different variants of the jargon stabilized in different parts of the Pacific, thus leading to the resulting divergence.
These stabilized pidgins came into common use as linguae francae due to Melanesians returning home after the completion of their contracts. Beginning from the first decades of our century interethnic marriages resulted in the creolization of the pidgin in New Guinea, and later - in the New Hebridies and in the Solomon Islands. Meanwhile missionaries began applying pidgins in church and at school. Thus the process of lexical enrichment and sophistication of grammatical structure of noncreolized pidgin variants started. The number of native speakers of the newiy formed languages is not great, and up to now they exist chiefly in the forms of expanded pidjins (in the terms of Miblhäusler /6/), nevertheless in the last decades, being used in press, radio, TV, and fiction, they began to acquire new communicative functions; in the 1970's they got the official status. Now a linguistic family consisting of three closely related Neomelanesian languages has formed, including Tok Pisin (Papua New Guinea), Bislana (Republic of Vanuatu and Neosolomonic or Pijin (Solomon Islands).
tue report deals with some aspects of Neomelanesian comparative phonetics and is based on the data of Tok Pisin and Bislama, the languages that have representative dictionaries and a number of available texts. ${ }^{I}$
In the formation of Neomelanesian languages, English segmental forms were applied to the semantic system of Melanesian and underwent the influence of the aboriginal pronouncing habits. Mother tongues of the early pidgin speakers belong to the Oceanic branch of the Austronesian. Phonological structure of the majority of the Oceanic languages is rather simple. Usually a five vowel system is present: i, $\theta, a, 0, u$. The opposition of voiced voiceless stops is generally accompanied by the prenasalization of the former labio-velar p^{w} and k^{w} are common; the phonological $\mathrm{r} / 1$ opposition may be absent. Labials may have stop and fricative allophones $p \sim b \sim \beta \sim \sigma$ opposed to the sonorant bilabial w. Affricates are rare, frim catives are usually represented by s; h is often non-phonemic. Typical syllable structure is $\mathrm{CV}(C)$. Consonant clusters are rare, being usually impossible wordfinally.
Comparative linguistics deals with regular phonetic correspondences of the inherent lexicon and interprets the irregularities, jet it is not easy to destinguish the inherent and the borrowed in pidgins and creoles. In spite of the obvious lexical similarity of Neomelanesian languages and of English ${ }^{2}$, the latter cannot be regarded as their direct ancestor: "Protoneomelanesian" was an early trade jargon with unstable grammar and a scarce vocabulary of some three to four hundreds of items not necessarily of English descent. For many words of English origin it is difficult to define the exact period of their arising in the trade jargon / stabilized pidgin / expanded pidgin / creole,
and to determine, therefore, whether these words can be treated as inherent in any sense. It seems doubtful if words of the German origin adopted at the begining of the stabilized pidgin stage, should be regarded as loans.
Let us first consider English-toncreole sound correspondencies taking into account all the creole lexics of the English origin indiscriminately.
The time-limit and the restrictions of exclusively written sources do not permit to dwell on the question of consonant cluster simplification and vowel epenthesis. Any standards seem hard to be found here, for, on the one hand, Neomelanesian languages exist in the form of different thnolects, and on the other, the degree of proximity to the English models varies greatly depending on the sociolect. ${ }^{3}$
Regular corresponcences are rather trivial and coincide in Tok Pisin and Bislama for the majority of the English phonemes. Vowels. $\frac{I}{4}, i \gg i ; e, e i>e ; \infty, \wedge, \alpha:>a ;$ D, ou $>0^{4}$; v, u: $>\mathrm{u}$; eə $>$ ea; iə> ia; uə> ua; difference between the reflexes of the English diphthongs ai, oi, au exists only when written: ai, oi, au in Tok Pisin and ae, oe, 20 in Bislama. English ∂ : is irregularly reflected as $0, a, e_{\text {; }}$ in particular items of the basic vocabulary, traceable back to the trade jargon, the reflexes in Tok Pisin and Bislama are identical: doti - toti 'dirty', tanim - tanem 'to turn', gel - kel 'girl', sket - sket 'skirt'. The final $\partial>a$; non-final ∂ has different reflexes in orthography. Such variability (as in Bislama supos~sipos~sopos \sim spos 'if') leads to the supposition that this is just means of coding in written form. In the vowel system the reflexes of the final - - : should be pointed out (non final 0 : in both languages becomes o). In Bislama final -0 : >0~oa (free variants?): sto~stoa 'store', lo~ loa 'law'. In Tok Pisin after labial con-
sonants - 0 : > oa (for some words monophthong variants also exist): moa~mo 'more! boa 'drill' (< bore), woa 'war'; after non-labial consonants -v: > ua: plua 'floor', sua 'I. sore, 2. shore', stua 'store'. In late borrowings no diphthongization exists: lo 'law'.
Consonants. In Tok Pisin stops generally retain the distinction of non-final voiced and voiceless, final stops being always voiceless. The loss of voicing is registered also in other positions: kalap 'to gallop', dispela~tispela 'this'. In Bislama voiced stops are generally devoiced if not after the nasal. On the cont rary, the sequence nasal - voiceless stop may result with the voicing of the latter: rapis 'rubbish', kampani~kambani 'company'. At the same time in the initial position not only can b retain its voiced characteristic, but p also can be voiced: bambu 'bamboo', baenap 'pineapple ${ }^{55}$. Interdental $ð$ and θ in both languages are reflected in the same way as dental stops. English s, $2, \int, 3$ are substituted by the Neomelanesian sibilant s. In Tok Pisin tf and non-initial $d 3$ have the same sibilant reflex, initial d3 retaining its quality. Affricates are preserved in Bislama, varying by voicing, however in the orthography j is chiefly used: fiuja 'future', haejin 'hygiene', safrej 'suffrage', jusum 'choose'. Labial consonants w and V are generally retained, but in Tok Pisin can merge with the resulting bilabial w. The phoneme f is optional in both languages, and can be substituted by the labial stop p. In Bislama substitutions $f>V$ and $f>b$ also occur: tevren 'different', binka 'finger'; there are some cases of hypercorrection as well: fikemap 'to pick up', foes 'voice'. Nasals, $r, 1$, and y are retained in both Neomelanesian languages. The phoneme h in some ethno- and sociolects is optional and can be dropped. Some words in both languages are chiefly used
in a hypercorrect form: hai - hai 'eje'. Some of Tok Pisin speakers pronounce initial hu- as wu-: huk ~wuk 'hook'. Regular correspondences shown are found both in the yocabulary inherited from the "protopidgin" and in the new borrowings. However, in the basic vocabulary of the Neomelanesian languages many instances of other correspondences are found. Some of them are ideosyncratic, cf. $\underset{\text { l }}{ }$ ia in giaman - kiaman 'to lie, be false' (<gammon) or ou>a in banara - banara 'bow' ($<$ bow and arrow). But the essential part of the "irregular" correspondences is systematic enough.
hese are the most important.
I. I>e, e.g. lewa~leva - leva 'liver', melek - melek 'milk'. 2. $\mathrm{n}>\mathrm{a}$, e.g. stap - stap 'leave' (< stop), antap - andap 'above' (< on top). 3. ou >u, e.g. nus nus 'nose', bun - bun 'bone'. 4. e> 2 banis - banis 'fence', salim - salem 'to sell'. 5. $t, d>r$ intervocally, e.g. Sarere 'Saturday', kirap - krap 'to get up'. Significantly, in the earliest indigenous vocabulary the frequency of those "regular irregularities" is quite comparable to that of regular correspondences discussed above. Thus, in the Swadesh 100 word list the correspondences $x>0$ and $p>a$ are found twice each: Bislama tok 'dog', long 'long', hat 'warm' (< hot), wanem 'what' (< what name).
In such cases the principles of comparative linguistics presuppose the reconstruction of two distinct phonemes in the parent language, though it is obvious that different reflexes are traced back to the same English phoneme.
The percentage of "irregular" corresponences in Tok Pisin is higher than that n Bislama, which could be a result of the complete absence of the English normalizing effect on Tok Pisin during stabilization and initial creolization period. Meanwhile, Bislama underwent the stage
of regularizing sound corresponcences. Therefore, the following conclusions can be arrived at. In Neomelanesian, the English-based lexicon taken as a whole permits to establish regular phonetic correspondences. However, in the vocabulary arising from the trade jargon the seeming irregularities prove to be systematic. So in early pidgin Bichlamar phonetic correspondences display almost no regularity. It would be desirable to verify these findings on the data of other pidgins.

Notes.

I. Tok Pisin sources: Rev.F.Minalic's dictionary $/ 5 /$, texts narrated by speakers of different Tok Pisin variants /4, IO/, a play $/ 7 /$ and poems $/ 3 /$. Bislama sources: J.-B.-M.Guy's dictionary $/ 2 /$, agricultural show booklet $/ I /$, the book on current problems of Vanuatu $/ 8 /$, poems 19/.
2. The number of coincidences in the Swadesh 100 word list is: Tok Pisin English - 70, Bislana - English - 77, Tok Pisin - Bislama - 80.
3. Tok Pisin has standard orthography, but there are many deviations in printed sources. Orthographical practice in Bislama abounds in rough anglicisms. Even the text of national hymn in the book edited under the direction of the Vanuatu prime minister w.H.Lini includes the word klat 'to be glad' in two different anglicized forms: glat and glad /8, p.4/. 4. wo > wa in both languages: wasim wase: 'to wash', was - waj 'to watch'. Here and further Tok Pisin word appears the first in a pair, Bislama word - the second.
5. In many Oceanic languages the prenasalization of the initial voiced is very slight or absent altogether. Besides, the phenomenon described can arise due to

Iricativization $b>\beta$.

Bibliography.

I. Akrikaja So, I \& 2 Sept. I978, s.1., s.a.
2. J.-B.-M. Guy. Handbook of Bichelamar, Canberra, 1964.
3. D.C.Laycock. Creative writing in New Guinea Pidgin, - S.A.Wurm (ed.) New Guinea area languages and language study, vol.3, fasc.I, Canberra, I977.
4. D.C.Laycock. Materials in New Guinea Pidgin (Coastal and Lowlands), Canberra, 1970.
5. F.Mihalic. The Jacaranda dictionary and grammar of Melanesian Pidgin, Milton, I97I.
6. P.Mühlhäusler. Structural expansion and the process of creolization, A.Valdman, A.Highfield (eds.). Theoretical orientations in creole studies, N.Y., I980.
7. J.Tokome. Oli kam na paulim yumi, port Moresby, 1973.
8. Vanuatu. Twenti wan tingting long taem blong independens, Christchurch, 1980.
9. A.Fendt (ed.). Lali: A Pacific anthology, Auckland, I980.
IO. S.A.Wurm. New Guinea Highlands Pidgin: Course materials, Canberra, I97I.

FATIMA YELOYEVA

Dept. of General Linguistics Leningrad State University Leningrad, USSR 199036

While analysing phonetic interference that took place in the process of formation of the Far East Pidgin Russian the following types of interference were discovered: phonemic substitution, underdifferentiation, overdifferentiation of phonemes, differentiation by non-relevant features.

INTRODUCTION

Taking part in the field studies of the Udihe language in the Ussuri region the following fact was discovered. A number of elderly Udihe speakers, obviously unable to express themselves in Russian, use as a second language a Russian-based pidgin. Far East Pidgin Russian (PR), as it appears, was in a wide use in the areas along the Amour-river course and also in the Ussuri region in the end of the XIX beginning of the XX centuries. Nowadays it is still used by a limited number of speakers from the oldest generation of Udihe, Nanai and other Tungus-Manchu nationalities. The PR is definitely a filiation of the Russian-Chinese trade language formed in the process of Russian-Chinese trade relationships, but used also by other Far East ethnoses (Mongol, Tungus, Manchu etc) while being in the contacts with Russians. The fact that it was also used in their own communication is

YELENA PEREKHVALSKAYA

Dept, of Indoeuropean Stuaies
Institute of Linguistics
Leningrad, USSR 199053
not excluded.
The basic data for the present report were obtained in the Ussuri region mainly Prom Udihe native speakers. The PR seems worth being investigated as an interesting case of interaction between typologically dissimilar language systems. It is a Russian-based pidgin, therefore, its vocabulary is mainly of Russian origin, but the latter is realized exclusively by means of the Udihe phonetics. The fact mentioned together with an unusual word or der, reduced granmar changed word meaning and native Udihe intonation, makes this language hardly understandible for an unused Russian speaker.
The aim of the present work is to demonstrate the regularity in the substitution rules, functioning while PR speakers pronounce words of Russian origin, to trace back interference processes that took place during the formation of the PR. The picture is complicated by the secondary influence of Russian, the first langrage of the joung Udihe generation.

CONSONANTS

One of the general principles of consonant functioning in Udihe is the weakening in the intervocalic position. Thus voiced plosives $/ \mathrm{b} /$ and $/ \mathrm{g} /$ are realized as fricatives $[\beta]$ and $[\gamma]$ between vowels. In the same way unvoiced plosives $/ \mathrm{p} /$ and $/ \mathrm{k} /$ that are realized as aspirated in the ini-
tial position, loose this feature between vowels ($/ \mathrm{k} /$ also appears as a velar [q] near /a/, /o/).
Table I. presents a comparison of the

Uaihe (row I) and Russian (row II) consonant systems. The main phonemic variants relevant for the interference processes are in the brackets.

Analysing the interaction of consonant systems in the ystems in the languages, the following cases of phonetic interference can be pointed out.
I. The substitution of Russian phonemes by the articulatory similar but not fully identical Udihe sounds, e.g. Russian nonpalatalized unvoiced plosives are represented as corresponding Udihe consonants: $/ \mathrm{p} / \rightarrow\left[\mathrm{p}^{\mathrm{h}}-\right],[-\mathrm{p}-] ; / \mathrm{t} / \rightarrow\left[\mathrm{t}^{\mathrm{h}}-\right],[-\mathrm{t}-] ;$ $/ k / \rightarrow\left[k^{h}-\right],[q]$ (near $/ a /, / 0 /$) , $[k]$ (after $/ s /$), cf. [photoo] (<потом) ithen!, [phapa] (<папа) 'father', [qa'pus'ta]
(<капуста) 'cabbage', [u'pala] (< упала) '(he) fall', [qam'paf] (< кампания)'together with (postposition)', $\left[t^{h}!^{\prime}\right.$ rawa $](<$ трава) 'grass', [th^{h} 'qој] (<такой) 'sо', $\left[t^{h}\right.$ utə $](\leqslant$ тута)'here', ['qása] (<капиа) 'gruel', [qo'roto](<огород) 'garden', [$\left.k^{h} \partial^{\prime} d \partial\right]\left(<\right.$ когда) ' when', [$\left.k^{h} \partial p^{\prime} k \partial n\right]$ (<капкан) 'trap', [do'loqo] (< далёко) 'far away', [bos'toqa] (< Восток) (place name).
Russian palatalized unvoiced plosives / $\mathrm{p} / /$ and $/ k$ '/ correspond to phonemic variants functioning in Udihe: [p'ej] (< пей '(he)
drinks', $\left[k^{\prime} i^{\prime}\right.$ tajks'i $]$ (<китайскии) 'Chine[, [[k'i'p'i] (< кипи)' (he) boils'. As for pading sound, thus it is regulary replaced by the affricate /ts/, e.g. [tsur'ma] ($<$ торьма)'prison', ['detśsi](< дети) 'child'. 2. One of the most characteristic types differentiation of features. Thus, Russian unvoiced fricative / $/ \mathrm{s} /$ (with one focus) acquires the second middle focus \rightarrow [${ }^{6}$]: [s'dip'1] (< спи) '(he) sleeps', [qa'śa] (<коса)'sand bank', [is'rkaj] (<искай) '(he) seeks'. The same rule is detected for the palatalized $/ s^{\prime} / \rightarrow\left[s^{\prime}\right]:\left[s^{\prime} i^{\prime} d i\right]$ (<сиди)'(he) sits', [śo'r'em'] (<все время) 'all the time', 'waśa (< В (personal name). The result of the process described is the neutralization of the opposition /s/ $-1 / s^{\prime} /$ in the PR. Aussian unvoiced sibilants represents which are not found in Uaihe, e.g. [sej] (<шей)' (he) sews', ['waśa](< ваша)' you, your (pl.), [uśu'wa.j] (< выпивай)' (he) ешbroiders', [i'śo] (<eqe) 'still, yet',
['b'eśi] (< вещи) 'things, belongings'. So, four Russian phonemes turn to be represented by a single Udihe phoneme.
The parallel rule can be deduced for Rusnot found in Uaihe. The mule of their re presentation is the following: in the word initial position and after /n/ they are substituted by Udihe affricate /tí/
(with the second middle focus), e.g.:
 (< изюбрь)'roe', [dźi'ma] (< зима)'winter', [đźi'na] (< жена)' wife', [' đźénśip] (<женщина) 'woman', ['phandźa] (<фанза) 'house of a Chinese type'.
ted by the voiced member of the represenon $/ \dot{s} /$ - $\dot{z} /$, that seems to be oppositi-
 чужой) 'strange', [maga'źin] (<магазин) 'shop', [qol'Xoz ${ }^{\text {anoth }}$ (< колхо3) 'kolkhoz'. presents the way of representation of Bus sian liquids $/ 1 /$, $/ 1 / /, / r /$ and $/ r^{\prime} /$. Udihe does not distinguish these phonemes, here one finds only one sound of the grozed as Rustion [usian lateral $/ 1 /$ (not velaripycckий was adopted in Udihe as [1u'sa], this word must be considered as a word of
Udihe origin. In the PR the same word ap-
pears in the form ['ruśku]. PR speakers still mix them in the intervocalic position. In this aspect the PR follows the neral trend of consonant weakening in the middle position functioning in Udihe. In the initial position /i/ and /r/ never mix wels leads to hrpercorrection etween vo [lugal (<лyu) '0nion пои) 'blind', ['riśa].(<рис) 'rice', ['riba] (<рыба) 'fish', ['maliśa] (< малец) 'baby',[p'ir'ot] (< вперед) 'forward', ['b'eraj] (<белый) 'white', ['pharqam] (< палкой) 'with a stick', [as'tara] (< ocталась) '(he) remained'.
3. There are also cases of phonemic differentiation by non-relevant features. Thus, voiced labio-dentals /V/ and /v'/ which in Russian form an opposition based on the in the PR in the following way: non-palatalized / V / is replaced by the semi-vowel /w/, while palatalized / ${ }^{\prime} /$ / is substituted by palatalized bi-labial plosive [b'] or by calic position. The processes described result in annihilation of the former op position, e.g.: ['wani] (<Ваня) (personal name), [da'waj](<давай) 'let', [$t^{h^{\prime}}{ }_{\text {ra'wa }}$ w]
 ['b'idala](<видела) '(he) saw',['b'eśiràm] (< вечером) 'in the evening', [dźi' β 'i] (<живи) 'life', [as'taß'i] (остави) '(he) leaves'.

VOWELS

As for the vocalic system, Russian and Udihe differ greatly. One of the most prominant chracteristics of Udihe is the vowel harmony. E.R.Schne:

$$
\left.\begin{array}{cccc}
\text { II. } & a & \text { ae } & e \\
\text { III: } & 0 & \stackrel{\theta}{\partial} & J
\end{array}\right\}+1
$$

On the other hand, Russian vocalic system is characterized by the vowe reduction state that the vowels [a] and [0] neutralized in the unstressed position in Russian, in Udihe belong to different harmonic series. The interaction of such systems of a word in the PR depends on the quality of the stressed vowel: in other words, in the PR Russian reduced [∂] can be substi-
 cording to
［ t^{h} am do＇rawa qo＇loj］（＜там дрова колой） ＇（he）cleaves wood yonder＇，［ro＇botaj ＇noфо i＇wo］（＜работай много его）＇he works much＇，［adi＇naqaw ${ }^{\prime}$ ］（＜одинаковый） ＇alike，as（postposition）＇，［Xo＇rośi］（＜ xороший）＇good，well＇．
Vowels／e／and／i／in Udihe belong to the same harmonic series，these sounds form nc opposition based on harmonic rules． In Russian／e／and／i／are neutralized in the unstressed position．One must take in－ to account that The Russian language ac－ quisition was performed in its oral form， therefore［e］is registered inthe PR only in the stressed position；in other positi－ ons one invariably finds［i］，e．g．： ［tśi＇wo tśi＇wo］（＜पero－чero）＇different＇， ［＇deda］（＜дед）＇old man，husband＇， ［fiśi＇wo pi＇śsej i＇wo］（＜ничего не мей ero）＇（she）sews nothing＇，［ $\mathrm{pi}^{\prime} \mathrm{u}^{\prime} \mathrm{m}$＇ej］ （ $<$ не уме行）（he）cannot＇．
One of the main characteristics of the Udihe vocalic system is the phonological opposition based on vowel length．The vowel length in the penultimate syllable defines the processes of reduction in the final position ，cf．Udihe［bIni］－－
 ［ətatām＇］＇I worked＇（compare with the present tense［ototom＇i］＇I work＇where the last vowel／i／is always preserved）． So，the reduction happens only if the vo－ wel of the penultimate syllable is long． In the $P R$ the following facts are regiate－ red：／i／in the word final position is sometimes reduced as if some vowels were perceived as phonologically long．This phenomenon may be treated as overdifferen－ tiation of phonemes，cf．these pronuncia－ tion variants：［wäni］－［wän］（＜Ваня） （personal name），［wä́sa］－［wäś］＇you，Уour！ In such cases the non－phonological leng－ thening of the stressed vowel seems to have been interpreted by PR speakers as the phonological vowel length．

CONCLUSION

As it can be seen，even from the purely phonetic point of view the PR should not be regarded as a mere Russian dialect or as a spontaneously corrupted form of lan－ guage．Here one evidently deals with a pidgin，an auxiliary means of communica－ tion between communities that do not sha－ re a common language．It seems essential for the formation of a true pidgin that more than two mutually unintelligible lan－ guages in contact are required．This con－ dition is fulfilled in the area，where the main PR data were obtained－some 50－ 40 Jears ago in the Ussuri region it was used by Udihe，Nanai and Chinese ethnoses． The study of the PR is relevant for the general interpretation of the pidginiza－ tion theory，for it is an example of on European－based and in the same time inde－ pendent creation．No monogenetic theory can be applied to this language and never－ theless it shares many similarities，con－ sidered usually as prooves of tie monoge－ netic origin of European－based pidgins． These are elimination of inflections for number，gender and case；identity of ad－ verb and adjective，use of iteration for intensification．All these peculiarities are also chracteristic for the PR，though the latter by no means can be defined as a product of a relexification process． Being＂independent＂the PR turns to be an example of a＂classicle type＂pidgin． Material discussed above shows that the PR lexicon presents a wholesale adoption from Russian，while its phonology can be described as a truly＂interlinguistic＂ （it shares definite peculiarities from both languages in contact plus some ari－ sen in the PR itself）．Descending to the phonetic level one finds that practically the whole set of the concrete phonemic re－ alizations owes to the vernacular＂sub－ stratum＂language．
These observations seem important for the determination of the contribution of dif－ ferent languages participating in the pro－ cess of a pidgin formation．
Below we present a bibiography of the Far East Pidgin Russian，that was not included in the J．E．Reinecke＇s Bibliography： I．Г．Шухардт．Маймачинское наречие，－Русский филологический вестник．I884，т．ХП，降4， сс．318－320．
2．А．Г．Шпринцын． 0 русско－китайском дия－ лекте на Дальнем Востоке．－Страны и народы Востока вып．УI，М．，I968，с． $86-$ I00． 3．И．ل․ Козинский．K＇вопросу о происхожде－ нии кяхтинского（русско－китайского）языка． －Генетические и ареальные связи языков Азии и Африки．Тез．докл．М．，І974，сс．36－38． 4．Ф．Елоева，主．Перехвальская．К характе－ ристике Дальневосточного контактного язы－ ка．－Тез．докл．ХХІХ сессии ПИАК（PIAC） （Танкент），т．П，М．，I986，сс．54－50．

NICHOLAS FARACLAS

Language and Literature Dept. University of Papua New Guinea

ABSTRACT

The results of this sociophonetic study of stress and intonation in Tok Pisin suggest that a new conception of creolization, pidceinization, and decreolization as stages on a single continuum, rather than as distinct processes is in order.

INTRODUCTITON

Sample

One hour of spontaneous speech was collected from each of 30 members of the Boiken and Olo ethnolinguistic groups living in Wewak town, East Sepik Province, Papua New Guinea. The speakers were chosen by age, sex, years of formal schooling, and whether Tok Pisin was learned as a first or second language to represent a. balanced sample of Tok Pisin speakers in the Sepik area. Every rise in pitch was counted over the first 2,000 words transcribed for each speaker, after eliminating the first 500 words of each taping session. High and low pass filters and an oscilloscope were used to measure pitch levels, where hecessary.

Pitch Patterns in Tok Pisin

Wurm /1/ observes that for speakers of Tok Pisin from the Bastern Iighlands
Province of Papua New Guinea: a) stress and intonation account for all pitch patterns; b) affirmative declarative statements normally bear an intonation contour beginning at mid-low pitch, rising to high, then falling slightly over each stressed syllable, falling to a 10% pitch at the end; and c) stress is signalled mainly by high pitch and is not reduced under declarative intonation contours.

Affirmative declarative statements in the Sepik data collected for this study often bear similar intonation contours to those described by furm for the Eastern Hichlands, except that most words lose their stress in connected Sepik speech,
with a flat intonation contour, beginning at mid-low and gradually falling to low resulting when all of the word stresses are reduced.

ANALYSIS

The total number of pitch rises for each speaker was divided into four environments: a) rises over objects of prepositions (calculated as the percent of the total number of prepositional objects in the sample for each speaker); b) rises over di- and polysyllabic words (calcu-lated as the percent of the total number of di- and polysyllabic words in the sample for each speaker); c) rises over monosyllabic words (calculated as' the percent of total declarative intonation contours in the sample for each speaker, since monosyllabic words were present in nearly every phrase); and d) high or rising pitch at the beginning of a contour (calculated as the percent of total declarative contours in the sample for each speaker). Prepositions and other words which are normally not stressed in any of the lects of Tok Pisin were not counted. Special nonfinal intonation contours were excluded and only emotionally neutral statements were considered.

RESULTS

Pidginisation and Creolisation

The results in Table 1 show that: a) mords are stressed substantially less often in Sepix speech than in Eastern Hichlands speech (:iurm would have predicted 100 percent or more in each environment); b) ethnolinguistic backoround is the social factor which best predicts stress reduction rates (t Olo Eroup consistently reduces stress more often than the Boiken groupl; and c) the differences in the stress retantion rates between first language (L1) speakers of Tok Pisin end those who syeak Tok Pisin
as a second language (L2) are not significant. Given the fact that in many stress is not phonemic and can be reduced by intonation phenomena, while most Eastern Highlands languages have phonemic word stress or word tone which is not normally reduced, substrate language in able explanation for the differences between Sepik and Eastern Highlands pitch patterns. These substrate language influences, moreover, persist from second language (pidginized) to first language speech of children of 0lo-Boiken mixed marriages, who have spent all of their lives in Wewak and who know no other languace except Tok Pisin (represented

Creolization and Decreolization
The evidence in Table 2 indicates that rates of stress retention can be predic ed to some extent by the sex of the Tables 3 a and 3 b , the stress retention rates for individual speakers are plotted on separate curves for each sex, first by age and secondly by years of formal schooling completed. From the results unreasonable to postulate that: a) a tendency for males to reduce stress more often than females has become more pronounced and has spread to new environb) this tendency is exacerated so, and speakers with the most exposure to Standard English in school (who can be assumed to speak decreolized varieties of Tok Pisin), with fenale speakers noving patterns and male speakers distanin themselves from these same patterns.

CONCLUSIONS

accounted fata presented here can only be Sinization, creolization that views pidtion as parts of a single continuum, with no clear break between one process and apley an important role in deternining not only the varieties of rok Pisin use by second language spealiers but also the creolized varieties used by first
ing new patterns, decreolization (in thi case, at least) merely accentuat (his dencies already present in the speech patterns of first language and even se to ir roke a speakers. There is no need sals or some bioprog linguistic univer
some hypothetical disruption in communication here. All that is necessary is pify the other languages with which speakers of Tok Pisin are or have been familiar and to trace the natural and gradual modification of these patterns

REFERENC

S.A. Murm, 1984, "Phonology: Intonation in Tok Pisin. In S.A. Tok Pisin (New Guinea Pidgin) Canberra, Australian National University, 309-344.

TABLES
Abbreviations: L1- first language
speaker of Tok Pisin; LZ- second
language speaker of Tok Pisin; B-
M- male speakers; F- female speakers
stressed stressed stressed
objects di- and monosyl.
f prep. polysyl.

Table 1. Stress by súbstrate for L 2 and L 1 speakers


```
Institute for Linguistics
Academy of Sciences
```

abstract
The Aleuts of Copper Island speak a creolized version of Aleut-Russian Pidgin phonology of the language, as well as all phonology of the language, as well as all a result of lingustic contact and interference. The consequences of this contac can be traced in the change of phoneme nants, and in certain phonotactical processes in clusters.
INTAOJUCTORY REMARKS
The Aleut language has at present two main dialects, both being subaivisions o what was known in the XIX century as Western Aleut: Atkan dialect (AMA) and the main islands where the dialects are spoken, resp.; Atka and Attu (see 18 , p. 49/ for details and further references).

In 1826 the administration of Russianof Aleut workers that were in its service to previously uninhabited Commander Islands in order to have constant access to the Bering Island and especially Coppe Island seal furs. Nuring the 150 years comers have developed two different dialects: Bering Island dialect (BI) that is a conservative form of ATK, and a creolin copper Island dialect (CI) of which ATT is considered to be the "maternal"

In this paper we adhere to the hypothesis according to which certain social and historical conditions led to formation by the second half of the XIX century of a 'creols". This social group later created Pidgin Aleut" as a means of communication with the Aleut-speaking population of the sland. The newly created language wen nd course of subseque relexicalization on the hleut basis resulting in the moder version of CI (see $/ 77$ for details and urther discussion)

The most conspicuous grammatical feature of CI is its system of verbal inflexion for person, number, tense, and mood, as well as negative forms that have defi-
nite Russian origin $/ 6 / 7 /$. All the rest nite Russian origin $/ 6 /$, $/ 7 /$. All the rest grammatical subsystems are typically
verbs and nouns, NP syntax, a.o.
The aim of the present paper is to out line the phonological consequences of creolization, of converging sound systems of Russian and Aleut that resulted in formation of a

There are at least three points in CI phonology where we can suspect Russian inthe corruption of velar/uvular opposition; and 3. consonant clusters.
THE PHONEME INVEATIORY
Professor Knut Bergsland called the absence of labial obstruents $/ \mathrm{p}, \mathrm{b} /$ the logy, and considered it to be of diachronic character 13, p.69/. However, W.Jochelson who did his field work on Attu at the begining of the XX century, used letters bith a very sli "hilabials... pronounced with a very sligint closure of the lips so and v, p and $f^{\prime \prime} / 4, p$ p.1/; sce also /5, p. son's AlT texts rendered his p and b as $v / 2, p .9 /$, i.e. he rightly treated th phoneme.
Unlike all other Aleut dialects, CI has both /p/ and /b/. CI /p,b/ obviously originated from ATr bilabial /v/ (corres ponding to Alk $/ \mathrm{m} /$, $/ \mathrm{m} /$, /ms/, or someCI qabya=, ATK qamda = to be deep; ATM čavluh, CI čabluh, ATK čamluh fioor; ATI kavih, ©I kabih, ATK kameih head; ATT avcul to tell, CI apcuh tale (ATK alas
etc. The choice between p , and $/ \mathrm{b} / \mathrm{is}$ delinitely positional: ATK $/ \mathrm{m} /$ and $/ \mathrm{CI} / \mathrm{b} / \mathrm{b} /$ before
sonants, voiced fricatives or vowels, and C/p/ before voiceless consonants: ATK Camluukah, CI cyur $=$ to roll (a stone); ATK hamrah; , $C I$ habrah sleeve; but ATK camcxih, CI čapcih fishline; ATK umsuh, CI upsuh or umsuh Before sonants even the voiceless ATK /M/ corresponds to $\mathrm{CI} / \mathrm{b} /$, not $/ \mathrm{p} /:$: ATK saaMlah CI saablat egs; ATK ćiNignuh, CI cibinuh big toe, etc.
The immediate ancestor of $C I / \mathrm{b}, \mathrm{p} /$ is
evidentiy ATTP $/ \mathrm{v} /$, not ATK $/ \mathrm{m} /$: while we evidently ATP /V/, not ATK /m/: while we p/os ATY /v/, in ATK we have here a variety of sounds: $/ \mathrm{m}$, w, $\mathrm{M} / \mathrm{and}$ a cluster $/ \mathrm{mg} /$ It seems highly probable that the two separate sounds appeared in CI as a triggered by strong Russian influence. It was quite natural for the Russian-speaking makers of CI creole to treat the bilabial fricative /v/ as bilabial stops /p/ and /b/ depending on its position.

CORRUPTION OF VETAR/UVULAR OPPOSITION
In Aleut (and Eskimo) there are two distinct interlingual (as well as morphonological) rows of correspondences: $/ \mathrm{g}-\mathrm{k}-\mathrm{x} /$ and $/ r-q-h /$ that never mix up: there is no such thing as alternations breaks the rule is CI.

CI loses uvular sounds in many case substituting them for corresponding velars, cf. ATM (txin) irata $=$ get frightend, ATK iratu=, CI fgatu= to be afraid; ATP higta=, ATK hihta $=$, CI hixta $=$ to
speak, etc. Uvular sounds in general are rather unsteady in CI: there are words that are pronounced with $/ \mathrm{h} /$ or with $/ \mathrm{x} /$ alternatively by one and the same speaker e.g. ax ${ }_{\text {sa }}=/$ ahsa $=$ to die, a.o.
versed: where in ATT we have $/ \mathrm{g} /$, in CI we find $/ r /:$ ATM qaglah, $C I$ qarlaarih raven; ATT qaglit, CI qarlit shoulder.

Finally, there are even cases when the voiced fricative /E/ is pronounced as a
voiced stop Zskimo-Aleut phonology, e.g. tig anagasal I hit myself with smth, tin ačigait he learns (cf. ATK txin aciixal), etc.

We think that these facts can be best explained by direct Russian influence: highly Russianized phonetics, and one of the first things to do was to eliminate from the Pidgin all the sounds that are not found in Russian and are thus hard pronounce for Russian-speaking comunity, nunciation of the rest. Consequently, the uvular sounds were forced out, the velar uvular opposition was ruined, and later

CONSONANT CLUSTERS

Phonotactical peculiarities of $C I$ or, ins, order of consonants 1 those developed by CI during the 150 years of its independent existence- that is, independent from its maternal" language of close contact with BI (=ATK). The borderline between the two types of changes is naturally rather unsteady. We shall consider cases when CI differs from both ATK and AT as when CI differs from ATT but is identical with BI - as BI interference, though such a decision is of course quite arbitrary.

Let us consider changes in consonant clusters in CI compared with ATK and ATM, as interdialectal correspondences in Aleut; they are also found within any of the Aleut dialects. In CI metatheses are also numerous. The following classin tion can be suggested as rible sources of metatheses. If a cluster differs from ATP, it means that there is a development of some kind. If Is identical with ATM, it is the ATM heritage is identical with ATK, it may be ATK influence. Finally, if CI' is different from both ATT and ATK, it must be indeendent development.

1. CI \neq ATTP, ATK. $/ \mathrm{yg} / \sim / \mathrm{gy} /:$ ATT aygags, CI agyagait, ATK aygans to walk, asxinuh, CI axsinuh girl, daughter. /tx/ tk/es $/$ ht/: ATT atkiya, CI ahtiyah, ATK txidah cod. igla=, ATK ilga= to seek, lint suganrih, CI sugarnih, ATK suganrit young person. \neq ATr. $/ \mathrm{rn} /$ cs $/ \mathrm{nr} /$: AT
 hunrutah warmth, CI hurnayait, ATK hurna to be warm. /gn/cn /ng/: ATP qingat, qignah, ${ }^{\circ} \mathrm{CI}$, ATP $\in A T K$. /gi/m $/ 1 \mathrm{~g} /:$ ATT igluy, CI ATM igluh, ATK ilguh grandson. $/ \mathrm{ks}$
 isxah place, bed
As can be seen from the given examples, I seems to have developed a phonotactics attern of its own, at least as far as onsonant clusters are concerned, namely follows a rule that placonant. In vulars before any other consonant inds to place velars / $\mathrm{k}, \mathrm{x}, \mathrm{g}$ / and uvulars /h,r/ efore sonants, glides and fricatives (and in one case before a stop). The it is independent of ATT and ATK clusters. If ATT had the same order of consonants, CI preserves it, resisting the BI influ
consonants，CI develops its own order eit．er independently or perhaps yielding to BI influence．

The tendency of cluster organization can also be treated as a result of language contact；most probably，its source can be found in the Russian influence which is very strong in CI．CI seems to be the only Aleut dialect that developed so consistent a tendency of cluster shape．

BI INFLUENCE

There are several cases when changes in CI compared to ATT probably took place as a result of direct BI borrowing，cf．：ATM $/ \mathrm{y} / \sim \mathrm{cI} / \mathrm{n} /:$ ATP haanuh，CI haanuh，ATK haanuh salmon；ATT／v／cn CI／m／（not the usual／b／）：ATT kiv＝，CI kim＝，ATK kim＝to descend，to walk down．

CONCLUSION

The phonology of CI differs noticeably from that of other Aleut dialects．These differences are most likely due to the specific position of CI among other Aleut dialects as a creolized Pidgin Aleut． Many changes that occured in CI compared to maternal ATT can be explained by Russian interference．Other changes may have occured as a result of permanent contact with BI．The possibility of independent development should be also taken into consideration．

REFERENCES

／I／А．С．Асиновскии，Н．Б．Вахтин，Е．В．Головко． Этнолингвистическое описание командорских алеутов．－＂ВЯ＂，І98З，垆．
／2／K．Bergsland．Aleut Dialects of Atka and Attu．－Transactions of the American Philosophical Society，New series，vol．49， pt．3，1959．
$13 / \mathrm{K}$ ．Bergsiand．Comparative Eskimo－Aleut Phonology and Lexicon．－Journal de 12 Soclete Finno－Ougrienne，vol．80，Helsinki， 1986，pp．63－137．
14／W．Jochelson．Eissay on the Grammar of the Aleut Language．－American Philosophi－ cal Society，Boas Collection，ms．
15 В．И．Иохельсон．Унанганский（алеутскиу） язык．－В кн．：Язнкп пи письменноств наро－ дов Севера，ч．З，М．－Л．，I934，с． 129 －І І 75／Г．А．Меновцинов．К вопросу о прониае－ мости грамматического строя язнка．－＂вЯ＂， 1964， 5 ．
／7／А．Б．Вахтин．Некоторне особенности русско－алеутского двуязнчия на Командорскпх ос тровах．－＂В月＂，I985，復 5 ．
／8／A．C．Woodbury＇．Eskimo－Aleut Languages． In：Handbook of American Indians．Vol．5： Arctic（Vol．ed．D．Damas）．Washincton， Smithsonian Institution Press，1984．

THE PROBLEN OF BILINGUISM AND PHONETIC
PECULIARITIES OF RUSSIAN SPOKEN BY THE KAZAKH

Abuov Zhumagaly

Kzyl-Orda Pedagogical Inst., Kzyl-Orda, Kaz.SSR, 467014

Shcherbakova L.P.

Ieningrad State University, Leningrad, RSFSR, I99I64

ABSTRACT

The paper presents the results of a phonetic analysis of the segmental and suprasegmental characteristics of the Russian language of Kazakh speakers.It shows a general tendency for the variation of standard Russian pronunciation and describes dialect features specific for the inhabitants of South Kazakhstan, North-Central Kazakhstan, West Kazakhstan and East Kazakhstan.

The Russian language of the USSR is not only the national language of the Russian people but it is also a means of international communication. It is taught at schools and institutes of Kazakhstan alongside the mother tongue. The interaction and interpenetration of the two languages, Russian and Kazakh, result in specific features of the bilinguism $/ I /$. From the linguistic point of view the main problem, in terms of bilinguism, is to describe both language systems, state the difference in them and thus predict the probability of interference. And we must bear in mind that the phonetic systems need not represent languages related to, or different from, one another. The degree of genetic kinship of two interfering languages is not the deoisive factor for mastering the pronunciation of a foreign language, the most important factor being the peculiarities of phonetic realization of the sound systems of these languages /2/.
The present paper describes the charaoteristics of the Russian speech of the Kazakh inhabiting the Southern, Western, North-Central and Eastern regions of Kazakhstan. In this connexion, local phonetic features of native speakers should be taken into account. The first results of this kind of research appeared but recently, during the I950s. New Kazakh linguists produced a number of monographs dealing with the problems of local dialeots, dialect vocabularies, questionnaires, subject collections of scientific papers, the first volume of an experimental atlas of the Kazakh language, and
other works. They all register and describe the characteristics of the speech of the inhabitants of a certain region; the boundaries of the expansion of these oharacteristios are defined and soientifioally interpreted. Thus due to the painstaking efforts in gathering the relative data and its detailed description, the Kazakh dialectologists S.Amanzholov and 2h.Doskarayev proved the existence of specific local characteristics in the speech of the Kazakh. S.Amanzholov desoribes three main regional dialeots in the Kazakh language, and he believes that the North-Eastern dialect is the basis of the modern Kazakh language /3/.
Zh. Doskarayev presents his own point of view based on the phonetio principle and he believes in the existence of two vernaculars: the so-called "Chock" vernacular ($\mathrm{S}-\mathrm{E}$) and the "Shock" vernaoular (N-W). His classification gives no information on lexical or grammatical charaoteristics of these vernaculars /4/. Sh.Sarybayev presents quite a different point of view on the dialect division of the Kazakh language. The research was carried out on all iinguistic levels and the results made it possible to distinguish four regional groups of dialects: South, West, North-Central, East $/ 5 /$. We beileve this distinction to be the most convincing one.
The aim of this research, made on the basis of reception analysis, was to describe the phonetic peouliarities in Russian spoken by the Kazakh population in the regions mentioned above. Twenty native Kazakh speakers from each region were involved in the research.
The material of the research is a text prepared at the Laboratory of Experimental Phonetics at Leningrad University, containing 200 most frequent syllables of the Russian language. The text contains about 3000 phonemes in standard transcription. Sound duration is about five minutes.
The text is a story including monologues and dialogues, abounding in all kinds of orthoepic difficulties. For example,
forelingual noise consonants have 538 realizations which fall into three groups: occlusives (279), fricatives (24I), affricates (48). The vowels occupied the tion, both quantitative and qualitative. The research was carried out with the help of native speakers from the regions mentioned above. They were teachers,
students of the first and the fifth students of the first and the fifth years institutes in these regions. Before were recorded they had an opportunity to see the text. The recording was done in a specially equipped studie on "a Reporter $\mathrm{cm} / \mathrm{sec}$.
Every person gave his surname, name and patronimic, the date and plaoe of birth qualification, profession, place of study or work. The data could be usefu fities of the speakers. photio peculia-
After the reception anal
corded material the results were divided into two groups: a) the speech of those b) have a poor knowledge of Russian, medium knowledge of Russian. The recordings
times listened to and analysed. several dance with the aim of the research
iysis of consonants was paid to the anato their differential propertis according realization of word stress and intonation Minutes were taken of every recording and all the deviations from standard pronungistered, as deviations, such as pauses, hesitation. speakers recion analysis of 80 Kazakh speakers showed the following general peculiarities in stressed vocalism: In $/ \mathrm{e} / \mathrm{we}$ have a more open δ, of standard talised consonant, with the preceding palaonsonant insufficiently palatalised, non-palatalised. 2) The olosed vowel, $/ \mathrm{i}$ more open palatalised consonants gives a with a narrow u-like beginning orm $/ \mathrm{e} /$ open end changes into a uniform vowel hich is more open than it ought to be 4) The Russian / 5 /, which in standard palatalised consonant comes after a nonspeech is front-retracted the Kazakh preceding consonant palatalised. with the tead of standard open /e/ after a nonalatalised consonant we get a less open alatalised. preoeding consonant slightly in unstresse
re as follows: used in all positions of the orthographio e^{n}, i.e. there is no alternation of o/a
is an unstressed syllable. 2) Orthographic pronunciation of nan and ijan replaces the standard literary $67 / J$-variants, i.e. there is no alternation of a/i in an unstressed position. 3) To pronounce the orthographio "e" in an unstressed sylpreceding consonant palatalised, whereas in standard literary pronunciation we have ferable; there wis the Pirst variant preferable; there is no alternation of e/c dard literary i/6 for the ortho stan"e" is replaced by /e $\langle, 1 \cdot e$. there is no alternation of e/i. 5)'Instead of the standard $62 / 3$ after a non-palatalised consonant (for the orthographic $n, 4 / / n \in 7 m)$ the preceding consonant palatalised wi 6) To pronounce the orthographio ne ${ }^{n}$ after palatalised consonant a more open vowe is used, $/ \mathcal{E}$ /, instead of the standard i//6 with the preceding consonant in1//6 after a palatalised consone vowe replaced by a more open consonant is preceding c onsonant insufficiently palatalised. 8) There is a sharp reduction in the post-stressed vowels nearing the there are vowels in a word whic ${ }^{\text {9) }}$ different shades of reduction speaker may pronounce them with one and he same degree of reduction. IO) The inerfering influence of synharmonism is observed, i.e. all vowels in a word are one another.
onsonants oll ufficie the palatal onsonants are not uffioiently palatalised a) before the eront vowels, b) at the end of a word the consonants /c, s:/ invariably nonth talised. 2) The non-palatalised consonants s, z, c/are palatalised. 3) The sound $j /$ is not pronounced in combinations of labio-dental + jricative As a rule, the replaced by the labial-labial $/ \mathrm{w} / \mathrm{v} / \mathrm{5}$) is $/ \mathrm{b} /$ is mispronounced as $/ \mathrm{w} / .6$) The plosive voiced back lingual $/ \mathrm{g} / \mathrm{is}$ replaced by the voiced occlusive $/ 8 / .7$) There is a Weaker plosive in the final consonant. placed by the plosive voiced $/ \mathrm{g} /$ is a apronounced contiguity of final consonants. The back lingual fricative $/ x /$ is replaced by the uvular-iricative / $x /$ /e ciently voised. occlusives are insufficiently voiced. II) The velarised
replaced by the apical C / V
Deviations from standard Russian pronounciation occur in pronouncing probinations of consonants: I) There is no palatalisation of preceding consonants, non-palatalised sounds before the pala-
talised /t'/ and /d'/ without any assimilation taking place. 2) Before the noised voiced consonants we get the noise voiceless sound, i.e. there is no 3) There is no replacement of the backingual ooclusive by the corresponding iricative, i.e. a non-standard dissimilation ocours.
Deviations in rhythmical organisation ar as follows: I) The word stress may be a word may be increased due to an extres in vowel introduoed.
re this total list of phonetic peouliarities, several characteristics may be ascribed to specific regions: I) In the Couth Kazakh region, especially in backlingual $/ \mathrm{g} /$ is replaced by the voice fricative uvular / Y/, which was not consonants are "less oontiguous", which Russian language population in that region. 2) In the East Kazakh region, especially in Semipalatinsk and Taldy-Kurgan, the postthe reduction syllables are greatly reduced; (even in the may be either quantitative stress) or qualitative (even in the Ist syllable before the stress), but not both. 3) In the South and East Kazakh regions, the rhythmical organisation of speakers distinguige as spoken by Kazak in other Kazakh regions For example the words are frequently misstressed. Besides, a) In Chimkent, Kzyl-Oraa jambul districts, extra vowels are introduced so that the number of the syland Semipalatinsk distriats, the number of the syllables is decreased due to dropping some vowels.
of the also the Russian speech of the Kazakh but system of the Russian of the phonetic spoken in each particular region have been analysed.
he description of various intonation groups is no less important than the ics of the Russian segmental characterisspeakers. It is well known that intoof is one of the most important means ial carrying information. So it is essen tandard students should be taught both nation. Wrong anciation and correct into makes communication difficult and preents one from absorbing information. ome linguists, discussing the problem of guages believe the interaction of lanrence is the most stable, regardiess of
the type of bilinguism. I.V. Sheherba nimal sense-group "which is a phonetio unit expressing a sense of unity in peech or thought" $/ 6 /$. In order to be ts structure (its melodie, and defin temporal contours) it is essential to now the syntagmatic division of the text.
The most universal means of division is pause. The number of pauses as comKazakh speakers from different regions haracterizes the intonation of the peech. When reading the text for the experiment, the model speaker made I80 made from 220 to 270 pauses. It a rule hat Kazakh speakers make pauses bet words rather than between syntagms, and it makes their speech more monotonous and abrupt
It is also known that ${ }^{n}$ the elements of a syntagm, i.e. words it consists of, may uniting them and due to their melodic, dynamic and temporal contours"/7/. experimental the reception analysis of the expertme the prosodic or has been to des syntagm in the speech of the model speaker and Kazakh speakers, respectively. Certain characteristios were taken into account, i.e. the boundaries of syntagm, the word under syntagmatic stress, the direction of fundamenta frequency on a syntagmatically stressed vowel and the rundamental frequency in before-stressed and after-stressed eleto temporal and dynamic characteristics of vowels of a syntagmatically stressed word.
The results of the reception analysis are as follows: I) The intonation of an of an incomplete syntagm as pronounced by a model speaker may be expressed in different ways, a) by rising melodic contours and b) by falling-rising melodic contours. The Kazakh speakers in the testiowere using only one intonation, the the direction of fundamental frequency of the syntagmatically stressed word, and of before-stressed and after-stressed elements of a syntagm, is much 2) The intonation of a complete speech: The model speaker pronounces a complete syntagm with a falling tune, and the fall of the fundamental frequency begins on a syntagmatically stressed vowel and ontinues on arter-stressed syllables. palling tune to complete the syntagm.

Very often the falling tune of a syntagmatically stressed vowel is not enough to describe this syntagm as completed; the after-stressed vowels in Kazakh speeoh are a little longer, there is no falling tone, sometimes we come across a slight rising tone, which makes the syntagm sound incomplete. It is especially common in the spoken Russian of the West Kazakh region. 3) There are two types of interrogative intonation in the text: the intonation of a general question and the intonation of a special question. There are also sentences which are special questions in form but they are used one after another and so the intonation of enumeration is used instead. For Kazakh speakers, the charaoteristic features of the intonation of a special question are the rising tone on a syntagmatically stressed vowel and the absence of a fall on after-stressed syllables, so the intonation of a special question may be mistaken for the intonation of incompleteness. As to the general question, the melody is also rising, with the tune usually falling over the last word in the sentence. The model speaker uses various interrogative intonations: the centre of a syntagmatic stress both in a special question and in a general question is not necessarily the last word in a syntagm, the syntagmatic stress-is often emphasized by a logical stress. The Kazakh speakers seldom if ever use a logical stress. 4) The intonation of emphasis in the experimental text is represented by intonations of adress and apposition. The Kazakh speakers use the intonation of adress frequently, whereas they use the intonation of apposition extremely rarely. The direction of the tone on a stressed vowel is the same as that used by the model speaker but the dynamic characteristics of a syntagmatically stressed vowel are much weaker. Thus the reception analysis, on prosodic levei, of the Russian language spoken by the Kazakh shows the following peculiarities: I) The intonation of incompleteness is characterized by a falling-rising tone, with a slight rise or no rise on afterstressed syllables. 2) The intonation of completeness is cheracterized by a falling tone (in the West region, falling rising or rising) on a symtagmatically stressed vowel with longer after-stressed syllables and the absence of a falling tone on them. 3) The interrogative intonation is as follows: The general question is characterized by a rising tone on a syntagmatically stressed vowel and the absence of a falling tone on afterstressed syllables. The special question is characterized by a falling tone on a syntagmatically stressed vowel of the last word in a syntagm. 4) The intonation of adress is charaoterized by a falling-
rising tone with a stronger emphasis on the stressed vowel. A study of segmental prosodic characteristics in the Russian language spoken in Kazakhstan may be of both theoretical and practical value. From the theoretical point of view, it helps to define the standard pronunciation, with dialect and regional variants. From the practical point of view, it may be used to improve the teaching of Russian in non-Russian schools.

REFERENC ES
/I/. L.V.Bondarko. The phonetic descriptions of a language and phonological descriptions of speech. I., I98I.
/2/. L.A.Verbitskaya, M.V.Gordina. Peculiarities of phonetic interference in languages with different degrees of relationship. In: Problems of philological studies. L., I980.
13/. S.A.Amanzholov. Problems of dialectology and the history of Kazakh language. Alma-Ata, I959.
/4/. 2h.Doskarayev. On problems of dialectology and the history of the Kazakh language. M. V.Ya. No.2, I954.
15/. Sh. Sh. Sarybayev. On dialects in the Kazakh language. Baku, I963.
/6/. I.V.Shcherba. The language system and speech activity. M., I974.
/7/. N.D.Svetozarova. The intonation system of the Russian language. L., I982.

SVETLLANA KASHCHAYEVA

Dept. of the Russian Language
Polytechnical Institute
Irkutsk, USSR, 664074

ABSTRACT

The phonetic distortions in the speech of Mongol learners at the level of the prosody of a word are prompted by the differences in the prosodic construction of a word in Fussian and in Mongolian. They can be foreseen and foretold as the result of the comparative analysis of the prosodic means of both languages.

INTRODUCTION

The problem of the linguistic interpretation of various breaks in the prosody of a word in the Russian speech pronounced by Mongols seems to be important both in the theoretical meaning (the Russian speech of Mongols is not yet investigated from the point of the complex analysis of the suprasegmental phonology) and in the practical one (in teaching Mongols the Russian pronunciation it will give the chance of the explanation and foreseeing the pronunciation mistakesd.
The prosodic means of Russian at the level of the prosody of a word is accent. By its phonetic nature it is quantitative, qualitative and dynamic. A stressed vowel is characterized by a set of phonetic means: the length, the tamber, the strength. According to these characteristics it is realized in communication depending on its functions: culminative (the accent makes a word a phonetic unit), constitutive (helps to identificate words or their forms), distinctive (provides the differentiation of words and their forms, for example: плáчу - плачу́, стра́ны - страны́). A word-stress is traditionally considered to be one of the prosodic means of the Mongolian language. The first reference of it in Iinguistics is to be found 150 years ago, and up to now the prosody of a word is the least investigated branch of the Mongolian phonetics. In fact this problem has not yet been the subject of the linguistic research and was studied only from the point of the rhythmical nature of the Mongolian versification. There are various, sometimes contradictory opinions in refe-
rence to the word-stress in the Mongolian language, its phonetic nature and its seat in the word. Thus, J. Schmidt (1832), Y. Ramstedt (1908), A.B.Rudnev (1913), B.J. Vladimirtsov (1929), G.B.Sanzheyev (19f0), Sh. Iuvsanvandan (1967), G.Galsan (1975) say that a word-stress in the Mongolian language is expiratory (force) and always falls on the first syllable of the word On the contrary, O.M. Kovalevsky (1835), A.A.Bobrovnikov (1848), A.M. Pozdneyev (1880), V.I.Kotvich (1902) think that the stress falls on the last syllable and is not expiratory (force).
Such contradictory opinions can be explained by the fact that the seat and the character of the stress were investigated only with the help of the auditory analysis without thorough phonetic research based on experiments.
The experiment results/1/ show that any syllable can have a greater force, especially when it contains a long diphthong We couldn't find any regularity in the correlation of vowels in different positions either in their length or in the change of the tone. The same is about the qualitative differences between them. The experiment and a number of psycholinguis:tic tests on the perception of a stress by Mongols show that in the Mongolian language there is no word-stress. This language can be related to unaccented ones. In this case the length of a vowel in the Mongolian language is not the characteris. tic of the prosodic means but a phonematic indication of the segmental units long vowels. It is the length of vowels that carries out the distinctive function characteristic of the Russian word-stress It helps to differentiate words Cудал pulse; суудал - a seat; цас - snow, цаас - paper, etc.) and their forms (эвлэ the imperative of "to reconcile", ЭВЛээ the one who reconciles, etc.).
Some clearness of the pronunciation of the vowels in the initial syllables (traditionally taken for atress) can be explained differently: the effect of the law of synharmony. Synharmony, that is the regulation of the succession of vo-
rels in a word - in other words - assimi, Lation of vowels in prefixes to those ones in the root. Functionally synharmony is the main way of making the phonetic unity of a word (ε culminative function), identification of a word in a number of other words (a constitutive function). The problem of the delimitative function of synharmony is not quite investigated in Linguistics. To study this problem we made the statistic analysis of the poetical and prosaic texts in Mongolian. The differentiation of words according to the law of synharmony coincided with the semantic articulation in the poetical text for 73% of words. The received statiatic data show that synharmony is a quite safe way of the differentiation of words.
The comparison of the prosodic construction of a word both in Russian and Mongolian show some likeness and some very essential differences. The likeness is to be found in the functional meaning: the culminative and constitutive functions characterize the prosody of a word both in Russian and Mongolian. The main difference is in the ways of realization of these functions. In Russian it is word accent, and in Mongolian it is synharmony. Besides, both the Russian language and the Mongolian language have different functions. Only the Kongolian prosodic system has a delimitative function. Only the Russian prosodic system has a distinctive function. In the Mongolian language the function is realized not with suprasegmental ways but with segmental ones - long vowels.
Thus we can say that in the situation of the subordinate bilinguism in the Russian utterances of Mongols the following probable errors can be expected:

1. Mongolian learners of Russian can construct a Russian word according to the law of synharmony, making its vocal structure close to the aynharmonic models of their native language.
2. In the Russian utterances of Mongols we can expect the errors connected with the absence in Mongolian of the qualitative distinctions of vowels in different word-positions. As a result Mongols can find it difficult to give in their utterances a special tamber quality of a Russian stressed vowel, they are apt to see no difference between stressed and unstessed vowels with reference to the presence or absence of the qualitative reduction. 3. The qualitative reduction of vowels in the non-initial syllables can be expected in Russian utterances, and the further from the word-beginning is the syllable, the stronger will be a qualitative reduction of vowels in it.
3. We can suppose that having difficulties with the proper word-atress in. Rus-
sian, Mongols will prefer to stress the initial syllables.
4. The length as a component of a Russian word-stress can associate with the length of vowels in their native language. Clusters of consonants in Russian words can be comprehended and reproduced as stressed ones.
5. As a consequence of the functional lack of coincidence of the prosodic means in both languages there can be errors in the segmentation of the auding: Mongolian students can differenciate the unknown words in accordance with the law of synharmony.
This is the brief description of a theoretically possible accent of Mongols in the prosody of a Russian word, which gives us a chance to find out difficulties for Mongolian learners of Russian. The experiments in comprehension of the accent-rhythmical structure of a Russian word by Mongolian learners, the analysis of their errors prove that the foretold deviation actually take place in the Russian utterances of Mongols, in the prosodic structure.
/1/ Gerasimovich L.K. Mongolian versification: Experimental phonetic study, Leningrad, 1975.

L.F. TSIPTSURA

Dept. of the Russian Language
Institute of National Economy
Kiev, Ukraine, USSR 252057

The report is devoted to the nature, tendencies and specific features of phonetic interference, inevitable in the conditions of the active related bilinguialism. The conclusions are based on the author's field research, as well as on the data of the oscillographic, palatographic and radiographic analysis of the Russian speech in the Ukraine.

By interference we understand any linguistic phenomenon resulting from interaction of two languages, two com munication systems. Each phenomenon of this kind should be treated not in isolation, but in system. Thus the notion of interference includes not only the given linguistic fact, as, for example. a new quality of an allophone, but also the totality of system relations, either modified or qualitatively new, emerging from a breach (modificetion) of structure.

According to Soviet and foreign authors two types of interference are realized in morphology and syntax-latent and overt, but only the latter is represented on the phonetic level. This phenomenon is based on the specific featurea of the phonetic level: rigid interrelation of all the elements of the structure, their strict hierarchy, practical absence of synonymy and variation which make exclusion from speech of any unit, even more so a group of units impossible.

The present linguistic situation in the Ukraine is characterized by active Russian-Ukrainian bilinguialism, which means that the overwhelming majority of Slavic population in the Ukraine uses both systems of commanication - the Ukrainian and Russian languages. The measure and character of their use are undoubtedly different and the range of difference is wide enough: from genuine command of both languages in their codified form to the use of a peculiar intermediate variant that differs from both systems.

The genetic community, which brings about structural, articulation and acoustic proximity of the related languages,

Russian and Ukrainian, creates especially favourable conditions for their transposition and interference in the process of interaction.

Phonetic interference which is registered in the Russian speech in the Ukraine is characterized by exceptional stability. Even in the cases when the system of the Russian language is mastered sufficiently enough and is practically identical in functioning with the native language, the Ukrainian influence in pronunciation is quite strong.

It is necessary to emphasize that the quality of the Russian speech in the Ukraine is noticeably varied, depending not only upon age, education and profession of speakers, but also upon the district and region, i.e. there are a few local variants of Russian in the Ukraine. However, alongside with local peculiarities there exist common features resulting from interaction of the two related languages.

The results of active bilinguialism are evident in practically all the sections of the phonetic structure: the set of phonemes, phonological correlations and oppositions, quality and quantity of an allophone, articulation and acoustic characteristics of separate sound units, accentual and rhythmic organization of words, sentence intonation etc.

The system of vowels. The allophones $10 /$ and 7 al are characterised by a more backward articulation, and the phoneme /e/ by a more open and backward articulation. There is a considerable range of deviations from the norm in the pronunciation of the phoneme /b/. According to the majority of authors, the Russian phoneme /ы is a central high vowel (in some cases its articulation may be somewhat backward. Instrumental analysis shows that in the Ukrainian language this is a front highermid vowel. According to palatographic analysis the most typical for Russian speech in the Ukraine is the central/ / / , but noticeably lower, than the normative sound.

The universal peculiarity of the Russian speech in the Ukraine is the different principle of changes of unstressed
rowels. In the overwhelming majority of
cases the sounds pronounced instead of /os and $/ a /$ in the first pretonic syllable do not coincide in quality: the sound pronounced instead of $/ a /$ is approachins Th/, which is more open and

A somewhat fronter and higher /e/ is pronounced after palatalized consonants, hile in the Russian literary pronun iation the sound approaching $7 / \sim M^{\mathrm{e}}$ is the norm.

Thus the system of vocalism of the irst pretonic syllable in the Russian speech in the Ukraine is represented by a/, y/ It obviousiy differs from the phonemes in normative Russian: in the Russian speech in the Ukraine vowels in the first pretonic syllable in their quantity and especially quality approach tressed vowela. Though these vowels are reduced, the character of reduction is main quality. The influence of the UKrainian norm here is obvious.

There are other deviations from the Russian orthoepy in unstressed syllable in the Russian speech in the Ukraine. nic syllable allows considerable (though not maximum) reduction of a vowel. The system of vocalism in this position is represented by only five vo Th The short $/ a /$ is pronounced instead of stead of /and often /a/, pronounced instead of /o/ is somewhat labial
in the first pretonic syllablat
Vowels/e, a/ that follow palatalized consonants also differ in their pronunciation in the second and other pre-

Thus, the reduced sounds $/ \mathrm{L} /$, $/ \mathrm{b} /$, so typical in this position in the Rustent in the Russian speech in the Ukraine.
rc/iveis interesting to note that after the first pretonic syllables other than pronounced instead of the vowel e:
 циIл \bar{y} baia The use of

The system of vowels in the third an fourth pretonic syllables is the same as in the gecond pretonic syllable. On the contrary, in the absolute beginning of very distinctiy, especially the vowels a/and / / This distinction is preserved even in those cases when in other preto-
nic syllables these vowels, coinside: /очев'идно /, /отбдаяадир 'ит'/.
So the difference between the syistem of the first and other than the first pre tonic syllables, so prominent in the Russian orthoepy, is less noticeabl
In modern Russian the degree of reduct ion of vowels in posttonic and pretonic ylables is of graduated character: the re are syllables
The moxtmuction. maximum reduction is registered first of all in the first posttonic sylduction is also the most frequent.
In the Russian speech in the Ukraine the general tendency of vowel reduction in a posttonic syllable is normally the tive.
Of special interest are the data characterizing the principles of accentual and rhythmic organization of the word. The comparison of accentual and rhythmic structure of the word in Russian, Ukraited but now functioning as separate languages, makes it possible to show common and specific typologic tendencies in ast-Slavic accentuation. The common tendency is, above all, the centralizing stress is the distinctive feature of the word, which determines its accentual and rhythmic structure. However, the realization of the dominating influence of a stressed syllable on the other parts of
the word are not the same in Russian and Jkrainian. Oscillographic analysis shows that the principles of accentual and chythmic organization of the Russian speech of the Ukrainian population does mative East-Slavic language
Preserving length as the main correlative of stress, the phonetic word in the speech of bilinguals is normally characterized by entirely different quanand unstressed vowels and between unstressed vowels of different degree of reduction, which is one of the reasons f the specific Ukrainian accent, i.e. of speech, its melodiousness.

The system of consonants. The system of consonants in the Russian speech of the Ukrainian population is close to the horm with the exception of the backlinousl consonants. Thus atpresent in in the Ukrainians do not have the status of phonemes but are variants of non-palatalized $/ \mathrm{K} /$, /r/, / x / F. This peculiarity finds its explanation in the fact that
nd are still positionally limited in com parison to other palatalized consonant
One of the most common and noticeable deviations from the orthoepic norm in the Russian speech in the Ukraine is the quality of the plosive voiced backlingual te majority of cases this consonat is substituted with the fricative $/ \mathrm{Y} /$. In its articulation and acoustic characteristics the sound is approaching the noticeably different from the corresponding consonant in the Ukrainian/h As a result the fricative, voiced in the Russian speech of the Ukrainians, is devoiced not into $/ \mathrm{K} /$, as in the normation from the norm is even a more constant peculiarity than the fricative Yl. there are certain peculiar features in the gystem of labial consonants too. n the Russian one labiodental consonan onsonant b. In the Russian speech in the Ukraine the phoneme $/ B /$ is very often realized in two variants: labioental / $/$ and bilabial /w/. It should $/ \mathrm{w} / \mathrm{mat}$ mace that the confusion of m and and speech of the same person and it is difficult to trace any tendencies here In the system of labial consonants An the Russian speech of the Ukrainians in the oppost b of ten remains unpaire ess consonents becauge it does not alternate with / Φ / in the word-final poition and in the end of the syllable, ollowed by a voiceless consonant, thus
In word from other voiced phonemes.
onsonants are as a rule velarized:
 all lax labial consonants in Russian and In some Russian dialects only the sono/M/ is velarized. In the othe ts and also in the Ukrainian eivedusian languages the process reabial further development, and all the final position were velarized. So the endency is not new, what we see in this of the long-standing Russian (Bast-Slavic) endency.
Experimental phonetic investigation the Russian speech in the Ukraine ditions of the fact that in the con the tendency is not towards the mixture of the sound systems but towards their genuine interaction resulting in emer gence of a qualitatively new language
gue in the contacting languages In the conditions of the active rerealized not only in the system of sounds but also in their distribution. The specific result of such interaction is enrichment of the basis of arson of this phenomenon, its certain precondition, is the genetic community of the languages, oreating the community
of the articulation basis.

ФУНКЦИОНИРОВАНИЕ ЗВУКОВОИ СИСТЕМЫ РУССКОГО ЯЗЫКА
В УСЛОВИЯХ ТУРКМЕНСКО-РУССКОГО ДВУЯЗНЧия

ДМЕМИДЯ САРДसАЕВА

Туркенскии государствөнный университөт
Апхабад, Туржөнская ССР, 744000

Общелингвистическая проблема языкавых контактов особөвно актуальня в связи с функционированием русского язька в качестве языка межнационального бщөния. Динамическая структура совро ченного русского языка оказадась спооонои принять огромное количество вариантов дивои речи представитөлей раз-уркаенско-оусского дв уязнчия роста ование заключить, что функциональноө ззаиодөиствие языков будөт в дальнейнец углубляться и ускоряться.

ГО населения рөспубдики. По данньы ДСу
 тургмөн и $7,4 \%$ сөльского насөления $/ 3$ / стающей распрост раненитөльны данные возра тающеи распрос уов ной период 1970-1979 гг за межперепис-

Tургменскоя насөлөния		Родным языком считают		Свободно владеюл вторым языком	
	общан числөпность	турк-мөнGKMM	другия нзыки	\|рус-	другими языками
1970	$\begin{array}{r} \text { I4I6700 } \\ 202800 \end{array}$	$\begin{aligned} & 99,3 \% \\ & 98,7 \% \end{aligned}$	$\begin{aligned} & 0,7 \% \\ & 1,3 \% \end{aligned}$	$\left\lvert\, \begin{aligned} & 15 \% \\ & 25,4 \% \end{aligned}\right.$	$\begin{aligned} & 2,27 \% \\ & 1,6 \% \end{aligned}$

Объектом настоящего исследования явимодействии русского и туркмөнция при вза ков, язынов с ковтрастными фонологическиии систөмаи. При взаимодействии этих язы ся кӑк на уровне интерференция опрөделяөт татистичесиих структур' в вариативости онем в потокө рөчи
взнка включает туркенского литөратурного пзыка включает 18 гласных и $2 I$ согласну фонему, в русском пзыке - 6 гласньх й 36 согласних

Привөденный количественный состав фонем, тидетельствует о вокалической доминации
туркмөнского языка и о больпей консовант Анализируя
дуемьх языков, мы придерживаемся стедуюих
принципов классичикацип рживаемся слөдующих
I. По типу прөграды и способу образования

шума.
2. По активно-артикулируомему органу и мө

сту образования преграды.
По участию голоса и шуиа.
Il уо учатию голоса и шума.
Iо работе голосовых связо
. По положөнию мягкого неба.

- По окраскө или наличию - отсутствию смягчения.
Согласно первому принципу классифика дии консонанты в туркменском и русскои руппи: смычные, цөлевые, дрожамия (дрожа дий туркменский / \quad / малоударннй сравниадьно с русским $/ p /$).
Количество
ктивно-артисуродразделенин согласньх m активно-артикулирующему органу произношерөчи. В свнзй с этим следует различать основные й две факультативные группн согаснвх: I. губные, 2. язычные, 3. увулярне, 4, гдоточные (фарингальннө). Если к ерввд двум группам относятся согласние представлены тольно звуками две группы изыка [$G, G, h]$, представднющия позиционные аллофоны фонем $/ x, g, x /$. В русском языке группа гуоннхх согласньх разбивается на две подгрупды (губно-Губные и губнозубична согласным туркмөнского языка нөтичается только в заимствовандых оловат По участию голоса й пума согласны туркменского й русского языков раздөляются на две равноденные группы: сонорнне и пуиные. По работө голосоввх связок согласие, но звонкост делятся на глухие й звонөтическом отношении нөоднородное. Разнуо төпень звонкости в туркменском и русском знжах характеризуют позиционныө аллофоны, уркменскому языку особенно свойственны полузвонкие согласние. По положению мягкоятся на носовне и ртовые. в сиатеме туркенского языка имеөтся заднеязнчный носовой согласный / $/ \mathrm{h}$, отсутствующий в руском языке.
палатализанииеской точки зрения явление языков в русском языках. Артикуляторно этот признак выражатся в поднятии срөдней спини языка к твердому небу. Но в русском языке воллличие от турнменского этот признак вы долическую тольно фонетическую, но и фононым признакомм согласньх, благодаря котороиу одни согласные фонемы противопоставлөраз другим. Палатализация или еө отсутстви

Свот смысл русских слов и их форм.
сводная таблица русских и турнмөнколичественный состав русских согласньк за счет фонологического противопоставл Ния магкость-твердость, отсутствия в инвентаре туркменского языка круглощелевых пуиных $/ \mathrm{c}$, з /, губно-зубных целөвых $/ \Phi$, в нем, которые не имеют своих соотвөтствий

в русском языке: плоскомелөвые интөрдөн$/ \Phi, W /$ задяөнзычный смычный сонант $/ \mathrm{J} /$ и Туркменский вокализм прөдставлен фонемами (количество их до сих пор спорно девятью парами, строго разграниченньми по долготө-краткости. долгота туркменских Гласных имөет функциональную нагруженность. туркмөнакого язнка делнтся на иак иласны класспфикационнне подгруппы.

$\begin{aligned} & \text { Fяд } \\ & \text { до } \end{aligned}$	Перөднии ряд		Средний ряд	$\left\lvert\, \begin{aligned} & \text { Задний } \\ & \text { ряд } \end{aligned}\right.$
$\begin{aligned} & \text { Buco- } \\ & \text { кй } \end{aligned}$	узкй	U yv: ii	Н ы н:	y и
	широкий			
$\mathrm{Cped-}_{\text {нй }}$	узкий	θ e:		
	सироसй	$E \quad O Q$:		0
$\begin{aligned} & \text { Hиз- } \\ & \text { кий } \end{aligned}$	узкий			
	тирокхй	$\mathscr{}$ ¢:		A a:

немы судя по таблице, где туркенские фо изолированные аллофоны 6 фонем русского яона пе представлет ососой трудности дли присутствия равноценных фонем в систөме родного язнка. По ряду, подғөму и огубленности туркменскиө гласнье противопоставлены болеө дифферендировано. Каждая из трех степеней подқема представлөна двумя разновидд ные реализуотся таюя разнообразно ппередне-среднерядное свөрхкраткоө $\mathrm{K} / \mathrm{c} /$, лабиализованный $/ 0 /$ низкого подтөма, боле пирогий средне-ниднего подқема, переднесреднего ряда /e//4/. Основной жө трудноотьд для носитөлеи туркменского язнка явношению ударения. Сильной позицией для русского гласного являөтся ударныи слог. В безударных слогах гласные в русском языке ной рөдукции.

диаметральной противоположностью и особөностью туркменского вокализма являөтвздарньх гласннх. С функциональной точки зрения для гласньх сильной фонетическон ного слова Безударнервый слог многодл слова характе ризуются относительно болыпей интөнсивностью и высотой частоты основного тона, по сравнении с серөдиной слова. дли тельность туркменских гласних в безударных овой структуры или увеличивается (в слогох с открытыи слогами), или же уменьшаөтся (в словах с закрытьми слогами) к концу слова. Гласныө туркмөнского язына в на чале слова, по сравненио с серединой и нан дом, сохраняют наиоолөө свойтвенное им аллофона. Бөзударные гласные туркмөнсююго языка большө изменяются в количөствөнном

отношении, чем в начественном.
Вариативность жө русских безударннх гдасньх в рөчевом потоке чрезвичаино вел тельность бөзударных гласных, они часто не имеют так называемсго "стационарного" участка, т.е. такого участка звучания, где частоты формант были бы постоянньми. Поэто гласных фонем в рөчи их насчитывается до I8 эталонов /5/.

трудности овладения звуковой системои оназываштся в основном связанными с нөоо ходимостьь усвоить новые или нескольго от уркменском языкө максимально возможноө количество согласньх в абсолютном конце слога тольно два, причем первый из них бычно сонант, второй - пумный смычный делөвой. Сопоставительный анализ нонца лалов туркмөнского и русского язынов покаечных сочетаний из двух согласных, а в уркменском только 23. Отличительной специфической особенностьюо тургменского язықа вляется такдө разрешение системои употрерактөрной для слогов, составляныии өдиноө онетическое слово в туркменском языке, явяөтся и роль слогоооразующих гласных, опредөднющих под влиянием сингармонизма характөр согласньх, входящих в данные слоги. т не только артикуляторно-акустическими характөристиками, но и статистическими во $с$ стваии. Рөальность этой статистической организации специфична для каждого конкрея характөрно одинаковое количество твердвх и
 группе), смычних й щелевых (такжө по I8), почти одинановое количество глухих (I6) и звонних (20 , включая сонанты), сонорных в системе согласних в 3 раза мөньше (всего
) по сравнению с нзнчных в русской системе согласних - I9, губных - ID, заднеязычных - 6 , а среднединнаковоө ноличөство смычных и щелевых огласньх фонем, коррелирующих по признану лухости-звонкости, то звонкие согласные включая сонорнвіе, в 2 раза превосходят (I4: 7) глухие. В турнменском языке сонорних в их в 3 раза меньше. следующие цифрн опрөтвующему органу: переднеязычньх в туркменской системе - Іо, губных -5, заднязычных - 4, срөднеязычный - \bar{I}, фарингальный - I.
реальних речевых условиях ти фонем в данном случая анализом письмөнньх текстов, явилось с ледующим этапом статистического представления. Статистическия данные, касающиеся русского язнна, попользуются из

точнинов /6/. данные по статистике туркменсного язнка оыли получены на основа-
вии анализа төкстов обпим обвемом 100000 звуповых единиц. Тексты подбирались с учөтом трех основньх стилей: художественной прозы, научной прозн и газетной лөксики, учитывались все основнне случаи ассдииля ции, стяжения и выпадения звуков. В проти единого транскрибирования, спорные вопросы лингвистического характера.
Действуощая в туркмөнском языке тубная гармония предполагает наличие огуолен ности в последуощих слогах. однако в туркрос о том, одинаковы ли гласные по стөпөни огубленности во всех слогах слова. А. Моллаев $/ 7 /$, анализируя акустические параметры гласных в двусложных словах, делает вывод, что /O/ во втором слоге не явля тишь чиствы ок оголенности, поэтому транснрипционно представляется символом $/ \mathrm{a} /$. Получөнные же Дж. Гокленовнм $/ 8 / 8$ данныe по восприятию губньх гласних убөдительно поских өдиниц под влиянием губной гармонии ских өдиниц под влиянием гуоной гармонии аах. Выдөленные гласные опознаются носптөлямй языка вне контекста в 80% случаев п фонетическом контексте в 100% случаев. бирование полузвовких согласньх типа /tр/, (рb). В данном случае представлено сочета ние двух взрывньх звуков, разделенных кра кой паузой смычки, причөм первый звук пм лозжвныи, а второй - эксплозивный. Покольку эксплозия смычных звугов в туркмногих случанх экпплозивный характер втоого звука, слөдуюмего за акустически дозольНо отличньм от него имплозивным, засавляет говорящих ошибочно принимать энспা лозию согласного звука за өго голосность"

Пт бочти ве тольно краткими, но и долгими. ри транскрибировании в первую очередь принималась во внимание морфемная принадлежность, но и одновременно учитывалась огласньх на осциллограммах.
Подсчет частоты встрө чаемости фонем текстов на туркмөнском языке дал данные, сновываясь на которые мы смогли выстроить
 $i, \mathrm{H}, 0, m, d, t, g, a:, \mathrm{B}, \overrightarrow{2}, s, j, h, k, t s, j, 4, z, h$,
 тких гласных отмечаөтся как общая законоерность, выявленная как при анализе төк качественные характе ристики гласных, так и количественные четко отражаются на стаистичөском материале: сочетаөмость согла сныX с гласными заднего ряда составляет
52%, пөрөднего ряда - 42% срөднөго ряда

6\%. Согласно общөлингвистической тенден ии статистически более вероятными пвляются слова от одного до 3 -х слогов. Статисика турғменского пзнка подтверждает эту енденцию, причөм выдөлнет двусложные сло, как слова наиоолее употребительные в ва встречаются в $I 5,6 \%$, двусложние - $40,4 \%$ ррехсложные $27,7 \%$, четырехсложные $10,5 \%$ и аалее в порядке резкого убьвания. Полученный статистический материал предполагает составление достоверного от резка ре чй на ости структурной организации звуковых послөдоватөльностөй туркменского языка. слуховой анализ русской рөчи туркмен оыл проведен на матөриале записи тенстад оставленного в лоф лгЈ, вклочающего 200 ІІо/ десятью информантами-туркенами. Осовнне орфоэпические отклонения от рјсс пой ормы связаны с системными различиями. Нө мение правильно произносить русские редуированные формы безударных гласных фикси ильлось повсеместно. отмечалось полное лога, что свойствөнно произносительным ормам родного языка информантов. Характер ая особенность туркменского вокализма частичная и дажө полная рөдукция узких лла сных - прослөживается по всему төксту. Tурғ
менский язык относится $к$ языкам с ярко выраженной вокаличөской структрой не только количественном отношении. В силу закона ингармонизма показатөлем начества слога вляется гласный. Если слогообразующий гла нй относится к заднөму ряду, то сочетад аднеязнчнне согласние $/ \mathrm{K}, 4$ / в речи туркен передаются их увулпрньми позиционным ллофонами $/ q, G /$ в комбинации с гласными аднего ряда. Закон гармонии гласних опроеляет өдинство темора гласного и согласгласными переднего ряда как предшествурий, так и последующий согласныи будут в өкоторо玄 стөпени смягчаться. В сочетани гласньми заднөго ряда оба согласньх бувеляризованы. Эта отраоотанивается на x произношении слов эксперимөнтального тнста. Важньм уоловием овладения системой ласных русского языка является консонантная акномодация на уровне слога, ибо слог, удучи минимальньм отрезком рөчи, зан гласних и согласных звуков. В русском языке, в зависимости от качества окружамих согласнх, тласный можөт быть продвинут впөред на протяжении всөго звучания. В ре чи ин фор артглошелевые $/ S^{\prime}, Z$, хотя русской речи сруглощелевые /,$z /$, хотя русскои речи уо-
 тальные плоскощедевне звкии 1θ, Э/, что проснозировалось системой родного языка, Заим твованная из русского языка легсина может
 вои, төнденция упрощения свойственна речи ургмен. Следует отметить, что систөмноть и универсальность не которых фонетичөких реализаций достаточно часто нө сраба втоматизированньми, а следоватөльно наиолее тоуднопрөодолимьми являются омибки а произносительном уровне. Артикуляторый уклад туркменского языка, его механим, значительно противопоставлены русско верхнөө выпуклое положөиие языка свидетельствует, что палатализованность пвлятся одной из важне皿их особөнностөй руско фонетики. Глубокое и плоское положе ии языка туркмөн позволяөт сделать вывод ртикуляторной базы. Следует отметить и ктивноө участие губ, увулы и гортани речи туркмөн.
ининодимые данные могут быть использованы как в теоретическом плане при осмь ак и в практичөском отношении при обучөнии русскому языку учащихся - туркмөн.

Список использованной литературы
I. И.П. Зинченко. Национальный состав на-
2. Оись насөдения Назаров. Функионирования русско
0. Назаров. функциіонированиө русского язык в национальных республиках Совет-
3. Итоги Всөсоюзной перөписи населения
M., 1973.
А.П. Поцелуевс кий. Фонетический отрой ского языка. В кн.: Избранные труды.

6. $\frac{19}{9} \cdot \mathrm{~B}$. Бондарко, Л.Р. Зиндөр, А.С. आтерн Некотордө статистичөские характеристи в норме и патологии. Л..; I977.
7. А. Моллаев. Акустическая характ өристика ударных и бөзударных гласннх в двухсло мных словах туркменстого языка Аітха-
8. бад, Іокленов. Безударные гласные в мнососложных словах туркменского язвна. пйXA.
9. Орфоэпический словарь тургмөнского язь-

IO. Динамика структуры современного русскоІинамика структуры

ВОЛГАРСКИЙ АКЦЕНТ В РУССКОМ ПРОИЗНОШЕНИИ У НОСИТЕЛЕИ РУССКОГО

ВАЛЕРИЯ Г. СМИРНОВА

I Кафедра русского языка
 университета, София, Болгария

PEBDNE
Приводятся наблюдения над интерфе ренцией в ооласти русского произноше языка в условиях русско-болгарского ной нормы. Отклонения от произноситель с основными трудностями, ноторые испытывают болгарские русисты при изучении автора, с данными отклонениями /оолгарским акцентом/ можно и нужно бороться путем создания периодических корректи ровочннх курсов по русскому произношеНию, хотя он для русских переводчиков путем увеличения контактов с живым русским словом /кино, радио телевидение, грамзаписи, посещения СССР

ВСТУIVEHUE

Общеизвестно, что если долго или постоянно живешь в иноязычной среде /т.е. навливается в своем развитии или полвергается интерференции в той или иной стетени и прежде всего в области произносицент в речи русского или болгарина, проживаюцего за рубежом, раздражает ухо сильнее, чем далеко не совершенная речь инострацца на русском или болгарском языках, которая подчас звучит даже "ми что оперного певца, исполннющепо арию Ленского с немецкия акцентом. Здесь любое отнлонение от произносительных норм языка от прзит разрушить все очарование красного голоса/.

СОБСТВЕННЫІИ ОПЫIT
на протяжении многих лет автору данного сообщения приходилось сталкиваться ла как преподавателю Софиского универ-

по русской фонетике и интонации /эксперий нурсны контастивно-сопоставительный курс, руководимый М. А. Георгиевой на
основе ее же и М. Поповой учебника $[1]$,
впоследствии как консультанту по русскому произношению при записи учебников русв Болгарии на Софийском радио. В результате проведенных исследований /акустиче приходит K выводу о том, что основнн ошибки в русском произношении у єолгарсних студентов-русистов и у дикторов носителей русского языка совпадают:
I. На уровне гласных

1. Назализация гласных перед н в абсолютном конще слова или в сочетании с другими согласными /вагон, блин, талант, институт, оранжевыи, конкурс/; 2. недостаточная лабиализация у в абсо-
лютном начале слова /университет, упо лютном начале слова университет,
добление/;

- слабая губная реализация у о;

4. отсутствие редукции э в абсолютном

начале слова /энергий, экскурсия/;

- ъ вместо $\underset{\text { пр }}{\text { на }}$ месте $о$ и а в п первом слова /Москва в абсол̆ютномм нала
 7. ітедудартном /погоди, пароввоз/;
II. На уровне согласных

1. Недостаточная степень смягчения /"полусмягчение"/ согласных, в особенно свистлщего, призту, д'; отсутствие позициях, в особенностй, в абсолютно
2. болгарские ш й вместо русских твер-
3. дох 프рско̄е $\frac{\text { Миша, Сашка, жестокий } / ;}{\text { твердое и вместо русского }}$
4. оолга̄рско̄е शвердое $\frac{\underline{y}}{}$ вместо русского
5. отсутствйе иесть, точка/;

ция иот /белеет, уезжает/
. неправильная диясимиляция - шн и шт

7. произношение без выпадения $\frac{\tau}{\mathrm{T}}$ и сочетаний стн, стл, стск, вств/радост
ный, совестлйвй, марксистский, чув

II. На стыке слов и морфем

. Оглушение в перед сонорными и гласны-- ми /в Ленинграп, в университете/;
2. и на месте п/днем и ночью/; ва на служебное /уж очень, без оши-
поеши/; $\frac{\text { сч, }}{\text { жи и и }}$ и зж $/ \mathrm{c}$ чашкой, возчик, бе
IV. На интонационном уровне

1. Отсутствие понижения тона до нуля сительном препложениях с вопросительным словом;
2. недостаточное повышение тона удар ного гласного предиката вопроса в просительного слова и, наоборот, по выпение тона на заударных слогах, в особенности, в нонце фразы;
с сдвиг интонационного центра в непол ном вопросительном предложении с со мах, содержаших препозитивное определение или обстоятельство, а также причастный имли деепричастный оборо-
Th;

- немотивированная паузация /нарушеского [2]/; ; монионально-экспрессив-
- отсутствие эмоционально-экспрессив-
ной окраски и повьпения тона в восной окраски и повыпения тона в вос-
клицательном предлжении /срв
:
 телно" изречение - болг./.
Таким образом в работе с дикторами носителями руссного язына так же, как и стами, подтвердилась истина о высоной устойчивости болгарского акцента [3] , объясняемой родственной близостью русисходит механическия перенос из одного зыка - болгарского в другой - русскии. ип данного двуязычия есть нечто среднее между координативным и субординативным вой нормы - это, снорее всего, ненормативный билингвизм /здесь нарушаются не которые произносительные нормы родного языка при далеко не соверпенном "практи-чески-оытовом владении вторым язнавяли
Надо отметить, что динторы представляли собой группу носителей русского язнка, закончивших высшее образование в СССР проживающих в Болгарии от 15 до 30 лет двое артистов, журналистка, инженер -

ка/. Их основной "рабочий" язык - оолгар скии, однако в течение многих лет они принимают агтивное участие в передачах на русском языке на телевидении и радио в энергичность и "твердость" болгарской артикуляции оказывает влияние на их артикуляционный аппарат, хотя поначалу они не отдают себе в этом отчета. Оттого, вероятно, на начальном этапе работы дикторы произносительной нормы, чем впоследствии, когда им были объяснены "правила соотнесения контактирующих язынов"/В. $م$. Розен цвейг [5] /, т.е. сопоставлены или проТивопоставлены - на основе учеоника М. А. гарская фонетика и интонация. Это обстоятельство еще раз подтверждает высказывание А.Е. Супруна [6 и д других ученьх $о$ том, что реальным источником интерференпорождения текстов на двух языках, недифпорождения тенстов на двух язы
думается, что болгарский акцент в русском языке можно и необходимо преодо-
левать с помощью периодических корректировочных курсов по русской фонетике и интонации, основной целью которнх является противопоставление, дифференциация механизмов контактирующих языков. огтром ную роль играют здесь также контакты с
живой русскоџ речью /советское кино, раживои русскои речвю, советсное кино, раи самокоррекция.
ЛИTEPATYPA
ска 1 М.А. Георгиева и М. Попова. РУсскад фонетикя и интонация. София, Николаева. Фразовал интонация славянских язынов. Москва, 1977 . интонация. Москва, 1975 . ции в процессе обучения русскому язнку в болгарской шноле. София, 1974. ты. Пбнйград, 1972. . новы изучения грамматики руссного языка в белорусскои школе. Минск, 1974. ска фонетика. София, 1977 . тиката на бтлгарския език. София, 1966.

me mafects of foreign languages proficiency and cognitive processing

 ON TEMPORAL STRUCTURE OF SPEECHE.L. NOSSENKO

Dept. of English Pbilology Dniepropetrovsk State University
iepropetrovsk, Ukraine, USSR 320625

Oral proficiency in a foreign language can be automatically evaluated by using as an interface to computer an detecting unfilled pauses in speech. Proficiency evaluation is based on a psycholinguistic approach to the analysis of :ognitive processing in speech through ff oral discourses.

INTRODUCIION

number of studies of the temporal strucure of oral discourses produced by the speakers in of pauses in spontaneous speech to its cognitive processing [I]. The analysis of the location of these pauses in speech has revealed that they tend to pre cede relatively unpredictable lexical chance frequency at the beginning of phonemic clauses [3]. It bas also been shown that pauses are associated with intuitively determined "idea boundaries" in speech
text [4]. On the basis of these findings it has been concluded that pauses in spontaneous speech are used for lexical selection, holistic planning of phonemic Suprasegmental ideational planning. tion of spontaneous speech showed that cognitive nature of pauses predetermines a universal pattern of their distribution in speech of the native speakers of di "fluent" phases following each other i cycles [5]. The hesitant phases are characterized by longer and more frequent pauses and it was hypothesised that during these pauses speakers make anticipa
ory decisions of what to say next. The ory decisions of what to say next. cycles reflect the execution of semantic plans formulated in hesitant phases.
either, but, unlike hesitant phases, in which pauses may be distributed randomly fluent phases are characterized by the localization of pauses at grammatical selection, where this selection is guided by a preformulated semantic plan. Inspite of the predominantly random distribution of pauses in hesitant phases their cogdemonstrated experimentally that the mean hesitancy of hesitant phases cannot be dithe quality of the utterance (its ideathe qual content) [6]. Attempts to make speakers consciously modify the number and length of pauses in spontaneous speech under experimental conditions resulted in the substitution of pauses by other hesiphonological vocalic sequences "er", "hm" and the like), repeats, false starts etc. It proves that pauses are necessary for speech planning and that there are no moeous monologue.
This conclusion is also supported by the finding that there is a positive relationand difficulty or abstractness of experiand difficulty or abstractness of experimental tasks involving speech prodrated, orai descriptions of concrete events (car-toon-stories) are accompanied by shorter paus.
As a result of the above reviewed studies it became clear that pauses in speech can be regarded as manifestation of the more general blocking of activity, which occurs when organisms are confronted with situa of the next step requires an act of choic When a person speaks his mother tongue, the situations of uncertainty arise mainly on the ideational level of speech produc tion. The speaker of a foreign language, much more limited than that of the native speaker and who, unlike the native speaker, doesn't feel the so called "transition
probabilities", i.e. words combinability
rules, is expected to pause longer at the points of lexical selection. For him the syntactical structuring of speech also remains for a long time a conscious timeconsuming act of recollecting appropriate time in speech will include not only the time, necessary for semantic planning but that, required for lexical selection and grammatical processing of speech, i.e for fulfilling the operations, which are extent automatically.
In addition to the above formulated assumptions we also claim that the degree of continuity of speech utterance as measured by lengths of phrases (i.e. prouses, without hesitation pauses (ing positively related to the level of foreign languages proficiency. The higher is the level of oral proficiency in a foreign language interrupt his speech by pauses and thus the higher is the degree of continuity of his speech utterance.
This claim is based on the following data While the difference of level of verbal planning in spontaneous speech of the nplified, for instance, by the description of concrete events and the formulation of their meaning, is clearly reflected in the length of pauses, it is not reflected in the degree of continuity of of phrases, uninterrupted by pauses [7] This experimental finding made it posThis experimental finding made it possible to conclude that phrase length is an indicator of how automatic the utterance of speech sequence has becomed to be a conscious effort.
The importance of this observation for the solution of the task of automatic objective evaluation of oral proficiency in ed. It is just the degree, to which
speech utterance in a foreign language gradually ceases to be a conscious ef fort, that we are after, when trying er in the process of mastering a foreign language.

HYPOTHESES

1. Since all pauses displayed spontaneous monologues of the native nature, i.e. necessary for speech planning (except, pertaps, brief pauses at grammatical junctures), their length can be rezarded as reflecting the degree speakers in the process of speech generation.
2. Since the difference in levels of verbal planning in spontaneous speech of the native speakers of a language is es and not reflected in the degree of ontinuity of speech utterance as measured by lengths of phrases uninterrupted by pauses, the latter can be regarded as inproduction of speech.
3. Since different levels of foreign languages proficiency involve either essentially automatic or mainly cognitive lexico-grammatical processing of oral discourses, temporal pattern

EXPERIMENT

The bypotheses were tested by comparing temporal structures of spontaneous and preliminary planned oral discourses proof foreign languages proficiency. The experimental procedure involved ask topic first spontaneously and then afte preliminary preparation. The speaker were not restricted in time and speech was a monol a different proficiency groups (foreign languages instructors - university students majoring in a foreign language university students doing a foreign lan Guage on a non-profession subjected computer analysis through an interface computer analysis throush an interface ruptions of the vocal utterance of not less than 250 ms . Breaks less than 250 ms vocalization time.
The choice of 250 ms time interval as a border-line between pause/non-pause sequences was predetermined by earlie observations, reportereviewed papers, that pauses longer than 250 ms cannot occur within a word boundary without violating its integrity as a speech unit. emporal structure of oral discourses corded in the process of the experms: was described in mean phonation time/pause time ratio; mean phonation time/frequency of pauses ratio;

- percentage of pauses exceeding $1000 \mathrm{~ms} /$ number of all pauses in speech); - mean phonation time/pause time ra io variance (per cycles of 15 s). Mean phonation time/pause time ratio was hesitancy in speech. It was expected to be the measure of concious efforts on he part of the speaker related to se-
mantic planning of speech and to its s not automatized).
Mean phonation time/frequency of pauses ratio denoted the continuity of speech atterance, or the mean length (without pauses equal to or exceeding 250 ms). his was expected to indicate habit trength, entering into production of peech. Percentage or pauses (exadditional measure of difficulties, experienced by speakers in the process of encoding. These difficulties were believed to be of linguistic rather than axtralinguistic nature, since mean pause tive speakers of a language rarely exceeds 800 ms if they do not experience anxiety or emotional stress[8]. Mean phonation time/pause time ratio variance as chosen to designate seque higher variance was alleged to be an indicator of spontaneity of speech and the lower of its previous preparation. The interval of 15 s was chosen not randomly, but "hesitant" and "fluent" phases in spontaneous speech make cycles lasting approximately for $10-20 \mathrm{~s}$.

RESUIMS
Oral discourses of the speakers, included proficiency group, appeared to be characterized by the bighest mean, phonation time/pause time ratio; longest continucentage of pauses, exceeding 1000 ms , as compared with the corresponding data for guages proficingh level of foreign lanin a distinct sequential temporal. patterning of spontaneous discourses and in nation ratio throughout a preliminary planned discourse
The lower is the level of foreign-languages proficiency, the more deteriorated is sequential temporal patterning of phonation time/pause time ratio, the shorter are phrases, sandwiched between pauses, the higher is the percentage of
long pauses in speech. The analysis of long pauses in speech. The analysis of synchronized with the verbal content os the records showed that the lowest level of foreign languages proficiency is associated with the incidence of hesitation pauses within the boundaries of phonemic clauses not only in hesitant fluent" phase. Pauses of the same duration at grammatical junctures,found in
the speech of the subjects with higher level of oral proficiency, are less detrimental to the textual cohesion of speech The gain in fluency or preliminary plan one, is also characteristic of the leve of foreign languages proficiency. The more pronounced is the difference in temporal structures of spontaneous and preliminary planned discourses, the highe is foreign languages proficiency. preliminary planned (thought over) speech of the foreign language learners, who have not yet achieved a sufficiently high degree of proficiency, the duration of hesitant" phases, during which the speakers make decisions of the "w h a t-to- say" type, while in the "fluent" phases pause remain fairly long. The thing is the speakers with low degree of foreign langrammatical processing of their oral dis courses automatically enough. That is why the variance of the mean duration of hesitation pauses in their speech is less pronounced than in the speech of the learn ges proficiency.
The above described data revealed a statistically significant difference in th temporal structures of oral discourses, produced by the speakers with considerable difference in foreign languages proguages instructors have undoubtedly better command of the language, they teach, than the students, who are being taught, particularly those, who do not major in a minor subject.
Will temporal structures of oral discourses differ significantly if the levels of foreign languages proficiency of ferent, as in the case referred to above? To answer this question we have carried out an additional experiment. This time the subjects were university applicants, seeking admission to the Their proficiency in a for was naturally not known before hand and had to be evaluated on the basis of the reof computer-assisted language test Tests were designed to evaluate reading comprehension, grammatical competence and diversity of the active vocabulary of the prospective students.
Those of them, who were admitted to the university on the basis of the results of jected to another foreign languages proficiency testing, which involved listening omprehension tests and computer-assisted nalysis of the temporal strure of discourses of the subjects

In accordance with the results of profi ciency teating the subjects were split and "C". The subjects, included into group "A" (50 persons), fulfilled 92% of the total number of examination assignents correctly. Those, included into group "B" (also 50 persons), scored low answers in this group was equal to 77%. The subjects, who made up group "C" (50 persons), managed to fulfil correctly onlj 55\% of all examination assignments auggested.
roup "A" and ${ }^{\prime \prime}{ }^{\prime \prime}$ ntwen the results of tistically significant at $p<0.003$ and of groups "B" and "C" - at p 20.247.
imilar distribution holds true of each separate type of examination tests. test scores for the subjects of group "A" were equal to 90.1%, for group " $\mathrm{B}^{\prime}-78 \%$ and for group "C"-47.5\%. Average grammatical competence test scores displayed a similar picture with 89.2% of correct
 distribution pattern is also true of vocabulary test scores with 92.2% of correct answers in group "A", 71.6% ".
Auditory comprehension tests also reveald statistically significant aifference among the above mentioned proficiency groups. The subjects, who made up group
"ollowed 85% of the units of informA", followed 85\% of the units of information, conventionally singled out in the
text for auditory comprehention, of group
 Thus the difference in levels or poreig languages proficiency among the above descri
When we analyzed the temporal structures of oral discourses, elicited from the same subjects upon their admission to the University, we obtained the following data. uean phonation time/pause time ratio in
spontaneous oral discourses of 50 subfects, to equal 1.34 . The subjects, making up group "B", paused longer. Their mean phonation time/pause time ratio turned out to equal only 0.63. Group "C" ranke time/pause time ratio
The continuity of utterance (mean phrase length as measured by phonation time/fre quency of pauses ratio) also revealed
droupence among the three proficiency 0.73 s mentioned above. It ranged from 0.73 s for the group "A subjects to group " Cl ". Average percentage of long pauses (exceeding 1000 ms) in oral dis courses of different proficiency groups also appeared to be significantly dif-
for group "B" and 69.7% - for group "C" data characterizing the corresponding arities of oral speech of the same sub jects in their mother tongue revealed ractically no difference among the above entioned three groups of subjects.
imes it to the group "A" subjects appeared to equal 1.98; of group " $\mathrm{B}^{\mathrm{n}}-1.82$; and of group "C" - 1.83. Accordingly the continuity of utterance is equal to $0.84 \mathrm{~s}-$ 0.83 s - for group ${ }^{\text {n }}{ }^{\text {n }}$-. Percentage of ong pauses varies from 18.3 to 18.7 for all experimental groups.
CONCLUSION
Temporal structure of oral speech as analemporal structure of oral speech as anautterance, phonation time/pause time ratio and frequency of pauses of various length is indicative both of the level of foreign languages proficiency, gained by the utterance. Since temporal pecullarities of oral speech can be easily subjected to omputer analysis the method of foreign languages proficiency evaluation, based on the assessment of temporal structure economic.

REFBRENCES

1 F. Goldman-Eisler, Hesitation, Infor ation and Levels of spech Production Ciba Foundation Symposium", I., 1964, 2. 96-111. Goidman-Eisler, Speech Production and the Fredictability of Words in Context. - Quart. Journ. Experim. Psychol., 1958, V. Bomer, Hesitation and Grammatica Encoding. - Lang.Speech, 1965, v.8, p. 3. 4 . B. Butterworth, Hesitation and Semaning Res 1975 F^{2} 1, p. 75-78. 5 F. Goldman-Eisler, Sequential Tempor al Patterns and Cognitive Process in 122-132; F. Goldman-Eisler, Pausés, p. 122-132; F. Goldman-Eisler, Pauses, . 15, p. 103-113. Bradbury. An Experi6. G: Beattie, R. Bradbury. An Experiof the Temporal Structure of Spontaneous $\nabla .8, p$. $225-248$. continuity of , Its Determinants and ths Significance. - Lang. Speech, 1961

8 K . Scherer, Speech and Hmotional States. ${ }^{\text {chiatry", In: N.Y., 1981, p. 189-220. }}$

ARTIFICIAL INTELLIGENCE APPROACHES TO COMPUTER-BASED

YELENA Y. DAShKO

Dept. of Foreign Languages
 Mining Institute
 Leningrad, USSR, 199026

ABSTRACT
With the increasing role of computers in teaching, there is little doubt that we and allow us to speak to them. This review presents an experimental approach of voice I/O techniques to computer-based teaching English on the basis of Expert Type System cessing technology and some special linguistic/information problems are discussed. INTRODUCTION
The (micro) computer in education has both stimulated research on linguistic database and has provided a more precise experimenion of instruction and measuring responses /1/.
The basic hypothesis is that the computer offers an opportunity:
(i) to provide the teacher with a powerful
resource to manage individual learning within the terminal room;
(ii) to enable the student to follow learning procedures which incorporate stepvidual attention and to gain assistance discreetiy;
(iii) to make it possible to the teacher to observe and monitor the progress of the student in detail.
The objectives of the preliminary study
lity of the approach and the appropriate-
ness of the software facilities being
employed.
automated learning systems
Evidence indicates that it is most productive to teach grammatical and lexical bases in context. In order to carry out the exercise the student must thus araw upon lary.
In computer-based English teaching the student receives all of his training from the display device including tests and inations of instructional arrangements are not uncommon. The computer-based
tudy management model usually employs existing materials and the student spends only a part of his study time interacting with the computer; the material used in the initial study provides 20-40 minutes may be done on the computer via keyboard nayut by students. Responses may be saved on diskette and at the end of testing the student's score can be displayed on the screen immediately, or a printed evaluation can be reproduced depending on the computer programme and the test construcion. Questions to be printed are chosen (up to 1000 items).
Each Automated Learning System (ALS) comprises several learning volumes: Training volume; Control volume with its priority scoring due to three levels of bases; Reference volume with its gramaar and lexicon retrieval; Encouragement volume.
Potential linguistic problems are worked out before they are translated into hardware and software. Needs, goals, constraints are described a complex problem to be divided into a stand/control the whole process of learning. Each training step is related to previous and subsequent stages, and misunderstandings among students are avoide Questions/answers from the packet of typed with a 'minimum-energy' solution. ALS AND DIALOG INTELLECTUAL EXPERT SYSTEM (DIS-332)
Due to the technological development of voice recognition systems voice input can be embodied in ALS. Voice input gives the chance to relieve the overloaded visual manual channel and may achieve a nat form of human-computer communication A major problem is how to integrate the different sources of knowledge in such a way as to exploit their interaction. One
isinvet sources of knowledge as important in cetermining the interpretation of a spoker utterance/2/:

1. Segmentation, Feature Extraction and Labelling - processes of detecting acous tic-phonetic events in the speech signal and characterizing the natur
2. Lexical Retrieval - a process of retrieving candide labelled segments.
3. Word Matching - a process of determining some measure of the goodness of a word hypothesi.
signal.
4. Syntax - the ability to determine if a given sequence of words is a possible subpart of a grammatical sentence and to predict possible co
5. Semantics - the ability to determine if a sentence is appropriate to the context in which it is uttered, and what
A variety of different approaches have been explored on the basis of the Dialog Generally, they fall into top-down and bottom-up strategies, where a single network parser combined syntactic, semantic and pragmatic components on the basis Hidden Markov Models, is presented. performance results ought to be reported with the following information: a) complete description of the domain grammar including full specification of the vocabulary in the form of scripts, b) frequ each task state to successive states and c) average branching factor.

It is important to distinguish between the It is important to distinguish between the lactor, the average number of words which must actually be discriminated at each stage of the task (sometimes referred to as the size of the average active subvocasive database collections of both isolated and connected utterances, spoken by ten Russian speakers.
Vocabulary size $=500$ words, performance of the recognizer $=98-99 \%$, recognition time = real, branching factors $\leqslant 10$.
Above mentioned configuration provides large acale of opportunities while using in aLS:
. Russian lexical vocabulary and corresponding English items Input;
2. Printed text Visualization;
3. Impartial Control upon English words learning;

. Sounding for each input word

(speech synthesis);
5. Voice input ($\leqslant 500$ words) for English spelling correction of phonemic baseform in training and recognition mode
6. Voice input of English sentences (sentence length
nition mode;
7. Impartial Control upon learned gramma-
8. Reference information output due to the error rate or to inquiry.

LINGUISTIC A

Pinally, prediction models of recognizer Pinally, prediction models of recognize pertimal operating conditions for voice input $/ 4 /$. A major problem is the identiication of those factors having significant influence on the performance of the speech recognizer. W. A. Lea (1982) has 80 variables including language and task lactors (number of training passes, rejec threshold, size of the active vocabulary inter-word confusability), human factors, sex of the speaker), phone type and position), performance actors (type of feedback, error cor rection).
Ergonomic aspects for improving recogni3
tion performance should include:
a short speaker training of several hours is necessary;
b) if possible, a 3-5 repetitions in) equally-positioned phonemes of the equalary should be out of differen articulation types;
vocabularies should be splitted down vecified;
) system training must be performed with e) system operational noise at minimum.

There was found an improvement for DIS332 from 96% to $98-99 \%$ when three instead of one word repetition was chosen. Summine up, it provides a surment $5-6$ word oartions brought no further improvenents which is not surprising in view 0 . he high level of the recognition rate. Generally, it is suspected that the necessary number of word repetitwen
about 3 to 6 depends positively on vocabulary size, complexity and confusability. The results show thet equally-positioned phonemes can be better distinguished from/ among one another when different articulation types are used (e.g. plosive - fricative). Such features as voicing, nasality, affrication, duration and place of articulation are the primary channels of the in-telligibility-relevant information. Different vocals tend to be good features of words to be recognized if they do not belong simultaneously to the high vowels "e" and "i" and to the deep vowels "o" and "u". We believe that for each doubling of the vocabulary size, the recognition accuracy tends to decrease by a ifixed amount, which is different for each talker.
Yet there can hardly be any more important task in speech recognition than determining now well algorithms or devices work. Thus the error rate as a performance measure conveys no information about performance except the relative number of errors made on a given task. It tells nothing about the distribution of errors and the costs of making particular errors; depends on vocabulary size and doesn't reflect large vocabulary difficulty, the inherent acoustic confusability, the difficulty of the speaker, or the environment. A new information-theoretic performance measure is based, in part, on the idea that automatic as well as human speech recognition systems can be modelled as communication channels. A more meaningful measure, called the Relative Information Loss (RIL) would normalize the amount of information lost in a recognition process with the amount transmitted/5/. Woodard and Nelson /6/ propose combining the 'Human Equivalent Noise Reference'(HENR) method with a RIL method. HENR is based on the confusions between speech sounds by humans listening in noise. The model predicts the percentage word recognition rate, and the confusions at any signal to noise ratio for any vocabulary which has been defined in phonetic terms. This combined approach may be used to relate device performance to task difficulty.
Gramatical constraints whether they will be stochastic or deterministic, have the effect of decreasing entropy, increasing redundancy and hence decreasing error rate (entropy is, of course, a statistical property). Each natural language requires that some assumption be made about the likelihood of occurence of trained difficulty at a given point in sentence.
Two reasonable assumptions are that the difficulties are equiprobable or distributed to maximize entropy. Under the medium entropy assumption,

$$
\mathrm{H}_{\mathrm{eq}}={ }^{=} \log _{2}|\mathrm{~L}(\mathrm{~L})\{\mathrm{G})|
$$

so that entropy in bits/word is the basetwo logarithm of the size of the language divided by average sentence length. For ALS redundancy is to be increased up to 20\% against existing Expert Systems.

CONCLUSIONS

The development of faster microprocessors, larger memories, better printers and storage devices, together with pricing competition, will play roles, too. But the factor likely to be judged most significant in the academic microcomputer revolution will probably be the rate at which. these recognition systems have gained widespread acceptance by humans in serving their diverse educational needs on the basis of ALS.

REFERENCES

/1/W.D. Fattig, "Microcomputers in Academia", Journal of the Alabama Academy of Science, vol.55,No.1,Jan.1984, pp.31-37
/2/"Computer Speech Processing" ed.by F.Fallside, W.A.Woods (UK) LTD, London, 1985
/3/Петров А.Н., Туркин В.Н. "Спстема речевого диалога, Автоматическое распсзнавание речевых образов, ч. П, Каунас,1986, с.97-99
/4/H.Mutschler, "Ergonomic aspects for improving recognition performance of voice input systems", IFAC Analysis, Design and Evaluation of Man-Machine Systems, Baden-Baden,1982,pp.261-267
/5/Th.M.Spine, B. H. Williges, J. F.Mainard, "An economical approach to modeling speech recognition accuracy", Int.J. Man-Machine Studies,1984,21, pp.191-202
/6/J.M.Baker, D.S.Pallett, J.S.Bridle, "Speech recognition performance assessments and available databases", Proceedings ICASSP-83, Boston, pp. 527-532

ИСПОЛЬЗОВАНИЕ АВТОМАТИЗИРОВАННЫХ ОБУЧАЮЩИХ СИСТЕМ (АОС) ДЛЯ ОВЛАДЕНИЯ ЗВУКОВЫМ СТРОЕМ НЕРОДНОГО ЯЗЫКА

Д.Н.АНТОНОВА

Подготовительный факультет для иностранных граидан ,МГУ, Москва, СССР, 117234

В настолщее время все больше внимания уделяется изучению звуковой стороны языков. Актуальным при обучении неродному языку становится требование достижения произносительных навыков, приближающихся к уровню навыков носителей языка.

Обучение орфоэпически правильному, безакиентному произношению сопряжено с целыьм рлдом трудностей, главная из кдторых - звуковая интерференция. Иноязычный акцент в русской речи иностраннных учащихся представляет собой систему устойчивых навыков неправильного произношения, сложившихся под влиянием родного языка, что определялось А.А.Реформатским как подчикение чужой фонетики фонологическим навыкам родного языка. Таким образом, характер акцента зависит от контактирующих языков, что позволяет говорить о болгарском, немецком, венгерском, японском и других акцентах.

Эффективность фонетического курса во многом определяется отбором учебного материала, учитьвающим данные сопоставительного анализа звуковых систем взаимодействующих языков, а также анализ ошибок учаиихся и трудностей, связанных с усвоением правильного произнощения.

Условия обучения, особекно при отсутствии языєсовой среды таковы, что не позволяют обеспечить фонетически правильное оформление речи. Как показывает практика, устоявшиеся приемы преподявания русского языка как

Л.С.КРАСНОВА

Филологический факультет МГУ,

 Москва,СССР, 117234неродного недостаточны. Требуется поиск новых путей преподавания и большее,чем раньше, внимание к техническим средствам обучения (TCO) и, в первую очередь, компьютерным.

В основе успешного применения компьютерных средств в обучении звуковому строю неродного языка лежат те ме общеметодические принципы, что и при традиционном обучении, а именно: системность, всесторонний учет родного языка, коммун икативность, наглядность, и другие. Одна-ко компьютерные средства дают качественно новую ступень развития некоторьм из них. Так принцип коммуникативности воплощается здесь в реальное диалоговое взаимодействие обучаемого с компьютером, важным следствием которого является индивидуализация обучения. Помимо различных видов наглядности, которые при этом могут органично сочетаться, компьтерная техника позволяет осуществить процесс визуализации звучащей речи и обеспечить эффективный контроль за постановкой нормативного произношения на всех этапах обучения.

Для обеспечения прочного усвоения формируемых произносительных навыков необходима достаточная повторяемость материала и обратная связь. Наличие обратной связи которую дают компьютерные средства (ответ прикимается как прав ильный или ке прикимается при наличии ошибок), выводит на принципиально новый уровень возможности развития речевого слуха.

Качественное з.пчч..ние проијниішения невозмомно без развития речевого с.яуа. Речевой с.ьух, представляющий очетание разных фоорм ао̄со.ьюгной и дифффєренциааиьной чувствите:ъннстии (соо̄сгвенно речевой слух и тона.ъьный), в.гяется основой фіррмирования правильного произносительного навыка. Специфические качества речевых звуков первоначально неразаичимьь в силу отсутствия в рецептирующей системе моторного звена, адекватного отражаемоиу качеству звуки (А. Н.,Теонтьев,1972). Тренинг собратний связзн списоб̆ствуег становлению слухового одраза, который играет двоякую роль: роль эталона и артикуляторной программы.

Шииоромое использование магнитобонов и лингафонных кабинетов в настоящее время стало традиционным и принесло свои плоды. Однако следует учитывать сложность биомеханической структуры продучирования речи, быстротечность артикуляиии звуков, осуществляемой в миллисекундные интерваль, что создает часто непреодолимие пррятствия для обучаемых при воспроизведении требуемьх лооизносительных движений с целью достижения того или иного слухового эффекта. Это обстоятельство обосновывает необходимость привлечения новых модальностей ощуще. ния и разработку соответствующих методов и средств вычислительной техники
Разрабатываемый автоматизированный фонетический курс русскиго языка с испо.ьзованием эВМ предйагает на.ичие таких внешних устройств, которые смогут в значи тельной степени взягь на себл тренировочно-констролирую. цие функиии и, чго особенно важно, функции слухового анаиизатора. В настоящее время слуховой аналөз речи обу. чаемых проводится преподдвателем, ведущим. занятия, фонологичность речевоги слуха ограничивает возможности самостояте. ьного слухового анализа речи обучаемыми, особенно на уровне звука и ритмики слова. По той же при чине нельзя полностью положиться и на результаты слухо-

вого анализа зарубежного преподавателя -русиста. Даже носитель языка не всегда может хорошо справиться с этой задачей.

В связи с этим представ เяется целесооорразным пору. чить ЭВМ следующее:

1. регистрацию и ведение киждого оо̄учаемого,
2.вхоличе гестирование ни продвинутом этапе обученич: его ана.ıиз, выдачу резу.ььтатов и их хранение до окончания обучения;
2. обучающе-контролируюция и контролирующе-обучаю щая тренировка по всем трем уроьням: звуковому, акцент-но-ритмическому, интонационному - с моментальным конгролем правильности/неправильности выполнения:
3. текущий контро.ьь: выдача сведений после проведенного занятия о количестве проработанного учебного мате риала, качестве и количестве попыток, степени его усвоения;
4. тренировочно-контролирующие упражнения в фоне тической транскрипции (для филологов);
5. поэтапный контроль, позволяющий получить представление о прохождении курса;
6. итоговый контроль (при корректировочном курсе повторяюший параметры входного тестирования) и выдача сведений по каждому учащемуся о результатах прохождения всего курса.

Как видно из приведенного перечня, ЭВМ будут поруче ны все виды контроля, наиболее трудоемкая и утоми тельная часть работы преподавателя над произношением. Это позволит более продуктивно использовать учебное время и уделить большее внимакие развитию различных видов речевой деятельности.
Для успешной реализации автоматизированного курса по разделу фонетики необходимо предусмотреть в АОС следующее.

1. Компьютер должен быть совмещен не толька с дис'亡еем, но и с магнитофоном, видеомагнитофоном, а так же с печатающим устройством
2. Клавиатура компьютера далжна иметь не только строчные, но и прописные буквы, "ь", "е",", а такше все виды скобок, надстрочныьх и подстрочных знаков, используемььх в русской фоне гической транскрипции.
3. Экран диспцея до:ьжен передавать изображание тональных конгуров пред.ьожений звучащего текстя, интенсивность и длительность гласных звуков, характеризую щих ритмическую структуру слова, определять и высвечивать на экране качество контролируемого звука. Экран дисллея даижен јопускать возможность демонстрации артикуляционных и других схем,таблии,видеофильмов.
4. Разработка "автоматического транскриптора" позво.tиг обеспечить фонетическую транскрипцию необходимых трезкив звучащей речи и"будет способствовать порожде. нин иравлоподобной сточки зрения орфоэпии звуковой

последовательности' (Л.В.Бондарко, 1986).
Значительное увеличение эффекгивности обучения ироизношекию ожидается не только за счет активной самоконтро.иируемой деятельности обучаемого, но и в значите.іьт ной степени благодаря подкрепленин слухового восприяия зрительным.
Преимущество обучения с использованием АОС зак.ъюча ется в том, что обьективно оцениваются результаты радооты обучаемьх, выдаются оптимальные рекомендации для да.ьнейшей самостоятельной работь.

Для реализации программы эффективной АОС назрела необходимость создания единого банка фонетических данных нормативного русского произношения.

The absolute semitone scale is a scale combining the properties of both physical modified Fletcher's formula,
$P(s t)=12 \log _{2} F_{o}(H z)$,
to relate fundamental frequency to its correlate perceptual units of pitch, viz., semitones above 1 Hz ($1 \mathrm{~Hz}=0 \mathrm{st}$) The
absolute pitch units are much more conveabsolute pitch units are much more conve-
nient than Hz for the presentation, comnient than Hz for the presentation, compitch differences) and other processing of raw data obtained in instrumental prosodic research.

In prosodic research the presentation of fundamental frequency in cycles per second ment data are concerned. Any further manipulation and discussion or interpretation of the data should be carried out in units of perception. Even the graphs of F movement applying the linear irequency give a wrong idea of an extensive pitch movement which is never perceived by listeners as such. The logarithmic scale is a solution for graphs, although not very
convenient for plotting unless one has special charts where every cps (Hz) can be plotted accurately.
The comparison and statistical processing of raw data in Hz in terms of perception speaker, let alone speakers with different F_{0} ranges. The perceptually relevant comparison of two tones can be carried out by calculating their ratio, which further may be converted into semitones. Thus,
given two measured frequencies, 150 Hz and 100 Hz , it is useless to state, in a dism cussion of their perception, that their difference is 50 Hz : the perception of the
50 Hz difference here is 50 Hz difference here is quite unlike the
perception of $a 50 \mathrm{~Hz}$ difference, say, beperception of a 50 Hz difference, say, be-
tween 250 Hz and 200 Hz . Instead, one can state that the ratio of the pirst pair of irequencies is $3: 2$ whereas that of imagination, however, it is an untrained to atate that the (musical) in it elearer
is 7 between the first two frequencies is 7 semitones, or a fifth, and that betones, or a third.
But calculating is average F_{0} values in Hz is of very doubtful value, as is drawing values or such averages. To say that one F contour individually or on an average differs from another by a 10 Hz difference
between their peaks is quite meaningless. As long as we believe that the perception logarithmic in the same way as it is for pure tones, the only possibility to process F_{0} data mathematically is in linear units on the logarithmic scale to which the data should be converted. The basic
unit of pitch is the octave. The convenient unit for the analysis of fundamental pitch is the semitone. Proceeding from FLETCHER (1929) who introduced a scale of
octaves and centioctaves above 1 kHz for octaves and centioctaves above 1 kHz for
the whole of the audible pitch range, it is possible to modify Fletcher's formula for calculating the pitch of the voice fundemental in a b so.l ute semi$\left.t \circ n \underset{P}{e} \underset{(s t)}{a}=12 \log _{2} \frac{1}{F_{o}\left(\mathrm{~Hz}_{z}\right.} \approx=\mathrm{cps}\right)$.
According to this formula,
$1 \mathrm{~Hz}=0$
$1 \mathrm{~Hz}=0$ st, $2 \mathrm{~Hz}=12 \mathrm{st}, 4 \mathrm{~Hz}=24 \mathrm{st}$,
$64 \mathrm{~Hz}=72$ st, $512 \mathrm{~Hz}=108$ st $(\mathrm{Fi}$ That is, instead of operating with figures in the F range of (roughly) $64 . .512 \mathrm{~Hz}$, we can operate in the pitch range of 72. . 108 st. The figures of the latter scale are suited for any kind of mathematical processing without notably violating the pairs of numerical data (depicted in Fig. 2), we can easily find the average pitch of the latter pair to be 90 st; the pitch and the average as well as between the higher pitch and the average is 18 st (1.5 octaves). The result is perceptually informative, unlike the average of the two former figures, 288 Hz , where the lower 10 st of the upper interval.
Data in Hz can easily be converted into absolute semitones by means of a table
where every Hz is given its correlate

256

Fig. 1. (Left.) Linear frequency scale in Hertz (left) and the correlate pitch val. ues in semitones (right).
(lig. 2. (Right.) Linear pitch scale in st in Hz (right) the correlate frequency values in Hz (right). Plotting of two fundamentHz , on the linear pitch scale and $\mathrm{F}_{2}=512$ correlate logarithmic frequency scale. \bar{F} is the mean frequency, \bar{P} is the mean
value in st with the accuracy of .1 st (higher precision is unnecessary in phonetics). This table is printed on the 4th page of the present paper. In computerbe done auiomatically, applying the above formula. For a programming language applying natural logarithms (such as BASIC usea for computing the given conversion $P=12 \times 1.442695 \times 10$
It would be highly advisable ${ }^{\circ}$
ven raw data in these absolute to present al units. The investigator himself could immediately estimate the perceivable differences between the measured parameters ematical operations with the data without the ad hoc calculation of ratios or finding of logarithms. Intervals could be calculated by simple subtraction. Pitch drawn on ordinary square paper The reader, too, could at once see what the measured pitches, intervals and ranges mean in terms of perception, Also, absolute semitone scale could easily compare the data of different authors without the need to convert the Hz into ra-
tios and then back into the traditional but unnecessary Hz if he wants to publish ine and process the results and initial data for further generalizations, compute averages of pitch contours of differen uthors (including one's own), etc. or example, the paper of LIN et al. the average pitch in $2-$ and 3 -syllable tone groups of Chinese. Pitch is expressed in Hz. Let us consider a line of their Table 1 - tone $4+$ tone 3:
male speaker $\quad 196-110 \quad 104-82-11$ female speaker 242-152 143-82-156 The figures are given as averages. Al though it is wrong in phonetics to average hertzes (what can be averaged is thei as representing single speech acts. All we can see is that both speakers pronounc the first syllable with falling pitch and the second with a fall-rise which is
steeper for the female speaker. Now let us convert the hertzes into semitones:
$\begin{array}{lll}\text { male speaker } & \begin{array}{ll}1 \text { st syll. } \\ 91.4-81.4 & \text { 2nd syll. } \\ \text { 20.4-76.3-82.0 }\end{array}\end{array}$ male speaker ${ }^{\text {female speaker } 95.0-87.0}$ 85.9-76.3-87.4 Here the extent of pitch movement is at make a 10-st fall in the 1 st syllable against the female speaker's 8 st; the 2nd syllable starts 1 st below the end of the lable are 4 st and nearly 10 st and sylively, and the final rises about 6 and 11 st, respectively. Further comparison
with the other tone groups in the table
what extent these findings Another aspect.

In 0 pitch contours of the above tone Hz , we would have to draw both of them on logarithmic paper and calculate the aver age contour geometrically (Fig. 3). Yet it is much simpler to average the parameters expressed in st arithmetically, and draw the resulting contour of the same shape on square paper.

Fig. 3. Plotting and averaging of two ontours of a Chinese tone group on the semitone scale. semitone soale.
_____ male speaker
-.-.-. the average contour
hen synthetic speech is used in prosodic research, it is expedient, with a view to their subsequent mathematical/statistical analysis, to make up the tonal contours for the synthetic stimuli in absolute pitch units, varying the pitch of certain of n Hz . It will considerably facilitate, for instance, correlation analysis beween the input pitch data and the listeners' responses when the former are expressed in semitones on the absolute easy to interpret the results of such analysis.
The absolute semitone scale was first inroduced in Tallinn in 1972 (VENDE 1972) and has since been successfully applied ere (e.g., PIIR 1985).
he mel scale or the icient for plotting psychoacoustic data or frequencies above 500 Hz , i.e. for pectrum analysis, but apparently not sensitive enough and too clumsy to hande otherwise why should prosodists have frequency. It remains to hope that the absolute semitone scale, which is likewise oth physical and perceptual, will graduing break through the hitherto dominatng prosodic research root and spread

REPERENCES

Fletcher, H. 1929. Speech and Hearing. in, M.C., Yan, T.Zh., Sun, G.H. 1984 . orrelates in Beijing Mandarin. - In: The Proceedings of the Tenth International Congress of Phonetic Sciences. 504-514. Foris Publications, p.
Piir, H. 1985. Acoustics of the Estonian diphthongs.
netics: Esp
1982-198ian Papers in Pho-5-96.
Vende, K. 1972. Intrinsic pitch of Estonian vowels: measurement and perception - Eatonian Pap.
Tailinn, p. $44-108$.

TABLE
Conversion of Hertzes into Semitones

Abstract

z

$$
206 \mathrm{~m}
$$

 WWN

МОРФОЛОГИЧЕСКАЯ ГРАНИЦА КАК СРЕДСТВО СЛОГОВОИ СЕГМЕНТАЦИИ В ЗАПАДНО-ИРАНСКИХ ЯЗЫКАХ

Талбак Хаскашев

тадкикския госуниверситет
г. Душанбе, СССР

APPENDIX

сумествование такого феномена, как слог настоящее время не вызывает сомнения. Оно доказывается многочисленными лингвистиче 1) носители раэличных изими фактами:

вои поток на слоги и польэуются ими
своеи речи при определенных условиях;
2) лингвисты в различных яэыках выявляют описывают структурные элементы слога,
говорят о доминирующем и сопутствуюии говорят о доминирующем и сопутствуюпих
средствах слогообраэования и о различных функциях слога;
3) представители различных неяэыковедческих аук (литературоведы, музыковеды, мединятием слога.
однако проблема слога как лингвистичекого явления, по справедливому приэнанию оодавляющего больнинства исследователеи, в современном язнковедении считается ниях" (10, 251). Это прежде всего касается вопроса о том, как и на основе каких критериев выделяется слог из потока речи как Е. Курилович удачно исследования - то, что мой теории слога (14, 267).
Причин для споров вокруг проблемы слоговои сегментации и определении ее критериев много, на что указывают все исследователи, имевшие когда-либо дело с проблемоп членеостановиться на одной из них, которая, на иаи взляд, имеет существенное значение для слоговой сегментации потока речи.

Главная причина разногласий заключается (т.е. сегментации потока речи на слоги на основе той или иной теории) в различных языках по-раэному соотносятся с реэультатами слогоделения, осуцествляемыми носителяних яэыках, эти реэультаты не находят успешного применения в других. причина несовпадения результатов научного слогоделения с результатами слоговой сегментации, осунам кажется, в отсутствии четкоп границв между типологическими (общими) и специчическими (национальными) аспектами проблемы слога.

Слог, как и другие языковые явления (фоема, ударения, интонация и т.д.), с однои тороны, имеет такие черты, которые присуп (фонемного или слогового) строя, с друго стороны, характеризуется такими особенностями, которые присули только одному конкретному языку или группе близородственних к пер
ологическия аспекту проблемы, т.е. к тисы: а) о фонетическойтя природесятяя вопросредствах (доммнируюмем и сопутствуюмих) сочетаемости и способов их распределения пределах слога и связанные с ними явлении; 5) о функциях слога.

К специфическому аспекту проблемн, очеидно можно отнести также два круга вопролога, сочетаемости и связанных элементов лении; о слоговой сегментации, ее средствах критериях.
упп воифосоеком характере последних двух пределение сов горит прежде всего само ределение слога как наименьшеи произносительнои единицы ($4 ; \frac{\text { наименьше произно- }}{10 ; 12 ; 22 ; 23 \text {) }}$ получившее широкое распространение в совреицей произношения, то слогоделение и происходяцие в слоге явления у носителей различных яэыков не могут быть одинаковыми

Известно, что "явуки человеческой речи - продукт деиствия произносительных органов ного аппарата человека" (11, 11). Произносительные органы, как физиологические каегории, одинаковы у всех рас и народов тв (призношении) не могут быть одинако выми у всех народов - носителеи языков, ибо разные яэыки имеют свойственные им фоноло гические системы, которые реалиэуются по конечном счете способы работы проиэносительных органов и навыки проиэношения. Навыки проиэношения, будучи историческоп категорией, развиваясь и совершенствуясь
 циональную форму, общую для всех носителеп̆ национального яэыка, нарушение которой Fac-

ени, вается как отклонение от нормы или как кцент. новеиыие исследования показали, что произношения) обнаруживаются уже в младенческом возрасте. Об этом говорит тот факт, что эвуки (плач) новорожденных млаковы даже в возрасте одного дня (7, 58-64). Таким образом, различение двух аспектов типологического и специфического при рассмотрении слога как лингвистического явлеия результаты исследования специфичесиитатам ров, характерных для того или иного языка, могут не совпадать с результатами рассмотрения аналогичных вопросов в другом (или других) языке. Поэтому вопрос \circ слоговои онкретной фонологической системы, законоерностями функционирования ее элементов должен рассматриваться для каждого конкретного пзыка отдельно.
Очевидно, исследование специфических рассмотрению его типологических свойств, так как о слоге, об образуюпих его элеменах и функциях мы можем судить лишь после ого, как слог вычленен из потока речи и ментов. Пвыделение слога внутри слова дисал Е.Курилович, - это в сущности пре висалельная и необходимая операция, предествуюпая любому описанию структуры или Аств слога" $(14,267)$.
вопрос о слогоделении
вопрос о слогоделении, как известно, во казывается консонантная когда перед нами состоящая из двух и более согласных. "в слогоделении ешаюдую роль играют, - писал Е.Курилович промежуточные (интервокальные - Т.Х.) стоит в основном и раздалении гролпп согласых на имплозивную часть (= принадлежамую предиествующему слогу) и эксплоэивнур 14, (= принадлежащую последуюшему слогу)" известн
известно, что любая научная теория (или сть тогда, когла она соотносима \subset цен ии деиствительности и как-то объясняет их. исходя из этого положения и имея в виду существуюиие основные теории слоговой сег сегментации в современном таджикском языке нами был специально составлен текст, состоя иии из 300 словесных знаков, включаюпих онемные и трехфонемные сочетанияке двух сыых, описанные в литературе (1; 3). Это екст был сегментирован специалистом-фоне истом и носителями языка: специалист сег ентировал текст на слоги дважды: один раз который был предложен Р. т. Аванесовианте второй раз - по теории мускульного напря жения Л.в. цербы. (Мы назовем этот вид Две груип теоретическим слогоделением)

каждои (студенты второго курса гуманитарого и естественного профилеи, для которых таджикский язык является родным) этот текст фоном. их сегментация была записана на магитной ленте, а затем перенесена на бумагу. (Эту сегментацию назовем интуитивнои, а полученные после нее слоги - интуитивными). сравнение результатов теоретического и а) полное совпадение результато лучаев интуитивного слогоделения без расождении;
б) значительное совпадение результатов при определенных расхождениях;
в) значительное несовпадение результатов теоретической и интуитивной сегментации при неболыном их сходстве.
Так, согласно сонорной теории, таджикские слова типа мактаб 'школа', чашма 'родслоги: ма-ктаб, ча-шма, бо-дринг, а слова типа марказ 'центр', манзил 'жилье', пумба 'хлопок' - на слоги: мар-каз, ман-зил, пумба, так как. в словах первои группы первые
слоги, завершаясь на гласныи, и слова второй группы - на сонорныи, соблюдают принцип возрастания звучности $(2,42)$. Однако только сегментация второи группы слов совпадает с делением их на слоги, которое наблюдается па слов, очень характерного для таджикского яэыка, не совпадает с их членением носителями яэыка, которые делят эти слова на слоги следуюим образом: мак-таб, чаии-ма, -рина.
Сранне
Сравнение результатов теоретических и интуитивных слогоделений выявило еще большее расхождение между теорией мускульного теория мускульного напряжения, исходя из места ударения по отношении к консонантной группе, следующие таджикские слова делит на тель', со-хнуд 'довольныи', y-стод 'учи на-здик 'близких', т.к. конечное ударение в этих словах, притягивая консонантную группу к себе, делает их сильноконечными
$(22, \S 87-90)$. Однако такое слогоделение не совпадает слогоделением носителедел тадкикского языка: ус-тод, сохт-мон, х,ав-лй, наз-дик.
Таким образом, сонорная теория и теория мускульного напряжения, успешно работаюпия находят своего успешного применения в таджикском языке.
Исходя из известного положения о невозможности членения речевого потока на линг ве акустических и артикуляторных признаков его составляюџих ($9,10,36-42$) и указания на то, что "распознавание лингвистических единиц основано на знании контекстуальных ностей данного язнка" (20, 211), можно предположить, что закономерности слогоделения должны объяснить те теории слоговой

егментации, которые основаны на лингвисти еских, семантических критериях. и дейст ительно, результаты интуитивного слогоде ения лучше других обълсняет теория слого ингвистических критериях. Е. Курилович как известно, опираясь на выдвинутые им же ринципы изоморфизма языковвх единиц, пы гался сформулировать ряд правил, исходя и лементов слога и слова. Он писал: "При еервой попытке появляется искушение, чтобы применить здесь (при членении консонантно руппы - Т.Х.) критерии начала и конца сло ва. Действительно начальные группы слова мплозивна, точно также конечная группа вляясь концом последнего слога слова, все да эксплозивна. Таким образом, начало. и онец слова могли дать нам надежные крите ри, позволяющие разграничить внутри груп иммер, ак, как в языке, с одной стороны, сущест уот слова, оканчивающиеся на n, например rahan 'несущии', с другой стороны,
озможно в начале слова (trayah 'третии'). Расчленение на ma-ntra или mant-ra было бв или с конечным $n t$ не существует. Исходя из того, разделение на слоги man-tra являе единственно возможным решением" $(14,268)$ Если обратиться к таджикскому языку, то сходство начальных и конечных консонантных лементов слога и слова: слоги и слова на инаются одним согласным и имеют в исходе один или два согласных. Учитывая это совадение, слова чармгар 'сапожник', расмка художник', гармру 'приятны' можно члетак как другое их членение (чар-меар или к-рмгар, рас-мкаи или ра-смкаш, гар-мру ли га-рмру) противоречило бы изоморфизм начальных элементов слога и слова. Такое членение вполне соответствует результатам докаэывает материал, дейтвенность этого критерия ограничена. Это правило хорошо раотает во всех случалх, когда мы имеем дес группои, состоящеи из трех согласных
 огласных, например, в словах мактаб, махффи общество', чорбов 'парк', чорсу'платок' арддум 'люди', наздик 'близкии', осмон 'неи др. Дело в том, что слова этого типа пример, слово чорбоа нохет блить трояко. На овано как чо-рбов чор-бог и чорб-оз, из оторых, согласно теории Е. Куриловича, олько первое членение (чо-р6ог) не прием тс, так как при нем второи слог начинаорфизму начала слога ч слова. тва других членения, согласно этой теории, допустимы, ак как при них начальные и конечные элементы соответствуют начальным и конечным элементам слова. Однако с точки эрения но-

сителеи языка, как показывают наши даннын неприемлемым является и членение чорб-0з, несмотря на полное совпадение начальных и вуюиими элементами слова: в таджикском взыке есть слова, имеюцие в начале один согласный и заканчиваюциеся надва согласных, например, дард 'боль', и слова, начинаюииеся гласным - орд 'мука' С точки зрения
носителей тадкикского языка единственно правильным членением является чор-608, т.е такое членение, при котором слоговое и морфемное членения совпадают

Таким образом, критерии начала и конца слова, хорошо объясняюие сегментацию кон-
сонантннх групп из трех согласннх, оказнваются непригодными при объяснении расчленения консонантной группы, состоящей из двух согласных, а это ставит исследователя перед необхоалосой критерии слоговои сегментации.
ю.С. Маслов, обсуждая вопрос о членении речевого потока на отдельные звуки (фонемы), и говоря о недостаточности акустико артикуляторных признаков эвуков для его осуществления, таких языков, как русский, истоки выделимости фонемы нужно искать в факте принадлежности в ряде случаев соседящих и нередко тесно "сплетаюихся" в потоке речи фонов к разным значацим единицам - к раз-
ным морфемам и даке словам. Особенно наглядыы в этом отношении примеры однофонем ных морфем и слов: в них данная фонема оказывается сразу с двух сторон выделенной в речевом потоке или в составе той или ино формы определе эта,
членение через членения потока речи, т.е. меняемая для выделения отдельного звука речи (фонемы) в традициях цербовскои фонологической школы ($6 ; 9 ; 10 ; 17 ; 22$), нам представляедя ментации в таджикском нзыкеси сы исходим не из однофонемных морфем и слов как при сегментации на эвуки речи (фонемы), а из фонетических характеристик односложных морфем и слов. Преимяществм эчоговича является то, что он учитывает не только начальные и конечнье элементы слога (слова), но и весь его звуковой состав, что очень вахно, ка увидим ниже для принятия ре
Основы этой методики были заложены еме в начале нашего столетия л.В.Цербой (22, 4 -7.) и получили дальнениее раэвитие в трудах его

Суть этой методики заключается в том что при членении потока речи на звуки речи через однофонемную морфему и слово берется а) по функционированию, т.е. возможность функционирования эвука речи вкачестве экс б) материальн
5) материально, т.е. совпадение акусти

ко-артикуляторных характеристик звука речи и морфемы, Можно думать, что не будь этих отдельные звуки речи было бы невозможным. Возврамаясь к слогоделению в тадхикском языке и возможности выделения слога через морфологическую границу (через морфемы), мы Во-первых, из того, что "фонетические комплексы (например, слоги) и семантические комплексы (например, предложения) независиво от объединяюцих их функциональных отструктуры. Можно установить между ними удивительное сходство формы (изоморфизм) " (15; 14) и того, что "явления иэоморфизма или однотипности структуры конститутивных язнуют особенности системы пзнду и тими обрабразом связаны с его различными уровнями..." (15, 56).
во-вторих, из утверждения о том, что в
"таксономическои
шкале пзыковых единиц слог таксономическои шкале языковых единиц слог занимает промежуточное положение между фоение между фонемой, слогом и словом в языках неслогового (фонемного) строя аналогич ны отношениям фонем,ои, морфемои и словом: ему влог и морфема частью в слог имор (18, 122-123). в-третьих, из
осителеи яэыка членение потока речи на фоемы или слоги не нөляется исходной, отрель языка оперирует значапими речи носи по менышеи мере морфемами..." (17, 51).
в четвертых, из изоморфизма слога и мор фемы как по составу структурных элементов изоморфизоиекотослова (19, 41). ва (19, 41)
удучи основой для осуцы слогаи морфемв егментации через односложные морфемы и сло ма, сами по себе недостаточны, а необходи адение и функционирование слога в качест-
експонента морфемы.
Обращаясь с этои точки зрения к материаительное совпадение ино обнаруживаем удиыыеленных испытуемыми, и односложных ов фем и слов как материально, так и по функ-во-первнх.
Во-первых, обнаруживается интересное мафемв:
a) интуитивные слоги и односложные моремы (и слова) могут состоять от одного до етырех звуков: \bar{y} 'он', 60 (предлог), бо крына', барг 'листья', один из которых б) если интуитивнне слоги морфемн (и слова) состоят из одногосложные го этот звук обязательно является гласным в) интуитивнне слоги и односложные моргласным (примеуы вне): только одним со
r) интуитивные слоги и односложные мор фемы в исходе имеют один или два согласных вука (примеры ввлие)
(и слова) в своем функционировании морфемы совпадать друг с другом, т.е. слоги могут выступить в качестве экспонентов морфем и слов: $\overline{\text { у }}$ рафт 'он ушел', соябон 'зонтик'
бов-бон садовник' и др. (21, 17-22). именно благодаря этим последним сходствам слога и односложнои морфемы (слова) в таджикском языке и оказывается возможным членение потока речи на слоги через морфему и односложные слова
ленении на слоги мы будикском яэыке при кового состава односложноп морфемы (и слу ва) как более в семантическом отношении самостоятельного и непосредственно данного явления и соответственно ему будем принимать слове. Допустим, что перед нами таджикское слово марзбон 'пограничник', подлежаще сегментации на слоги. Оно может быть сегмен тировано так: ма-рзбон, мар-збон, марз-бон, марзб-он. Исходя из звукового состава мор сегментацию считать неприемиемыми потому что: в) первом членении (ма-рзбон) второ слог начинается тремя согласными и в свое составе имеет пять звуков, - в таджикско торые имеют в своем составе пять звуков начинаются тремя согласными;
б) второе членение (мар-збон) неприемлемо, так как при нем второй слог начинается двумя согласными, ибо нет в таджикском щихся с двумя согласными; ве четвертое членение (марзб-он) также не подходит потому, что при нем первыи сло ных а таких односложны имеет три соглас ском языке нет.
Единственно правильным и приемлемым является третье членение (марз-бон), т.е.такое членение, при котором слоговая и морфемная границы совпадают. Результаты этои татами интуитивного слогоделения.

Таким образом, мы можем безошибочно сегментировать на слоги все исконно таджикские слова и эаимствованные из других (арабско соова, прошедиие в таджикском и.) языков освоения, которые имеют в интервокальном положении консонантные группы. Эта методи ка действенна во всех случаях, кроме границ синтагм, где членение на слоги подчиняется Результаты этои слоговой сегментации хорошо согласуются с результатами слогоделения, осуществляемого носителями языка. Это показало сравнение слоговои сегментации, осуцествленной по предлагаемой методике, с нашими информантами

Предлагаемая методика слоговои сегмен тации может оыть применена в блиякородст ак как они харак языку пер такимже сло говым строем (26), как и таджнкскии.
предлагая осуществить в таджикском язы ке слоговую сегментацию на основе однослож отметить, что мы далеки от мысли, что в таджикском языке и других западно-ирански зыках обнаруживается абсолютное совпадение логовых и морфемных границ, как в слоговых то слоговые границы определяются ясках, ельно морфемными. в таджикском пзыке, ка в персидском и дари, деиствительно обна ууживается совпадение слоговых и морфемных
Но это не самое главное для предлагаемои клада носит несколько условный характер) Для нас важно материальное совпадение сло а и морфемы. Благодаря этому совпадению осители таджикского языка сегментируют н овые и морфемные граничы совпатортх сло ример, сардор 'руководитель'), но и такие которых эти границы не совпадают (мак-таб "школа'). Очевидно, если в первом случа еме ная сегментация осуцествляется по мор ли таджикского языка используют аналогию суцествляя слогоделение под сильным влия нием морфемы и фоно-морфологического строя слова.

литератуР

1. Авазбаев Н. Структура слога в яэыках
2. Аазличнвх типов- - Ташкент: Фан, 1986. ккого литературного лэса - М: мгу 1956.
. Бобомуродов ш. Фонетико-фонологическая питетура односложных слов современного
 реф. дис. канд. филол. наук. Тбилиси
3. Вондарко Л.В., Павлова Л.П. Офонетичекиих критериях при определении слоговой границы. // Рус. яз. в школе, 1967
4. Бондарко $10-19$.

дифференциальные признаки фонкура речи и
6. реф. дис. док. филол. наук. Л., 1969. единицах. // исследования по фонологии. M., 1966, с. 172-183.
7. Джапаридэе З.Н., Стрельников Ю.А. О раэ личиях в плаче новорожденных разной наней фонетической организащии уе уровдельной речи. // эксперимертально-фоне тический анализ речи. - л.: лгу, 1984.
Вып. I. С. 58-64.
8. Зиндер Л.Р. Материальная сторона языка и фонема. // Лениниэм и теоретические
-381.
9. Зиндер Л.Р. Проблема сегментации речевого потока на кратчайии звуковые еди-
ницы. // Вопросы фонетики и фонологии. доклады советских ученых на VII между народном конгрессе фонетических наук. M., 1971. Ч. I, с. 138-152.
10. Зиндер Л.Р. Общая фонетика. 2-е изд.
11. Зиндер Л.Р. К вопросу об артикуляционоии базе. Скй ана
12. Касевич В.б. Слог в общем и дальновос точном языкознании.// Теория языка, методы его исследования
Л., 1981. С. 141-146.
13. Кукольцикова Л.Е. Об одном спорном случае слогоделения в английском языке. //
Экспериментально-фонетический анализ ре-Экспериментально-фонетический анали
чи. - л., 1984. Вып. І. С. $29-40$.
14. Курилович Е. Вопросы теории слога. // Очерки по ли
C. 267-306
15. Курилович Е. Понятие иэоморфиэма. // Очерки по ли
C. $307-319$.
6. Макаев Э.А. К вопросу об изоморфизме.// Маслов ю.С. Введение в яэыкознание. M., 1975.
8. Метлок А.А. Слог как языковая единица // Романское и германское языкозна
Минск, 1984. Вып. 14. С. 121-125.
19. Моисеев А.И. иэоморфизм фонетическог строения слога и слова.// Вестн. высш к. филол. налк. 41-44.
Фланган Дж. Анализ, синтез и восприя

1. Хаскашев T.Н. Фонетикаи забони адабии хрзираи точик (фонетика современного таджикского литературного языка). Просодика. - Душанбе, 1984. К. 2 .

м 1983. Л.в. Фонетика французского языка щерба л.в. Фонетика
 Kramsky J.A. Phonological Analysis of talni, 1947, v.16, p. 103-134.
25. Palgram E. Syllable, word, 19 nexus,
cursus. - The Hague-Paris, 1970 .

DELIMITATION AND FOCUSSING FUNCTIONS OF INTONATION IN BULGARIAN

ANASTASIA MISHEVA

honetic Laboratory, Bulgarian Language Institute Bulgarian Academy of Sciences, Sofia, Bulgaria

abSTRACT

The paper deals with the results from an experimental study of the phonetic segmentation of Bulgarian speech. On the basis of experimental data an
attempt is made to reduce the variety of the observed melodic configurations of segmentation units (syntagmas) de scribing them in terms of two kinds of accents, conditioned by the phonetic focussing functions of intonation and their possible combinations. The pro posed classification may be used for comparative intonological analysis of structures.

INTRODUCTION
Theoretical ground of the present experimental study is the generally acknowthe framework of language communications as a phonetic source of information transferred from speaker to hearer. The of intonational phenomena and their interaction with extralinguistic and linguistic factors from different levels scribing the functipns of intonation. Regardless of their different number, definitions and terminology, almost all of the proposed classifications include the delimitation and focussing func -
tions under one or other lable $5,6$ and many others $\}$. Here the term "delimitation function" is used for scribing the structural role of intonation - the segmentation of the speech flow into phonetic units, the so called
syntagmas, and the organizing role of inturation in their formation. The syn tagma is defined in the sense of the Leningrad Phonetic School as a semanticmore words organized by intonation int more words organized by intonation into condition for a string of words to be grouped into a syntagma is the absence
of perceived pauses between them, the pauses being of two kinds: real 'a sound
gap) or psychological (due to interruptions of the continuity of the prosodic parameters of speech signal) [4]. The focussing function of intonation is understood as the role of intonation in elements in the utterance. The. aim of the study is to determine the phonetic means used in Bulgarian for the cussing functions of intonation and on cussing functions of intonation and on tic regularities in the suprasegmental organization of speech allowing adequate comparison with other languages.
Focussing function
The manifestation of the focussing func he of intonation in Bulgarian follows inence by complex ent to phonetic pro coustic prosodic enhancing of the of the stressed vowel in the phonet ic word containing important information A result of a previous experimental stu(7) of the F-patterns of short simstatements is that their most syntagmatic melodic contour is of rise-fall confic ration with its peak on the stressed syllable of the word bearing the phrase accent. The application of the "theme data determines the melodic contrast between the syllables in the word as a main acoustic feature of the rheme and the lack of it, i.e. the unidirectional course of F_{o}-contour as an acoustic cha
racteristic ${ }_{\text {of }}$ the theme the direction depending on its position in the phrase.
delimitation function
The phonetic breaking up of the speech flow into shorter or longer stretches by
means of pauses shows a great variety in the size and intonational shape of the divided units due to individual varialions in speech. The intervention of the subjective factor however is not a reatal one without linguistic significance
only within certain limits are possible by the particularities limits conditioned a structural device in a given language and the universal restrictions in the speech production process. The phonetic manifestation of the delimitation function of intonation may be estimated by syntagmas representing the basic tenden cies in the temporal organization of speech
The statistical data given below concern the segmentation of speech in the parti stage of a larger expermental investiga tion of the suprasegmental organization of Bulgarian speech. The data are obtained by means of an auditory and acoulistic style (40 simple and 21 journaand complex sentences, the total number of clauses being 91) read by 12 persons

Sintagma size

Fig. 1 shows the occurrence frequencies of the syntagmas of different size the phonetic words in a sintagma. The minimal size is 1 word or 1 syllable, the phonetic words or 28 syllables, the average size being 2.35 phonetic words or 8 syllables. The comparison of these values with the corresponding data for other languages (Russian (8), [9]; great similarity which makes it possible to assume that the main factors determining the size of these units are the universal restrictions in the speech production.

Fig.1. Occurrence frequencies of syn

The statistic treatment of the syntagmas with respect to their size and po-
short syntagmas (1-2 phonetic words) prefer the initial position, the longest nes (5-6 phonetic words) usually occupy the middle of the sentence and for synagmas of the middle size (3 phonetic
pauses
Under the experimental conditions, i.e eading of grammatically well formed nits, it has been found that real (87%) than psychological ones (13%).

Fig.2.Occurrence frequencies of

Fig. 2 represents the occurrence frequencies of real pauses according to their (4 4 peaks) The configuration of the curve (4 peaks) and the dependence of the tions between the adjacent syntagmas give ground to distinguish 4 kinds of pauses: short, middie, long and superlong. The short pauses usually separate
groups of words in the simple sentence, the middle ones - clauses in the compound and complex sentences, the long nes occur between the separate senten f the phono-paragraph. It must be end
ointed out that although closely relatd the phonetic and syntactic units do the syntactic entity of the noun group may be phonetically divided by a short pause between the attribute agreed with the noun and the noun itself only because of the larger number of syllables

Number of accents in a syntagma in our mater accents in the syntagmas ests the instruction ined by auditory phonetically prominent words without any restriction in their number. The results how that in Bulgarian speech a syntaga may have more than one accents with an equally perceived weight. The maximum ngs is 3 (in 3% of all units). Most of he syntagmas have one accent (72%) and 25\% of all cases - 2 accents. The ossibility of a syntagma to have more han one accent has been noted in other Types of accer.ts
The auditory and acoustic analysis of our recordirigs show that the accentuatwo different ways perceived as phonet prominences of equal strength but difer ing in their quality. This suggests that n Bulgarian there are also two kinds of accents as described in (12) which nifture of the information intended naspeaker. The first one - the logic accent - is a result from the phonetic manifestation of the focussing function is the melodic contrast between correlate lables of the prominent word (rise-fall-- configuration). The second type alled structural, is connected with ance and signals the stre of the utterfinality of speech, continuation or the of the delimitation function of intonation. The basic acoustic parameter used n this case is the segmental duration, the course of F is unidirectional syllable irrespective of the on the last for a continuation accent and lightly falling without melodic contrasts for final accent.
word well known fact that almost any accent and its plagna can bear a logic context, both linguistic and situational. It must be pointed out that in Bul garian the structural accent also depends on situation (the term including earer, speaker and soen speaker and the momentary mood of the speaker (21)

Fig.3. Fo-contours of syntagmas showing the Qcoustic difference between the logic and continuation accents
and their combination on the last word a) /za prodal ávane na obrazovánieto/ 'for the continuation of education'.
b) /sáftite vazmóznosti za obrazovánie/
although its place is fixed on the last word(s). which means that the end of the syntagma
an accent word bearingic accent is on the last nuational accent same time a conti contour is a rising convex curve wigh maximum steepness on the stressed vowe in contrast to concave configuration corresponding to a continuation accent
differences in F-configuracoustic tagmas whose last words are marked a) by a continuation accent alone and b) by a combination of logic and continuation accents. The first word in both synforming a melodic peak on their stressed syllables. The accents in the syntagma may also be differentiated in respect of the number of words they underline In our experimental material we have (10)-centralized (on a single word) and decentralized (on two words emphasized as one accent unit). On acoustic level the difference between the two peak - a sharp one on of the melodic lable of the individually accentuated word and a high relatively flat plateau situated between the stressed syllables

Place of accents
ane third of all examined syntagmas each phonetic word is accentuated by one

Fig.4. $\mathrm{F}_{\text {- }}$-contours of two-words
syntagmas in which both words bear a logic accent: a) of centralized
type /zenite razgovarjat/ the women are talking'; b) of decentralized type /sa kúrsoveté za usavar ${ }^{\text {énstvane/ }}$ are the qualification courses
or another type of accent. In the rest of the units the number of accents i an estimation of the global tendencies n accent organization of syntagmas ay be derived from the statistical distribution of the observed accent places phonetic word - 36\%. on the final on 38%, on the initial and final - 12%, on the medial word-14\%. The small number of syntagmas in which the medial word bears the accent shows that in Bulgay positions. This means that on a syntagmatic level the accent function is rather a delimitative than a culminalive one as it has been shown in [13] rian and Russian word stress in Bulgalarity of the syntagmatic accent orgahization in Bulgarian distinguishing it e.g. from Russian is that the initial sase den attracts the accent in the ame degree as the final one, i.e. the accent being always on the last word isn't valid in Bulgarian.

conclusion

The experimental data obtained in this stage of our investigation show that the registrated variety of F-configuthion of syntagmas may be described by whichumber and nature of their accents
formal configurational features such as the number of peaks and the character erent F_{0}-patterns found in our corpus (14 types) may by represented by the lized or decentralized) of (centra cents, the presence or absence of a structural accent (continuational or final) and their possible combination he statistical aspect of this reprein a more general way the activity of the delimiation and focussing functions intonation. in Bulgarian and to ascribe a higher weight to the latter one as the main factor determining the sound the experimental F-dat may by used a source of infomalion for the purposes of an intonation typology of languages revealing in a more explicit manner the

1) Trub References Phonologie), Vandenoeck \& Ruprech in Göttingen. 1958.
(2) W.J.Barry, Prosodic Functions Revisited Agaal.
$320-340,1981$.
(3) Т. М.Нпколаөва, Фразовая интонация славянских языков, Москва, 197.
2) Л, Р Зиндер, Общал фонетика, Носква
(5) Н. Д. Светозарова, Хнтонационнал система русского языка, Ленинград, 1982. Д.Тॠлков, Иетонацията в бЂлгарския
език, София, 1981.
(7) A.Misheva, Changes of the acoustical features of a phonetic word conditioned by its place in the utterance structure, Abs.
Л.В.Златоустова, Сопоставительное изучение интоваци оусского и болрарского язнков, Соорник
при МКС, София, 1984.
(9) Б.В. Братусь, Л.А.Вербицкая, Пособие по фонетике для иностранных студен -
(10) A. М.Антипова, Ритмическая система 0) А. МААнипова, Ритмическал сист
англййкой речи, Посква, 1984 .

111 Т.Д. Змеева, Основные интонационныө Контури испанского языка. Сборник Ла-
ооратории устной речи Филологлческого боратории устной речи Филологиче
факулттета, Москва, $1986,60-79$.
(12) І.В. Влатоустова, Фонетические едини-- В Златоустова, А. Мишева, Амцентно-
(13) ритммиеские единиды в русском и оолгарском язнках Актуальныө вопрс
интонапии: $47-54$, Москва, 1984.

ВЕРОЯТНОСТНАЯ МОДЕЛЬ СТИХА

М.Л. Гаспаров

описивается метод сопоставления стихотво-
рного ритма и естественного язпкового рй тма в рамках заданнои метрической схеми, с помощъи модели, вычисллемон на основастриения и списка словосочетании, тклидн вахиихся в данную метрическуо схему. Этот метод, первоначалнно разработанннй на материале русского стиха, здесь применяетиталпннскому, пспанскому и среднивзскому, латинсному. Он позволяет отделить в стихе чисто-языковне явления от спепифичес-ки-художественних и этим помочь согласоского подхода п стиху. Особеннотуроведчетворен, нак нажется, при определении форм стиха, нолеоломихся между разннми спстемаби стихосложения (напрдмер, между сил-
I. Когда литературовед исоледует звукопрос первосе стиха, то перед ним встает лить в стихе те особенности, которне возникают стчхийно, в сплу естественного ритма язнка, п кание на ㅍ фоне порождаются представлярт сооой предмөт исслеполедние для литературоведа. पем лучшө мл смония отделить в стихе общеязнковые явления от явлений спепифически-стиховнх, тем легче литературоведу. над стихом пи лингвисту пи Решение это
найдено Б. В. Томашевскимм /I/ в в
Уточнено А. Н. Колмогоровым в начале І. $960-x$ стнув моделден стиха - построить вероятнораспоножения удара - определить т словоразделов в в
 ли он стих строшлся только по естественным данннм язнка п по формально заданной модель сравнивается с реальным ритмом та кого-то стихотворения, поэта или эпохи. ам, где их показатели совпадают, - наприли частота сороразд на таком-то слоге

лога, - там мн можем сназать, что для поо он пассивно слеповал здесь оезразличен, иу ритму пзвна. Если же оказывается, ито на таком-то месте поэт ставит ударение зоиоительно чапие или значительно реже лзы что здесБ вмешивается творческая признать, дия: поэт предпочитает тавие-то ритмичес кле формы и пзбегает таких-то ритинческих форм. Внявить эти преппочтения и пзбегания, свести иІ в систему й по возможностй веда.
и для Томашевсного, п для Колмогорова, и для его ученинов материалом для оослепования служил 1 олько русскин плассическии методом некоторне размерн овать этим же ха - английского, аранцузского, птальмнскоРе, испанского, средневекового латинского. Результатн этого обследования пзлагартся
2. $\frac{\text { Ностроение модели. Вероятностная мо- }}{\text { мих }}$ дель стиха строится следуюиим ооразом. пов фонетических слов в язнке (по прозаическим текстам): какую часть словаря составляют І-сложнне слова, накую-2-сложжнне с ударением на 2 слогө иало самоө важноө - найчи травильную трагтовк двоюственных (препмущественно служетних) слов, которые могут звучать й как ударнне

 согласованы: только тогда их результаты оудут сопоставимн.
укладивавтивлиется список словосочетаний, дуемого размера (${ }^{\text {при }}$ ри тмичиеских вариантов" различаюиися положением Ударенаии, и "словоразделнних вариантов", различаюпихся положением словоразделов при той же расстаностью учесть все прағтически воотребитөльние комбинапии п сознательно оставить в стороне ритмичесиие раритетн, ноторне только загромоздиля он карџину. Иногда опни считать дозволенньм, а для другой запре ннми (такова, например, разница между рас-

јатанннм и строгим ритмом английсного мім
ба чередуюпихся эпох линской $/ 3 /$).
в) В предположении, что в естественном языке слова ритмичесии независпмы друг от друга, мы считаем, что веролтность встревна пооизвецены веро сочетание слов равзятьх отдельно. Мн перемножаем вероятноСти ритмйескпХ типов слов, входлщих в ка ждни словораздельный вариант й получаем вероятность встречаемости этого словораздельного варианта в делом
пии данного размера складнвают всех вариасуммы внчисляется, наной процент составляет қаждое слагаемое. Предполохпм, это будет частоту дтим показателем мы п сопоставляем тов. Если расхождение невелико то можно считать, पто поэт при пользовании даннои формои руговодствуется только естественннми данными язнка, т.ө. әстетически она ему тельно, то пржхолитасхождение оудет значп спстематически (пусть бессознательно) предпочитает или избегает даннуо вариапив, иле. осощает еебак осооенно олагозвучнуп "спепиюически-художественная" то п есть ctuxa.
Оперпровать при сравнении такими малөныддмй об́қектампи, най отдельний словораздельный варпант, может бнть рискованно; татих минимальннх вариаций, обқединенннх а) по расположению схемных удареный (кривая ударности), б)по расположенио сверхсхемннх ударений, в) по расположенио слоразделов.
3. Исхоннии ритмическии словарь. Для расчета ритмического словаря англйского фонетичесних слов Из Дефо,Свифта, Стерна, всего 6817 слов. для франгузского язнка рагөлиям) слов пз Распна (предисловия всего 4278 слов. Пля птальлнского язна 10200 алов из Бокначчо, Сакнетти, Баңделло, раппини, Гопи, Альфّғери, Пеллино, Кардуччи, сппа, д'Аннуниио - всего 2000 слов. для a. Для латинского язнка - по аз пСатирикона" Петрония й По Поповеди" Августина всего 2000 слов. Для русского

 диф ${ }^{\prime \prime}$ - всего 5000 слов. Цифри по отдельнм авторам оонаруживарт достаточную одноодность, поэтому для предварительной раздни они могут считаться надехными; но, кать далее.

поәмн Теннисона "Ин мемориам" и IOOO строк из лиригии пи поэм "Іасха Браунинга; пля о Тайавате" Лонгфелло. Из стов дз иодельы вцдно: а) реальный стих полноуда рнее, чем модель: 4 -ударнне вариапии упогребляртся чаще вероятности, 2-ударнне реже вероятности. (В русском сткхе тенденели ямо́а - ровний, в модел ударений в мо-
 стопы сильноударны) в реальном хорее эта альтернагия еще более усиливается, в сл. (В русском стихе альтернируюиилечаетразвился гораздо сильнее но тоже раньте р больше в $4-$ Ст.хорее, чем в $4-$ Ст .ямое 4/). в) Ритм сверхсхемннх ударениии в ям де пдет по уонвапйй от первого до последнего слаоого места (отмечено еще Тарлинннх ударенй значительно оольше, чем у еннясона, I) В ритме словоразделов те ормы, которие преооладали в модели, еме русском стихе тенденщия - та же $/ 6 / \%$.
4. Средневековий латинскй $4+3$-ст, хо йнских стихотворений уाї-IX BB. (T989 стиОВ), псследованннх Ь.И.Ярхо в неопуолико
 ление размера спорно: то ли это "спллабоике", то ли "силлабический стих с тендепией к силлабо-тонине"? Мы рассчитали 3 вероятностнке моделы: А) чисто-силнаопчедополитель ннаит цез, длстишия, по схеме $(4+4 \pi)+(4+3$ II), что совилм латинскои акцентологии поровдае екоторое успленте хореическоло ритма; В) равнение с реалы, схи схме реальнй стих явно лежпт ближе к силлабоонической модели, чем к очеим спллабичекжм моделям. "Показатель хорєичности процент удареннй, падаппи на нечетнне дели А равен (лля І и п полустиитй) 76% п 82%; для модели Б - 84% й 66%; для модели В - 100%; для реального же стиха 95\% й 9I\%. Это нозволяет Утверждать, что "открытие силлаои-тонщи" в европейскои
 ских книхников.
6. Итальянскй II-сложник. Как извест но, рраниузсие, пталыянские, испанские писатели, чктатели и псследователи счктавт нвой и икх силлабическим (а немепкие уче 78/) - спллабо-тоническим с перебоямй рит тма. Наиболее адэкватное описание I1-сложника: это (; стих из II слогов с облзательным үдарением на 10 слоге, (Б) а так-

the Interrelationship between phonological and PHONETIC SOUND CHANGES:
A GREAT RHYTHM SHIFT OF OLD ESTONIAN

Arvo Eek, Toomas Help

Institute of Language and Literature, stonian Academy of Sciences, Tallinn 200106, USSR

1. PURELY PHONETIC SOUND CHANGES

In the literature on historical linguistics, phonological and phonetic sound changes are often contrasted. A phonological change speech flow appearances, a phonetic change
alters the way in which different expiratory phonatory-articulatory gestures and their acoustic-auditory correlates are presented in certain speech flow appearances. For instance, in old Litomysi Czech, there was a
 change in the sense that the phoneme $/ p$, was exchanged for the phoneme $/ t /$ by replac ing (in terms of Andersen 1973) the distinctive feature, 'heightened low consonant tonality of $p, 1$ by the feature 'high con-
sonant tonality of $/ t /$. It was a phonetic change in the sense that the actual labial articulation of [p,] characterized (in terms of Ladefoged 1980) by certain values of th articulatory parameters like 'lip height', corresponding 'heightened low tonality' in acoustics-audition were exchanged for the actual dental articulation of [t] characterized by certain values of the articulator '(tongue) tip advancing'and its corresponding 'high tonality' in acoustics-audition. In historical linguistics all relevant phonological changes. The preva reduced to of historical linguists has long been to conceive the main course of a sound histor as a chain of phonological changes and to view phonetic changes as mere detailed spec-
ifications of the stated phonological changes. Any single phonetic change, relevant to the main course of the sound his tory, has been viewed as obligatorily subThe traditional strict parallelism change phonological and phonetic changes is re vealed in the theoretical framework of Andersen 1973, the original source of the above olity itomysi Czech example. Here the speciality of phonetic changes is emphasized to 'deductive' phonetic changes are dealt with as two different categories (about the equa-
tion of 'abduction' to phonology and 'de-
duction' to phonetics cf. p. 774). The frame
duction to phonetics cf. p. 774). The frame sound change is always a complex of a pho nological change and a phonetic change, i.e. phonological changes are understood as ab ductive innovations in the mental coding of ductive innovations in their physico-physi logical manifestation.

The traditional focus on phonological changes only rather than on phonetic change cal aspects of historical linguistics. On the one hand, most methods of historical sound reconstruction imply the view tha sounds are discrete units: they rely on comparisons and differentiation between lexico only phonological changes are easy to be conceived as changes of discrete units (phonemes, distinctive features), whereas phonetic changes are better to be conceived as
continuous changes of parameter values (decontinuous changes of parameter values (de-
terminers of the actual articulatory ges tures and their acoustic-auditory correlates We argue that some phonetic changes, rel evant to the main course of a sound history have no concrete phonological changes as an phonetic changes. We concelve the main course of a sound history as a chain of changes some of which allow both phonological and phonetic specifications but some phonetic specifications only. Consequently, we do not phonological changes. The proposed equal focus on phonological and phonetic changes makes the recognition of historical sound changes more sophisticated. In order to recrete philosophy of the method has to b adaptea to the continuous nature of changes. However, these methodological complications do not hinder us in attributing the phonetic stead, we view them as an inevitable forfeit to be paid for the proposed theoretical adjustment.
The essence of purely phonetic sound Great Rhythm Shift of old Estonian. However before going to the change itself, we out line a theoretical framework in which the
essentials of speech rhythm are treated in purely phonetic terms so that two optiona foot control-are extracted
2. STRIVING VS. SWITChIng CONTROL OF FOOT 2.1. Phonological vs. phonetic perspective language
According to Ladefoged 1984, the role of phonemes for individual speakers and lis teners has been grossly exaggerated in the distinctive features and other units of thi size are empirically valid devices of speech description only if language is viewed as social norm of a community. They are too ab a psychological act or state of an individual, e.g. while describing the actual realspeech or the mental coding of concret allel, phonemes are like moral prescription or economical laws: they are manifested in the behaviour of a human group rather than of this group.
In concrete linguistic analysis, the social rather than psychological nature of pho nemes is revealed best by the characterissegmental phonemes. In the psychological perspective, the boundary is a fiction: if to observe one single speech flow sample alone no invariant cues of a boundary between pho neme-size segments are available (cf. Ham-
marberg 1976). The boundaries become a reality in the social perspective. Here, the with a set seech flow sample lembing samples and only its recurrent details are extractd as relevant features. Similarly, a suprasegmental phoneme is evident in a set of possible speech flow samp The relationship
phonetics leads to a crucial revaluation Phonology and phonetics do not deal with dif ferent empirical data, they are not complesystem. In particular, the mental coding of speech is reflected not only by phonology and the articulatory-acoustic-auditory realization of speech is reflected not only by phoith the same empirical data but represent two essentially incompatible strategies that are proper for different purposes.
Phonology describes both the mental coding and the articulatory-acoustic-auditory perspective. Here, speech flow is viewed as combination of details that are selected rom the total set of observation results as these features that motivate the existence Speech flow exists in order to convey linguistic meaning, i.e. to indicate which linuistic units (morphemes, lexical wordsetc.)
are actually used one after anotner in socia perspective entails the view that speech flo is a string of phonemes, i.e. abstract mean-ing-differentiating capacities that are evient linguistic units contrast with each other phonetics describes both the mental coding and the articulatory-acoustic-auditor realization of speech flow in the formal per sective. Here, speech in viewed in all speech sample as a psycho-physiologica and acoustic act. According to Lade foged 1984 honemes, distinctive features, and othe irical realities. Instead the to such em pective entails the view that speech flow s a continuously produced energy wave in the sense that it does not split into seg别 text we may follow Plomp 1984 in identifyin air flow supported by continuous activity of respiratory mechanism and radiated from human being as a wide-band signal that 1 odulated continuously in time by manipu narrowing and widening the vocal trac (temporal intensity envelope), and by modifying the vocal tract cavities (frequency spectrum), and received by the periphera spective and claim that speech flow appear as a continuous speech energy that passes ubsequently through three media. First, i s produced in the physiological medium as the mentioned four-fold fluctuations in natory, and articulatory activities); second, it is transmitted in the physical medium as a modulated wide-band signal (acousphysiological medium as a fluctuation in the peripheral hearing apparatus (listener's auditory activation). 2

Speech rhythm is a phenomenon that is diy manifested in speech flow: speech flow alternation of the minimal and maximal levels of speech energy. We have posed phonetics and phonology as two mutually exclusive research strategies. In this context, we try to fix the essential getical terms without invoking on phono logical consideration.
2.2. Stress, foot, syllable and demisyl2.2. Stress, foot, syecch rhythm

Explaining historical sound changes and describing typological differences in con temporary languages we proceed on th
lowing crude model of speech rhythm.

Stress is the total energy amount spent tory and articulatory activities (gestures) while producing a stretch of speech flow (fo a review of literature on stress productio
rather than some special reinforcing energy added to a certain independently defined unit of speech flow. Stressitself is intrinsical-
ly segmented into units rather than appears ly segmented into units rather than appears stressed syllables relative to unstressed syllables.

Foot is the minimal integral unit of stress. Foot organizes speech energy into a stress cal temporal energy envelope, is physiologically determined by the tension/relaxation phases, inevitably needed in the activities of speech organs, and its detailed shape is specified by language-specific commands on
speech organs (Fig. 1). Foot cannot be understood as a chest pulse, a unit of laryngeal fluctuation or a motor unit like the articulatory syllable of Чистович, Кожевников et al. 1965 , it is temporally organized amount tivities.

Figure 1. A model of foot.
In particular, it is foot that is best to be concelved as the domain of accentuation, iof the purposeful variation in the amoun Terken 1984, cf. also Scott 1982) indicate that the amount of stress displayed in speech the importance of the signal in the interpretation of the corresponding message. A
speech signal is maximally accentuated, if speech signal is maximally accentuated, if
it alone serves as the basis for computing it alone serves as the basis for computing speech signal is minimally accentuated, if
the preceding linguistic context and the the preceding linguistic context and the the speech signal itself serve as the basis end of the accentuationscale, there are phasized feet that show an integral portion of stress of the largest size. In this case the needed amount of stress is warranted by special reinforcing activities including reg-
isterable pulmonic activities (cf. Ohala, ordan, Kawasaki 1979). At the minimum end of the accentuation scale, there are tonic feet. in this case the needed amount of stress is activities that are necessary and sufficient for the speech signal transmission. Between these two extremes there remain simply ac-
centuated feet.

The intrinsic mode of stress appearance is a foot. In this physiologically predeter
mined limit the detailed shape of energy dis mined limit the detailed shape of energy distribution is controlled by both universal
and language-spectific segmental and supraand language-specif.
Speech is decomposed into continuous alternations of the narrowing (i.e. consonantal) and the widening (i.e. vocalic) ges tures in the vocal tract. As the first ap
proximation we may suppose that the detailed time-ordered segmental specifications for the basic CV- and -VC demisyllable-gestures are controlled by demisyzzabic commands (cf. Fujimura 1983). Demisyllabic command scans of the respective minimal articulatory sequence and turns on simultaneously these channels which activity is not contradicted to the concrete state of the movement (cf. coarticulatory phenomenae.g. in the sequence
of plu-: during the articulation of p inps are already rounded, 1 mmediately before p release the tongue tip is raised to the al-
veolar region and the postdorsum is moved veolar region and the postdorsum is moved
towards the velum). Demisyilabic commands regulate articulatory movements in the speech flow. Demisyllable as a unitary articulatory sequence generates an indispensable (inficient for the speech energy that is sufficient for the complex gesture; its dur-
ation is determined by inherent durations of the combined movements. Consequently, demisyllables themselves do not specify the shape of a temporal energy envelope (i.e. the shape minimal inherent simply divide a foot into minimal inherent energy blocks.
may be controlled by two kinds of hypothetical energetic commands. These commands switching and striving - determine the turnphases (cf. Fig. 1) of the temporal energy envelope.
If the switching-type foot control is usea, there are usually two switching commands impulse and predetermines the quickest way to the maximal energy level (thus controlling mainly the tract-widening segment, i.e. the vowel quality), but does not define the temporal characteristics of the maximal energy mainly from the inherent temporal properties of the corresponding demisyllable(s). Physiologically conditioned relaxation is turned on by the second switching command, thus
showing the location of the turning point of foot and simultaneously guaranteeing relatively exact sound quality. Thus, any switching command entails a rapid rise to an enpredicts a relatively tight lype foot control efore the initial point of the maximal energy level of a foot and relatively loose connections between underlying segments after that point. As a rule, a foot tends to be a unit (in terms of timing). In the case of
switching the isobaric/isochronic tendency to an average strength or length value o If the striving-type foot control is used here is one striving command in a foot. A smoothly and its main force is directed to the maximal energy level of a foot. The relaxation, i.e. the decline towards the minial energy level, begins automatically after the final point of the tension phase is tively loose connections between underlying segments at the beginning of a foot (e.g. a iphthongization-like vocalic gesture may appear there) and close contact immediately quality reduction of the underlying vocalic esture is predictable in energetically unontrolled relaxation phase. As the controllable stretch of a foot is essentially longer chronic tendency would appear
If we want to delimit intra-foot segment that are influenced by energetic commands unit. properly we must define a syllable-size tively Articulatorily, syllable is a rela delimited by opening gestures of the vocal tract. This definition relies on two findings. On the one hand, the essential enerare inclined to striving and switching commands at which a transition to the vocal tract opening gesture begins. On the other hand, these demisyllabic commands that are directed to a closing gesture are usually or striving commands preceding switching sents a crucial support to speech perception Namely, in the corresponding acoustic sound wave used in the transmission of the message from speaker to listener, syllables are des i.e. the beginnings of syllables are definitely marked by transitions to the intensity rise of the sound wave. Thus, in acous ing of one easily identifiable (cf. Mermelstein 1975) temporal amplitude envelope. The complex relationship between articulation and the produced sound wave acts as a temporally selective energy filter. For innot immediately coincide with the relative time-point marked by the onset of the speech (for the livity, i.e. by the onset of a foot (for the literature on perceptual centers
see e.g. Fowler 1979, Marcus 1981 , Howell see e.g. Fowler 1979, Marcus 1981, Howell
1984). However, on the basis of suggested close physiological interrelationship between speech production and perception (cf. the motor theory of speech perception of Liory of speech production of ladefoged et al. 1972; cf. also the observed parallels of syllable production and perception by Tuller
articulatory syllables maystill be relevant in speech perception and vice versa. termined by the functional characteristics of an utterance, the speech flow is produce by stress segments represented by foot-size alternations of the minimal-maximal-minimal physiological energy levels, i.e. by a se acoustics and perception, there are clear identifiable intra-foot units characterized by separate temporal intensity envelopes we have defined as syllables. A foot may consist some accentuated or emphasized stress ther, pulses may be conceived as displaying mor than three syllables. In such cases we sup pose that the accentuated or emphasized foot is followed by one or more intervening
weak tonic feet (cf. Lea 1974: 41 for the phonetic justification of the 'one-two-three syllables' principle).
2.3. Types of rhythm organization

Languages differ as regards the method胃 which energetic stress commands apply to foot types seem to be those in which every ingle syllable is affected by one command guages that exploit this principle as a rule i.e. display foot control systems subordinated to syllable-switching or syllablestriving.

1) Sylzable-switching foot control is cal polysyllabic feet (e.g. in Finnish and Italian); in this type of languages monosyllabic feet are rarely used.
Syllable-switching languages give much a result of that the target of the following vowel is clearly defined, there are no percelvable diphthongization of short vowels; foot-initial consonant may take a part (cf. e.g. data for Tamil: Balasubramanian 1979). In foot-final syllables, syllable-switching languages have an open set of vowels to choose and do not, regularly, show reduced vowels. or more correctly, do show less reduced vowels than e.g. foot-striving languages (for Finnish: Wiik 1965, for Italian: Bertinetto 1981). Syllable-switching languages may have
an opposition between short and long segmentais. This language type displays a relatively weak foot-level and syllable-level isochrony (for Italian: Vayra, Avesani, FowTamil: Balasubramanian 1979). Here the inherent endeavour to foot isochrony may be strongly reduced, because the duration of a foot is determined roughly by their inherent temporal properties.
acteristic of languages with prototypical acteristic of languages with prototypical
monosyllabic feet (e.g. Vietnamese).

In syllable-striving languages, polysylinuous alternation of stressed and unstress ed syllables (cf. Kaceвич 1983) due to foot monosyllabicity: here relaxation occupies a arate syllable. Syllable-striving languag are usually tone languages, since the conrol over the vowel matter and the whole maximal energy segment develops conditions or tonogenesis.
The principle according to which every ommand may be visolated in two one energetic ommand may be violated in two additional natural" foot types are accompanied by less "natural" types. In languages that display striving, there are feet in which some syllables are. left without any energetical conrol altogether. In languages that display emisyilable-switching, there are feet in energetic conands energetic commands
3) Foot-striving control is characteristic of languages with mono- and polysyllabic feet (e.g. English, German, Russian)
All that has been saia about syilable-foot-striving languages and vice valid for only exception being phenomena related to non-foot-initial syilables of foot-striving anguages).
Striving command coes not pay special atention to the beginning part of a syllable is directed to the place of the maximal energy point either on a vowel, a consonant atuer or some consonant in a consonant luster (a reason for allowing relaxed sylAt the same time, eligibility of the maximal energy point for different syllable segments in different words usually changes the character of short/long segmental opposition complementary distribution type of short/long opposition between vowels and consonants, thus guaranteeing fairly convenient conditions for foot isochrony (a strong negative consonant, sometimes defined as vowel and close contact). Foot-striving languages have a strong tendency towards foot isochrony. Data on prominent intra-foot temporal compression are available from a number of 1973, Fowler 1981; for Swedish: Lindblom, Rap 1973; for Dutch: Nooteboom 1972). A characteristic feature of foot-striving languages is the foot-final vowel reduction (for Engal. 1966, for Swedish: Lindbiom 1963). As for Russian, experimental data corroborate the model-predicted uncontrollability of the foot-final syllable quality. Here the full complexity of reduction cannot be establish-
ed through the study of only the vowels
themselves; the analysis of stressed and un stressed syllables has revealed that with of coarticification of reduction the degree 1966). Experiments with varied speech tempo have shown that at fast speaking rates the quality of the stressed vowel is not suscepto reduce the formant frequencies only shows up in unstressed vowels, and it does so even when the unstressed vowel has the same duration as its. fast-rate stressed counterpart
(Зиндер 1964). It is in accordance with the (Зиндер 1964). It is in accordance with the fort may be controlled separately.
4) Demisyllable-switching foot control may emerge in languages with mono- and polysyllabic feet (e.g. Japanese; we consider e.g. the word Sapporo as consisting of a
monosyllabic foot sap- and a polysyllabic foot -poro)
In the case of monosyllabic feet the turning point between tension and relaxation phases can be controlled in two principally aifferent ways, i.e. by striving or switching bility is refuted by the peculiarities of word rhythm (cf. Homma 1981). However, the domain of a syliable-switching command is the syllable beginning only ana it cannot this context, switching has to be foot. In demisyllables both in and outside shown on beginnings, converting syllable-switching into demisillable-switching. In short, a Japanese monosyllabic foot has to be controlled by two demisyllable-switching conmands. demisyllable is dependent upon inherent timing properties of underlying segments, we may expect that demisyllables represent temporally more or less equal units. In Japreted as a mora-size unit, Sawashinaet al 1982 have reported that the relative timing of articulatory and vocal pitch control is organized so as to compensate for timing maintain constant temporal mechanisms and acoustic output. The equality of the demisyllabic units is supported by the percep tual data (cf. Fujisaki, Horiguchi 1979). Modern Japanese, a language with the demi-syllable-switching foot control, has neither
isochronic feet (cf. the parallel existence of feet of two and three moras) nor syllables (cf. data in Homma 1981).
5) Compound foot control may emerge, in ter alia, in languages with monc- and poly We have presented the above four strategies as mutually exclusive options a lan guage may follow. Note that our argumentation reliea on the assumption that the Chosen strategy is a mere inevitable answer
to a physiological constraint, the alternation of tension and relaxation in feet, not directly used in meaning differentiation.

However, the strict boundary between the types may vanish in languages with contras tive meaning-differentiating accents, in case of which a special attention is paid to the energetic behaviour itself (cf. the psy across morpheme boundaries that reveal th same twofold treatment: Menn, MacWhinne 1984)

In Estonian, in aquantity and accent lan guage, syllable-switching and foot-strivin integral whole. On the one hand, some essential feature of Standard Estonian refer to the syllable switching foot control: a) foot-initial foot-initial are not diphthongized; b) non duction; c) all 9 vowels and 17 consonant may occur as short or long phonemes (tradi tionally.treated in terms of three quantit degrees, cf. Ariste 1938); a short/long op position does not display any rules of com plem of short and 1986)

On the other hand, there are some sub stantial characteristics of foot-striving in Standard Estonian: a) all feet occur in Table 1; for productional and acoustic data on accents see Eek 1986); b) a strong temporal compression is supported by the fact that mono- and disyllabic feet, irrespective of the accent type and segmental duration, segments; among all segments that constitute foot there exist a significent temporal relationship (cf. Lehiste 1972, Eek 1974) the foot tends to be as an isochronic unit c) the occurrence of vowels in non-foot-initial position is restricted, etc.
Note: in the discussion below, we use the following ciesignations: \rightarrow - a demisyllabic a striving command.

The appearance of the opposition 'even vs. sharp accent
in modern Standard Estonia

$\begin{gathered} \text { even accent } \\ \text { (fout consists } \\ \text { of } 2-3 \text { syl- } \\ \text { lables) } \end{gathered}$	$\left\{\begin{array}{c} \text { sharp accent } \\ \text { (foot con- } \\ \text { sists of 1-3 } \\ \text { syllables) } \end{array}\right.$
polysyllabic foot with alongfirst k^{\prime} auna'pod. syllable Genilive'	kauna 'pod. PAR'IIITVE'
polysyllabic foot with a short k 'ana 'hen' first syllable	\emptyset
nonosyllabic foot (obliyatorily long syllables)	k`aun 'pod'
2.4. Stress-timing vs. syllable-timing

Pike 1946 and Abercrombie 1967 are among the principal works that introduced the dis timing, two mutually exclusive, essentiall ifferent types of speech rhythm that a lan uage may show. In a stress-timed language reur t in a syllable-timed language like French syllables were assumed to recur at approxi mately equal time intervals. The two cat egories are viewed as mutually exclusive on the assumption that intervals between sub antly with a varying number of syllables. The distinction between stress-timed and syllable-timed languages reflects undoubted ly some optional fundamental qualities of speech rhythm: note that it has been made use very different languages (cf.e.g. Lehist 1977 and Dauer 1983 for a bibliography). How ever, the whole issue has been labelled as a linguistic controversy (Roach 1982). First phoneticians do not agree with the view on plies: all syllables cannot be associated with separate chest pulses and stressed syllables cannot be extracted as special rein forced chest pulses (Ladefoged 1968). Second ity of any measurable timing difference between the rhythm types even in the proto typical opposition of English and French (Scott, Isard, Boysson-Bardies 1985). Third, both naive and expert listeners in experiin their theoretical treatments often disagree in attaching a particular language to either of the categories or, instead, claim that it belongs to neither (cf. Miller 1984) To abandon these contradictions, we pro'stress' and 'foot' are considered as basic notions rather than 'stress' and 'syllable'. First, as for special short-term pulmonic activities in speech production, a foot rather than a syllable couid be regarded the ply (emphasized foot) but by no means need apply (tonic foot). Second; as for the basic non-timing nature of the distinction, the ac tual temporal rhythm pattern of a languag could be viewed as deriving from two en feet. Whether a language is stress-timed or not depends on the interrelationship between feet and stress beats, accurately, on the tre quency in which feet appear in continuous form displaying thus stress beats. Whethe a language is syllable-timed or not, depend on the interrelationship between feet and syllables, accurately, on the manner in which
ture of feet. Third, as for the actual fuzzy bundary between the rhythm types in crossinguistic research, the foot perspective entails a much more complicated picture of ition between stress-timing and syop oppotiming languages.
2.4.1. Stress-timing: general motor rhythm rhythm
Allen 1975 emphasizes the distinction beween general motor rhythm, i.e. a pattern of sequence, and temporal rhythm, i.e. a pattern of temporal sequence. We have alaf a general motor speeh rhythm in the sense quence of feet. However, speech flow is subject to a universal bias towards a temporal hythm as well. The portion of accentuated feet, displaying the highest energy levels, are concelved as stress beats, i.e. speech speech flow that usually display more or less equal energy distribution. Like other sequences of rapid movements in human behavour (e.g. finger tapping), subsequent stress according to the properties of a universal physiological temporal rhythm pattern (cf. Alen 1975). In particular, stress beats are inclined to cluster around a mean interval erval durations with an overall range of into 1 s .
they show clearly the temporal pattern of stress beats superimposed on speech flow by the physiological temporal rhythm, otherwise an intrinsic timing of their'feet. In other 'non-stress-timing' reflects properties of
the real inter-foot timing phenomenon that is revealed between feet in continuous speech In all languages, there are obligatorily some feet that show accentuation to the ex threshold. A language shows stress-timing if such beats in continuous speech flow are frequent enough to converge into a pattern of temporal rhy anm, and does not show stress timing if they are too rare for that, cf 19.
to decide whethal research, it is often easy stress whether a particular language is lish (Dauer 1983) not. On the one hand, Eng1980) are because they display salient stress beats recurring frequently around 0.5 s (as a rule, indicating functionally that a new lexical entry is present in message) and are thus subject to a clear temporal rhythm. called syllable-timed languages, on the basis of mean interbeat intervals, cannot belong to the same group with English (cf. e.g. Spanish: Navarro 1932). If lexical stress is saliently marked and lexical en-
tries are not too long (not exceeding 4-5 syllables or 2 tonic feet) there is high probability to perceive such syllable-timing language as a stress-timing language. On the other hand, French and Japanese languages because they display salient stress beats rarely after longer intervals than 0.5 s as a rule, indicating functionally that especially important lexical are present in message) and thus are not subject to a temporal rhythm. Rather long distance between stress beats in these lan-
guages cannot be accounted for in pure functional terms. If a language is characterized by non-prominent wordstress and at the same time, accentuation does refer to every lexical entry, we can non-stress-timing phenomenon.
We assume that it is because of the polarand the stress-timing English that, in ex ecuting tasks of temporal rhythm manipulation, subjects who have French as their mother tongue show vagueness that is alien to sub-
jects speaking English as first language (cf. data and discussion on the issue in Scott, Isard, Boysson-Bardies 1985). Never theless, we follow Dauer 1983 in claiming that whether a langue is stress-timed or non than of mutual exclusion: many particular languages show neither obvious stress-timing nor obvious non-stress-timing but something between the extrema. For example, beats (as a rule, salient primary stres that a new lexical entry is beginning in message) that occur too rarely in speech flow to converge into a pattern of temporal rhythr (in Finnish, an agglutnative language, the quent lexical entries may be rather long) Consequently, Finnish is not subject to a clear temporal rhythm. However, a sligh 'secondary' stress beat is provided by all other Finnish stress impulses as well so gether are frequent enough to converge into the pattern of temporal rhythm. Accordingly Finnish is still subject to a dim temporal rhythm (cf. the treatment of the Finnish roblematics in O'Connor 1973). 4
rable 2 summarizes our argumentation.

> The scale of stress-timing

less

more
correction correction
towards towards

b non-stress-timing

Fig. 2. Temporal rhythm superimposea (a) or not superimposed (b) Temporal rhythm superi
$\stackrel{\text { stress-timing }}{\leftarrow}$
stress beat
$\underset{\substack{\text { French } \\ \text { Japanese }}}{\text { Finnish }} \xrightarrow[\substack{\text { English } \\ \text { Itallan }}]{\text { stress-timing }}$
2.4.2. "SyZlable-timing"

In polysyllabic feet of many languages, is average duration of a non-final syllable is generally under 0.2 s. In this context, syllables cannot be fundamentally subject to of stress beats (Dauer 1983) and as it is supposed by the term "syllable-timing". We suggest that the term "syllable-timproperties of the internal structure of feet the main common feature of which is the fact that they are alien to English, the prototype of "non-syllable-timing" languages. On it one hand, a languace is syllable-timed
the other hand, a language is "syllabletriving or switching command (Table 3) on Table 3

3. THE GREAT RHYTHM SHIFT: OLD ESTONIA

3.1. Conservative Finnish vs. innovative

In a number of general works on language (e.g. Anttila 1972, Comrie 1981), the com parison of the two main Balto-Finnic lan lustrate the and Estonian, serves to related languages may differ remarkably in respect of their typological characteris tics. In outline, Finnish has preserved the original fairly clear-cut agglutinating mor phology but Estonian has exchanged it for acterized by fusion. The morphological dif ferences are accompanied by crucial differ ences in the sound architecture of the lan guages. Finnish has preserved firmly the syllabic words that consist of simple syilables of the structure CV or CVC, display an extensive vowel harmony, and begin at an accentuated foot of an invariable quality. On the contrary, Estonian has introduced many syllables like CCVCC, and word-level restrictions on vowel distribution that have aban doned the original vowel harmony altogether Estonian accentuated foot is mobile (a wor need not begin at an accentuated foot , and sharp version of the contrastive accent). These essential differences between modern Finnish and modern Estonian originated with a row of phonological in the history of Estonian during the first centuries of th second millenium A.D. (roughly, 1100-1500) but, on the other hand, were absent in the history of Finnish. This claim has a high detorical and comparative ilnguistic evidence and early textual data on Estonian. We concentrate on of the row, cf. Table 4.

The general pattern of the below presented

Table 4
Some crucial phonological changes of Old Estonian in 1100-1500
(1) RISE OF CONTRASTIVE ACCENTS - = SHARP ACCENT
*kaunan 'chaff/pod.GENITIVE' > *k'aunan
*kaunaan chaff/pod.ILLATIVE
Finnish kaunan
kaunaan \quad Estonian k° auna
(2) SHORTENING OF LONG VOWELS IN NON-INITIAL SYLLABLES
*mustaa 'black. PARTITIVE'
LOSS OF SHORT VOWELS
(3) LOSS OF SHORT VOWELS
IN CERTAIN NON-INITIAL SYLLABLES
*kakkara 'chamomile'
*kakkarasta 'chamomile.ELATIVE' Finnish $\begin{gathered}\text { kakkara } \\ \text { kakkarasta }\end{gathered}$

(4) ObSTRUENT GEMINATION

BETWEEN A SHORT VOWEL OF AN INITTIAL SYLLABLE
AND A LONG VOWEL OF A NON-INITTAL SYLLABLE
*käte (h)en 'hand. ILLATIVE' > *kätteen Finnish kateen

Estonian k `atte
incongruity. On the one hand, the change are rather diverse as regards their typolog ical characteristics. On the other hand, they time-span in an interconnected way we treat the incongruity by claiming that the general pattern of these phonological changes is due to two subsequent purely phonetic changes, we all the creat Rhy phm shift of old Estonian The predecessor of the modern Standar switching control of foot from time inmemorial up to nowadays. However, the predecessor of the modern Standard Estonian was subject to a twofold reorganization of stress processing method before and at the time of ern Europe. At the first stage of the Great Rhythm Shift, the original Balto-Finnic syl lable-switching control of foot was abandoned in favour of an innovative demisylthe demisyllable-switching control was ex changed for a combination of foot-striving and syllable-switching control.
3.2. From syllable-switching to demisyllableswitching. At a time-point in the prehisthe loss of certain intervocalic obstruents, e.g. *mustata 'black. PARTITIVE' > *mustaa, introduced long vowels into non-word-initial syllables.
of the dialects was chang the sound architecture eral principles. First, the opposition between short and long segmental vowels was
possible only in a foot-initial syllable, .9. there was a real opposition *tuli 'fire type tuli vs. *tulii was excluded. Second the prototypical foot of the language was polysyllabic, e.g. the real feet tuli 'fire and tuuli 'wind of two syllables could not be accompanied ${ }^{\text {by }}$ monosyllabic feet like polysyllabic feet togetherwith the presence of the opposition 'short vs. long segmental vowels' indicates that the Balto-Finnic dialects showed originally a syllable-switchin

The syllable-switching control of foot in original Balto-Finnic
*kana 'hen
$\underset{\substack{* k a u \\ \rightarrow}}{ } \quad$ nhaff/pod

After the change, to enable the pronunciAfter the change, to enable the pronunci-
ation of the large number of words like *mustaa, one of the original general prinat least the other. In Old Finnish, the prototypical foot remained polysyllabic but the opposition between short and long segmental vowels spread from foot-initial syllables to whe rest or the syllables as well: *musta long segmental vowel in its non-initial syl lable. In old Estonian, the. opposition between short and long secmental vowels con lables but nany polysyllabic feet were re-
placed by monosyllabic feet so that the prototype of a polysyllabic foot vanished alto gether: *mustaa was interpreted as a string two monosyllabic feet the latter of which initial' syllable.

The option of Old Finnish,i.e. the elimnation of a restriction on long vowel dis tribution, did not affect the conditions that determine the type of foot control and the Table 6:

```
    Old Finnish
    \(\stackrel{* k a n a}{4}\)
    *kauna 'chaff/pod/
\(\stackrel{\text { kaunna }}{\rightarrow \rightarrow \text { na }}\)
'chaff/pod.PARTITIVE'
```

The option of Old Estonian, i.e. the in troduction of the principle that monosyl labic and polysyllabic feet are prototypical to an equal extent, created conditions in which syllable-switching is imposs between short and long segmental vowels has to be preserved (it was still necessary to differ entiate between e.g. *tuli and *tuuli), the switching control inates this opposition for sure. Consequently, the original syllable-switching control was exchanged for an innovative demisyl lable-switching control, cf. Table 7 (feet)

Table 7
The demisyllable-switching cont
of foot in Old Estonian

$$
\begin{aligned}
& \text { kana 'hen' } \\
& \text { *Kauna 'chaff/pod } \\
& \text { *kau-naa 'chaff/pod.PARTITIVE' }
\end{aligned}
$$

The different treatment of the long vowels in words like *kaunaa guided old Finnish (Table 6) and Old Estonian (Table 7) to the different paths of further development as discussed ablate situation that ha been persisting without greater phonetic or phonological changes for centuries. For in stance, the Table 6 could as well illustrat the situation in modern Standard However, the option of oid esthich a row of pervastve phonetic and phonological change originated.
At the beginning of the demisyllableswitching period of Old Estonian, some phorespondences to the phonetic adjustments that accompanied the exchange of the foot
control type. In Table 4, two of such phonological changes are included First, the final short vowel

(1) *kakkara 'chamomile' > *kakkar

foot-internal syllable boundary is a very salient heuristic that points to a syl-lable-switching control of foot. Consequently, it is in conflict with a demisyllable-
switching. The phonological change (1) is a reflection of a general phonetic process with which all trisyllabic feet (two footinternal syllable boundaries) were ellmin ated so that any foot could be either monodisyllabic (one boundary). Note that, in this connection, the final short vowel of disyllabic foot was retained, cf. (2)
(2) \quad Kak $k a-r a s t a ~ ' c h a m o m i l e . E L A T I V E ' ~ \equiv ~$
second as result of the change $h>\phi$ the word-internal obstruent at the begin nin of a foot was geminated after a mono (3) *kate -hen 'hand.ILLATIVE' >
 An obstruent is subject to an ambisyl labicity at a word-internal foot boundary between two sonorous sounds. The phonologi cal change (3), emergency gemination ' obstruent ambisyllabicity was phonetically reinforced in order to provide monosyllabi feet of one short syllable with additiona sound material. Note that the obstruent ambiand did not yield gemination phonologically after monosyllabic feet ending in a lon vowel, diphthong, or sonorant. In this case, the necessary sound material original long yllable itself, cf. (4):
(4) *jalka-han 'foot. ILLATIVE' >

3.3. From demisyllable-switching to foot striving

In a prolonged time-span perspective on language, feet that show the same degree of accentuation tend towards an average value able-switching period of Old Estonian, this goal was reached by manipulating the firs and the second demisyllables in certain feet. At that time, the average approximate to its verage stress amount, feet consisting of two or four aemisyllables were altered. In two-demisyllable feet, the second demisyllable was reinforced, we designate the rein forcement by first, foot-initial demisyllable

that h demisyl reducti	einforced va ur－demisyllab was reduced （Table 8）	$\begin{aligned} & \text { ue al } \\ & \text { e fee } \\ & \text { we de } \end{aligned}$	
	wards the feet in 01	tos toni	Table 8 stress value an
$\stackrel{\text { *ka na }}{\substack{n \\ L}}$	＇hen＇	2 ds	＊［kaña］
＊ka nan	＇id．genitive＇	3 ds 0	OK！＊［kanan］
＊kau na	＇chaff／pod＇	3 ds 0	OK！＊［kauna］
	id．genitive＇	4 ds	－＊［ǩaun
$\underset{\substack{k a u}}{ }$	．PARTITIV	ds	＊［kaiu
*kau-lno	d．illative＇	2 ds	
＊maan	rth．genitive	3 ds 0	OK！＊［maan］

of all feet was a statistical tendency that manifested itself clearly in long speech stretches．However，language users reduced it to a single phonetic rule that was appli－ trend，both in two－demisyllable and four－ demisyllable feet，the energetical value of the first two demisyllables became roughly equal，they revealed more or less the same dence，language users deduced a in correspon－ netic principle，demisyllable balancing，ac－ cording to which the first two demisyllables of all feet have to display the same amount of stress．As for two－demisyllable and four－ without complications．However，as for three－ demisyllable feet，it caused additional pho－ netic adjustments：in order to raise the en－ ergetical value of the second demisyllable of the stress of the third demisyllable，some to be reattached to the second demisyliable instead（Table 9）．
The phonetic adjustments of the three－ demisyllable feet in the context of demisyl－ and corresponding phonological changes that exerted a crucial influence on speech rhythm．As the final result，they created conditions in which the demisyllable－switch－ ing control of foot was exchanged for a com－ switching control．In other words，they in－ troduced the ending of the demisyllable－ switching period of old Estonian．In Table 4， this chain is represented by the phonologi－
cal performance of its three main changes． First，the final short vowel of a disyi－ labic three－demisyllable foot was dropped， Cf．（5）
（5）＊kak ka－rasta＇chamomile．ELATIVE＇？
kakk－rast

The application of demisyllable palancing （the first two demisyllables of a foot dis play the same amount of stress）in Old Es－ －

```
2-demisyllable feet
```



```
    \(1 \mathrm{stL} \approx 2 \mathrm{nd} 4\) : OK!
4-demisyllable feet
```



```
    \(1 \mathrm{st} \uparrow \approx 2 \mathrm{ndt}: ~ O K!\)
3-demisyllable feet
```



```
    \(1 \mathrm{stt} \neq 2 \mathrm{ndt}\) :
additional phonetic adjustments
```



```
    The result: 1 st \(\uparrow \approx 2\) nd \(\mathbb{1}\)
```

 This phonological change reflects the pho-
 netic leveling of a consonant-ending foot
 *[kauña] by the shortening process *[kaūna]
 \(>\) *[kaūna] > *[kaưn].
 The above phonetic leveling ushered in an overall phonetic shortening of vowels in non－ wora－initial syllables．The phonetic process stance，to the final short vowel of a disyl－ labic two－demisyllable foot，e．g．to the se cond $[a]$ in＂$[k a n ̃ a]$ ．However，here a real whonological loss appeared only in tonic non－ itial feet the vowel persisted，of（6）： （6）＊ka va－lata＇sly．PARTITIVE＇＞＊kava－lat Second，long vowels in all non－worc－in－ （7）＊mus－taa＇black．PARTITIVE＇＞＊mus ta This phonological change reflects the same overall phonetic shortening of vowels in non－ word－initial syllables as in the previous
case：on the analogy of $e . g$ ．＊kauna］ case：on the analogy of e．g．＊［kauña］， ＊［kāu－nā̄］$>$＊$[k, \bar{u} \bar{u}-n a a]>$ phonetic process ed．Note that the shortening of long vowels replaced the original word－internal sequence of monosyllabic feet by innovative single disyllabic feet．In the original＊［kau－nā$]$ ， sy1lables and，thus，coulád form a separate foot．In the innovative＂$[k a \bar{u} n a]$ ，the se－ cond syllable consisted of one demisyllable only and，thus，had to cohere with the pre－

Third，and that is the crucial point，the ven accent（ ）and the share accents，the arose，cf．（8）：
（8）＊kau nan＇Chaff／pod．GENITIVE＇

This phonological change was an $1 \rightarrow \overrightarrow{m e d i}-$
functional result of the demisyllable structure of the innovative the syllabic feet（＊kaunan from＊kau－naan）merg－ often with that of some original disyl－ labic feet（＊kaunan from＊kaunan）． eorger was functionally inconvenient，as it cf．the difference of the grammatical mean－ ing in＊kaunan chaff／pod．GENITIVE vs． kau－naan＇chaff／pod．ILLATIVE＇and of the exical meaning in＊kiiren＇ray．GENITIVE＇ s．＇kii－reen＇quick．GENITIVE＇．In this con－ tween short and long segmental vowels in non－ word－initial syllables（＊a vs，＊aa）was re－ nterpreted as a phonological contrast be－ ween two different types of feet（＊k aunan netic properties that had ase of their pho－ ently in connection with the short and long vowels before the change．
The two types of disyllabic feet differed in the behaviour of the energy level of their as an integral pattern．In feet like tkaunan from＊kaunan，the demisyllables aisplayed an even energy level of a low value throughout the pattern，as it had been characteristic like thaunan from＊kau－naan，feet．In feet demisyllables displayed an even energy level of a high value，as it had been character－ Istic of the original 2 －demisyllable feet but the third，shortened demisyllable dis－ Correspondingly，there was a pattern of broken energy level with a sharp projection at the boundary of the second and third demi－ syllables．The two different energetical pat－ terns that resulted from different combina－ two different energetical patterns that could characterize feet with one and the same demi－ syllable composition．After the reanalysis， the even pattern stood for the even accent in the foot－initial syllable and a smooth beginning of the subsequent foot－internal syllable．Note that in the process of total anly in split，the even accent was found not IVE，but also in aunan chaff／pod．GENI displaying a foot－initial short syllable On the contrary，the sharp patternstood for the sharp accent，characterized by an local－ syed energy distribution in the foot initial syllable，i．e．a sharp movement to the maxi－ beginning of the subsequent syllable．Note
that in the process of total accent split， the sharp accent was found not only in feet in feet like＊k chaff／pod．ILLATIVE but also lable（Table 10）．

The accent split of Old Estonlan

1．even pattern	$>$ even accent
＊kau nan＇chaff／pod．genitive＇	＊k＇ounan
＊kana＇hen＇	＞$k^{\prime} a^{n}$ a
L	巴 4
2．broken pattern with a sharp projection	$>$ sharp accent
＊kaunan＇chaff／pod．tllative＇	＊${ }^{\text {® }}$ au no
，代ちt	$\xrightarrow{\rightarrow}$ ¢
＊kayn＇chaff／pod＇	＊kaun
L4，	$\rightarrow \rightarrow$

It was a rise of contrastive accents that moved Old Estonian from the type of demisyl－ lable－switching languages to the complex type in which foot－striving and syllable－
switching are interwoven．As for striving， switching are interwoven．As for striving contrastive accents entail the manipulatio is out of the question in pure switching lan－ guages．As for foot－striving，there were polysyllabic feet in old Estonian that ex－ cluded the possibility of syllable－striving． As for switching，the opposition between be preserved（it was necessary to differen tiate between e．g．＇t＇ulen＇fire．GENITIVE＇ and＂t uulen＇wind．GENITIVE＇），so striving commands that eliminate the distinction for commands entirely．As for syllable－switching the equal prototypicality of polysyllabic and monosyllabic feet was no more ahin－ rance：monosyllabic feet like＂k｀aun could be handled by a combination of a switching two subsequent switching commands in one syl－ lable．
We have shown that the pervasive changes in the phonological structure of old Esto－ nian during the first centuries of the se equally thorough－going revision in the speech rhythm appearance of the lancuage．Note that the path from syllable－switching via dem1－ be especially manifest in the history of the Insular dialect of modern Estonian．Here， the sharp accent appears in the form of a pure striving commana，cf．（9）
（9）k° ouna＇pod．Gentitve＇
$\leftrightarrows \rightarrow$ L
K 〇una＇pod．PARTITIVE＇
4. SOUND CHANGE PRESCRIPTION

According to Lass 1980 , no inherent explanation is available for any linguistic change: he differentiates, inter alia, beteleological explanations and argues against the possibility of either in the context of the diachronic research. On the contrary, Itkonen 1986 argues for the possibility of teleological explanations of linguistic changes: according to him, any linguistic to the increase of the form-meaning isomorphism in linguistic units. Still, for him, deductive-nomological explanations of linguistic changes are out of the question. We phonological-phonetic and purely phonetic sound changes are kept apart, the possibility of deductive-nomological explanations categorically. A sound change may allow two types of for
malizations with regard to formalization malizations with regard to formalization
strength. A description represents it as transformation that occurred given certaln a transformation that has to occur given certain conditions. Prescription is preferable to description. Standing on a higher level of abstraction, it fits in with all
functions a formalization of a sound change may serve rather than is appropriate for single explicit aims only. As a matter of fact, a deductive-nomological, nlaw-like ${ }^{n}$ explanation of a sound change is equal to
its prescription.

In order to provide a sound change with a to extract exhaustively and arrange in a mutually exclusive, categorical manner all the factors that trigger the sound change in social phenomenon and phonetics as a psy-cho-physiological and acoustic phenomenon. In this context, the prescription of a phonological change is precluaded in principle: changes are many and fuzzy to the extent that any exhaustive factor extraction/arrangement is an insoluble task for a human being However, some phonetic changes could allow logical and environmental constraints on sound changes are few and distinct to the extent that the needed exhaustiveness in factor extraction and arrangement may be We have proposed that two cases. of sound changes should be extracted course of the sound history of a concrete language. As for phonological-phonetic
chances, the above reasoning excludes scription in principle; as for purely prescription in principle; as for purely phoopen.

The essence of this claim is exemplified
by comparing the actual course of the Great Rhythm Shift, i.e. a row of purely phonetic changes, and corresponding phonological-pho-
netic changes in the history of two different Balto-Finnic dialects, i.e. Standard Estonian and Southwestern Finnish.
5. The great rhythi shift: the south-west OF THE BALTO-FINNIC AREA

Up to here, we have treated the Great Rhythm Shift as present in the history of
Estonian but absent in the history of Finnish. However, the straightfoward distinction crumbles if to consider the sound history of Estonian and Finnish dialects in addition to the history of standard languages. On the to be extended from Finnish alone to Northeastern Estonian also; on the other hand, the Great Rhythm Shift has to be extended from Estonian alone to Southwestern Finnish
also (Map 1).

Map 1. The Great Rhythm Shift in Balto-Finnic (to the southwest of the line).

The presence of the Great Rhythra Shift both in the history of Standard Estonian and Southwestern Finnish provides a rather unique changes that applied to the essentially same sound material (the original similarity of Balto-Finnic dialects) in infferent communities (the opposite coasts of the Gulf of Finland) not affected by pervasive mutual articles of the representative collection Gallén 1984). As a matter of fact, around 1000 A.D. both Estonian and Southwestern Finnish were influenced rather by old Norse, 1986 in claiming that the Scandinavian vowe balancing could affect the speakers of the critical ${ }^{\text {Balc dicts in }}$ question: when the followed the demisyllabic-swappeared, they that was already known froni the speech of the foreigners.

In this context, the exact comparison of the Estonian and Southwestern Finnish sound changes may display far-reaching theoretical implications.
On the one hand, the possibility of a prescriptive formalization of some purely phothe purely phonetic course of the Great Rhythm Shift had to be rather identical in both dialects. On the other hand, the fundamental impossibility of a prescriptive foris supported by the fact that the phonological extensions of the Great Rhythm Shift did not coincide in the Estonian and Southwest ern Finnish norm
ndeed, some phonologizations could be the Estonian and Southwestern Finnish patterns of vowel shortenings in non-initial that is the main point, the same phonetic changes could lead to rather different phonologizations as well. For instance, the counterpart of the Estonian emergency" gemination (cf the lack of *kat-teen (cf. the lack of gemination in
*jalkahan foot. ILLATIVE' $>$ *jal-kaan) was the Southwestern Finnish pervasive "special" gemination both in *katehen > *kat-teen and *jalkahan > *jalk-kaan. Similarly, the shortening of long vowels in non-word-inopposition of contrastive accents (*kaunan 'chaff/pod.GENITIVE' $>$ * k aunan vs. 'kau-naan 'chaff/pod.ILLATIVE' > *k'aunan) but yielded (*kaunan, merger in Southwestern Finnish because of the latter difference, Estonian has turned into a foot-striving language but Southwestern Finnish still continues as a demisyllable-switching language.

NOTES

1. In addition, speech flow has the funcwho is speaking (cf. Ladefoged 1984: 84) and about the extralinguistic, pragmatic situation in which he is speaking. Note, however, that these are not the spectal func-
tions of speech flow, they are rather the tions of speech flow, they are rather the
functions of whatever human sound, be it
e.g. speech, cry or wheeze.
2. We are aware of the bad connotation of the term 'speech energy'. In general, energy is something to be measured. Indeed, the exputed easily from the temporal intensity envelope for different frequency bands. However, the fixation of the exact value of the physiological energy while speaking or lis-
tening is a too complex task to be solved by exact measurements nowadays. Here, the proper term to indicate the generalization degree we mean would be rather 'the presence 'physiological energy'. Nevertheless, the cover term 'physiological energy' has to be used in order to point to the fact that speaker's physiological activities, acoustic ities form a unitary chain. As a matter of fact, acoustic energy cannot be dealt with as a physiological activity.
3. In psycholinguistic iiterature, the term pair accentuation vs. deaccentuation'
stancis for our 'maximal vs. minimal accentuation'. We emphasize the gradual rather than the directional nature of the phenomenon. 4. Our account on stress-timing differs
from that of Dauer 1983 as being based on a from that of Dauer 1933 as being based on a
purely phonetic argumentation. Relying on the postulate that phonetics and phonoloav are incompatible within one treatment, we deduce the scale nature of stress-timing from the diversity of the possible patterns in
which stress beats may be revealed rather than from an interplay of phonological, phonetic, lexical, and syntactic facts about a particular language.
handful of monosyllabito-Finnic, there was a .g. maa earth'. However, they could not affect the general prototype of foot polysyllabicity.

REFERLNCES
D. Abercromije 1967. Elements of General Phonetics. Edinburgh: Edinburgh University Press. D. Abercromide 1967. Elements of General Phonetics. its relation to performance universals and articulatory timing. - Journal of Phonetics 3: 75-86.

ntitative language. - Proceedings of the Third International Con-- Ariste 1933. A quan Sciences: 276-230. Chent. '1. Balasubramanian 1979. Timing in Tranil. - Edinburgh University, Department of LinguisP.M. Bertinetto 1981. Strutture prosodiche dell'italiano. Firenze: Accacemia della crusca E.: biedraycki 1920 . Isochronous feet in a reading of Polish verse. - Eainburgh Univer解
 - Kk 1 : 51-62.
A. Eek ${ }^{1974}$. Observations on the duration of some word structures: I. - Estonian Papers A. Eek 1982. Stress an: 16-30.

- Estonian Papers in Phonetics 1980-1981: $20-59$.
A. Eek $\begin{aligned} & 1986 \text {. } \\ & \text { A } \\ & -66 \text {. }\end{aligned}$
A. Eek, M. Remmel 1974. Context, contacts and duration: two results concerning temporal organization. - Speech Communication Seminar, Speech Production and Synthesis by Rules, 2: 187-192. Stockholm.
C.A. Fowler 1979. 'Perceptual centers' in speech production and perception. - Perception C.A. Fowler 1981. A relationship between coarticulation and compensatory shortening. C.A. Fowler Phonetica 38: 35-40.
O. Fujimura 1983. A linear model of speech timing. - Paper to be published in: In Honor O. Fujimura, J.B. Lovins 1978. Syllables as concatenative phonetic units. - Syllables and O. Fujimura, J.B. Lovins A. A. Bell, J.B. Hooper, eds. North-Holland Publishing Company. Fujisaki, N. Higuch1 1979. Temporal organization of segmental features in Japanese di13: $155-16{ }^{\text {syll }}$ J. Gailén (ed.) 1984. Suomen väestën esihistorialliset juuret. - Bidrag ti
E. Hammarberg 1976. The metaphysis of coarticulation. - Journal of Phonetics 4: 353-363. Y. Homma 1981. Durational relationship between Japanese stops and vowels. - Journal of Phonetics 9: 273-281.
P. Howell 1984. An acoustic determinant of perceived and produced anisochrony. - Proceed E. Itkonen of the Tenth International Congress of Phonetic iniences, Form-meaning isomorphism, or iconicity, in diachronic iinguistics (and elsewhere). - Symposium on Formalization in Historical Linguistics, Tallinn, Novem ber 1986; Summaries: $38-46$.
D.H. Klatt 1973. Interaction between two factors that influence vowel duration. - Journal Ladefoged 1968 $\frac{\text { P. Ladefoged }}{}$ 1968. Linguistic aspects
P. Ladefoged 1980. What are iinguistic sounds made of? - Language 56, 3: 485-502.

Ladefoged 1984. 'Out of Chaos Comes Order'; physical, biological, and structural patSciences, IIB: 83-95.

- Ladefoged, J.D. De Clerk, M. Lindau, G. Papcun 1972. An auditory-motor theory of speech production. - UCLA Working Papers in Phonetics 22: 48-75.
. Lass Lea 1974 . Prosodic aids to speech recognition: IV. A general strategy for prosodical ly-guided speech understanding. - Univac Report No. PX10791. St. Paul, Minnesota: Sperry Univac, DSD.
. Lehiste 1972. Temporal compensation in a quantity language. - Proceedings of the Seventh International Congress of Phonetic Sciences: 929-939. The Hague, P
J. Lehiste $1977{ }^{\circ}$. Aspects of quantity in Standard Finnish. - Studia Jyväskyläensia 6. Jy väskylä.
 perception.
Stockholm.
B. Lindblom $\frac{\text { Society }}{}$ of . Spectrographic study of vowel reduction. - Journal of the Acoustical B. Lindblom, K. Rapp 1973. Some temporal regularities of spoken Swedish. - Pilus 21: 1-59, .F. MacNeilage 1972. Speech physiology. - Paper prepared for the conference on Speech Production and
S.M. Marcus 1981. Acoustic determinants of perceptual center (P-center) location. - Per L. Menn, B. MacWhinney 1984. The repeated morph constraint: toward an explanation. - LanMenn, B. MacWhinney 1984.
guage $60,3: 519-541$.
P. Mermelstein 1975. Automatic segmentation of speech into syllabic units. - Journal of the Acoustical Society of America 58: 880-883. M. Miller 1984. On the perception of rhythm. JJurnal of Phonetics 12: 75-83. S.G. Nooteboom 1972. Production and Perception of Vowel Duration. A Study of Durational Properties of Vowels in Dutch. Utrecht.
J.D. O'Connor 1973. Phonetics, Harmondsworth, Middlesex: Penguin Books.
 K.L. Pike 1946. The Intonation of American English. Ann Arbor: University of Michigan Press. R. Plomp 1984. Perception of speech as a modulated signal. - Proceedings of the lenth In
ternational Congress of phonetic Sciences, II B: 29-40.
. Roach 1982. On the distinction betwionstress - Linguistic Controversies: 73-79, D. Crystal, ed., London. $\frac{\text { M. Sawashima, H. Hirose, H. Yoshioka 1982. Interaction between articulatory movements and }}{\text { vocal pitch control in Japanese word accent. - University of Tokyo, Research Insti- }}$ vocal pitch control in Japanese word accent. - University of Tok
tute of Logopedics and Phoniatrics, Annual Bulletin 16: 11-19.
D.R. Scott 1982. Duration as a cue to percept
the Acoustical Society of America 71: 996-1007.
D.R. Scott, S.D. Isard, B. Boysson-Bardies 1985 . Perceptual isochrony in English and in
French D $\frac{\text { D.R. Scott, S.D. Isard, B. Boysson-Bardies }}{}{ }^{1985}$. ${ }^{\text {Prench. }}$ - Journal of Phonetics 13: $155-162$. J.M.B. Terken 1984. The effect of accentuation on comprehension: an experiment. - Pr ceeaings of the Tenth International Congress of Phonetic sciences, in B: 50ken Italian M. Vayra, C. Avesani, C.A. Fowler 1984. Patterns of temporal compression in in B: 541-546. K. Wiik 1965. Finnish and English Vowels. A Comparison with Special Reference to the Learning Problems Met by Native Speak
versitatis Turkuensis B, 94. Turku.
K. Wiik 1986 . Suomi ja sen lăhimmät sukukielet kahden germaanisen aännelain puristuksessa. - Paper presented at Institute of Language and Literature, Tallinn, April 4, Л.В. Вондарко, Л.А. Вербицкая, Л.Р. Зиндер 1966 . Акустическая характеристика

ти (на материале русского языка). - Структурная типолония яукв. - ученые записки

в.Б. Касевич 1983. Фонологические проблемы общего и восточного языкознания. Москва: Наука. Л.А. Чистович, В. А. Кожевников еt al. 1965. Речь. Артикуляция и восприятие. Москва, Ленинград.

a Campo, F. W.	3:294 Se 54.3	Bannert, R.	2:73 Se 22.4
Aaltonen, O .	3:19 Se 42.1	Bardina, N. V.	4:201 Po 3.4
Abberton, E.	3:336 Se 56.4	Barrera, C.	5:388 Se 94.4
Abbs, J. H.	1:221 Se 11.4	Barry, W.	2:89 Se 23.3
Abe, J.-I.	6:122 Se 103.2	Bartkova, K.	5:244 Se 85.4
Abramson, A. S.	6:68 Se 100.2	Basbøll, H.	3:349 Sy 2.2
Abry, C.	2:344 Se 35.2 ,	Bascom, B.	2:277 Se 31.3
	2:348 Se 35.3	Bastian, H.-J.	1:195 Se 10.1
Abuov, Zh.	6:175 Po 4.7	Basztura, C.	2:226 Se 28.5,
Agelfors, E.	4:181 Se 66.3		2:237 Se 29.3
Ageyev, V. M.	6:56 Se 99.3	Batliner, A.M.	5:46 Se 74.2
Ahlbom, G.	5:31 Se 73.2	Bazzhina, T. V.	1:198 Se 10.2
Aiba, S.	6:122 Se 103.2	Beerends, J. G.	4:325 Sy 4.2
Aikhenvald, A. Y.	1:308 Se 15.5 .	Belikov, A. P.	1:41 Se 2.1
Akchekeyeva, M. S.	5:87 Se 76.5	Belikov, V. I.	6:161 Po 4.3
Alderson, P. R.	2:172 Po 1.3	Beltjukowa, N. P.	5:83 Se 76.4
Alfonso, P. J.	2:41 Se 21.1	Berndt, R. S.	2:314 Se 33.3
Altosaar, T.	1:60 Se 3.1	Bertinetto, P. M.	3:355 Sy 2.3
Amador-Hernandez, M.	2:211 Se 28.1	Besednaya, L. L.	1:52 Se 2.4
Amorosa, H .	5:157 Se 80.3,	Bhatt, P. M.	5:153 Se 80.2
	5:160 Se 80.4	Bibikov, N. G.	3:67 Se 44.4
Andersen, H.	4:357 Sy 5.1	Bickley, C.	5:15 Se 72.2
Andreewsky, A.	3:75 Se 45.1 ,	Bienvenue, G. R.	3:328 Se 56.2
Andreewsky, A.	5:221 Se 84.2	Bimbot, F.	5:31 Se 73.2
Andreewsky, M.	$5: 225$ Se 84.3	Bladon, A. R. W.	4:78 Se 60.4 ,
Angenot, J.-P.	3:344 Sy 2.1		4:319 Sy 4.1
Annan, B.	5:427 Se 96.5	Boe, L.-J.	2:348 Se 35.3 ,
Antipova, A. M.	5:443 Sy 6.1		
Antoñanzas-Barroso, N.	$3: 125$ Se 48.1	Bogino, V. I.	1:52 Se 2.4
Antonova, D. N.	6:197 Po 4.14	Bolla, K.	2:176 Po 1.4
Anusiene, L. L .	5:99 Se 77.3	Bond, Z. S.	2:192 Po 1.8
Arabia-Guidet, C.	4:300 Se 70.4	Bondarenko, M. F.	2:393 Se 37.5
Aratò, A.	3:105 Se 46.4	Bondarenko, V. P.	2:77 Se 22.5
Asinovsky, A. S.	1:174 Se 8.5,	Bondarko, L. V.	${ }_{1}^{1: 13} 1.235 \mathrm{Pl} 1.1$
	1:362 Se 18.4	Bonder, L. J.	1:235 Se 12.2
Aubergé, V.	5:27 Se 73.1	Bonneau, A.	${ }_{3}^{3: 282}$ Se Se 53.5
Aulanko, R.	2:164 Pol.1	Bonnot, C.	2:463 Sy 1.1
Autesserre, D.	1:33 Se 1.4,	Bonnot, J.-F. P.	4:20 Se 57.2
	3:35 Se 42.5,	Borden, G. J.	4:306 Se 71.1
	5:170 Se 81.2	Boves, L.	6:32 Se 98.2
Avesani, C.	3:153 Se 49.3	Brodovich, O. I.	5:440 Se 97.4
Babkina, L. M.	1:231 Se 12.1	Bromley, S. V.	4:150 Se $1: 247 \mathrm{Se} 12.5$
Babkina, T. I.	4:304 Se 70.5	Brovchenko, T. A. Brown, A.	1:247 $4: 240$ Po 3.15
Bacri, N.	2:219 Se 28.3, 4:98 Se 61.4	${ }_{\text {Brown, A. }}$ Brown, W.	5:149 Se 80.1
Badin, P.	2:340 Se 35.1,	Bruyninekx, M-	2:241 Se 29.4
	2:352 Se 35.4 ,	Buček, A.	1:129 Se 6.3
Bagmut, A. J.	4:205 Po 3.5	Bunnell, H. T.	4:344 Sy 4.5
Bagnoli, S.	5:306 Se 89.4	Caelen, J.	2:371 Se 36.5,
Balupuri, C.	2:443 Se 40.5		5:388 Se 94.4
Bancel, P.	5:68 Se 75.4	CaO, J.	4:169 Se 6.4

Carlson, R. Carre, R.	5:111 $1: 251$ Se 78.1 $3: 371$ Se 13.1 Sy 3.1
Casablanca, C. A.	$3: 371$ $5: 202$ Sy Se 8.1
Cave, C.	5:138 Se 79.3
Celmer, R. D.	3:328 Se 56.2
Chabanets, A. N.	2:77 Se 22.5
Cheng, Y. M.	2:340 Se 35.1
Chernigovskaya, T. V.	1:266 Se 13.5
Chernov, B. P.	6:40 Se 98.4
Chevrie-Muller, C.	3:35 Se 42.5 ,
	4:300 Se 70.4
Chikoidze, G. B.	2:115 Se 24.5
Chirkina, G. V.	1:204 Se 10.4
Chistovich, I. A.	1:262 Se 13.4
Chizhov, A. P.	4:59 Se 59.3
Chobor, K. L.	5:149 Se 80.1
Chollet, G.	5:31 Se 73.2
Christov, Ph.	3:121 Sc 47.4.
Chuchupal, V. Y.	5:232 Se 85.1
	5:228 Se 84.4
Chudnovsky, L. S.	6:56 Se 99.3
Church, K. W.	2:107 Se 24.3
Ciarkowski, R.	2:180 Po 1.5
Clark, J. E.	2:215 Se 28.2
Clayards, J. A. W.	3:97 Se 46.2
Conrad, B.	1:27 Se 1.2
Contini, M.	3:317 Se 55.4,
Copperi, M.	5:27 Se 73.1
Cosi, P.	3:173 Se 50.4
Crump, J. M.	5:56 Se 75.1
Cruz-Ferreira, M.	5:146 Se 79.5
Cutler, A.	1:84 Se 4.2
Damen, L. W. M.	4:116 Se 62.4
Damper, R. I.	4:78 Se 60.4
Dang. V. C.	1:251 Se 13.1
Dantsuji, M.	4:165 Se 65.3 .
	6:71 Se 100.3.
Dart. S. N.	1:31 Se 1.3
Dashko, Y. Y.	6:194 Po 4.13
Dauer, R. M.	5:447 Sy 6.2
de Boysson-Bardies, B.	2:325 Se 34.2 ,
de Graal, T.	3:27 Se 42.3
	6:124 Se 103.3.
de Moraes, J. A.	3:313 Se 55.3
de Saint Aulaire, R. P.	2:356 Se 36.1
Deglin, V. L.	1:266 Se 13.5
Degtyarev, N. P.	3:290 Se 54.2
Delattre, C.	3:39 Se 43.1
Delgado Martins, M. R.	3:177 Se 50.5
Delmonte, R.	2:101 Se 24.1
Demenko, G.	3:249 Se 52.1
Denison, B. D.	1:231 Se 12.1
Dermody, Ph.	2:223 Se 28.4,
Derwing B L	4:108 Se 62.2
Desi, M.	2:249 Se 30.1
	3:75 Se 45.1,
	5:221 Se 84.2,
Deterding, D. H.	2:203 Se 23.4
Devillers, L.	5:225 Se 84.3

Dew, A. M.	5:217 Se 84.1
Di Benedetto, M.-G.	5:198 Se 83.1
Di Cristo, A.	3:35 Se 42.5
Dickson, B. C.	3:97 Se 46.2,
	3:262 Se 52.5,
	5:400 Se 95.3
Dijkstra, T.	4:105 Se 62.1
Dixit, R. P.	2:145 Se 26.5
Dmitrenko, S. N.	3:226 Po 2.8
Docherty, G. J.	3:134 Se 48.3
Dogil. G.	3:360 Sy 2.4
Dohalská-Zichová, M.	2:204 Po 1.11
Dolmason, J. M.	3:71 Se 44.5
Domagala, P.	5:381 Se 94.2
Dow, M. L.	2:249 Se 30.1
Dressler, W. U.	3:366 Sy 2.5
Dubovsky, Y. A.	5:279 Se 88.1
Dubrovsky, N. A.	3:67 Se 44.4
Dybo, V. A.	2:404 Se 38.3
Dzhunisbekoy, A.	1:321 Se 16.4
Dziubalska-Kołaczyk, K.	6:118 Se 103.1
Eady. S. J.	3:97 Se 46.2,
	3:262 Se 52.5
Edelman, D. I.	2:126 Se 25.3
Edward, D.	3:332 Se 56.3,
	5:358 Se 92.5
Eefting, W.	2:69 Se 22.3
Eek, A.	6:218 Pl 4.2A
Esling, J. H.	4:243 Se 67.1,
	5:298 Se 89.2
Espy-Wilson, C. Y.	5:403 Se 95.4
Everett, D. L.	2:105 Se 24.2
Falaschi, A.	4:139 Se 63.5
Fant, G.	3:376 Sy 3.2.
	6:102 Se 102.2
Faraclas, N .	6:169 Po 4.5
Farkas, 2.	4:185 Se 66.4
Feder, D.	4:120 Se 62.5,
	4:143 Se 64.1
Feng, G.	2:344 Se 35.2
Feng, S.	3:320 Se 55.5
Feodorov, A. M.	5:142 Se 79.4
Ferguson, C. A.	1:381 Se 20.1,
	4:143 Se 64.1
Fletcher, J.	3:129 Se 48.2
Foldvik, A. K.	1:177 Se 9.1
Fonagy, I.	2:468 Sy 1.2
Fonda, C.	3:222 Po 2.7
Forstner, S.	4:102 Se 61.5
Foti, A.	2:388 Se 37.4
Fougeron, I.	2:463 Sy 1.1
Fourcin, A.	3:336 Se 56.4
Fowler, C. A.	4:24 Se 57.3
Földi, É.	2:427 Se 40.1
Franco, H. E.	2:384 Se 37.3
Frank, Y.	3:340 Se 56.5
Frauenfelder, U. H.	4:28 Se 57.4,
	4:105 Se 62.1,
	4:337 Sy 4.4
Fretheim, T .	4:263 Se 68.2
Frolov, G. D.	6:63 Se 99.5
Fujimura, O.	1:221 Se 11.4,
	6:10 P1 6.2
ukuda, Y.	1:365 Se 19.1

Galton, H .	6:91 Se 101.3
Gamkrelidze, N. A.	3:247 Po 2.14
Ganiyev, Zh. V.	4:209 Po 3.6
Garcia Jurado, M. A.	4:132 Se 63.3
Gasparov, M. L.	6:214 Sy 6.9A
Gavrashenko, A. N.	2:393 Se 37.5
Geilman, N. J.	3:161 Se 50.1
Genin, J.	5:306 Se 89.4
Georgieva, M. A.	2:435 Se 40.3
Giannini, A.	2:299 Se 32.4
Girdenis, A.	5:91 Se 77.1
Gitlin, V. B.	4:82 Se 60.5
Gnativ, Y. N.	1:206 Se 10.5
Golovko, Y. V.	1:174 Se 8.5 ,
	6:172 Po 4.6
Goncharenko, S. F.	5:451 Sy 6.3
Goncharov, S. L.	5:63 Se 75.3
Gordina, M. V.	3:190 Se 51.4
Gordos, G.	3:93 Se 46.1 .
Gorodnikov, A. S.	6:59 Se 99.4
Gorokhova, S.	1:231 Se 12.1
Gorshkova, K. V.	2:400 Se 38.2
Gósy, M.	$1: 88 \mathrm{Se} 4.3$,
Granström, B.	4:185 Se 66.4
Green, R. H.	5:306 Se 89.4
Greenlee, M.	4:143. Se 64.1
Greisbach, R.	5:396 Se 95.2
Greven, H.	5:306 Se 89.4
Grigorian, A.	1:341 Se 17.4
Grosser, W.	2:161 Se 27.4,
	4:90 Se 61.2
Grumadienes, L.	5:95 Se 77.2
Grzybowski, S.	2:253 Se 30.2
Guerin, B.	2:340 Se 35.1
Guirao, M.	4:132 Se 63.3,
	6:122 Se 103.2
Gumetsky, R. Y.	1:116 Se 5.5
Gurlekian, J. A.	2:384 Se 37.3
Guskova, K. G.	4:59 Se 59.3
Hadersbeck, M.	5:35 Se 73.3
Hallé, P.	2:325 Se 34.2,
	3:27 Se 42.3,
	4:86 Se 61.1
Harmegnies, B.	2:241 Se 29.4
Harrington, J.	3:89 Se 45.5,
	4:315 Se 71.4
Hawkins, S.	5:342 Se 92.1
Hazan, V.	3:336 Se 56.4,
	5:358 Se 92.5
Heike, G.	1:214 Se 11. 2
Helimski, Y.	1:158 Se 8.1
Helle, S.	1:64 Se 3.2
Help, T.	6:218 Pl 4.2 A
Henton, C. G.	3:270 Se 53.2
Herbert, R. K.	4:247 Se 67.2
Hermansky, H.	5:186 Se 82.1
Herizenberg, L. G.	2:129 Se 25.4
Hess, S. A.	5:72 Se 76.1
Hess, W. J.	1:146 Se 7.3,
	6:52 Se 99.2
Hiki, Sh.	3:63 Se 44.3
Hind, A.	5:283 Se 88.2

Hint, M.	1:304 Se 15.4
Hirahara, T.	1:92 Se 4.4
Hirose, H .	6:44 Se 98.5
Hirschberg, J.	4:185 Se 66.4
Hirsct feld, U.	4:221 Po 3.10
Hirst, D. J.	3:35 Se 42.5
Hlaváç, S.	5:213 Se 83.5
Hlawatsch, F.	1:44 Se 2.2
Hoequist, C., Jr.	2:85 Se 23.2
Holden-Pitt, L.	3:332 Se 56.3,
	5:358 Se 92.5
Hollmach, U.	5:423 Se 96.4
Holte, L. A.	3:324 Se 56.1
Hombert, J.-M.	2:273 Se 31.2
Homma, Y.	3:236 Po 2.11
Hong, G. Z .	1:27 Se 1.2
Hoole, Ph.	2:310 Se 33.2,
	3:31 Se 42.4,
	4:16 Se 57.1
Horiguchi, S.	2:41 Se 21.1
House, D.	1:76 Se 3.5
House, J.	1:134 Se 6.5
Houtsma, A. J. M.	4:325 Sy 4.2
Howerd, D. M.	4:52 Se 59.1,
	5:166 Se 81.1
Howard, I. S.	4:52 Se 59.1
Huang, C. B.	5:194 Se 82.3
Hubrnayer, K.	2:161 Se 27.4,
	4:90 Se 61.2
Hukin, R. W.	4:78 Se 60.4
Hunnicutt, Sh.	3:47 Se 43.3
Hunt, M. J.	3:23 Se 42.2
Huntington, D. A.	4:143 Se 64.1
Hurme, P.	6:136 Se 104.2
livonen, A.	4:161 Se 65.2
Imagawa, H .	6:44 Se 98.5
Imakov, V. R.	1:104 Se 5.2
Imiolczy k, J.	2:180 Po 1.5
Ingram. J.	2:134 Se 26.2
Irvine, G. N. A.	4:78 Se 60.4
Isayeva, N. A.	5:23 Se 72.4
Isenina, Y. I.	2:333 Se 34.4
Ivanitsky, G. A.	3:67 Se 44.4
Ivanov, L. V.	4:310 Se 71.2
Ivanov, V. V.	6:95 Se 101.4
Ivanova, G.	4:291 Se 70.1
Ivanova-Lukyanova, G. N.	5:456 Sy 6.4
Ivic, P.	2:472 Sy 1.3
Jacques, B.	4:40 Se 58.2
Janot-Giorgetti, M. T.	2:371 Se 36.5
Janota, P.	2:196 Po 1.9
Japaridze, Z. N.	2:337 Se 34.5
Jasová, E.	1:315 Se 16.2
Jassem, W.	3:253 Se 52.2
Javkin, H. R.	5:186 Se 82.1
Jensen, J. T.	2:153 Se 27.2
Jguenti, I.	4:154 Se 64.4
Jha, S. K.	1:336 Se 17.3
Johnson, M.	1:134 Se 6.5
Johnstone, A.	3:89 Se 45.5
Jønsson, N.-O.	5:306 Se 89.4
Jouvet, D.	5:244 Se 85.4
Jurkiewicz, J.	2:237 Se 29.3
Kačiuškienę, G.	5:91 Se 77.1

Kakusho, O. Kalnyn, L. E. Kanter, L. A. Kaplun, M. I. Karjalainen, M.	2:376 Se 37.1
	3:230 Po 2.9
	4:59 Se 59.3
	1:170 Se 8.4
	1:60 Se 3.1,
	1.64 Se 3.2,
	2:11 P9 2.1,
	6:48 Se 99.1
Karlep, K.	2:460 Se 41.4
Karnevskaya, Y. B.	2:168 Po 1.2
Kasatkin; L. L.	5:76 Se 76.2
Kasatkina, R. F.	5:76 Se 76.2
Kasevich, V. B.	3:55 Se 44.1
Kashchayeva, S. S.	6:179 Po 4.8
Kassai, İ.	1:385 Se 20.2
Katsch, R.	2:223 Se 28.4,
Kedrova G. Y	4:108 Se 62.2
Keller, K. C.	4:232 Po 3.13
Kemp, A.	3:206 Po 2.3
Kerswill, P. E.	4:251 Se 67.3
Khachaturian, A.	1:341 Se 17.4
Khamidullin, S. A.	3:86 Se 45.4
Kharlamov, A. A.	1:258 Se 13.3
Khaskashev, T. N.	6:205 Se 39.5A
Khitina, M. V.	1:96 Se 4.5
King, L.	1:154 Se 7.5
Kiritani, Sh.	5:419 Se 96.3, $6: 44$ Se 98.5
Kiss, G.	2:176 Po 1.4,
	3:105 Se 46.4
Kitaigorodskaya, M. V.	1:191 Se 9.5
Klimov, N. D.	5:460 Sy 6.5
Klychkov, G. S.	2:129 Se 25.4
Klyuchevsky, A. B.	5:183 Se 81.5
Knipper, A. V.	1:56 Se 2.5
Kodzasov, S. V.	$\text { 2:142 Se } 26.4$
Kohler, K. J.	
	$\begin{aligned} & 1: 80 \mathrm{Se} 4.1 \\ & 3: 149 \mathrm{Se} 49.2 \end{aligned}$
	3:1491 Se 9.21 .2
Kohlrausch, A.	4:331 Sy 4.3
Kohno, M.	5:54 Se 74.4
Koike, M.	2:452 Se 41.2
Kotesnikov, B. M.	2:207 Po 1.12
Koo, J. H.	3:236 Po 2.11
Koopmans-van Beinum, F. J.	2:356 Se 36.1
Kori, S.	4:255 Se 67.4
Korkmazsky, F. E.	3:298 Se 54.4
Kozlenko, N. P.	1:96 Se 4.5
Kozma, G.	2:431 Se 40.2
Krasnova, L. S.	6:197 Po 4.14
Krasnova, Y. V.	4:225 Po 3.11
Krech, E.-M.	5:268 Se 87.2
Krinov, S. N.	3:78 Se 4.5.2
Krivnova, O. F.	2:481 SV1.5,
Kruckenberg, A.	6:102 Se 102.2
Krull, D.	2:65 Se 22.2. 5:205 Se 83.3
Krushevskaya, I. I.	1:201 Se 10.3.
	4:313 Se 71.3,
	6:142 Se 104.4
Kryukov, G. V.	1:108 Se 5.3

Kubin, G.	$\begin{aligned} & 1: 44 \mathrm{Se} 2.2, \\ & 1: 210 \mathrm{Sc} 11.1 \end{aligned}$
Kuhn, G	5:251 Se 86.1
Kukolshchikova, L. Y.	4:213 Po 3.7
Kulłová, J.	4:219 Po 3.9
Kurlova, R.	5:415 Se 96.2
Kuwabara, H.	1:281 Se 14.4
Kuzmenko, Y. K.	5:429 Se 97.1
Kuznetsov, V. B.	$\begin{array}{ll} 3: 117 & \text { Se } 47.3 \\ 5: 366 & \text { Se } 93.2 \end{array}$
Kuznetsova, V. B.	5:259 Se 86.3
Kühnert, B.	4:94 Se 61.3
Künnap, E.	2:184 Pol.6
Lacau, J.	3:35 Se 42.5
Laine, U. K.	5:19 Se 72.3
Landercy, A.	$\begin{array}{ll} 2: 241 & \text { Se } 29.4, \\ 3: 344 & \text { Sy } 2.1 \end{array}$
Langmeier, Ch.	1:328 Se 17.1
Larreur, D.	1:125 Se 6.2
Laur, M.	5:291 Se 88.4
Lauri, E.-R.	2:188 Po 1.7
Lebedev, V. G.	3:86 Se 45.4
Lebedeva, G. N.	6:157 Po 4.2
Lehiste, I.	4:9 Pl 4.1
Lekomtseva, M. I.	5:436 Se 97.3
Léon, P. R.	3:109 Se 47.1
Lepskaya, N. I.	1:198 Se 10.2
Lesogor, L. V.	3:71 Se 44.5. 5:318 Sc 90.3
Levkov, Y. Y.	3:290 Se 54.2
Lewandowski, A.	2:456 Se 41.3
Lezhava, I. I.	3:247 Po 2.14
Likhachev, S. F.	5:322 Se 90.4
Lim, J. S.	1:285 Se 14.5
Lin, M.	1:162 Se 8.2
Lin, S .	3:320 Sc 55.5
Lindblom, B.	3:9 Pl 3.1
Linder, T.	5:263 Se 86.4
Lindner, G.	5:302 Se 89.3
Lindsey, G. A.	5:166 Se 81.1
Lisker, L.	1:324 Se 16.5, 6:66 Se 100.1
Llisterri, J.	4:44 Se 58.3, 5:134 Se 79.2
Llorca, R.	1:125 Se 6.2
Lobanov, B. M.	1:120 Se 6.1
Loots, M. E.	2:322 Se 34.1,
	5:465 Sy 6.6
Losik, G. V.	4:294 Se 70.2
Lozhkin, V. N.	6:75 Se 100.4
Lofquist, A.	4:173 Se 66.1
Lugosi, G.	5:263 Se 86.4
Lukảcs, J.	3:105 Se 46.4
Lukaszewicz, K.	6:48 Se 99.1
Lüders, U.	1:328 Se 17.1
Lyberg, B.	5:118 Se 78.3
Lyublinskaya, V. V.	5:190 Se 82.2
Lyudovik, Y. K.	$\begin{aligned} & 1: 270 \text { Se 14.1, } \\ & \text { 4:62 Se59.4, } \end{aligned}$
	5:248 Se 85.5
Maassen, B.	1:373 Se 19.3.
	1:377 Se 19.4
Mackie, K.	$\begin{array}{ll} 2: 223 & \text { Se } 28.4, \\ 4 \end{array}$

Maddieson, I.	5:72 Se 76.1
Madelska, L.	3:165 Se 50.2
Maeda, Sh.	5:11 Se 72.1
Magno Caldognetto, E.	3:173 Se 50.4
Magnusson, E.	4:112 Se 62.3
Mahadin, R. S.	2:397 Se 38.1
Maistrenko, K. P.	3:302 Se 54.5
Majewski, W.	2:237 Se 29.3.
	4:70 Se 60.2
Majid, R.	2:348 Se 35.3
Makhmuryan, K. S.	4:271 Se 68.4
Makhnanov, V. D.	1:41 Se 2.1
Makhonin, V. A.	1:274 Se 14.2
Malavakis, Th.	3:187 Se 51.3
Malinnikova, T. G.	1:262 Se 13.4
Malsheen, B. J.	2:211 Se 28.1
Mannell, R. H.	2:215 Se 28.2
Manninen, O .	2:188 Po 1.7
Mantoy, A.	$\begin{aligned} & \text { 4:300 Se 70.4, } \\ & 5: 39 \text { Se } 73.4 \end{aligned}$
Marchal, A.	$\begin{aligned} & 1: 332 \text { Se } 17.2,2, \\ & 0.388 \\ & \text { Se } 374 \end{aligned}$
Maret, D.	5:27 Se 73.1
Markus, D.	5:107 Se 77.5
Marotta, G.	3:113 Se 47.2
Marslen-Wilson, W. D.	4:337 Sy 4.4
Marteau, P. F.	2:371 Se 36.5
Martin, Ph.	3:184 Se 51.2,
	4:56 Se 59.2
Masloy, V. T.	6:40 Se 98.4
Massaro, D. W.	5:334 Se 91.3
Maton, B.	3:35 Se 42.5
Matsushita, T.	3:309 Se 55.2
Mazur, V. N.	2:97 Se 23.5
McClain, K.	1:393 Se 20.4
McGarr, N. S.	4:173 Se 66.1
McGowan, R. S.	2:45 Se 2 t .2
McKenna, A.	5:306 Se 89.4
Mead, D.	3:82 Se 45.3
Medonis, A.	5:178 Se 81.4
Mehnert. D.	3:101 Se 46.3
Meinhold, G.	5:115 Se 78.2
Meister, E.	3:266 Se 53.1
Melen, L. A.	1:116 Se 5.5
Melikischvili, I. G.	4:146 Se 64.2
Metlyuk, A. A.	5:130 Se 79.1
Meyer, P.	1:217 Se 11.3
Michaels, D.	2:291 Se 32.2
Michurina, K. A.	5:374 Se 93.4
Mihkla, M.	6:59 Se 99.4
Mikhalev, A. V.	1:108 Se 5.3
Mildner, V.	1:324 Se 16.5
Millar, J. B.	2:245 Se 29.5
Minin, A. V.	1:277 Se 14.3
Misheva, A.	6:210 Se 69.5A
Mitleb, F.	2:448 Se 41.1
Modi, Bh.	1:328 Se 17.1
Moeller, S.	4:296 Se 70.3
Molchanov, A. P.	1:231 Se 12.1
MondI, U. H.	3:344 Sy 2.1
Moor, V. R.	2:77 Se 22.5
Moore, T. J.	2:192 Po 1.8
Mouraviev, S. N.	3:198 Po 2.1
Möbius, B.	1:146 Se 7.3

Mulyukin, N. V.	1:41 Se 2.1
Myślecki, W.	4:70 Se 60.2
Nadeina, N. A.	6:142 Se 104.4
Nadeina, T. M.	4:275 Se 69.1
Nadler, R. D.	1:221 Se 11.4
Nauclér, K.	4:112 Se 62.3
Nazarov, M. V.	5:322 Se 90.4
Nearey, T. M.	2:249 Se 30.1
Nevalainen, T.	3:180 Se 51.1
Ni Chasaide, A.	6:28 Se 98.1
Nicaise, A.	4:98 Se 61.4
Nieboer, G. L. J.	6:132 Se 104.1
Niimi, S.	2:452 Sc 41.2
Nikolayeva, T. M.	$\begin{aligned} & 2: 486 \text { Sy } 1.6 . \\ & 6: 106 \text { Se } 102.3 \end{aligned}$
Nikolova, L.	2:438 Se 40.4
Nikov, M.	4:259 Se 68.1
Nolan, F.	5:411 Se 96.1
Nord, L.	$4: 157 \text { Se } 65.1$
Noske, R.	2:295 Se 32.3
Nossenko, E. L.	6:190 Po 4.12
Nushikyan, E. A.	3:210 Po 2.4
Nvkiel-Herbert, B.	4:128 Se 63.2
O'Kane, M.	$\begin{aligned} & 2: 380 \text { Se } 37.2, \\ & 3: 82 \text { Se } 45.3 \end{aligned}$
Odé, C.	3:194 Se 51.5
Ogorodnikova, K. S.	5:327 Se 91.1
Ogorodnikova, Y. A.	1:262 Se 13.4
Ohala, J. J.	$\begin{aligned} & 2: 49 \mathrm{Se} 21.3 . \\ & 4: 120 \mathrm{Se} 62.5 \text {, } \\ & 4: 143 \text { Se } 64.1 \end{aligned}$
Ohala, M.	2:49 Se 21.3
Ojamaa, K.	5:251 Se 86.1
Okamoto, A.	2:452 Se 41.2
Olaszy, G.	3:93 Se 46.1, 4:185 Se 66.4
Ollila, L.	3:39 Se 43.1
Ostry, D.	2:215 Se 28.2
Ott, A.	
	3:278 Se 53.4,
	5:366 Se 93.2
Ottesen, G. E.	3:260 Se 52.4
O\%ga, J.	4:228 Po 3.12
Óster, A.-M.	4:177 Se 66.2
Pabreža, J.	1:312 Se 16.1
Pačesová, J.	2:329 Se 34.3
Paducheva, E. V.	4:362 Sy 5.2
Pakerys, A.	1:319 Se 16.3
Palkova, 2.	1:296 Se 15.2.
	2:196 Po 1.9
Pan, H .	4:283 Se 69.3
Panagos, G.	1:23 Se 1.1
Panasyuk, A. Y.	2:318 Se 33.4
Panasyuk. I. V.	2:318 Se 33.4
Panchenko, B. V.	3:286 Se 54.1
Pankova, I. V.	4:213 Po 3.7
Parisse, C.	5:225 Se 84.3
Pavlichenko, A. N.	1:225 Se 11.5
Pedersen, M. F.	4:296 Se 70.3
Penkovsky, A. B.	2:407 Se 38.4
Penzl, H.	$6: 87 \mathrm{Se} 101.2$
Perekhvalskaya, Y. V.	6:165 Po 4.4
Perlin, J.	1:350 Se 18.1

Perosino. F.	5:310 Se 90.1
Perrier, P.	2:348 Se 35.3
Peshak, J.	$\begin{aligned} & \text { 6:146 Se } 104.5, \\ & 6: 150 \text { Se } 104.6 \end{aligned}$
Petryankina, V. I.	4:267 Se 68.3
Pettersson, T.	2:57 Se 21.5
Pettorino, M.	1:138 Se 7.1
Phillips, M. S.	5:240 Se 85.3
Pickett, J. M.	3:332 Se 56.3 ,
	4:344 Sy 4.5
Pierrehumbert, J. B.	3:145 Se 49.1
Pikturna, V.	$1: 210 \mathrm{Se} 11.1$
Pilch, H.	6:98 Se 102.1
Piroth, H. G.	$\begin{aligned} & 1: 369 \text { Se } 19.2 . \\ & 3: 59 \text { Se } 44.2 . \end{aligned}$
	5:50 Se 74.3
Plotkin, V. Y.	2:415 Se 39.2
Pluciński, A.	2:81 Se 23.1
Poch-Olive, D.	$\begin{aligned} & 4: 48 \mathrm{Se} 58.4, \\ & 5: 134 \mathrm{Se} 79.2 \end{aligned}$
Poitelshmidova, A.	6:146 Se 104.5,
	6:150 Se 104.6
Pols, I. C. W.	1:235 Se 12.2,
	4:116 Se 62.4
Pompino-Marschall, B.	2:161 Se 27.4.
	4:90 Se 61.2.
	4:94 Se 61.3,
	5:370 Se 93.3
Potapova, R. K.	5:385 Se 94.3
Povel, D.J.	1:373 Se 19.3,
	1:377 Se 19.4
Profili, O.	3:184 Se 51.2
Prokhorov, Y. N.	1:277 Se 14.3.
	5:236 Se 85.2 .
	5:322 Se 90.4
Prokopowa, L. 1.	1:300) Se 15.3
Puech, G.	5:68 Se 75.4
Pukkila, T.	2:188 Pol. 1
Quene, H .	6:79 Se 100.5
Radchenko, G. L.	5:80) Se 76.3
Radionova, Y. A.	1:255 Se 13.2
Raimo, I.	3:19 Se 42.1
Rajewski, M. W.	5:264 Se 87.1
Ramming. H .	1:154 Se 7.5
Randolph, M. A.	2:360 Sc 36.2
Rannut, M.	4:124 Se 63.1
Rashkevich, Y. M.	1:206 Se 10.5
Ralkevičius, K.	5:314 Se 90.2
Raudscpp, M.	3:266 Se 53.1
Recasens. D.	1:346 Se 17.5
Repp. B. H.	2:21 Pl 2.2
Revoile. S. G.	3:332 Se 56.3,
	4:344 Sy 4.5,
	5:358 Se 92.5
Ricca, D.	3:113 Se 47.2
Rictveld, A. C. M.	4:28 Se 57.4
Rigoll, G.	1:131 Se 6.4
Rigsby, B.	2:134 Sc 26.2
Rimskaya-Korsakova, L. K.	3:67 Se 44.4
Ringeling, J. C. T.	2:69 Se 22.3
Ringot, P.	3:75 Se 45.1 ,
	5:221 Se 84.2,
	5:225 Se 84.3
Risberg, A.	4:181 Se 66.3

Roach, P. J.	5:217 Se 84.1
Rodionova, G. G.	1:100 Se 5.1
Rohtla, M.	3:266 Se 53.1
Romanenko, Y. V.	5:164 Se 80.5
Rong-Rong, L.	3:320 Sc 55.5
Ross, J.	5:174 Se 81.3
Rossi, M.	3:282 Se 53.5 .
	5:138 Se 79.3
Roubeau, B.	$3: 35 \mathrm{Se} 42.5$
Rowlands, P.	5:217 Se 84.1
Rozanova, N. N.	1:191 Se 9.5
Rösler, S.	1:37 Se 1.5
Rudakov, V. G.	5:378 Se 94.1
Rudelyos, V. G.	2:303 Se 32.5
Rudžionis, A.	5:255 Se 5:314 Se 90.2
Rumvantsev, M. K.	1:166 Se 8.3
Rusakova, M. V.	2:419 Se 39.3
Sagart, L.	2:325 Se 34.2,
Sakow, W. A.	1:183 Se 9.3
Salasoo, A.	2:314 Se 33.3
Salza, P. L.	3:113 Se 47.2
Sannikov, V. G.	5:236 Se 85.2
Santerre, L.	5:126 Se 78.5
Sappok, C.	2:492 Sy 1.7.
	3:157 Se 49.4
Sara, S.	2:284 Se 31.5
Sardzhayeva, D. K.	6:184 Po 4.10
Sawashima, M.	5:419 Se 96.3
Sawicka, I.	1:350 Se 18.1
Schablo, N. G.	2:280 Se 31.4
Scharpfi, P. J.	5:43 Se 74.1
Scheimann, G.	5:157 Se 80.3
Schicfer, E. F.	1:358 Se 18.3
Schicfer, L.	1:150 Se 7.4,
	1:154 Se 7.5,
	1:328 Se 17.1.
	1:358 Se 18.3.
	5:46 Se 74.2 ,
	5:362 Se 93.1
Schnabel, B.	5:27 Se 73.1
Schorradt, J.	3:59 Se 44.2
Schönle, P. W.	1:27 Se 1.2
Schroeder, M. R.	4:350 Sy 4.6
Schutte, H. K.	6:132 Se 104.1
Scotto di Carlo, N.	5:170 Se 81.2
Sedivy, J.	5:60 Se 75.2
Seggic, D. A.	2:364 Se 36.3
Segui, J.	4:105 Se 62.1
Seider Story, R.	4:173 Se 66.1
Selyutina, I. Y.	3:240 Po 2.12
Sendlmeier. W. F.	1:68 Se 3.3
Seneff, S.	5:392 Se 95.1
Sepp, A.	4:36 Se 58.1
Shabelnikova, Y. M.	3:55 Se 44.1
Shakhnarovich, A. M.	4:291 Se 70.1
Shamma, S. A.	2:61 Se 22.1
Shattuck-Hufnagel, S.	3:169 Se 50.3
Shcherbakova, L. P.	6:175 Po 4.7
Sheikin, Y. I.	5:183 Se 81.5
Shi, B.	1:142 Se 7.2
Shimizu, K.	6:71 Se 100.3

Shpak, Z. Y	1:206 Se 10.5
Shuplyakov, V. S.	3:71 Se 44.5,
	5:338 Se 91.4
Siil, I.	3:278 Se 53.4
Simada, Z .	2:452 Se 41.2
Sinkevičiüte, B.	5:178 Se 81.4
Skalozub, L. G.	$\begin{aligned} & 1: 225 \text { Se } 11.5 \text {, } \\ & 4.39 \text { Se } 575 \end{aligned}$
Skorikova, T. P.	4:279 Se 69.2
Slethei, K.	2:200 Po 1.10
Slis, I. H.	5:350 Se 92.3
Slootweg, A. M.	6:114 Se 102.5
Slutsker, G. S.	3:78 Se 45.2
Smetanin, A. M.	6:36 Se 98.3
Smirnitskaya, O. A.	5:468 Sy 6.7
Smirnova, V. G.	6:188 Po 4.11
Sobakin, A. N.	1:48 Se 2.3
Sobolev, V. N.	$\begin{aligned} & 1: 104 \text { Se } 5.2 \\ & 3: 274 \\ & \text { Se } 53.3 \end{aligned}$
Sock, R.	3:39 Se 43.1
Sokolova, M. A.	4:271 Se 68.4
Sorin, C.	1:125 Se 6.2
Sorokin, V. N.	$\begin{aligned} & 3: 382 \text { Sy } 3.3, \\ & 6: 7 \text { PI } 6.1 \end{aligned}$
Sovijärvi, A.	2:164 Po 1.1
Spa, J. J.	2:288 Se 32.1
Steele, S. A.	3:145 Se 49.1
Steponavičius, A.	2:122 Se 25.2
Stern, A. S.	1:72 Se 3.4
Stevens, K. N.	3:385 Sy 3.4,
	4:352 Sy 4.7.
	5:342 Se 92.1
Stock, E.	5:423 Se 96.4
Stoeva, T.	6:128 Se 103.4
Stojanović, C.	2:111 Se 24.4
Stolyarova, E. I.	5:190 Se 82.2
Stong-Jensen, M.	2:157 Se 27.3
Strangert, E.	2:149 Se 27.1
Strelnikov, I. Y.	2:337 Se 34.5
Strelnikov, Y. A.	2:337 Se 34.5
Strik, H.	6:32 Se 98.2
Strube, H.-W.	1:23 Se 1.1.
	1:37 Se 1.5,
	1:217 Se 11.3 $5: 95$ Se 77.2
Sulyán, J.	3:105 Se 46.4
Svantesson, J.-O.	2:269 Se 31.1
Svecevičius, B.	4:217 Po 3.8
Svetozarova, N. D.	2:496 Sy 6.8 ,
Szende, T.	2:411 Se 39.1
Tago, T.	6:59 Se 99.4
Takagi, T.	1:281 Se 14.4
Taptapova, S. L.	6:139 Se 104.3
Tarkowski, Z.	2:456 Se 41.3
Tătaru, A.	6:153 Po 4.1
Telepnev, V. N.	8:67 Se 44.4
ten Bosch, L. F. M.	1:235 Se 12.2
Teryayev, D. A.	1:225 Se 11.5
Teston, B.	1:33 Se 1.4
Thein-Tun, U.	5:354 Se 92.4
Thomas, R.	5:306 Se 89.4

Tillmann, H. G.	$\begin{aligned} & \text { 1:154 } \\ & \text { Se } 7.5, \\ & 4: 59 \\ & \text { Se } 44.2, \\ & 4: 94 \\ & \text { Se } 61.2, \\ & 5: 50 \\ & \text { Se } 61.3, \\ & 5: 370 \\ & \text { Se } 74.3, \\ & \text { Se } 93.3 \end{aligned}$
Timofejev, J.	1:129 Se 6.3
Tió, J.	5:287 Se 88.3
Tokhmakhyan, R.	3:234 Po 2.10
Toledo, G. A.	3:125 Se 48.1
Tonelli, L.	3:173 Se 50.1
Torsuyeva-Leontyeva, I. G.	$\begin{aligned} & 2: 500 \text { Sy } 1.9 . \\ & 5: 276 \text { Si } 87.4 \end{aligned}$
Totskaya, N. I.	3:244 Po 2.13
Trachenko, O. P.	1:266 Se 13.5
Traunmüller, H .	5:205 Se 83.3
Tro, J.	3:257 Se 52.3
Trunin-Donskoy, V. N.	$\begin{array}{ll} 1: 108 & \text { Se } 5.3 \\ 5: 378 & \text { re } 94.1 \end{array}$
Tseva, A.	3:317 Se 55.4
Tsiptsura, L. F.	6:18, Po 4.9
Tuffelli, D.	4:74 Se 60.3
Tuldava. J.	1:354 Se 18.2
Tunis, K. V.	1:41 Se 2.1
Turner, C. W.	3:324 Se 56.1
Tyapkin, A. D.	1:243 Se 12.4
Uhlír, J.	5:60 Se 75.2
Urbanczyk, S. C.	3:97 Se 46.2
Vagges, K.	3:173 Se 50.4
Vaissière, J .	3:43 Se 43.2
Vaitkevičiūte, V.	5:103 Se 77.4
Vakhtin, N. B.	6:172 Po 4.6
van den Berg, R. J. H.	3:51 Se 43.4. 5:346 Se 92.2,
Dommelen, W. A.	2:230 Se 29.1
van Erp, A. J. M.	1:179 Se 9.2
van Herpt, L. W. A.	1:187 Se 9.4
van Heuven, V. J.	3:306 Se 55.1
van Reenen, P. T.	3:51 Se 43.4
Vandakurova, G. N.	1:116 Se 5.5
Vaspöri. T.	3:105 Se 46.4
Vayra, M.	4:24 Se 57.3
Veenker, W.	4:136 Se 63.4
Veldi, E.	4:193 Po 3.2
Vende, K.	6:200 Po 4.66 Se 60.15
Ventsov, A. V.	$\begin{aligned} & \text { 4:66 Se } 60.1 \text {, } \\ & 5: 366 \text { Se } 93.2 \end{aligned}$
Verbitskaya, L. A.	5:272 Se 87.3
Vesker, L.	1:389 Se 20.3
Vicsi, K.	5:263 Se 86.4
Vihman, M. M.	$1: 381$ Se 20.1
Viitso, T.-R.	6:83 Se 101.1
Vilkman, E.	2:188 Po 1.7, 3:19 Se 42.1 ,
	5:19 Se 72.3
Vinarskaya, Y. N.	$\begin{aligned} & 1: 397 \text { Se } 20.5,5, \\ & 4: 304 \text { Se } 70.5 \end{aligned}$
Vinogradov, V. A.	5:433 Se 97.2
Vintsyuk, T. K.	5:407 Se 95.5
Vlasov, Y. V.	5:23 Se 72.4
Volodin, A. P.	1:362 Se 18.4
Voloshin, V. G.	1:247 Se 12.5

von Benda, U.	5:157 Se 80.3,	Yanagida, M.	2:376 Se 37.1
	5:160 Se 80.4	Yang, Sh.	1:239 Se 12.3
von Cramon, D.	2:306 Se 33.1	Yankova, D. S.	4:236 Po 3.14
Voronin, S. V.	4:197 Po 3.3	Ye, H .	4:74 Se 60.3
Voronina, S. B.	2:138 Se 26.3	Yefremova, I. M.	6:63 Se 99.5
Vygonnaya, L. T.	3:138 Se 48.4	Yeloyeva, F. A.	6:165 Po 4.4
Wakita, H.	5:186 Se 82.1	Yermakova, I. I.	6:139 Se 104.3
Wang, C.	4:283 Se 69.3	Yermolenko, G. I.	5:279 Se 88.1
Warkentyne. H. J.	5:400 Se 95.3	Yesenova, T. S.	3:141 Se 48.5
Waterson. N .	I:292 Se 15.1	Yevdoshenko, A. P.	2:265 Sc 30.5
Webster, J. C.	5:138 Se 79.3	Yokoyama, O. T.	2:505 Sy 1.10
Weinstock. H.	3:202 Po 2.2	Yue, M. J.	2:211 Se 28.1
Weisalow, F. J.	2:257 Se 30.3	Yurova, I. V.	3:214 Po 2.5
Weiss, H. E.	2:132 Se 26.1	Zakharov, L. M.	1:96 Se 4.5,
Weiss, R.	5:295 Se 89.1		2:207 Po 1.12
Weiss, W.	5:306 Se 89.4	Zalewski, J.	2:233 Se 29.2
Wenk, R.	4:287 Sc 69.4	Zemskaya, E. A.	1:191 Se 9.5
Werner, H. K.	2:280 Se 31.4	Zhang, J.	1:142 Se 7.2.
Wescott, R. W.	4:189 Po 3.1		3:390 Sy 3.5
West, M.	4:44 Se 58.3	Zhao. G.	2:368 Se 36.4
Wieden, W.	2:161 Se 27.4	Zhukov, S. Y.	5:190 Se 82.2
Wierzchowski, J.	2:261 Se 30.4	Zhuravlyev, V. K.	2:119 Se 25.1
Wiik, K.	4:368 Sy 5.3	Zhuravsky, Y. I.	5:236 Se 85.2
Wilhelms, R.	1:217 Se 11.3	Ziegler, W .	2:306 Se 33.1.
Williams, B. J.	2:172 Po 1.3		2:310 Se 33.2
Wokurek, W.	1:44 Se 2.2	Zilliox, C.	3:39 Se 43.1
Wood, S. A. J.	2:53 Se 21.4,	Zimmermann, A.	1:146 Se 7.3
	2:57 Se 21.5	Zingle, H.	5:27 Se 73.1
Wright, J. T.	2:211 Se 28.1	Zinovyeva, N. V.	1:112 Se 5.4
Wright, S. M.	4:251 Se 67.3	Zlatoustova, L. V.	1:96 Se 4.5,
Wu, H. Y.	2:340 Se 35.1		3:218 Po 2.6.
Wu, Z.	5:209 Se 83.4		5:474 Sy 6.8
Wynrib, A. G.	3:97 Se 46.2	Zubkova, L. G.	2:423 Se 39.4
Xu, Y.	5:209 Se 83.4	Zue, V. W.	2:360 Se 36.2
Yamashita, Y.	2:376 Se 37.1		

