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ABSTRACT

Management of Pacific salmon is often based on the Ricker stock-
recruitment model. However, estimates of the parameters of the Ricker model
are usually imprecise and such uncertainties are frequently ignored when
harvests are based solely on the best point estimates of model parameters. In
addition, it is uncertain whether the Ricker model is the appropriate form for
describing the shape of the stock-recruitment curve. In some stocks of Pacific
salmon, there is considerable anecdotal and empirical evidence to support
including depensatory predation mortality (high proportion dying at low
abundance) in the stock-recruitment relationship. Given these uncertainties,
several fisheries scientists have advocated adjusting the harvest level downward
to account for uncertainty, but the appropriate size of these “uncertainty
adjustments” is unclear. For several stocks of Fraser River sockeye salmon
(Oncorhynchus nerka), | used Bayesian decision analysis to compare the
benefits of harvest strategies based on the commonly used Ricker model to
those based on a stock-recruitment model that accounted for the possibility of
depensatory predation mortality. This approach explicitly incorporated
uncertainties in the model parameters and quantified the management
implications (e.g. expected yield) of using a Ricker or depensatory stock-
recruitment model over a range of management policies. For a constant
escapement policy, the optimal escapement target was generally unaffected by
the possibility of depensation. However, large “uncertainty adjustments” (i.e.
increases to the escapement Vtarget) may be beneficial for stocks with a high
degree of uncertainty about the fit of the stock-recruitment curve at high
abundances of spawners. In contrast, under a constant harvest rate policy, the
optimal harvest rate depends on the initial abundance of spawners. For a small
abundance of spawners (e.g. 2,000) the possibility of depensatory predation
mortality required lower harvest rates to maximize the expected yield over 10

generations. Additionally, if depensation actually exists, significantly lower yields
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are expected compared to the case where depensation is absent. Preliminary
analyses that included uncertainty in the shape of the stock-recruitment curves
for both the Ricker and .depensatory models also indicated that a rebuilding
strategy (where harvest rates were reduced from 80% to 50% for four
generations to allow rebuilding) for cycle lines with small numbers of spawners
should increase the expected yield compared with a constant 80% harvest rate.
This analysis also shows that dramatic increases in yield may be possible if
depensatory mortality actually does exist in these stocks and a rebuilding

strategy is followed.
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INTRODUCTION

Several major fisheries have suffered unexplained collapses (Gulland
1988; Hilborn and Walters 1992). QOverfishing, environmental changes, or a
combination of both may push the abundance of a stock below an abundance
where biological processes, such as depensation or the Allee effect, may drive
the stock to extinction, maintain it near a commercially unproductive lower
equilibrium, or substantially delay its recovery. A depensatory effect can cause
recruitment to decline dramatically as the spawning stock decreases to a low
abundance. However, the exact mechanisms producing these declines in
recruitment are uncertain and, as a result, management strategies often fail to
safeguard against the possibility of stock collapses.

The possibility of detrimental biological processes has led to some
attempts to manage cohservatively, especially in light of uncertainties in a stock’s
abundance estimates and biological parameters. Several efforts have been
made to estimate a minimum spawning stock biomass to safeguard against
overfishing that could reduce the abundance of a stock to a commercially
unproductive level (Thompson 1993; Myers et al. 1994). Commonly, a relatively
arbitrary “safety margin” or “uncertainty adjustment” to the optimal best-fit
harvest strategy may be applied to account for uncertainty (e.g. using an
escapement target that is 20% greater than the one based on the best available
point estimates of biological parameters). However, recent research on the
suitability of “uncertainty adjustments” has shown that the expected yield of
harvests associated with different magnitudes of “uncertainty adjustments”
depends on the specific stock and the possibility of depensation (Frederick and
Peterman 1995). In some stocks, a moderately conservative harvest strategy
(i.e. lower than the one based on the best point estimates) produces the highest
yields, whereas in other stocks, a much more conservative strategy may be

required when depensation exists.



Although there is little direct empirical evidence to support the existence of
depensatory effects, there is considerable circumstantial evidence that suggests
that depensation may exist. Depensatory effects can result from several
mechanisms rénging from nonlinear functional or numerical feeding responses
(where either the feeding rate or the abundance of predators become limited at
high prey levels) to the inability of spawners to find mates at low population
densities, an effect known as the Allee effect (Allee 1931; Peterman 1977, 1980;
Peterman and Gatto 1978; Eggers and Rogers 1987). Models of these
depensatory population dynamics predict that populations may show multiple
equilibria and can rapidly shift from one equilibrium to another. For example, a
depensatory predation model showed that the reduction in the abundance of the
Georges Bank haddock, Melanogrammus aeglefinus, from a high to a low
equilibrium state was likely caused by increased fishing pressure (Collie and
Spencér 1993). However, little work has been done to determine the
management implications of these depensatory mechanisms.

In addition, a recent statistical study based on estimates of spawner and
recruit abundance for 128 fish stocks indicated that only three stocks had
significant depensation (Myers et al. 1995). Although there was a lack of
evidence for depensation in most of the fish stocks, two of the three stocks with
significant depensation were pink salmon (Oncorhynchus gorbuscha). This
suggests that managers of Pacific salmon should consider the effects of
depensation on management strategies for these species.

The purpose of this study is to use Bayesian decision analysis to evaluate
the possible management implications (e.g. on expected yield) of using an
aiternative stock-recruitment model that takes into account the possibility of
depensatory predation mortality, instead of the more commonly used Ricker
model. In particular, Bayesian statistics allows various shapes of stock-
recruitment curves to be considered by giving each a probability weighting. This
information will then be used in decision analysis to explicitly incorporate

uncertainties in the shape of the stock-recruitment curve (i.e. model parameters)



and quantify the optimal harvest or rebuilding strategies predicted by the Ricker
and depensatory stock-recruitment models. Specifically, | will compare the
optimal harvest strategies for the Ricker and depensatory modeis found using
Bayesian and b.est-ﬁt approaches (where only best-fit parameter estimates are
considered) to evaluate differences in model performance for constant

escapement, constant harvest rate, and stock rebuilding policies.

A case for depensation in some B.C. salmon populations

A striking feature of Fraser River sockeye salmon and pink salmon is the
regular ‘eyclic’ fluctuations in annual abundance. These ‘cyclic’ fluctuations are
particularly pronounced for some pink salmon populations and many Fraser
River sockeye stocks because the recruits are predominately of a single age
class (2 years old for pink salmon, and 4 years old for sockeye). This leads to
relatively discrete populations (called cycle lines) in each stock. In Fraser River
sockeye, the most abundant cycle line in a 4-year cycle is called the “dominant”
line, followed by a lower abundance “sub-dominant” line, and two “off-year” lines
of extremely low abundance (Cass and Wood 1994). This cyclic pattern in which
one cycle line is more abundant than the others is referred to as cyclic
dominance. Of approximately 20 sockeye stocks in the Fraser River watershed
that are estimated regularly, 8 exhibit persistent 4-year cycles with a predictable
dominant cycle line every 4 years (for example, Adams, Late Stuart, and Gates
runs) and another 6 stocks show an apparent 4 year cycle but have not exhibited
persistent cyclic patterns (for example, Chilko and Raft runs) (Cass and Wood
1994).

There is considerable debate about the mechanism(s) responsible for
maintaining these population cycles, particularly for sockeye salmon (Ward and
Larkin 1964; Collie and Walters 1987; Eggers and Rogers 1987; Walters and
Staley 1987; Levy and Wood 1991; Walters and Woodey 1992; Cass and Wood

1994). Early investigations suggested that cyclic dominance was maintained by



depensatory agent(s) independent of the fishery that suppressed recruitment of
the smaller escapements of ‘off-year’ lines (Neave 1853). Ward and Larkin
(1964) hypothesized that cyclic dominance in Adams River sockeye was caused
by depensatory freshwater predation of salmon fry and smolts by rainbow trout.
This hypothesis is supported by estimates of high predation mortality on sockeye
fry and smolts by other vertebrate species (Steigenburger and Larkin 1974;
Groot and Margolis 1991) and studies suggesting predation mortality is generally
depensatory in nature (Ricker 1950,1954; Ward and Larkin 1964; Meacham and
Clark 1979; Ruggerone and Rogers 1984). There is also some support for the
idea that the formation of fish schools, {e.g. as is done by sockeye fry and
migrating smolts (Petersen and DeAngelis 1992; Wood et al. 1993)}, can lead to
a powerful depensatory effect, especially in species such as sockeye salmon
that are subject to high predation rates (Clark 1974; Gulland 1975).

Several other studies have concluded that recent cyclic fluctuations could
be maintained by depensatory fishing by the native Indian or commercial
fisheries (Eggers and Rogers 1987; Walters and Staley 1987). In addition,
Peterman (1980) suggests that depensatory mortality is a common effect for
native Indian food fisheries and recent commercial harvest rates on Adams River
sockeye appear to have been depensatory (Collie and Walters 1987). However,
in their review, Levy and Wood (1991) conclude that although depensatory
fishing may help maintain cycles in the Adams River sockeye, there is no
compelling evidence that depensatory fishing generated the prominent historical
cycles in Fraser River sockeye in the first place. More recent work also
concludes that depensatory fishing is unlikely to be the only explanation for cyclic
dominance in Fraser River sockeye stocks (Cass and Wooed 1994).

Compelling evidence in support of a depensatory agent independent of
the fishery was found for pink salmon in the Atnarko River, B.C., although
conclusive evidence on the exact depensatory mechanism was not found
(Peterman 1977, 1987). The odd-year population dropped from 2.5 millicn in

1961 to 80,000 in 1967 due to overexploitation and poor environmental



conditions. The spawning population remained at low abundance for 6
generations, varying around an equilibrium of 120,000 fish. However, a
subsequent reduction in the fishing mortality rate failed to promote a recovery of
the stock, indicating that the lower stable equilibrium abundance was likely
maintained by some natural depensatory agent. Artificial enhancement was
needed to increase the spawner population to get it back to the more productive
upper domain of stability of about 760,000 fish. The population has remained in
this upper domain despite harvesting rates as high as 71% and elimination of
enhancement efforts. This work indicates that it may not be reasonable to
assume that Pacific salmon populations that are affected by depensatory
dynamics can recover on their own after being forced to low levels.

The Ricker stock-recruitment model, which is used by most managers of
Pacific salmon, implicitly assumes that populations will always return to their
unfished equilibrium once fishing pressure is removed. However, this may not
be the case if depensatory mechanisms can maintain a stock at a low population
abundance, even after fishing pressure has been removed, and may prevent
small stocks from rebuilding. This important management consequence,
combined with the above evidence concerning the existence of depensatory
mortality processes, suggests that managers should use models that explicitly
account for depensatory mechanisms, even if their existence is not readily
detectable from available data. Indeed, the 1994 Fraser River Sockeye Public
Review Board (p. xiii, 1994) has recommended that the Department of Fisheries
and Oceans (DFQ) develop a “...system for risk aversion management given the
uncertainties inherent to various estimation techniques”. One component of risk-
averse management is to explicitly consider the possibility of depensatory
mortality when making decisions about harvest policies, which is the focus of this

paper.



Bayesian decision analysis

Fishery managers are often faced with the task of choosing from different
strategies for managing fisheries. For example, managers of salmon need to
determine escapement goals that balance objectives such as maintaining high
yields while adequately protecting stocks against overexpioitation. Managers
may also be interested in choosing the appropriate harvesting strategy for
rebuilding an off-year line to a more commercially productive level. If the
manager has perfect information and all of the parameter values of the stock-
recruitment model are known precisely, then the appropriate harvesting strategy
can be set to achieve the maximum sustainable yield or some other objective,
such as rebuilding of an off-year stock to some specified leve!l of spawners. But,
because parameter values can never be known precisely, managers often base
their decisions solely on the best point estimates of parameters (the best-fit
approach) or use an arbitrary adjustment to the escapement goal or harvest rate
that accounts for uncertainty in a qualitative fashion. These approaches fail to
account for uncertainty in parameter estimates in a quantitative manner and,
therefore, assume that the best estimate for a parameter is the only one
possible.

Managers should quantitatively consider the uncertainty in parameters of
the stock-recruitment model. In this way they can assess the potentially lower
yield associated with managing as if a given state of nature (such as the one
described by best-fit parameter estimates) is true, when there is some non-zero
probability that it is not true. For example, for a constant escapement policy, this
decision involves balancing the risks {e.g. losses in yield) of overescapement
and those of underescapement. Overescapement may be undesirable because
fewer fish are harvested in the current year and the extra fish reaching the
spawning ground may reduce future recruitment because of density-dependent
processes. Underescapement is potentially more serious because although
more fish may be caught in the current year, spawner abundance may be

reduced to the paoint where recruitment overfishing or depensatory processes



can drive the stock to extinction or to a low, commercially unproductive
equilibrium. Managers are often poorly equipped to make explicit choices
among various escapement targets because of the high uncertainty associated
with key components, such as the form of the stock-recruitment model or
parameter estimates.

Decision analysis has been developed specifically to deal with such
problems and has been used in several fisheries case studies (Walters 1981,
1986; Francis 1992; McAllister and Peterman 1992; McAllister et al. 1994;
Frederick and Peterman 1995; McAllister and Pikitch 1996). In contrastto a
best-fit approach that uses only point estimates of parameters, a Bayesian
decision analysis approach explicitly accounts for uncertainty in parameter
estimates by making management decisions based on a consideration of the
probability distributions associated with uncertain parameters (Walters 1986).
The optimal “uncertainty adjustment” (Frederick and Peterman 1995) for a
constant escapement policy, for instance, is the difference between the
escapement target set using Bayesian decision analysis, which accounts for
uncertainty in parameter estimates, and the target based on a best-fit approach.

A Bayesian decision analysis approach involves several steps which are
often summarized in a decision tree (Fig. 1, which is described below in greater
detail in the methods section). A decision tree allows the performance of
alternative management actions (e.g. harvest strategies) to be ranked according
to their ability to meet a specified performance level taking into account a range
of hypothesized responses of the managed system. For instance, the
uncertainty in the shape of the stock-recruitment curve is described by
alternative hypotheses, or states of nature, that are represented by different
parameter combinations. The degree of belief in a particular parameter
combination is quantified using Bayesian statistics (Box and Tiao 1973) to
generate a posterior probability distribution. The outcomes (e.g. average yield,
as numbers of fish per year) for a particular uncertainty adjustment and

parameter set are simulated using a model of population dynamics. Then, the



outcomes for each parameter set are weighted by their probabilities of
occurrence and summed to give an “expected” (weighted average) value of yield
for a particular uncertainty adjustment. The expected value represents the
average outcome of a particular management option given the underlying
uncertainty associated with the states of nature and represents our present
expectation of what the future will give. The expected value does not specify a
value that will occur (such a forecast is not possible given the uncertainties), but
is simply a measure that can be used in decision analysis to allow the selection
of the management option that produces the most favorable result relative to the

other management options evaluated.

Methods

This section describes the Bayesian decision analysis approach | used to
evaluate the management implications of depensatory predation mortality in
several stocks of Fraser River sockeye. This paper was not directed toward the
management of any of these stocks specifically because the analysis relies on
past spawner-recruitment data up to and including the 1990 brood year and new
data may alter parameter estimates. Rather, the purpose here was to show how
this approach can be used generally to improve management decisions.

| used the Bayesian decision analysis approach to evaluate constant
escapement, constant harvest rate and stock rebuilding policies for both stock-
recruitment models. Table 1 summarizes the analyses done for each policy and"
stock to determine the optimal management strategy for the Ricker and
depensatory models using the best-fit parameters (i.e. best-fit analysis) and also
the parameter distributions from the Bayesian analysis (i.e. uncertain parameters
analysis). Each analysis was done following the six basic steps of decision
analysis {steps 3 through 6 are expanded upon later) described below. The
analyses for the best-fit models differed somewhat from the method outlined



below because only the best point estimates of parameters were used. For the

best-fit models there was only one state of nature which hence had a probability,
P; =1.0, so steps 3 and 4 were considerably simplified compared to the method

followed for the uncertain parameters case. For the rest of this section, | will

refer mainly to the analysis done for depensatory model with uncertain

parameters for the constant escapement policy (see X* in Table 1). | analyzed
the uncertain parameters case of the Ricker model using a similar procedure that
only differed from the procedure for the uncertain parameters case of the
depensatory model in step 3 because [ took into account different parameter
values of the Ricker model.

1. Specify management objective. | used an objective of maximizing the
average yield, in numbers of fish caught annually (averaged over the 10
generations in the simulation). | used this management objective to evaluate
constant escapement, constant harvest rate, and stock rebuilding policies. |
only refer to the constant escapement policy in the rest of the methods
section, but the same procedure was followed for the other policies.

2. Identify alternative management options. | assumed that a range of
alternative management options could be taken for each policy. Henceforth |
will use “policy” to refer to either the constant escapement, constant harvest
rate, or rebuilding policies and “strategy” to refer to the different management
options within the policy category (e.g. the amount of adjustment for
uncertainty applied to the escapement goal). For example, | used the best
point estimates of the parameters (best-fit) for the Ricker model without a
depensatory effect to set a baseline escapement target (see Table 1) that |
maximized the average yield. Alternative management options consisted of a
range of “uncertainty adjustments” that modified the baseline escapement
target calculated for the best-fit Ricker model. | made the “uncertainty
adjustments” to the baseline escapement target so that the results from all

the analyses for a given policy could be compared to a common reference



point. (For the constant harvest rate policy a range of harvest rates from 0 to
95% was used).

. Identify the uncertain states of nature. For the best-fit analyses, | only used
the best-fit parameter estimates for the Ricker or depensatory model to define
the shape of the stock-recruitment curve. However, to account for
uncertainty, | also considered different combinations of the parameter values
(i.e. different shapes of the stock-recruitment curve) for the Ricker and
depensatory stock-recruitment models as possible states of nature.

. Quantify uncertainty using Bayesian statistics. | used Bayesian statistics to
estimate the posterior probabilities for different combinations of stock-
recruitment parameters, based on the historical stock-recruitment data.

. Predict outcomes with a model of salmon population dynamics. | used a
simulation model to estimate the average yield for each uncertainty
adjustment and each possible shape of the stock-recruitment relationship.

. Use a decision analysis framework to determine the optimal management
strategy. | calculated the expected average yield for each uncertainty
adjustment using the decision tree in Figure 1. The uncertainty adjustment

with the highest expected yield was optimal.

identifying alternative states of nature

| assumed for my analysis that there was one true, but unknown, stock-

recruitment relationship for each sockeye stock. However, because the true

form of the relationship was unknown, | considered several possible parameter

combinations describing the form of the relationship as states of nature. Each

state of nature corresponds to a branch from the uncertainty node (circle) of the

decision tree in Fig. 1.

For several Fraser River stocks of sockeye salmon, | fit a Ricker and a

depensatory stock-recruitment model to adult spawner-recruit data obtained from

the International Pacific Salmon Commission (Jim Woodey, Pacific Saimon

10



Commission, Vancouver, B.C., pers. comm.). | analyzed the following sockeye
stocks for the brood years indicated in parentheses: Adams River (1948-1990),
Gates Creek (1952-1990), Late Stuart (1949-1990), Raft River (1948-1990) and
Chilko River (1948-1990).

Ricker model
The Ricker model is thought to approximate the compensatory mortality

(i.e. a reduction in recruits-per-spawner as the number of spawners increases)
that acts mainly on the egg-to-fry stage in Pacific salmon (Ricker 1950,1954). All
other mortality after predation and up to recruitment was assumed to be density-
independent here. The Ricker stock-recruitment model was defined by the

following equation:

(1) R = Sea(l-%)e”

where, S denotes the total number of adult sockeye on the spawning ground, R
is the total number of adult recruits, e”is the median number of recruits per
spawner at low spawner abundance, and S is the unfished equilibrium spawner
population (i.e. where recruitment is equal to spawning stock abundance), and e”
is defined as a mulitiplicative log-normally distributed error term (where v has
mean = 0 and standard deviation = 6). The use of a multiplicative log-normal

error structure has been demonstrated to be the most appropriate for Pacific

salmon (Peterman 1981).

Depensatory modef
| also evaluated a depensatory model because after the egg-to-fry stage,

subsequent mortality on fry and smolts may be depensatory (i.e. reduced

11



recruits-per-spawner at extremely low numbers of spawners) (Ricker 1950, 1954;
Ward and Larkin 1964; Peterman and Gatto 1978; Meacham and Clark 1979:

~ Ruggerone and Rogers 1984). Depensatory predation mortality during the life of
the salmon was simulated by first using a compensatory process described by a
Ricker model for the spawner-to-fry stage (Fry = Se*("5®)) This fry abundance
was then modified by a Type Ili total response predation function to reflect
depensatory predation mortality on the fry or smoits. Use of a Type lIl predation
function has been justified for vertebrates (Peterman 1977), which are the main
predators of salmon. A Type Il predation function is characterized by a dome-
shaped relationship between fry or smolt abundance and percent mortality
caused by predation. The percent mortality increases rapidly at low abundance
of fry or smolts as their abundance increases, and then the mortality rate
decreases above intermediate abundances. As a result, a Ricker model
modified by the Type Il predation function is characterized by a “dip” in the net
recruitment curve at low levels of spawners. All other mortality after predation
and up to recruitment was assumed to be density-independent. Therefore,
recruits were determined by the number of fry surviving compensatory mortality
minus the number of fry or smolts eaten by predators. The resulting depensatory

stock-recruitment model was defined by the following equation (Peterman 1977):

where, &% is the median number of fry per spawner at low spawner abundance, b

is the unfished equilibrium population abundance of fry prior to predation, ¢ is the

maximum number of fry or smolts consumed by the total predator population, d
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is the number of fry or smolts that resuits in ¢ / 2 prey lost to predation, and v is
defined as in Eqn. 1.

| estimated the best-fit parameters for the best-fit depensatory model
using nonlinear parameter estimation based on the relationship of logg (recruits /
spawner) and spawners. | picked the Adams, Gates, Late Stuart, and Raft
sockeye stocks for further analysis because the best-fit relationships for the
depensatory model (Eqn. 2) had evidence of depensatory predation mortality at
a low abundance of spawners. For example, Fig. 2A and B show the shape of
the best-fit curves for the Ricker and depensatory models for the Raft and Late
Stuart stocks, respectively. In addition, | included the Chilko sockeye stock
where the depensatory and Ricker model fits were nearly identical (indicating no
evidence of depensation) as a control case to check that the optimal
management strategies were similar for both models when the fits of the two
types of curves were the same.

The best-fit parameter estimates and the mean square error (MSE)
estimates for the Ricker and depensatory models are shown in Appendix A. In
all cases except Chilko, the MSE was slightly lower for the depensatory model,
indicating that even with the penalty on MSE from the two additional parameters,
the depensatory model explained slightly more of the observed variation than the
Ricker model. However, the Ricker and depensatory best-fit curves fit the
observed stock-recruitment data poorly because of the high variability in the data

points (see Fig. 2A-B).

Quantifying Uncertainty Using Bayesian Statistics
| used Bayesian statistics to evaluate the uncertainty in the spawner-
recruit relationship (reflected by the scatter around the best-fit of log,(R/S) on S).

For each salmon stock data set, | quantified the uncertainty in the shape of the

stock-recruitment model by calculating a posterior probability for each
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hypothesized combination of the parameters in Eqn. 1 (e, 8, and o) or Eqn. 2 (a,
b, ¢, dand o). | obtained the probability of each hypothesis, i, using Bayes’
formula (Box and Tiao 1973):

L(datalhypothesis;) X P(hypothesis;)

(3) P(hypothesis-ldata)=
i Z;=1 [L(datalhypothesisj) X P(hypothesisj)]

where, “hypothesis;” was a particular combination of parameters defining the
shape of a stock-recruitment curve, P(hypothesis;) was the prior probability
placed on hypothesis; independent of the data, L(data | hypothesis;) was the
likelihood of the observed data given that hypothesis; was true, and

P(hypothesis; | data) was the posterior probability for a given hypothesis, i. The
set of all posterior probabilities is the posterior probability density function (pdf),
which sums to one. | assumed that the prior distributions of the stock-
recruitment parameters in Eqn. 1 and 2 were described by uniform distributions
(i.e. all of the possible parameter values within a given range were given an
equal chance of being the true state of nature a priori). When stock-recruitment
data contain little information about the possible ‘true’ shape of the stock-
recruitment curve, the posterior pdf tends to reflect the prior. But, as the amount
of information contained in the data (e.g. tightness of the scatter around a
particuiar shape of the stock-recruitment relationship) increases, the likelihood
function has a greater influence on the posterior pdf.

For the likelihood function, | assumed that the natural logarithm of the
differences between the observed and predicted recruits-per-spawner were

normally distributed with a mean of zero and variance, o, as follows from Eqns.
1 and 2 (i.e. loge(R/S) = f(S) + v). | therefore first calculated the likelihood of

each data point using the following normal equation (Box and Tiao 1973):
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where, L, was the likelihood of data point k, which represents cne year of

spawner-recruit data for the given stock, and 6k2 is the squared deviation of the
difference between the logarithms of the observed recruits-per-spawner, k, and
the predicted recruits-per-spawner calculated with Eqn. 1 or Eqn. 2 for a
particular set of parameter values. | used the negative natural logarithm of the
likelihood values to prevent extremely small values from being lost from the
calculation due to a lack of computer precision. The joint likelihood for the entire
data set (= L1*L,*L3...L) for a given hypothesis (L{datahypothesis;) in Eqn. 3)
was then the exponentiation of the sum of negative log-likelihoods for each data

point from Eqn. 4, computationally:

[ m ]
(5) L(datalhypothesis;) = exkaZ_II —In(L;) J

| calculated the Bayesian posterior probabilities (Eqn. 3) for the alternative
hypotheses using a sampling/importance resampling (SIR) algorithm (Rubin
1988; Smith and Gelifand 1992). This aigorithm has recently been used in
fisheries problems to provide Bayesian posterior pdfs of multiple uncertain model
parameters (McAllister et al. 1994; McAllister and lanelli 1995). The SIR
algorithm is computationally superior to grid search approaches for problems that
have large numbers of parameters, as is the case here. Grid searches require a
time consuming search where parameter combinations are compared over all of

the intervals for each parameter. The computation time increases exponentially
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for each additional parameter added to the grid search and the computation
becomes relatively intractable for cases with large numbers of parameters (e.g. 5
parameters with 10 intervals each would require 10° comparisons to evaluate
each combination). The SIR algorithm is a much more efficient method for
dealing with these computational problems.

The SIR algorithm procedure was as follows (Rubin 1988): (1) Choose
an importance function that represents the joint prior probability density function
of the input parameters. | used the joint distribution of uniform priors of the input
parameters (e.g. on a, b, ¢, d and 1/c) as the importance function. The use of a
prior of 1/o has been justified as a better natural prior for the standard deviation
of the error term (Press 1989). Using the joint prior pdf for the importance
function has often been used for simplicity (Kinas 1993; Punt et al. 1994). (2)
Randomly generate a large number of parameter sets (e.g. g = 30,000 samples)
from the joint prior pdf. (3) Calculate the likelihood of each parameter set using
Eqgn. 5. (4) Calculate the weight of each parameter set, which is its likelihood
divided by the sum across all parameter sets of all the likelihoods. (5) Check
the sampling efficiency of the above steps by finding the parameter set with the
highest weighting. This step was done to make sure the importance function
was not too inefficient for estimating the posterior. McAllister and lanelli (1996)
suggest that a maximum weight ratio (i.e. the weight of a single parameter set,
taken as a proportion of the sum of the weightings for the other parameter sets
over all of the draws) of less than 1% is acceptable. For weight ratios above 1%,
| examined the marginal posterior pdfs on model parameters to ensure the
distributions were not cut off by narrow boundaries on the prior. If this was the
case, | repeated the analysis using wider boundaries on the prior distributions for
the input parameters to avoid biases that can result from using ranges of
parameter values in the prior distributions that are too narrow (Adkison and
Peterman 1996). (6) Resample randomly with replacement (e.g. s = 5,000

resamples) from the distribution of weighted parameter sets to approximate the
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posterior probability density function. The posterior probability for any one
parameter set was obtained from the ratio of the number of resamples drawn for
that parameter set to the total number of resamples taken (i.e. 5,000). The
posterior probabilities generated with the SIR algorithm were used in the
decision analysis (described below) to quantify the uncertainfy associated with

the model parameters.

Decision Analysis Framework

For each stack, | used decision analysis to calculate the optimal
management strategy given the objective of maximizing the expected yield. This
process is described below for calcuiating the optimal “uncertainty adjustment” to
the baseline escapement target for the constant escapement policy and the
uncertain pararﬁeters case for the depensatory model. A similar process was
used for the decision analysis for the case where parameters of the Ricker model
were considered uncertain. The steps of the analysis are shown in Figure 3 and
are as follows:

(1) Estimate the baseline escapement target that maximizes the sustainable
yield (in numbers of fish) using the best point estimates of the parameters for the
Ricker model without a depensatory effect. 1 used linear regression of logg(R/S)
on S to obtain the best fit parameter estimates because Korman et al. (1995)
showed that it was not necessary to adjust for Walters' (1985) “time series bias”.
(2) Pick an uncertainty adjustment that refers to an escapement target different
from the baseline escapement target. For instance, an “uncertainty adjustment”
of +10% would increase escapement and is conservative because more fish
escape to the spawning ground, whereas, an “uncertainty adjustment " of -10%
would decrease escapement and is therefore permissive. (3) Use a parameter

combination and its corresponding posterior probability generated by the SIR

algorithm. (4) Set the initial spawner abundance (Sgp). [nitial spawner
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abundance was set at a very small number to reflect a depleted salmon stock.
Here, an initial escapement of 2,000 spawners for a single cycle line was small
enough to be affected by the depensatory region of the stock-recruitment curve
predicted by the best-fit parameters for the depensatory model. An abundance
of 2,000 spawners also apbroximated the lower limits on run sizes seen in the
stock-recruitment data for each stock and, therefore, represented a plausible
escapement for an off-year line. For example, the average spawning
escapement for the 10 lowest escapement years in the data for the Adams,
Gates, Late Stuart and Raft stocks was less than 2,000 spawners. (5) Use Eqn.
1 or Eqn. 2 to estimate recruitment using the particular parameter combination
and number of spawners. | assumed that the recruits were all age 4 because
most Fraser River sockeye return at this age (Welch and Noakes 1991). (6)
Harvest the stock in excess of the escapement goal, E (i.e. average yield =R -
£, as numbers of fish per year). | assumed a perfect harvest where all of the
recruits in excess of the escapement goal were caught. (7) The spawning stock
for the next generation was equal to the number of fish specified by the
escapement goal except in generations when the number of recruits was less
than the escapement goal. If this happened, | assumed that all of the recruits
reached the spawning grounds and harvesting did not take place. | repeated
steps 5 through 7 for 10 generations (i.e. 40 years). (8) Weight the average
yield for a particular parameter combination by its posterior probability. Steps 3
through 8 were repeated until all of the parameter combinations were simulated.
(9) Using Egn. 6, sum the weighted yields across all n hypothesized stock-

recruitment parameter sets, i, to determine the expected value of the “uncertainty

adjustment” chosen.

(6) EV(Yield)= Z?:l( probability; x Yieldi)
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This process was repeated for each “uncertainty adjustment®. (10) The

adjustment that maximized the expected yield was optimal for the given stock.

RESULTS AND DISCUSSION

Constant Escapement Policy

The optimal escapement strategies for the Ricker and depensatory
models are summarized in Table 2 for best-fit and Bayesian analyses. |
compared each model under no uncertainty or full parameter uncertainty to the
best-fit Ricker model (the types of comparisons are shown in Table 1). The best-
fit Ricker model was used to find a baseline escapement target that was the
starting point for analyses of the other scenarios. The optimal escapement
strategies for the other models are shown in Table 2 as a percentage
“uncertainty adjustment” to that baseline escapement target. Also, note that the
optimal escapement targets in number of fish for the other scenarios are shown
in parentheses in Table 2; they are a function of an “uncertainty adjustment”
applied to the baseline escapement target for a given stock. Only the best point
estimates of parameters were used for the best-fit models. | used the results
from Table 2 to show how different the optimal escapement target would be in
three scenarios that differ from the approach of estimating an escapement target
from the best-fit Ricker model. These three scenarios were for a best-fit
depensatory model where uncertainty was ignored and for Ricker and

depensatory models where parameter uncertainty was considered.

Differences between the best-fit models

The optimal “uncertainty adjustments” for the best-fit depensatory model
are just corrections to the baseline escapement target from the Ricker model.

Because parameter uncertainty was not included in this step, any differences in
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the escapement targets between the best-fit Ricker and depensatory models
should be based only on differences in mode! structure. For all five stocks, lower
escapement targc-;ts were optimal for the best-fit depensatory model compared to
the best-fit Ricker model (Table 2). This is because the depensatory model has
a different shape compared to the Ricker model. For example, this is shown
over the full range of spawner abundances for the Raft stock-recruitment data
(Fig. 2B). Lower escapement targets are optimal for the depensatory model
because the right limb of the stock-recruitment curve falls off rapidly and, as a
result, lower spawning escapements fall into a range of higher productivity
(measured by logo(R/S)) in the stock-recruitment curve where yield is maximized
(i.e. total recruits minus spawners is maximized). For the Raft stock, the best-fit
depensatory model produces an escapement target of 13,000 fish compared to
an escapement target of 25,000 fish for the best-fit Ricker model. These results
show that the fit of the depensatory model is different than the Ricker model
using the same data for the best-fit case. In the next sections, | also determine
whether this is the case when parameter uncertainty is explicitly incorporated

into the analysis.

Expected Value of Including Uncertainty (EVIU) in the Parameters of the Stock-

Recruitment Model

Next, the Ricker and depensatory stock-recruitment models were
analyzed taking into account the uncertainty in their parameters. The expected
yields for each uncertainty adjustment for these models are shown for the Late
Stuart and Raft stocks, respectively (Fig. 4A-B). Although not shown here, the
results for the Gates stock were similar to Fig. 4A and the results for the Adams
stock were similar to Fig. 4B. The uncertainty adjustments for Late Stuart are
extended to much larger values than for Raft to illustrate the peaks in the curves
for the uncertain parameters cases. An optimal uncertainty adjustment of 0%

corresponds to the baseline escapement target for the best-fit Ricker model.
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For a given model, the difference between the expected yields of a
decision based on a Bayesian analysis (uncertain parameters case) and a
decision that ignores uncertainties (best-fit case) is called the expected value of
including uncertainty (EVIU) (Morgan and Henrion 1990). For-all stocks, the
optimal uncertainty adjustment (i:e. the escapement target) for a given model
had a higher expected yield under a Bayesian approach compared to the best-fit
approach (Fig. 4A and B). However, the EVIU was not necessarily large. For a
given stock and model, if a manager used the optimal best-fit strategy, the best
estimate of expected yield is at the position on the uncertain parameters curve
that corresponds to that optimal best-fit strategy. For example, the EVIU for the
depensatory model for the Raft stock was 754 fish per year (i.e. the difference
between the expected yield for the optimal uncertainty adjustment (e.g. 41%)
and the expected yield on the uncertain parameters curve corresponding to the
optimal best-fit strategy (e.g. -48%) in Fig. 4B), or a 2% increase in the expected
yield from including parameter uncertainty. The EVIU for the Ricker model was
equal to an increase of just 66 fish per year in the expected yield for this stock.
Similarly, for the Adams stock, the EVIU was equal to a 2% increase in the
expected yield for the depensatory model and a negligible increase for the Ricker
model.

However, unlike the Raft and Adams sockeye salmon stocks, values of
EVIU were large for both models for the Gates and Late Stuart stocks. For the
Ricker model, there was a 24% increase (from 242,496 to 301,103 fish per year)
in the expected yield of the Gates stock and a 68% increase (from 5.83 to 9.79
million fish) for the Late Stuart stock. The depensatory models also forecast
large values of EVIU equal to increases of 59% and 92% for the Gates and Late
Stuart stocks, respectively. The optimal adjustments for uncertainty for the
Chilko stock resulted in more modest values of EVIU corresponding to increases

in expected yield of 4% and 13% for the Ricker and depensatory models.
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These findings are similar to those of Frederick and Peterman (1995) who
showed that large uncertainty adjustments may be optimal if there is a highly
asymmetric loss function or a highly asymmetric probability distribution
describing the .range of possible optimal escapement strategies. In this study,
large uncertainty adjustments are likely a result of a combination of both a
slightly asymmetric loss function (e.g. losses in yield are larger for
underescapement than for overescapement when compared to the optimal
escapement target) and highly asymmetric probability distributions describing the
mode! parameters which determine the optimal escapement target. For
example, for the Late Stuart stock the probability distributions of the ‘B’ and ‘b’
parameters are highly asymmetric (Fig. 5B) while the distributions on the other
mode! parameters are fairly symmetric (Fig. 5A, C, and D). Note the difference
between these ‘B’ and ‘b’ parameter distributions and the more symmetric
distributions for the Raft stock where the EVIU is small (Fig. 6). For both models,
the ‘B’ or ‘b’ parameter dictates the strength of density-dependent mortality at
high abundance of spawners. Increases in the ‘B’ or ‘b’ parameter tend to flatten
out the stock-recruitment curve (i.e. increase the number of recruits-per-
spawner) at high abundance of spawners.

In the Late Stuart stock the wide scatter in the stock-recruitment data
points at high abundance of spawners (Fig. 2A) contributes to the uncertainty
over the strength of density-dependence. In other words, the vaiue of the ‘B’ or
‘b’ parameter is uncertain because the shape of the right limb of the stock-
recruitment curve is not clearly defined by the stock-recruitment data. Therefore,
a consideration of pafameter uncertainty in the stock recruitment models resulted
in a broadly diffuse and highly asymmetrical distribution on the ‘B’ or ‘b’
parameter (Fig. 5B). As a result, there is a large probability that the ‘B’ or ‘b’
parameter may be much larger (and therefore, density-dependent survival
processes may be much weaker) than predicted by the best-fit parameters. This

causes the expected yields to increase for large uncertainty adjustments and is
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shown by the relatively flat expected yield curves for the uncertain parameters
cases for both models(Fig. 4A). For this reason, a large uncertainty adjustment
is optimal for the Late Stuart stock.

Conversely, for the Raft stock the uncertainty adjustments for each of the
two types of models were much smaller than those for the Late Stuart stock
(Table 2). The reason for this difference is that the stock-recruitment data points
for the Raft more clearly indicate the shape of the downward bending right limb
of the stock-recruitment curve (e.g. Fig. 2B at 15,000 to 20,000 spawners).
Therefore, when uncertainty in the stock-recruitment models was considered,
only the ‘B’ and 'b’ parameters that produced curves that had a large probability
of fitting the data points at high numbers of spawners were selected. This is
shown in Fig. 5B by the distributions on the ‘B’ and ‘b’ parameters, which are
much more symmetrical than they were for the Late Stuart. (The ‘b’ distribution
is significantly more peaked than the ‘B’ distribution because the ability of the
depensatory model to bend downwards at high spawner abundance constrains
the range of curves that fit the data in this case.) As a result, both stock-
recruitment models are fairly well defined for the right limb of the stock-
recruitment curve. This causes the expected yields to decrease for large
uncertainty adjustments (note the difference between the curves for uncertainty
adjustments above each respective UA* in Fig. 4B for the uncertain parameters
cases of the Ricker and depensatory models) and, therefore, uncertainty
adjustments are much smaller than for the Late Stuart stock. For the
depensatory model, the dramatic decrease in expected yields for large
uncertainty adjustments results in a negative optimal uncertainty adjustment
(where the optimal escapement target is below the best-fit Ricker optimum)

because lower spawning escapements result in higher productivity (i.e.
loge(R/S)).
These results suggest that for some stocks, large conservative uncertainty

adjustments may be optimal if there is a high degree of uncertainty over the
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strength of density-dependent survival. The lack of a strongly downward
bending right limb of the stock-recruitment model means that there will be little
cost to high escapements. For these stocks, a failure to incorporate the
uncertainty of model parameters can result in sub-optimal uncertainty
adjustments and large drops in the expected yield (Fig. 4A) if the best fit
parameters are assumed to be correct when they may not be. There may be a
high probability that density-dependent processes are weaker than predicted in
the best-fit analysis. Therefore, escapement targets set based on best-fit
parameter analyses may be much too low and higher yields could be realized for
higher numbers of spawners. As a result, managers should carefully consider
uncertainty in the fit of the stock-recruitment curve to the data at a high
abundance of spawners and the consequences of few stock-recruitment data
points for these high abundances. An approach such as active adaptive
management (Walters 1986) (e.g. where escapement targets are experimentally
increased to obtain stock-recruitment data points outside the range of natural
variation) would be required to determine the actual benefits of increased

escapement levels.

Implications of model selection for the case of uncertain parameters

In this section, | evaluate the implications of choosing the Ricker model
over the depensatory model when a full consideration of uncertainty is taken into
account. Where parameter uncertainty was included, the Ricker and
depensatory models produced positive uncertainty adjustments for the Chilko,
Gates, and Late Stuart stocks. For these stocks, the expected yield curves for
the Ricker and depensatory models have similar shapes and are flat over a wide
range of uncertainty adjustments around the one that is optimal (Fig. 4A). Itis
clear in Fig. 4A that for both models when parameters are considered uncertain
there is not a large drop in the expected yield associated with a wide range of

sub-optimal uncertainty adjustments (e.g. £ 100% around the respective UA*
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values) compared to the optimal uncertainty adjustment. However, the
implications (i.e. losses in yield) associated with using the incorrect model to
derive the optimal uncertainty adjustment could be much more serious for the
Adams and Raft stocks because the expected yield curves are not as flat (Fig.
4B).

For the Adams and Raft stocks, the optimai uncertainty adjustment
depends on the model. For the depensatory model, expected yield is highest for
a large negative uncertainty adjustment (i.e. lower escapements than the best-fit
Ricker case), but a positive adjustment is optimal for the Ricker model (Table 2).
What is the impact of choosing one model form over the other in a case like this?

To evaluate the performance of the estimation procedure, | compared how
using a particular model performed if in fact the other model was correct.
Specifically, | compared the expected loss in yield that would result from using
the optimal uncertainty adjustment predicted by a depensatory model when
depensatory predation mortality does not actually exist (but a Ricker model
does), to the expected loss in yield caused by using the optimal uncertainty
adjustment predicted by a Ricker model when depensatory mortality actually
exists. Each of these losses was estimated for the uncertain parameters cases
using the expected yield for the particular optimal uncertainty adjustment, which
is the best estimator of the model outcome. For the Raft stock, the optimal
uncertainty adjustment for the uncertain parameters case for the depensatory
model shown in Fig. 4B was —41% (i.e. to decrease escapement below the
baseline target by 41%). If that were the actual model in nature then there would
be no loss in yield associated with that approach (hence, the expected loss
would be 0 for an uncertainty adjustment of -41% as shown in Fig. 7). However,
if the stock actually behaved like a Ricker model without depensation, then the
loss would be 6,753 fish per year (indicated as Loss 7 on Fig. 7). Similarly, if
one incorrectly assumed a Ricker model when a depensatory model actually was

correct, then the loss would be 17,571 fish per year (indicated as Loss 2 on Fig.
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7). The expected losses as a percentage of the expected yields estimated for
the optimal uncertainty adjustment with the correct model were 13% for Loss 1
(i.e. 6,753 / 50,719 fish per year if the Ricker model was correct) and 38% for
Loss 2 (i.e. 17,571 / 46,532 fish per year if the depensatory model was correct).
In other words, by assuming a Ricker model to determine the optimal uncertainty
adjustment when in fact depensatory mortality does exist leads to a larger
expected loss in yield (in both absolute and percentage terms) than if a
depensatory model were used.

The Raft was the only stock where the losses were expected to be larger
if a manager incorrectly assumed that a Ricker model was appropriate. For the
Raft for the uncertain parameters case, the losses for incorrectly assuming a
Ricker model were larger than incorrectly assuming a depensatory model
because at a high abundance of spawners, the expected yield predicted by the
depensatory model decreases more rapidly than the Ricker model for sub-
optimal uncertainty adjustments above the uncertainty adjustment that is optimal
(note the difference between the curves for uncertainty adjustments above UA*
in Fig. 4B for the uncertain parameters cases of the Ricker and depensatory
models).

For 4 out of 5 stocks evaluated, differences in performance (i.e. expected
loss in yield) between the Ricker and the depensatory models were extremely
small for a constant escapement policy. Uncertainty over the existence of
depensatory predation mortality at a low abundance of spawners does not
appear to affect the choice of an optimal uncertainty adjustment. (Note in Fig.
4B that depensatory predation mortality reduces the yield but only at very low
uncertainty adjustments of -80% to —100%). For the Adams, Chilko, Late Stuart,
and Gates stocks, the differences between Loss 1 and Loss 2 (as percentages
of the expected yield estimated with the correct model) was not greater than 1%.
In addition, losses (either Loss 1 or 2) not greater than 4% of the expected yield

from the correct model resulted from incorrectly using the optimal uncertainty
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adjustment estimated with the wrong model. These losses are insignificant
compared to other sources of error not considered here such as the inability to
precisely achieve escapement targets because of imprecise in-season
forecasting and imperfect control of the fleet during harvesting.

By choosing the 5 stocks that [ did, a situation was created where,
because of the strength of depensation, the chances of seeing a big difference
between using the Ricker and depensatory models should have been
maximized. The fact that these differences were not seen in 4 out of 5 stocks
suggests that for the performance criterion used here (e.g. expected loss in
yield), the differences between models are inconsequential. These results were
expected for the Chilko sockeye because there is not a strong indication of
depensation in the spawner-recruit data for this stock. However, the negligible
differences between the losses for the Adams, Gates, and Late Stuart stocks are
inconsistent with other work that indicates that the presence of a threshold (e.g.
such as one created by depensation) may dictate extremely conservative
uncertainty adjustments and, hence, acting as if a threshold does not exist when
in fact it actually does could result in large losses in yield (Frederick and
Peterman 1995). To the contrary, the extremely conservative uncertainty
adjustments seen here for some stocks are contingent on the strength of
density-dependent survival at high spawner abundance and not on the possibility
of a threshold created by depensatory predation.

For a manager who uses a constant escapement policy to manage these
stocks, the use of a Ricker model or a depensatory model appears to be
approximately optimal. Ideally, under this policy, stocks are not harvested unless
the number of recruits is above the escapement target. in such cases in the
simulation model, very small stock sizes were able to increase rapidly until they
reached numbers of spawners above levels that might be susceptible to
depensatory mortality. As a result, the optimal uncertainty adjustment was not
affected by the spawner abundance used to initialize the model. This suggests

that depensatory dynamics alone (e.g. in the absence of an additional
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mechanism such as harvesting) are not responsibie for keeping a stock at a
commercially unproductive, lower equilibrium.

However, the absence of harvest on small off-year runs is not a realistic
situation in the field because of imperfect control of the fishing fleet and the
mixed-stock nature of the Fraser River fishery where small oﬁ-yéar runs are
harvested along with other larger runs returning at the same time. In the Pacific
salmon fishery, high harvest rates of up to 80% are often imposed on small off-
year runs (Collie and Walters 1986; Walters and Staley 1987). In addition, high
harvest rates may be responsible for maintaining the small spawning
escapements of the off-year cycle lines (Walters and Staley, 1987; Collie et al,
1989). This suggests that the implications of depensatory mortality may be more

serious for a constant harvest rate policy.

Constant Harvest Rate Policy

In this and the following sections, references to the Ricker and
depensatory models are for the uncertain parameters cases unless stated
otherwise.

I modified the simulation model to examine the effect of a constant
harvest rate policy on the expected yields predicted by the Ricker and
depensatory models. | examined a range of harvest rates on the simulated
stock. The yield for each year was a fixed proportion of the available recruits;
the unharvested recruits spawned. Unlike the constant escapement policy,
harvests were taken from all returns, regardless of the size of the run. | based
these results on initial escapements of 2,000 spawners so that the results here
could be compared to those for the constant escapement policy.

The harvest rates that maximized the expected average yield over 10
generations are shown in Table 3. For the best-fit parameters cases, harvest
rates are 5% to 22% lower for the depensatory model than for the Ricker model

(except for the Chilko) for reasons | discuss later for the uncertain parameters
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case. | do not discuss here the EVIU, but in contrast to some stocks that had a
high EVIU for the constant escapement policy, the EVIU was small for all stocks
for the constant harvest rate policy because the differences between the
expected yields at optimal harvest rates for the best-fit and uncertain parameters
cases for a gi\}en model differed only slightly.

For the uncertain parameters cases, the possibility of depensatory
mortality dictates optimal harvest rates on the order of 5% to 13% lower than
those predicted for the no depensation case (i.e. Ricker model) for all of the
stocks (except Chilko) (Table 3). Lower harvest rates are optimal for the
depensatory model because they allow a stock to slowly rebuild out of the
depensatory pit (i.e. the region of reduced productivity at a low abundance of
spawners).

However, for all 5 stocks the choice of a particular harvest rate (i.e.
management option) for the uncertain parameters cases was relatively
insensitive to whether a Ricker or a depensatory stock-recruitment model was
used in the analysis. Note that the harvest rates that maximized the expected
yields for the Ricker and depensatory models differ by 13% or less (and by 5% or
less for the Raft, Chilko, and Gates) (Table 3). In addition, the differences in
performance (i.e. expected loss in yield) between the Ricker and depensatory
madels were small. For example, for the Adams stock, the expected loss in yield
associated with applying the optimal harvest rate from the depensatory model
when in fact a Ricker model should have been used was 338,458 fish per year
(Loss 1in Fig. 8). This represents a loss of 10% compared to the expected yield
that was estimated with the optimal harvest rate from the Ricker model (e.g.
338,458/ 3,522,835). This compares with an expected loss of 196,566 fish per
year (Loss 2 in Fig. 8) associated with the wrong application of the Ricker model.
This represents a loss of 13% compared to the expected yield estimated with the
optimal harvest rate from the depensatory model (e.g. 196,566 / 1,525,483).

While the absolute value of the Loss 1 is significantly larger than Loss 2, the
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difference between the expected losses in yield is relatively small (in percentage
terms). This result is typical of the small percentage differences between the
expected losses in the 5 stocks. So if the fishery is managed under a constant
harvest rate policy, the performance of the harvest rate estimated by the Ricker
mode! should not be significantly different than the performance of the harvest
rate estimated by the depensatory model.

In contrast to the small differences in performance of the optimal harvest
rates for the Ricker and depensatory models for the uncertain parameters case,
the expected yield that will be realized by the fishery critically depends on the
model that is correct. Notice that if depensatory dynamics actually do exist (i.e.
the depensatory model is correct), then the expected yield for the optimal harvest
rate may be 57% less than is estimated by the optimal harvest rate from the
Ricker model (e.g. the difference in expected yield between the models at H* in
Fig. 8). This could have serious implications for people dependent on the fishery
for their income. However, these resuits only apply to small initial run sizes of
2,000 spawners. For a high initial abundance of spawners, the expected yields
predicted by the Ricker and depensatory models are similar. But, because smail

escapements are a reality, the question is what to do about them.

Implications of small run sizes under a constant harvest rate policy

While initial conditions do not affect the optimal harvest rates for a Ricker
model, this contrasts with a depensatory model where the harvest rate is
sensitive to how long the population is in the lower unproductive region of the
stock-recruitment curve. If the initial abundance of spawners is high, then the
stock will never be in the depensatory region and can be harvested at a higher
rate than if it starts out in that region and remains there for some pericd. The
harvest rates that maximized the expected average yield over the 10 simulated
generations are shown in Fig. 9 for different spawner abundances used to

initialize the simulation. The lowest harvest rates were produced for an initial
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abundance of spawners in the region of depensatory predation mortality.
However, the expected yield over 10 generations is not the same as the optimum
long-term sustainable yield that resuits once the population is above the lower
unp;’oductive region caused by depensatory mortality. For a larger initial
abundance of spawners (e.g. above 50,000 in Fig. 9), the harvest rates that
maximized the expected average yield predicted by the depensatory model were
much higher and are relatively insensitive to changes in the initial number of
spawners. On the other hand, the harvest rates predicted by the Ricker model
were relatively insensitive to the initial abundance of spawners (Fig. 9) because
there is not a depensatory region in the Ricker model.

For a constant harvest rate strategy, the ‘optimal’ harvest rate for a smalf
off-year run maximizes the expected yield for that run given that the harvest rate
is not changed over the duration of the simulation. For the depensatory model,
one could argue that the harvest rate predicted for a higher abundance of
spawners is a much better estimate of the long-term ‘optimal’ harvest rate
because the harvest rate asymptotes just above a harvest rate of 80%. Several
authors have suggested that higher yields could be obtained for an off-year run
by decreasing the harvest rate until the stock rebuilds to a higher level and then

imposing a higher harvest rate (Collie et al. 1990; Welch and Noakes 1991).

Stock Rebuilding under a Constant Harvest Rate Policy

In th_is section, | evaluated several different constant harvest rate
strategies to estimate the number of generations it would take for the abundance
of spawners from an off-year cycle line to rebuild for a Ricker or depensatory
model for the uncertain parameters case. | considered rebuilding to have
occurred when an arbitrary number of spawners equivalent to 50% of the best-fit
optimal escapement for the Ricker model (as in Table 2) was reached. Then, in

the following section (“Benefits of implementing a rebuilding policy”), | evaluated
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whether lowering the harvest rate and then applying a higher harvest rate after
some period of rebuilding produced any benefits, in terms of a yield maximizing
objective. .

| used the Adams stock in the analyses for stock rebuilding because it
represents the most extreme example of rebuiiding among the 5 stocks. A
spawning escapement of 2,000 fish for the Adams stock must undergo a roughly
850-fold increase in abundance to achieve the rebuilding target escapement
specified above. The rebuilding required for the 4 other stocks is not as
pronounced; increases ranging from 12-fold for the Raft to 275-fold for the Late
Stuart are needed for initial spawning escapements of 2,000 fish. Results for the
other stocks are qualitatively similar to those for the Adams discussed below.

The number of generations to rebuild an off-year cycle line depended on
the initial abundance of the line as well as the harvest rate (Fig. 10). Forthe
Adams stock, the number of generations required to rebuild the stock to 50% of
the baseline escapement target decreases as the number of spawners used to
initialize the simulation increases. Both models forecast regeneration times less
than 5 generations for an initial abundance of spawners above 100,000, for
harvest rates less than 70% (Fig. 10). This is because the productivity of the
depensatory model is roughly the same as the Ricker model for large
abundances of spawners above levels where depensatory mortality reduces
productivity. However, for numbers of spawners less than 80,000 rebuilding took
significantly longer under the depensatory model compared with the Ricker
model for a given harvest rate. For example, for a harvest rate of 70% and an
initial abundance of 10,000 spawners, rebuilding would be expected to take 3 to
4 times longer if depensatory dynamics actually do exist (Fig. 10). In addition,
higher harvest rates dramatically increased the number of generations to rebuild
the stock for the depensatory model. Increases in the number of generations
required for rebuilding the stock were also realized for the Ricker model for a
harvest rate of 70% because even if depensation does ot exist, high harvest

rates lead to recruitment overfishing. These resuits confirm the obvious effect,
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that regardless of which model is correct, a reduction in harvest rates can
increase the rate at which a stock rebuilds. But in addition, if depensatory
dynamics do exist, then rapid rebuilding of a stock (e.g. in under 5 generations)
may not be possible unless harvest rates are substantially reduced.

These results are consistent with the widespread conclusion that harvest
rates should be lowered to allow off-year cycle lines to rebuild (Walters and
Staley 1987, Collie et al. 1990; Welch and Noakes 1991). These resulits also
support the evidence (Waiters and Staley 1987; Welch and Noakes 1991) that
high harvest rates may help maintain cyclic dominance by preventing the off-year
cycle lines from recovering.

| caution readers not to conclude that depensatory predation mortality in
conjunction with high harvest rates is responsible for cyclic dominance. Note
that the expected number of generations required for rebuilding under the Ricker
model can approach 10 cycles (or 40 years) for small numbers of spawners
exposed to a 70% harvest rate and thus, small run sizes could also be
maintained by non-depensatory dynamics. The only way to distinguish between
the two models is to experimentally decrease harvest rates. If the Ricker model
is correct, the off-year runs should recover rapidly. iIf the depensatory model is
correct, the off-year runs should remain depressed for a much longer time (Collie
and Walters 1986). Reducing the harvest rate on off-year runs is thus of primary
management importance regardless of whether depensatory dynamics actually
do exist. In addition to harvest rate.reduction, other experiments such as
predator removal would be required fo determine the exact mechanism causing

depensation (Collie et al. 1990).

Benefits of implementing a rebuilding policy

The benefits of increased yield associated with rebuilding off-year cycle
lines through harvest rate reduction has been widely suggested (Walters and
Staley 1987; Collie et al. 1990; Welch and Noakes 1990). On the other hand,
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reducing the harvest rate may result in a short-term loss in yield to the fisheries.
The question is whether the short-term loss in yield associated with reducing the
harvest rate to rebuild an off-year run is justified given the uncertainty over
whether depensatory predation mortality actually exists.

To answer this question, | compared the benefits (i.e. expected yield)
associated with a rebuilding policy to the benefits from maintaining a constant
harvest rate policy for the Ricker and depensatory models, explicitly taking the
uncertainty in parameter estimates of those models into account through the
Bayesian analysis, unlike previous authors. Under the constant harvest rate
policy, a constant harvest rate of 80% predicted by the best-fit Ricker model was
applied for 10 generations. For the rebuilding policy, a constant harvest rate of
50% was applied for 4 generations to allow rebuilding and then increased to 80%
for the remaining 6 generations (this was similar to the policy used in Collie et al.
1990). | used a 50% harvest rate for the rebuilding policy because it has been
suggested as the lowest harvest rate that the fishing industry could consistently
find acceptable (K. McGivney, D.F.O., in Collie et al. 1990).

Large increases in the expected yield resulted for the depensatory model
under the rebuilding policy compared to the constant harvest rate policy. For the
Adams stock and an initial abundance of 2,000 spawners, the rebuilding policy
produced a 17-fold increase (from 30,000 to 515,000) in the expected yield. A 5-
fold increase (from 450,000 to 2.1 million) resuited from following a rebuilding
policy for the Ricker model. Obviously, the benefits of pursuing a rebuilding
policy are positive for both models, but if depensatory predation mortality actually
does exist, then the rebuilding policy increases the yield dramatically. Therefore,
it appears that the benefits of increased yield are sufficiently high to justify
rebuilding through reduction of harvest rates.

Clearly rebuilding is beneficial but, because of the mixed stock nature of
the fishery, harvest rate reductions for the purpose of rebuilding frequently affect
more than one stock. For example, attempts to rebuild off-year Adams River

sockeye runs would also affect the co-migrating Weaver Creek sockeye and to
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some extent the Fraser River pink salmon run (Welch and Noakes 1990).
Therefore, the problem is how to accomplish rebuilding of off-year runs while
minimizing the loss in yield for larger runs that are harvested at the same time as
the off-year run(s). This problem is beyond the scope of this study, but some
attempts have been made to identify which off-year runs could be targeted for
rebuilding while minimizing the loss in yield (e.g. from larger co-migrating stocks)
that is associated with reduced harvest rates (Collie et al. 1990; Welch and
Noakes 1990)

Iimprovements to the decision analysis approach

In addition to the stock-recruitment data used in the Bayesian decision
analysis, other information sources could be included in the analysis. | used a
uniform prior, which placed equal probability on a wide range of reasonable
combinations of stock-recruitment parameters for the models. However, other
information can be used to assign higher prior probabilities to certain parameter
values based on information about environmental variables such as spawning
site conditions or lake productivity (Geiger and Koenings 1991; Hume et al.
1996). In addition, information from biologists or managers familiar with salmon
life history or the Ricker model can be used to form prior probability distributions
on model parameters. In this analysis, the use of an informative prior might
dramatically alter the results for some stocks. For stocks where there was
considerable uncertainty about the ‘B’ or ‘b’ parameters, an informative prior
could dramatically change the optimal harvest strategy. For example, if an
informative prior was used for the Late Stuart or Gates stocks that specified that
large values for the ‘B’ or ‘b’ parameters were extremely unlikely (i.e. there was a
priori information that density dependence was strong at high numbers of
spawners), then the optimal escapement targets produced by the decision

analysis would probably be considerably lower. However, the choice of an
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informative or uninformative prior should be made with caution and only if there
is a defensible justification (Walters 1986; Adkison and Peterman 1996).

Decision analysis can also be improved upon by evaluating how updating
the Bayesian analysis with new stock-recruitment data points each year would
alter the optimal harvest decision. Passive adaptive management involves
adding new years of stock-recruitment data to the analysis as they become
available. This approach may help to further define the shape of the stock-
recruitment curve by showing the extent of depensation at low abundance of
spawners or the strength of density-dependence at high abundance. This
approach relies on the natural variability in the abundance of spawners for
contributing new information to the analysis. Another approach, active adaptive
management, involves experimentally changing the harvest rate to gain
information outside of the range of natural variation (Walters 1986). For
example, experimentally increasing the spawning escapement might be
favorable when there is high uncertainty about strength of density-dependence in
a stock (such as the Late Stuart or Gates) (Walters and Ludwig 1987). However,
active adaptive management is often not acceptable to fishery participants
because it involves reducing the current harvest in return for information about
the stock that will not benefit the participants until some time in the future. My
analysis shows that the expected benefits of increasing the escapement of
stocks with weak density-dependence such as the Late Stuart may be large
compared to maintaining lower escapements.

To select optimal management strategies, | used management objectives
of maximizing the expected yield or minimizing the number of years required for
a small off-cycle line to rebuild. However, these management objectives are just
two of several that managers may wish to consider when using decision
analysis. Other objectives might include minimizing the probability that the stock
will become commercially extinct (i.e. drop below some pre-determined
threshold), reducing the between-year variability of the commercial harvest, or

minimizing the chance that duration of commercial fishing drops below some
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predetermined value. Decision analysis can be used to address the trade-off

between any of these other objectives or even multiple objectives of managers.

Limits of the Decision Analysis Approach

Managers using decision analysis must be aware that they are making a
decision based on an expected yield and riot on a particuiar prediction of the
yield that will be achieved. The optimal management action calculated by
decision analysis does not necessarily guarantee a favorable outcome in any
particular year. Decision analysis uses expected values to take into account the
uncertainty in the natural system and aids the selection of an optimal
management action. In any given year, undesirable outcomes may be realized
due to natural variability, but this does not necessarily mean a bad decision has
been reached. For example, given an optimal uncertainty adjustment of 311%
(Ricker model) for the Late Stuart stock, the expected yield is 68% higher than if
the best-fit Ricker escapement was used (Fig. 4A). These results do not imply
that an optimal uncertainty adjustment of 311% will definitely resuit in a 68%
increase in yield compared to the best-fit Ricker case. Rather the difference is
between “expected” yields, which are weighted averages of predicted yields
across all of the uncertain states of nature (i.e. parameter combinations)
considered in the model. An optimal uncertainty adjustment of 311% is more
likely, given the uncertainties in the shape of the stock-recruitment curve, to
result in a higher yield than the optimal strategy for the best-fit Ricker case.

Managers must therefore be careful not to assume that the expected
yields predicted will actually be realized if a particular management strategy is
followed. Over the long-term, a carefully conducted decision analysis
guarantees that the results predicted for a given management strategy will be
superior to management decisions based on intuition or an incomplete

acknowledgment of uncertainty. For this reason, it is important that managers
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who advocate Bayesian decision analysis do so based on the resulting long-term

performance, rather than on any particular year’s results.

CONCLUSIONS

This research graphically illustrates when there are benefits from using a
depensatory model instead of a Ricker model and from including uncertainty in
parameter estimates. This approach was more comprehensive than other
studies because Bayesian decision analysis was used to explicitly incorporate
uncertainties in the model parameters and also to quantify the management
implications (e.g. expected yield) of depensatory predation mortality over a range
of management policies. Although there are no general rules for when to use a
depensatory model instead of a Ricker model, Bayesian decision analysis
provides a rational basis for determining the best approach on a stock-by-stock
basis.

The inclusion of uncertainty in stock-recruitment parameters may
significantly improve management performance in some circumstances. For
example, for some stocks for the constant escapement policy, large “uncertainty
adjustments” (i.e. increases to the target escapement) may be beneficial for
stocks with a high degree of uncertainty about the fit of the stock-recruitment
curve at high abundances of spawners. The calculation of the expected value of
including uncertainty (EVIU) illustrates how large the benefits associated with
including uncertainty in the decision making process can be compared to a best-
fit approach which ignores uncertainty. The EVIU was small for all stocks for the
constant harvest rate policy because expected yields of the optimal harvest rates
for the best-fit and uncertain parameters cases for a given model differed only
slightly.

In general, the inclusion of uncertainty in stock-recruitment parameters
means that harvest strategies are more robust to uncertain states of nature than

strategies formulated based solely on a best-fit approach which essentially
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ignores uncertainty. In addition, including uncertainty in the parameters of the
depensatory stock-recruitment model allowed the model to have varying degrees
of depensation including no depensation (e.g. such as a Ricker model)
depending on the stock-recruitment data and thus the possibility of depensation
could be quantified for a given stock. A comparison of the benefits of harvest
strategies based on the depensatory model to those based on the Ricker model
showed that the possibility of depensatory predation mortality may have
important management implications for stocks with few spawners (e.g. 2,000) but
this depends on the type of harvest policy used.

For example, for a constant escapement strategy, the possibility of
depensation at a small spawner abundance did not affect the optimal uncertainty
adjustment because small spawning escapements below the escapement target
were not harvested. Therefore, very small stock sizes were able to increase .
rapidly untit they reached numbers of spawners above levels that might be
susceptible to depensatory predation mortality. Consequently, differences in
performance (i.e. expected loss in yield) between the Ricker and depensatory
models for the uncertain parameters cases were extremely small for this policy.
In addition, this also suggests that a depensatory predation mortality mechanism
alone (e.g. in the absence of another mechanism such as harvesting) is not
strong enough to maintain an off-year line at a low abundance and thus is likely
not the sole explanation for cyclic dominance in Fraser River sockeye salmon.

In contrast, under a constant harvest rate policy, the possibility of
depensatory predation mortality generally required lower harvest rates compared
to the Ricker model to maximize the expected yield over 10 generations when
initial abundances of spawners were small (e.g. 2,000). Although the differences
in performance between the Ricker and depensatory models were relatively
small, if depensation actually exists, then the absolute value of the expected
yield may be much lower than if depensation does not exist for stocks with few
spawners. The expected yield for the depensatory model was comparable to the

Ricker model when the initial abundance of spawners was large because the
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stock was rarely at risk of being in the depensatory region and could be
harvested at a harvest rate comparable to the optimal harvest rate estimated for
the Ricker model. Preliminary analyses of stock-rebuilding policies indicated that
high harvest rates similar to historic levels (e.g. 80%), in conjunction with the
possibility of depensatory predation mortality, may prevent the rebuilding of small
abundances of spawners characteristic of off-year lines. Hence, for small off-
year runs, a reduction in the harvest rates are necessary to allow the spawning
stock size to rebuild and should resuilt in increases in expected yield. Lower
harvest rates benefit small numbers of spawners :aven if depensatory mortality
does not exist because the stock is allowed to rebuild much more quickly.
However, dramatic increases in yield may result if depensatory mortality actually
exists.

| have reached a similar conclusion to others about the importance of
reducing harvest rates on small off-year runs to allow the spawning stock to
rebuild. If in fact cyclic dominance is caused in part by depensatory predation
mortality in Fraser River sockeye stocks, then dramatic increases in the
expected yield could be realized from reducing harvest rates on off-year runs to
allow stock rebuilding. Thus, these results are consistent with other
recommendations to reduce harvest rates on off-year runs (Walters and Staley
1987; Collie et al 1990; Welch and Noakes 1991).
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Table 1.

and level of uncertainty considered in the stock-recruitment model.

Summary of the analyses done (denoted by an X) for each policy

Stock-recruitment model and

level of uncertainty considered

Policy Sockeye | Bestfit Best-fit Uncertain Uncertain
salmon Ricker Depensatory | Parameters, | Parameters,
Stocks model model Ricker Depensatory
Analyzed model model
Constant Adams,
escapement | Raft, Late X X X X*
Stuart,
Gates, (baseline
Chilko | ®5¢%P%"
ment
target)
Constant Adams,
harvest rate | Raft, Late
Stuart, X X X X
Gates,
Chilko
Stock Adams
rebuilding | ‘off-cycle’ X X
years

* Denotes the scenario detailed in the methods section
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Table 2.

Optimal uncertainty adjustments for the constant escapement

policy and different admissions of uncertainty in the Ricker and depensatory

stock-recruitment models for several Fraser River sockeye stocks. The optimal

uncertainty adjustment (as a percentage change in the best-fit Ricker

escapement target) maximizes the expected yield over 10 generations for an

initial abundance of 2,000 spawners. A positive (or negative) % change

indicates an increase (or decrease) in the escapement target relative to the

baseline target estimated for a best-fit Ricker model. Optimal escapement

targets in number of fish are shown in parentheses for each scenario.

Stock-recruitment model and level of uncertainty considered

Sockeye Best-fit Best-fit Uncertain Uncertain
salmon Ricker model Depensatory Parameters Parameters
stock —baseline model Ricker Depensatory
escapement model model
target
Optimal uncertainty adjustment as a % change
in the baseline target escapement
(actual escapement)
Adams 1.7 million -30% 8% -16%
(1.190 million) | (1.836 million) | (1.428 million)
Raft 25,000 — 48% 5% -41%
(13,000) (26,250) (14,750)
Late 550, 000 -21% 311% 261%
Stuart (434,500) (2.261 million) | (1.986 million)
Gates 31, 000 - 6% 129% 171%
(29,140) (70,990) (84,010)
Chilko 530, 000 -15% 35% 48%
(450,500) (715,500) (784,400)
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Table 3. Harvest rates that maximized expected yield for the constant
harvest rate policy for several Fraser River sockeye salmon stocks and different
admissions of uncertainty in the Ricker and depensatory stock-recruitment

modeis. The table shows the results for 10 generations for an initial abundance

of 2,000 spawners.

Stock-recruitment model and level of uncertainty considered
Sockeye Best-fit Best-fit Uncertain Uncertain
salmon Ricker Depensatory Parameters Parameters
stock model model Ricker Depensatory
model model
Adams 68% 46% 67% 54%
Raft 62% 57% 61% 57%
Late 81% 73% 77% 69%
Stuart
Gates 82% 77% 79% 74%
Chilko 71% 75% 67% 66%
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Figure 1. Decision tree showing the calculation of an example performance
measure, average annual yield (across t generations), for different management
strategies. For simplicity, only a subset of branches is shown here. Each (...)
indicates a repetition of the branch shown for that category. The management
options emanating from the square decision node are variations from a best-fit
Ricker escapement target modified by uncertainty adjustments that ranged from
-99% to +100% in increments of 1%. Different states of nature emanate from
the circular uncertainty node and consist of discrete parameter sets for the stock-
recruitment model (depensatory model in this example) each with probability, P;.
Each state of nature is defined by particular values for the parameters of that
model (g, b, ¢, d, o). For each branch of the decision tree, a model of salmon
population dynamics is used to estimate a value for the average annual yield
from catching salmon (yield;). The yield;'s are then weighted by the probability
associated with each branch (i.e. P;) and summed across all branches to give an
expected value (EV), or weighted average, of average annual yield for each

uncertainty adjustment.
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Figure 2. Stock-recruitment data for the Late Stuart sockeye (1949-1990
brood years (Panel A) and the Raft River sockeye (1948-1990 brood years)
(Panel B). The relationships shown are the Ricker (dashed line) and

depensatory (solid line) models using best-fit parameters for the relationship

between log, (recruits/spawner) and spawners.
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Figure 3. Flow chart of the simulation model used in the decision analysis for
the case where the admission of uncertainty in the parameters of the
depensatory stock-recruitment curve (Eqn. 2) was considered. The same
decision analysis framework was also used to consider uncertainty in the

parameters of the Ricker stock-recruitment curve (Eqn. 1).
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1. Estimate the optimal escapement from
the best point estimates of all parameters
for the Ricker model only

2. For each uncertainty adjustment
-99 to +100%

3. Input a parameter set (a,b,c,d,c) and
its posterior P; from the SIR algorithm

Loop over uncertainty
adjusiments

4. Initialize the spawner abundance (Sy)

Loop over generations (t)
F 3

_Loop over parameter

} sets

5. Estimate recruitment (Ry;)

1

6. Harvest the excess of recruits above

. |the escapement goal (Yield ), if any
|

7. Determine the spawning stock for the
next generation (Sw;)

8. Weight the annual yield (avg. across
all t) for a parameter combination by P;

N

9. Sum the weighted annual yields across all parameter
sets for a given uncertainty adjustment

= the expected yield

10. The adjustment with the highest expected yield is

optimal
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Figure 4. Expected yield (in thousands of fish per year) for each uncertainty
adjustment for a constant escapement policy. The x-axis represents the amount
of adjustment (% change) in the optimal escapement goal from the one
estimated for the best-fit Ricker case. The dashed line is for the Ricker model
and the solid line is for the depensatory model (results for the uncertain
parameters and best-fit cases are shown for each). Figure 4A is for the Late
Stuart sockeye stock and Figure 4B is for the Raft sockeye stock. Optimal
uncertainty adjustments are indicated by UA* for both modeis. These results are

for an initial abundance of 2,000 spawners.
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Figure 5. Marginal posterior probability distribution for the parameters of the
Ricker (dashed line) and depensatory (solid line) models for the Late Stuart
stock. These distributions reflect the posterior probability distributions that were
used in the Bayesian analysis to quantify the probabilities associated with
different states of nature. The marginal posterior pdfs are for the « (panel A) and
B (panel B) parameters of the Ricker model and for the a (panel A), b (panel B), ¢

(panel C) and d (panel D) parameters for the depensatory model.
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Figure 6. Similar to Fig. 5, except the marginal posterior pdfs are for the Raft

stock-recruitment data.
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Figure 7. Expected loss in yield (in thousands of fish per year) for each
uncertainty adjustment for the Raft River sockeye and a constant escapement
policy. The x-axis represents the amount of adjustment (% change) in the
escapement goal from the best-fit Ricker case. The dashed line is for the Ricker
model and the solid line is for the depensatory model, both for the uncertain
parameters case only. Solid circles are the optimal uncertainty adjustments for
the Ricker and depensatory models, taking uncertainty into account. Open
circles designate the expected loss if the optimal strategy for the wrong mode/

was applied (see text for explanation).
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Figure 8. Expected yield (in thousands of fish per year) as a function of the
harvest rate applied for the Adams River sockeye for a constant harvest rate
policy. The dashed line is for the Ricker model and the solid line is for the
depensatory model, both for the uncertain parameters case. The constant
harvest rate that generated the highest expected yield is indicated by H* for each

model. These results are for an initial abundance of 2,000 spawners.
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Figure 9. Sensitivity of the optimal harvest rate on the Adams River stock to
the initial abundance of spawners for the uncertain parameters cases of the
Ricker (dashed curve) and depensatory (solid curve) models. The horizontal line
is the optimal harvest rate for the best-fit Ricker model at an escapement target

of 1.7 million spawners.
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Figure 10. The expected number of generations required to rebuild one cycle
line of the Adams River sdckeye as a function of the initial abundance of
spawners in the cycle line. The cycle line was considered to be rebuilt when it
reached a spawning escapement equivalent to 50% of the escapement target (of
1.7 million, Table 2) calculated for the best-fit Ricker model. The curves for
several different harvest rates (h.r.) are shown for the Ricker (dashed line) and

the depensatory models (solid line) for the uncertain parameters cases.
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Appendix A:
Best-fit parameters for the Ricker and depensatory stock-recruitment models

Stock Ricker Model | MSE Depensatory Model MSE

a B (1000's) a b (1000's) c (1000's) d (1000's)

Adams
1948-1990 | 1.97 4362.71 | 0.85 | 2.50 3535.48 251.87 144.42 0.70

Raft -
1948-1990 | 1.50 58.84 | 0.53 | 3.02 44 .53 73.93 42.82 0.43

Late Stuart
1949-1990 | 2.1 1353.32 | 167 | 270 1301.35 709.65 420.20 1.47

Gates
1952-1990 | 2.23 83.47 091 ] 276 90.86 48.63 35.10 0.81

Chilko .
1948-1990 | 214 1468.44 | 0.48 | 2.69 1418.92 757.31 776.20 0.50
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