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ABSTRACT 

Management of Pacific salmon is often based on the Ricker stock- 

recruitment model. However, estimates of the parameters of the Ricker model 

are usually imprecise and such uncertainties are frequently ignored when 

harvests are based solely on the best point estimates of model parameters. In 

addition, it is uncertain whether the Ricker model is the appropriate form for 

describing the shape of the stock-recruitment curve. In some stocks of Pacific 

salmon, there is considerable anecdotal and empirical evidence to support 

including depensatory predation mortality (high proportion dying at Iow 

abundance) in the stock-recruitment relationship. Given these uncertainties, 

several fisheries scientists have advocated adjusting the harvest level downward 

to account for uncertainty, but the appropriate size of these "uncertainty 

adjustments" is unclear. For several stocks of Fraser River sockeye salmon 

(Oncorhynchus nerka), I used Bayesian decision analysis to compare the 

benefits of harvest strategies based on the commonly used Ricker model to 

those based on a stock-recniitment model that accounted for the possibility of 

depensatory predation mortality. This approach explicitly incorporated 

uncertainties in the model parameters and quantified the management 

implications (e.g. expected yield) of using a Ricker or depensatory stock- 

recruitment model over a range of management policies. For a constant 

escapernent policy, the optimal escapement target was generally unaffected by 

the possibility of depensation. However, large "uncertainty adjustments" (i.e. 

increases to the escapement target) may be beneficial for stocks with a high 

degree of uncertainty about the fit of the stock-recruitment curve at high 

abundances of spawners. In contrast, under a constant harvest rate policy, the 

optimal harvest rate depends on the initial abundance of spawners. For a small 

abundance of spawners (e.g. 2,000) the possibility of depensatory predation 

mortality required lower harvest rates to maximize the expected yield over 1 O 

generations. Additionally, if depensation actually exists, significantly lower yields 



are expected cumpared to the case where depensation is absent. Preliminary 

analyses that included uncertainty in the shape of the stock-recruitment curves 

for both the Ricker and depensatory models also indicated that a rebuilding 

strategy (where hanrest rates were reduced from 80% to 50% for four 

generations to allow rebuilding) for cycle lines with small numbers of spawners 

should increase the expected yield compared with a constant 80% harvest rate. 

This analysis also shows that dramatic increases in yield may be possible if 

depensatory mortality actually does exist in these stocks and a rebuilding 

strategy is fotlowed. 
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INTRODUCTION 

Several major fisherÏes have suffered unexplained collapses (Gulland 

1988; Hilbom and Walters 1992). Overfishing, environmental changes, or a 

combination of both'may push the abundance of a stock below an abundance 

where biological processes, such as depensation or the Allee effect, may drive 

the stock to extinction, maintain it near a commercially unproductive lower 

equilibn'um, or substantially delay its recovery. A depensatory effect can cause 

recruitment to decline dramaücally as the spawning stock decreases to a low 

abundance. However, the exact mechanisms producing these declines in 

recruitment are uncertain and. as a result, management strategies often fail to 

safeguard against the possibility of stock collapses. 

The possibility of detrimental biological processes has led to some 

attempts to manage conservatively, especially in light of uncertainties in a stock's 

abundance estimates and biological parameters. Several efforts have been 

made to eçtimate a minimum spawning stock biomass to safeguard against 

overfïshing that could reduce the abundance of a stock to a commercially 

unproductive level (Thompson 1993; Myers et al. 1994). Commonly, a relatively 

arbitrary "safety marginn or "uncertainty adjustrnent" to the optimal best-fit 

harvest strategy may be applied to account for uncertainty (e.g. using an 

escapement target that is 20% greater than the one based on the best available 

point estimates of biological parameters). However, recent research on the 

suitability of "uncertainty adjustments" has shown that the expected yield of 

harvests associated with different magnitudes of "uncertainty adjustmentsn 

depends on the specific stock and the possibility of depensation (Frederick and 

Peterman 1995). In some stocks, a moderately conservative harvest strategy 

(Le. lower than the one based on the best point estimates) produces the highest 

yields, whereas in other stocks, a much more conservative strategy may be 

required when depensation exists. 



Although there is little direct empirical evidence to support the existence of 

depensatory effeds, there is considerable circumstantial evidence that suggests 

that depensation may exist. Depensatory effects can result from several 

mechanisms ranging from nonlinear funciional or numerical feeding responses 

(where either the feeding rate or the abundance of predators become limited at 

high prey IeveIs) to the inability of spawners to find mates at low population 

densities, an effect known as the Allee effect (Allee 1931 ; Peterman 1977, 1980; 

Peterman and Gatto 1978; Eggers and Rogers 1987). Models of these 

depensatory population dynamics predict that populations may show multiple 

equilibria and can rapidly shift from one equilibrium to another. For example, a 

depensatory predation model showed that the reduction in the abundance of the 

Georges Bank haddock, Melanogrammus aeglefinus, from a high to a low 

equilibrium state was likely caused by increased fishing pressure (Collie and 

Spencer 1993). However, little work has been done to determine the 

management implications of these depensatory mechanisms. 

ln addition, a recent statistical study based on estimates of spawner and 

recruit abundance for 128 fish stocks indicated that only three stocks had 

significant depensation (Myers et al. 1995). Although there was a lack of 

evidence for depensation in most of the fish stocks, two of the three stocks with 

significant depensation were pink salmon (Oncorhynchus gorbuscha). This 

suggests that managers of Pacific salmon should consider the effects of 

depensation on management strategies for these species. 

The purpose of this study is to use Bayesian decision analysis to evaluate 

the possible management implications (e.g. on expected yield) of using an 

alternative stock-recruitment model that takes into account the possibility of 

depensatory predation rnortality, instead of the more commonly used Ricker 

model. In particular, Bayesian statistics allows various shapes of stock- 

recruitment curves to be considered by giving each a probability weighting. This 

information will then be used in decision analysis to explicitly incorporate 

uncertainties in the shape of the stock-recruitment curve (i.e. model parameters) 



and quant@ the optimal harvest or rebuilding strategies predicted by the Ricker 

and depensatory stock-recruitment rnodels. Specifically, 1 witl compare the 

optimal hanrest strategies for the Ricker and depensatory models found using 

Bayesian and best-fit approaches (where only best-fit parameter estimates are 

considered) to evaluate dfierences in model performance for constant 

escapement, constant harvest rate, and stock rebuilding policies. 

A case for depensation in some B.C. salmon populations 

A striking feature of Fraser River sockeye salmon and pink salmon is the 

regular 'cydic' fluctuations in annual abundance. These 'cyclic' fi uctuations are 

particularly pronounced for some pink salmon populations and rnany Fraser 

River sockeye stocks because the recniits are predorninatdy of a single age 

class (2 years old for pink salmon, and 4 years old for sockeye). This leads to 

relatively discrete populations (called cycle lines) in each stock. In Fraser River 

sockeye, the rnost abundant cycle Iine in a 4-year cycle is called the "dominant* 

line, followed by a lower abundance "sub-dominantn line, and two "off-year" lines 

of extremely low abundance (Cass and Wood 1994). This cyclic pattern in which 

one cycle line is more abundant than the others is referred to as cyclic 

dominance. Of approximately 20 sockeye stocks in the Fraser River watershed 

that are estimated regularly, 8 exhibit persistent 4-year cycles with a predictable 

dominant cycle line every 4 years (for example, Adams, Late Stuart, and Gates 

runs) and another 6 stocks show an apparent 4 year cycle but have not exhibited 

persistent cyclic patterns (for example, Chilko and Raft runs) (Cass and Wood 

1 994). 

There is considerable debate about the mechanism(s) responsible for 

maintaining these population cycles, particularly for sockeye salmon (VVard and 

Larkin 1964; Collie and Watters 1987; Eggers and Rogers 1987; Walters and 

Staiey 1987; Levy and Wood 1991 : Walters and Woodey 1992; Cass and Wood 

1994). EarIy investigations suggested that cyclic dominance was maintained by 



depensatory agent(s) independent of the fishery that suppressed recruitment of 

the srnaller escapements of 'off-year' fines (Neave 1953). Ward and Laricin 

(1 964) hypothesized that cyclic dominance in Adams River sockeye was caused 

by depensatory freshwater predation of salmon fry and srnolts by rainbow trout. 

This hypothesis is supported by estirnates of high predation mortaiii on sockeye 

fry and smolts by other vertebrate species (Steigenburger and Larkin 1974; 

Groot and Margolis 1991) and studies suggesting predation mortality is generalty 

depensatory in nature (Ricker 1 950,i 954; Ward and Larkin 1964; Meacham and 

Clark 1979; Ruggerone and Rogers 1984). There is also some support for the 

idea that the formation of fish schools, {e-g. as is done by sockeye fry and 

migrating smolts (Petersen and DeAngelis 1992; Wood et al. 1993)), can lead to 

a powerful depensatory effect, especially in species such as sockeye salmon 

that are subject to high predation rates (Clark 1974; Gulland 1975). 

Several other studies have concluded that recent cyclic fluctuations could 

be maintained by depensatory fishing by the native lndian or commercial 

fisheries (Eggers and Rogers 1987; Walters and Staley 1987). In addition, 

Peterman (1 980) suggests that depensatory rnortality is a common effect for 

native lndian food fisheries and recent commercial harvest rates on Adams River 

sockeye appear to have been depensatory (Collie and Walters 1987). However, 

in their review, Levy and Wood (1991) conclude that although depensatory 

fishing may help rnaintain cycles in the Adams River sockeye, there is no 

compelling evidence that depensatory fishing generated the prominent historical 

cycles in Fraser River sockeye in the first place. More recent work also 

concludes that depensatory fishing is unlikely to be the only explanation for cyclic 

dominance in Fraser River sockeye stocks (Cass and Wood 1994). 

Compelling evidence in support of a depensatory agent independent of 

the fishery was found for pink salmon in the Atnarko River, B.C., although 

conclusive evidence on the exact depensatory mechanism was not found 

(Peterman 1977, 1987). The odd-year population dropped from 2.5 million in 

1961 to 80,000 in 1967 due to overexploitation and poor environmental 



conditions. The spawning population remained at low abundance for 6 

generations, varying around an equilibrium of 120,000 fish. However, a 

subsequent reduction in the fishing mortality rate failed to promote a recovery of 

the stock, indicating that the lower stable equilibriurn abundance was likely 

maintained by some natural depensatory agent. Artificial enhancement was 

needed to increase the spawner population to get it back to the more productive 

upper domain of stability of about 760,000 fish. The population has remained in 

this upper domain despite harvesting rates as high as 71% and elimination of 

enhancement efforts. This work indicates that it may not be reasonable to 

assume that Pacific salmon populations that are affected by depensatory 

dynamics can recover on their own aftet being forced to low levels. 

The Ricker stock-recniitment model, which is used by most managers of 

Pacific salmon, implicitly assumes that populations will always retum to their 

unfished equilibrium once fishing pressure is removed. However, this may not 

be the case if depensatory mechanisms can maintain a stock at a low population 

abundance, even after fishing pressure has been removed, and may prevent 

small stocks from rebuilding. This important management consequence, 

combined with the above evidence conceming the existence of depensatory 

mortality processes, suggests that managers should use models that explicitly 

account for depensatory mechanisms, even if their existence is not readily 

detectable from available data. Indeed, the 1994 Fraser River Sockeye Public 

Review Board (p. xiii, 1994) has recommended that the Department of Fisheries 

and Oceans (DFO) develop a "... system for n'sk aversion management given the 

uncertainües inherent to various estimation techniques". One component of risk- 

averse management is to explicitly consider the possibility of depensatory 

mortality when making decisions about harvest policies, which is the focus of this 

paper. 



Bayesian decision analysis 

Fishery managers are often faced with the task of choosing from different 

strategies for managing fisheries. For example, managers of salmon need to 

determine escapement goals that balance objectives such as maintaining high 

yields while adequately protecting stocks against overexploitation. Managers 

rnay also be interested in choosing the appropriate harvesting strategy for 

rebuilding an off-year line to a more commercially productive level. If the 

manager has perfect information and al1 of the parameter values of the stock- 

recniitment model are known precisely, then the appropriate harvesting strategy 

can be set to achieve the maximum sustainable yield or some other objective, 

such as rebuilding of an off-year stock to some specified tevel of spawners. But, 

because parameter values can never be known precisely, managers often base 

their decisions solely on the best point estimates of pararneters (the best-fit 

approach) or use an arbitrary adjustment to the escapement goal or harvest rate 

that accounts for uncertainty in a qualitative fashion. These approaches fail to 

account for uncertainty in parameter estimates in a quantitative manner and, 

therefore, assume that the best estimate for a parameter is the only one 

possible. 

Managers should quantitatively consider the uncertainty in parameters of 

the stock-recruitment model. In this way they can assess the potentially lower 

yield associated with managing as if a given state of nature (such as the one 

described by best-fit parameter estimates) is true, when there is some non-zero 

probability that it is not true. For example, for a constant escapement policy, this 

decision involves balancing the risks (e.g. losses in yield) of overescapement 

and those of underescapement. Overescapement rnay be undesirable because 

fewer fish are harvested in the current year and the extra fish reaching the 

spawning ground may reduce future recruitment because of densitydependent 

processes. Underescapement is potentially more serious because although 

more fish may be caught in the current year, spawner abundance may be 

reduced to the point where recruitment overfishing or depensatory processes 



can drive the stock to extinction or to a low, commercially unproductive 

equilibrium. Managers are oiten pooriy equipped to make explicit choices 

among various escapement targets because of the high uncertainty associated 

with key components, such as the fom of the stock-recruitment mode1 or 

parameter estimates. 

Decision analysis has been developed specifically to deal with such 

problems and has been used in several fisheries case studies (Walters 1981, 

1986; Francis 1992; McAllister and Petennan 1992; McAllister et al. 1994; 

Frederick and Peteman 1995; McAIlister and Pikitch 1996). In contrast to a 

best-fit approach that uses only point estimates of parameters, a Bayesian 

decision analysis approach explicitly accounts for uncertainty in parameter 

estimates by making management decisions based on a consideration of the 

probabiIiky distributions associated with uncertain parameters (Walters 1986). 

The optimal "uncertainty adjustrnenr (Frederick and Peterman 1995) for a 

constant escapement policy, for instance, is the difference between the 

escapement target set using Bayesian decision analysis, which acwunts for 

uncertainty in parameter estimates, and the target based on a best-fit approach. 

A Bayesian decision analysis approach involves several steps which are 

often sumrnarized in a decision tree (Fig. 1, which is described below in greater 

detail in the methods section). A decision tree allows the performance of 

alternative management actions (e.g. harvest strategies) to be ranked according 

to their ability to meet a specified performance b e l  taking into account a range 

of hypothesized responses of the rnanaged system. For instance, the 

uncertainty in the shape of the stock-recniitment curve is described by 

alternative hypotheses, or states of nature, that are represented by different 

parameter combinations. The degree of belief in a particular parameter 

combination is quantified using Bayesian statistics (Box and Tiao 1973) to 

generate a posterior probability distribution. The outcomes (e.g. average yield, 

as numbers of fish per year) for a particular uncertainty adjustment and 

parameter set are simulated using a model of population dynamics. Then, the 



outcornes for each parameter set are weighted by their probabilities of 

occurrence and summed to give an "expected* (weighted average) value of yield 

for a particular uncertainty adjustrnent. The expected value represents the 

average outcome of a particular management option given the underlying 

uncertainty associated with the states of nature and represents Our present 

expectation of what the future will give. The expected value does not specify a 

value that will occur (such a forecast is not possible given the uncertainties), but 

is simply a measure that can be used in decision analysis to allow the selection 

of the management option that produces the most favorable result relafive fo the 

ofher management options evaluafed. 

Methods 

This section describes the Bayesian decision analysis approach I used to 

evaluate the management implications of depensatory predation mortality in 

several stocks of Fraser River sockeye. This paper was not directed toward the 

management of any of these stocks specifically because the analysis relies on 

past spawner-recruitment data up to and including the 1990 brood year and new 

data may alter parameter estimates. Rather, the purpose here was to show how 

this approach can be used generally to improve management decisions. 

I used the Bayesian decision analysis approach to evaluate constant 

escapement, constant harvest rate and stock rebuilding policies for both stock- 

recruitment models. Table 1 summarizes the analyses done for each policy and. 

stock to detemine the optimal management strategy for the Ricker and 

depensatory models using the best-fit parameters (i.e. best-fit analysis) and also 

the parameter distributions from the Bayesian analysis (Le. uncertain parameters 

analysis). Each analysis was done following the six basic steps of decision 

analysis (steps 3 through 6 are expanded upon later) described below. The 

analyses for the best-fit models differed somewhat from the method outlined 



below because only the best point estimates of parameters were used. For the 

best-fit models there was only one state of nature which hence had a probability, 

Pi =1 .O , so steps 3 and 4 were considerably simplified compared to the method 

followed for the uncertain parameters case. For the rest of this section, I will 

refer rnainly to the analysis done for depensatory model with uncertain 

parameters for the constant escapement policy (see X* in Table 1). 1 analyzed 

the uncertain parameters case of the Ricker model using a similar procedure that 

only differed from the procedure for the uncertain parameters case of the 

depensatory mode1 in step 3 because I took into account different parameter 

values of the Ricker model. 

1. Specify managemenf objective. I used an objective of maximiring the 

average yield, in numbers of fish caught annually (averaged over the 10 

generations in the simulation). I used this management objective to evaluate 

constant escapement, constant harvest rate, and stock rebuilding policies. 1 

only refer to the constant escapement policy in the rest of the rnethodç 

section, but the sarne procedure was followed for the other policies. 

2. ldentw alternative management options. I assumed that a range of 

alternative management options could be taken for each policy. Henceforth I 

will use "policy" to refer to either the constant escapement, constant harvest 

rate, or rebuilding policies and "strategyn to refer to the different management 

options within the policy category (e.g. the amount of adjustrnent for 

uncertainty applied to the escapement goal). For example, I used the best 

point estimates of the parameters (best-fit) for the Ricker model without a 

depensatory effect to set a baseline escapement target (see Table 1) that 

maxirnized the average yield. Alternative management options consisted of a 

range of "uncertainty adjustmentsn that rnodified the baseline escapement 

target calculated for the best-fit Ricker model. I made the "uncertainty 

adjustrnentsn to the baseline escapement target so that the results from al1 

the analyses for a given policy could be compared to a cornmon reference 



point. (For the constant harvest rate policy a range of harvest rates from O to 

95% was used). 

ldenüfy the uncertain states of nature. For the best-fit analyses, I only used 

the best-fit parameter estimates for the Ricker or depensatory model to define 

the shape of the stock-recruitrnent cuwe. However, to account for 

uncertainty, 1 also considered different combinations of the parameter values 

(Le. different shapes of the stock-recruitment curve) for the Ricker and 

depensatory stock-recruitment models as possible states of nature. 

Quantify uncertainty using Bayesian statisfics. l used Bayesian statistics to 

estimate the posterior probabilities for different combinations of stock- 

recruitment parameters, based on the historical stock-recruitment data. 

Predict outcomes with a model of salmon population dynamics. I used a 

simulation model to estimate the average yield for each uncertainty 

adjustment and each possible shape of the stock-recruitment relationship. 

Use a decision analysis framework to detemine the optimal management 

sirategy. l cacallated the expected average yield for each uncertainty 

adjustment using the decision tree in Figure 1. The uncertainty adjustment 

with the highest expected yield was optimal. 

ldentifying alternative states of nature 

1 assumed for my analysis that there was one true, but unknown, stock- 

recruitment relationship for each sockeye stock. However, because the true 

f o m  of the relationship was unknown, I considered several possible parameter 

combinations describing the form of the relationship as states of nature. Each 

state of nature corresponds to a branch from the uncertainty node (circle) of the 

decision tree in Fig. 1. 

For several Fraser River stocks of sockeye salmon, I fit a Ricker and a 

depensatory stock-recruitrnent mode1 to adult spawner-recruit data obtained from 

the International Pacific Salmon Commission (Jim Woodey, Pacific Salmon 



Commission, Vancouver, B.C., pers. comm.). I analyzed the following sockeye 

stocks for the brood years indicated in parentheses: Adams River (1948-1 990), 

Gates Creek (1 952-1 WO), Late Stuart (1 949-1 WO), Raft River (1 948-1 990) and 

Chilko River (1 948-1 990). 

Ricker model 
The Ricker model is thought to approxirnate the compensatory rnortality 

(Le. a reduction in recruits-per-spawner as the number of spawners increases) 

that acts mainly on the egg-to-fry stage in Pacific salrnon (Ricker 1950,1954). Al1 

other mortaiity after predation and up to recruitment was assumed to be density- 

independent here. The Ricker stock-recruitment mode1 was defined by the 

following equation: 

where, S denotes the total number of adult sockeye on the spawning ground, R 

is the total number of adult recruits, ea is the median number of recruits per 

spawner at Iow spawner abundance, and f l  is the unfished equilibriurn spawner 

population (i.e. where recruitment is equal to spawning stock abundance), and eV 

is defined as a multiplicative log-normally distributed error term (where v has 

mean = O and standard deviation = a). The use of a multiplicative log-normal 

error structure has been demonstrated to be the most appropriate for Pacific 

salmon (Peterman 1981). 

Depensatory model 
I also evaluated a depensatory model because afier the egg-to-fry stage, 

subsequent mortality on fry and smolts may be depensatory (i.e. reduced 



recniits-per-spawner at extremely Iow numbers of spawners) (Ricker 1950, 1954; 

Ward and Larkin i 964; Peterrnan and Gatto i 978; Meacham and Clark 1979; 

Ruggerone and Rogers 1984). Depensatory predation martality dun'ng the Iife of 

the salmon was simulated by first using a compensatory process described by a 

Ricker model for the spawner-to-fry stage (Fry = Se a('sh)). This fry abundance 

was then modified by a Type III total response predation function to reflect 

depensatory predation rnortality on the fry or smolts. Use of a Type III predation 

function has been justified for vertebrates (Peteman 1 9777, which are the main 

predators of salmon. A Type III predation function is characterized by a dome- 

shaped relationship between fry or smolt abundance and percent rnortality 

caused by predation. The percent mortality increases rapidly at low abundance 

of Fry or smolts as their abundance increases, and then the rnortality rate 

decreases above intemediate abundances. As a result, a Ricker rnodel 

modified by the Type III predation function is characterized by a "dip" in the net 

recruitment curve at Iow levels of spawners. All other mortality after predation 

and up to recnritrnent was assumed to be density-independent. Therefore, 

recruits were deterrnined by the nurnber of fry surviving compensatory mortality 

minus the number of fry or srnolts eaten by predators. The resulting depensatory 

stock-recruitment mode! was defined by the foltowing equation (Peterman 1977): 

where, ea is the median number of fry per spawner at low spawner abundance, b 

is the unfished equilibrium population abundance of Sr prior to predation, c is the 

maximum number of fry or smolts consumed by the total predator population, d 



is the number of fry or smolts that results in c 12 prey lost to predation, and v is 

defined as in Eqn. 1. 

I estimated the best-fit parameters for the best-fit depensatory model 

using nonlinear parameter estimation based on the relationship of log, (recrufis / 

spawner) and spawners. I picked the Adams, Gates, Late Stuart, and Raft 

sockeye stocks for further analysis because the best-fit relationships for the 

depensatory model (Eqn. 2) had evidence of depensatory predation mortality at 

a low abundance of spawners. For example, Fig. 2A and B show the shape of 

the best-fit curves for the Ricker and depensatory models for the Raft and Late 

Stuart stocks, respectively. In addition, I included the Chilko sockeye stock 

where the depensatory and Ricker model fits were neariy identical (indicating no 

evidence of depensation) as a control case to check that the optimal 

management strategies were similar for both rnodels when the fits of the two 

types of curves were the same. 

The best-fit parameter estimates and the mean square error (MSE) 

estimates for the Ricker and depensatory models are shown in Appendix A. In 

al1 cases except Chilko, the MSE was slightly lower for the depensatory model, 

indicating that even with the penalty on MSE from the two additional parameters, 

the depensatory model explained slightly more of the observed variation than the 

Ricker model. However, the Ricker and depensatory best-fit curves fit the 

observed stock-recruitment data poorly because of the high variability in the data 

points (see Fig. 2A-B). 

Quantify ing Uncertainty Using Bayesian Statistics 

I used Bayesian statistics to evaluate the uncertainty in the spawner- 

recruit relationship (reflected by the scatter around the best-fit of log,(R/S) on S). 

For each salmon stock data set, I quantified the uncertainty in the shape of the 

stock-recruitment rnodel by calculating a posterior probability for each 



hypothesized combination of the parameters in Eqn. 1 (a, P, and O) or Eqn. 2 (a, 

b, c, d and 0). I obtained the probability of each hypothesis, i, using Bayes' 

formula (Box and Tiao 1973): 

where, "hypothesis~ was a particular combination of parameters defining the 

shape of a stock-recruitment curve, P(hypothesisi) was the prior probability 

placed on hypothesisi independent of the data. L(data 1 hypothesisi) was the 

likelihood of the observed data given that hypothesi~~ was true, and 

P(hypothesisi 1 data) was the posterior pmbability for a given hypothesis, i. The 

set of al1 posterior probabilities is the posterior probability density function (pdf), 

which surns to one. I assumed that the prior distributions of the stock- 

recruitrnent parameters in Eqn. 1 and 2 were described by unifonn distributions 

(Le. al1 of the possible parameter values within a given range were given an 

equal chance of being the true state of nature a prion]. When stock-recruitment 

data contain little information about the possible 'true' shape of the stock- 

recruitment curve, the posterior pdf tends to reflect the prior. But, as the amount 

of information contained in the data (e-g. tightness of the scatter around a 

particular shape of the stock-recuitment relationship) increases, the likelihood 

function has a greater influence on the posterior pdf. 

For the likelihood function, I assumed that the natural logarithm of the 

differences between the observed and predicted recruits-per-spawner were 

normally distributed with a mean of zero and variance. d, as follows from Eqns. 

1 and 2 (Le. log,(R/S) = f(S) + v). I therefore first calculated the likelihood of 

each data point using the following normal equation (Box and Tiao 1973): 



where, Lkwas the likelihood of data point k, which represents one year of 

spawner-recruit data for the given stock, and 6; is the squared deviation of the 

difference between the loganthms of the observed recnrits-per-spawner k, and 

the predicted recruits-per-spawner calculated with Eqn. 1 or Eqn. 2 for a 

particular set of parameter values. I used the negative natural logarîthm of the 

Iikelihood values to prevent extremely srnall values from being Iost from the 

calculation due to a lack of cornputer precision. The joint likelihood for the entire 

data set (= L1*L2*L 3...Lk) for a given hypothesis (L(data[hypothesisi) in Eqn. 3) 

was then the exponentiation of the sum of negative log-likelihoods for each data 

point from Eqn. 4, computationally: 

I calculated the Bayesian posterior probabilities (Eqn. 3) for the alternative 

hypotheses using a sampling/importance resampling (SIR) algorithm (Ru bin 

1988; Smith and Gelfand 1992). This algorithm has recentiy been used in 

fisheries problems to provide Bayesian posterior pdfs of multiple uncertain mode1 

parameters (McAllister et al. 1994; McAllister and lanelli 1995). The SIR 

algorithm is computationally superior to gfid search approaches for problems that 

have large numbers of parameters, as is the case here. Grid searches require a 

time consuming search where parameter combinations are compared over al1 of 

the intervals for each pararneter. The computation time increases exponentially 



for each additional parameter added to the grid search and the computation 

becomes relatively intractable for cases with large nurnbers of paramete& (eg. 5 
5 parameters with 10 intervals each would require 10 comparisons to evaluate 

each combination). The SIR algorithm is a much more efficient method for 

dealing with these computational problems. 

The SIR algorithm procedure was as follows (Rubin 1988): (1) Choose 

an importance function that represents the joint prior probability density function 

of the input parameters. I used the joint distribution of uniforni priors of the input 

parameters (e.g. on a, 6, c, d and i /c) as the importance function. The use of a 

prior of 110 has been justified as a better natural prior for the standard deviation 

of the error term (Press 1989). Using the joint prior pdf for the importance 

function has often been used for simplicity (Kinas 1993; Punt et al. 1994). (2) 

Randomly generate a large number of parameter sets (e.g. q = 30,000 samples) 

from the joint prior pdf. (3) Calculate the likelihood of each parameter set using 

Eqn. 5. (4) Calculate the weight of each parameter set, which is its likelihood 

divided by the sum across al1 parameter sets of al1 the likelihoods. (5) Check 

the sampling efficiency of the above steps by finding the pararneter set with the 

highest weighting. This step was done to make sure the importance function 

was not too inefiicient for estimating the posterior. McAllister and lanelli (1 996) 

suggest that a maximum weight ratio (i.e. the weight of a single parameter set, 

taken as a proportion of the sum of the weightings for the other parameter sets 

over al1 of the draws) of less than 1 % is acceptable. For weight ratios above 1 %, 

I examined the marginal posterior pdfs on rnodel parameters to ensure the 

distributions were not cut off by narrow boundaries on the prior. If this was the 

case, I repeated the analysis using wider boundaries on the prior distributions for 

the input parameters to avoid biases that can result from using ranges of 

pararneter values in the prior distributions that are too narrow (Adkison and 

Peterman 1996). (6) Resample randomly with replacement (e.g. s = 5,000 

resamples) from the distribution of weighted parameter sets to approximate the 



posterior pro bability density function. The posterior pro bability for any one 

parameter set was obtained frorn the ratio of the number of resarnples drawn for 

that parameter set to the total number of resamples taken (Le. 5,000). The 

posterior probabilities generated with the SIR algorithm were used in the 

decision analysis (described below) to quant*@ the uncertainty associated with 

the model parameters. 

Decision AnaIysis Framework 

For each stock, I used decision analysis to calculate the optimal 

management strategy given the objective of maximizing the expected yield. This 

process is described below for wlculating the optimal "uncertainty adjustrnenr to 

the baseline escapement target for the constant escapement policy and the 

uncertain parameters case for the depensatory model. A similar process was 

used for the decision analysis for the case where parameters of the Ricker model 

were considered uncertain. The steps of the analysis are shown in Figure 3 and 

are as follows: 

(1) Estimate the baseline escapement target that maximites the sustainable 

yield (in numbers of fish) using the best point estimates of the parameters for the 

Ricker model without a depensatory effect. 1 used linear regression of Iog,(R/S) 

on S to obtain the best fit parameter estimates because Koman et ai. (1995) 

showed that it was not necessary to adjust for Walters' (1 985) "time series biasn. 

(2) Pick an uncertainty adjustment that refers to an escapement target different 

from the baseline escapement target. For instance, an "uncertainty adjustmentn 

of +i 0% would increase escapement and is conservative because more fish 

escape to the spawning ground, whereas, an "uncertainty adjustrnent " of -A 0% 

would decrease escapement and is therefore permissive. (3) Use a parameter 

combination and its corresponding posterior probability generated by the SIR 

algorithm. (4) Set the initial spawner abundance (So). Initial spawner 



abundance was set at a very small nurnber to refiect a depleted salmon stock. 

Here, an iniîial escapement of 2,000 spawners for a single cycle line was srnail 

enough to be affected by the depensatory region of the stock-recniitment curve 

predicted by the best-fit parameters for aie depensatory model. An abundance 

of 2,000 spawners also ap-proximated the lower lirnits on fun sizes seen in the 

stock-recruitment data for each stock and, therefore, represented a plausible 

escapement for an off-year line. For example, the average spawning 

escapement for the 10 lowest escapement years in the data for the Adams, 

Gates, Late Stuart and Raft stocks was less than 2,000 spawners. (5) Use Eqn. 

1 or Eqn. 2 to estimate recruitment using the parb'cular parameter combination 

and number of spawners. I assumed that the recniits were al1 age 4 because 

most Fraser River sockeye return at this age (Welch and Noakes 1991). (6) 

Harvest the stock in excess of the escapement goal, E (Le. average yield = R - 

E, as numbers of fish per year). I assurned a perfect harvest where al1 of the 

recruits in excess of the escapement goal were caught. (7) The spawning stock 

for the next generation was equal to the number of fish specified by the 

escapement goal except in generations when the nurnber of recniits was less 

than the escapement goal. If this happened, I assumed that al1 of the recruits 

reached the spawning grounds and harvesting did not take place. I repeated 

steps 5 through 7 for 10 generations (i.e. 40 years). (8) Weight the average 

yield for a particular parameter combination by its posterior probability. ~ t e t s  3 

through 8 were repeated until al1 of the parameter combinations were simulated. 

(9) Using Eqn. 6, sum the weighted yields across al1 n hypothesized stock- 

recruitment parameter 

adjustrnent" chosen. 

sets, i, to determine the expected value of the "uncertainty 



This process was repeated for each "uncertainty adjustment". (10) The 

adjustment that maximized the expected ykld was optimal for the given stock. 

RESULTS AND DISCUSSION 

Constant Escapement Policy 

The optimal escapement strategies for the Ricker and depensatory 

models are sumrnarized in Table 2 for best-fit and Bayesian analyses. 1 

compared each model under no uncertainty or full parameter uncertainty to the 

best-fit Ricker model (the types of camparisons are shown in Table 1). The best- 

fit Ricker modei was used to find a baseline escapement target that was the 

starting point for analyses of the other scenarios. The optimal escapement 

strategies for the other models are shown in Table 2 as a percentage 

"uncertainty adjustmenr to that baseline escapement target. Also, note that the 

optimal escapement targets in number of fish for the other scenarios are shown 

in parentheses in Table 2; they are a function of an "uncertainty adjustment" 

applied to the baseline escapement target for a given stock. Only the best point 

estimates of parameters were used for the best-fit models. I used the results 

from Table 2 to show how difFerent the optimal escapement target would be in 

three scenarios that diVfer from the approach of estimating an escapement target 

from the best-fit Ricker model. These three scenarios were for a best-fit 

depensatory model where uncertainty was ignored and for Ricker and 

depensatory models where parameter uncertainty was considered. 

Ditferences between the best-fit models 

The optimal "uncertainty adjustmentsn for the best-fit depensatory model 

are just corrections to the baseline escapement target from the Ricker model. 

Because parameter uncertainty was not included in this step, any differences in 



the escapement targets between the best-fit Ricker and depensatory models 

should be based only on difierences in mode1 structure. For al1 five stocks, lower 

escapement targets were optimal for the best-fit depensatory model compared to 

the best-fit Ricker model (Table 2). This is because the depensatory rnodel has 

a different shape compared to the Ricker model. For example, this is shown 

over the full range of spawner abundances for the Raft stock-recruitment data 

(Fig. 2B). Lower escapement targets are optimal for the depensatory model 

because the right limb of the stock-recnritrnent curve falls off rapidly and, as a 

result, lower spawning escapements fall into a range of higher productivity 

(measured by log,(RIS)) in the stock-recmitment curve where yield is rnaximized 

(i.e. total recruits minus spawners is maximized). For the Raft stock, the best-fit 

depensatory model produces an escapement target of 13,000 fish compared to 

an escapernent target of 25,OOO fish for the best-fit Ricker model. These results 

show that the fit of the depensatory rnodel is different than the Ricker rnodel 

using the sarne data for the best-fit case. In the next sections, I also determine 

whether this is the case when parameter uncertainty is explicitly incorporated 

into the analysis. 

Expected Value of lnciuding Uncertainty (EVIU) in the Parameters of the Stock- 

Recruifment Mode1 

Next, the Ricker and depensatory stock-recniitment models were 

analyzed taking into account the uncertainty in their parameters. The expected 

yields for each uncertainty adjustment for these models are shown for the Late 

Stuart and Raft stocks, respectively (Fig. 4A-B). Although not shown here, the 

results for the Gates stock were sirnilar to Fig. 4A and the results for the Adams 

stock were similar to Fig. 4B. The uncertainty adjustments for Late Stuart are 

extended to much larger values than for Raft to illustrate the peaks in the curves 

for the uncertain parameters cases. An optimal uncertainty adjustment of 0% 

corresponds to the baseline escapement target for the best-fit Ricker model. 



For a given model, the difFerence between the expected yields of a 

decision based on a Bayesian analysis (uncertain parameters case) and a 

decision that ignores uncertainties (best-fit case) is called the expected value of 

including uncertainty (EVIU) (Morgan and Henrion 1 990). For al1 stocks, the 

optimal uncertainty adjustment (i:e. the escapement target) for a given model 

had a higher expected yield under a Bayesian approach compared to the best-fit 

approach (Fig. 4A and B). However, the EVIU was not necessariiy large. For a 

given stock and model, if a manager used the optimal best-fit strategy, the best 

estimate of expected yield is at the position on the uncertain parameters curve 

that corresponds to that optimal best-fit strategy. For exampte, the EVIU for the 

depensatory model for the Raft stock was 754 fish per year (i.e. the difference 

between the expected yield for the optimal uncertainty adjustment (e.g. 4 1  %) 

and the expected yield on the uncertain parameters curve corresponding to the 

optimal best-fit strategy (e.g. -48%) in Fig. 4B), or a 2% increase in the expected 

yield from including parameter uncertainty. The EVIU for the Ricker model was 

equal to an increase of just 66 fish per year in the expected yield for this stock. 

Similarly, for the Adams stock, the EVlU was equal to a 2% increase in the 

expected yield for the depensatory model and a negligible increase for the Ricker 

model. 

However, unlike the Raft and Adams sockeye salmon stocks, values of 

WIU were large for both models for the Gates and Late Stuart stocks. For the 

Ricker model, there was a 24% increase (from 242,496 to 301,103 fish per year) 

in the expected yield of the Gates stock and a 68% increase (from 5.83 to 9.79 

million fish) for the Late Stuart stock. The depensatory models also forecast 

large values of EVIU equal to increases of 59% and 92% for the Gates and Late 

Stuart stocks, respectively. The optimal adjustments for uncertainty for the 

Chilko stock resulted in more modest values of EVIU corresponding to increases 

in expected yield of 4% and 13% for the Ricker and depensatory models. 



These findings are similar to those of F rederick and Peteman (1 995) who 

showed that large uncertainty adjustments rnay be optimal if there is a highly 

asymmetric loss function or a highly asymrnetnc probability distribution 

describing the range of possible optimal escapement strategies. In this study, 

large uncertainty adjustments are likely a result of a combination of both a 

slightly asymmetric loss fundion (e-g. losses in yield are larger for 

underescapement than for overescapement when compared to the optimal 

escapernent target) and highly asymmetric probability distributions describing the 

model parameters which determine the optimal escapement target. For 

example, for the Late Stuart stock the probability distributions of the 'p' and 'b' 

parameters are highly asymmetric (Fig. 58) while the distributions on the other 

model parameters are fairly symmetric (Fig. 5A, C, and D). Note the difference 

between these 'p' and 'b' parameter distributions and the more symmetric 

distributions for the Raft stock where the EVlU is small (Fig. 6). For both models, 

the 'p' or 'by parameter dictates the strength of densitydependent mortality at 

high abundance of spawners. Increases in the 'P' or 'b' parameter tend to fiatten 

out the stock-recruitment curve (i.e. increase the number of recruits-per- 

spawner) at high abundance of spawners. 

In the Late Stuart stock the wide scatter in the stock-recnritment data 

points at high abundance of spawners (Fig. 2A) contributes to the uncertainty 

over the strength of densityilependence. In other words,the vaiue of the 'P' or 

'b' parameter is uncertain because the shape of the right limb of the stock- 

recruitment curve is not clearly defined by the stock-recruitrnent data. Therefore, 

a consideration of parameter uncertainty in the stock recruitment models resulted 

in a broadly diffuse and highly asyrnmetrical distribution on the 'P' or 'b' 

parameter (Fig. 58). As a result, there is a large probability that the 'P' or 'b' 

parameter rnay be much larger (and therefore, densitydependent survival 

processes rnay be much weaker) than predicted by the best-fit parameters. This 

causes the expected yields to increase for large uncertainty adjustments and is 



shown by the relatively flat expected yield curves for the uncertain parameters 

cases for both models(Fig. 4A). For this reason, a large uncertainty adjustment 

is optimal for the Late Stuart stock. 

Conversely, for the Raft stock the uncertainty adjustrnents for each of the 

two types of models were rnuch smaller than those for the Late Stuart stock 

(Table 2). The reason for this difterence is that the stock-recruitment data points 

for the Raft more clearly indicate the shape of the downward bending right limb 

of the stock-recruitment cuwe (e.g. Fig. 26 at 15,000 to 20,000 spawners). 

Therefore, when uncertainty in the stock-recniitrnent models was considered, 

only the 'P' and 'b' parameters that produced curves that had a large probability 

of fitting the data points at high numbers of spawners were selected. This is 

shown in Fig. 5B by the distributions on the 'P' and 'b' parameters, which are 

rnuch more symmetrical than they were for the Late Stuart. (The 'b' distribution 

is significantly more peaked than the 'P' distribution because the ability of the 

depensatory model to bend downwards at high spawner abundance constrains 

the range of Cumes that fit the data in this case.) As a resuk, both stock- 

recruitment models are fairly well defined for the right limb of the stock- 

recruitment curve. This causes the expected yields to decrease for large 

uncertainty adjustments (note the difference between the cutves for uncertainty 

adjustrnents above each respective UA* in Fig. 4B for the uncertain parameters 

cases of the Ricker and depensatory models) and, therefore, uncertainty 

adjustments are much smaller than for the Late Stuart stock. For the 

depensatory model, the dramatic decrease in expected yields for large 

uncertainty adjustrnents results in a negative optimal uncertainty adjustment 

(where the optimal escapement target is below the best-fit Ricker optimum) 

because lower spawning escapernents result in higher productivity (i.e. 

loge(R/S>). 

These results suggest that for sorne stocks, large conservative uncertainty 

adjustrnents may be optimal if there is a high degree of uncertainty over the 



strength of densitydependent survival. The Iack of a strongly downward 

bending right limb of the stock-recruitment model means that there will be Iittle 

cost to high escapernents. For these stocks, a failure to incorporate the 

uncertainty of model parameters can result in sub-optimal uncertainty 

adjustrnents and large drops in the expected yield (Fig. 4A) if the best fit 

parameters are assumed to be correct when they may not be. There rnay be a 

high probability that densitydependent processes are weaker than predicted in 

the best-fit analysis. Therefore, escapement targets set based on best-fit 

parameter analyses may be much too low and higher yields could be realized for 

higher numbers of spawners. As a result, managers should carefully consider 

uncertainty in the fit of the stock-recruitment curve to the data at a high 

abundance of spawners and the consequences of few stock-recruitment data 

points for these high abundances. An approach such as active adaptive 

management (Walters 1986) (e.g. where escapement targets are experimentally 

increased to obtain stock-recniitment data points outside the range of natural 

variation) would be required to determine the adual benefits of increased 

escapement levels. 

Implications of mode1 selection for the case of uncertain parameters 

In this section, 1 evaluate the implications of choosing the Ricker model 

over the depensatory model when a full consideration of uncertainty is taken into 

account. Where parameter uncertainty was included, the Ricker and 

depensatory models produced positive uncertainty adjustments for the Chilko, 

Gates, and Late Stuart stocks. For these stocks, the expected yield curves for 

the Ricker and depensatory models have similar shapes and are flat over a wide 

range of uncertainty adjustments around the one that is optimal (Fig. 4A). It is 

clear in Fig. 4A that for both models when parameters are considered uncertain 

there is not a large drop in the expected yield associated with a wide range of 

sub-optimal uncertainty adjustments (e.g. t 100% around the respective UA* 



values) wmpared to the optimal uncertainty adjustment. However, the 

implications (Le. losses in yield) associated with using the incorrect model to 

derive the optimal uncertainty adjustment wuld be much more serious for the 

Adams and Raft stocks because the expected yield curves are not as flat (Fig. 

4B). 

For the Adams and Rafi stocks, the optimal uncertainty adjustment 

depends on the model. For the depensatory model, expected yield is highest for 

a large negative uncertainty adjustment (Le. lower escapements than the best-fit 

Ricker case), but a positive adjustrnent is optimal for the Ricker rnodel (Table 2). 

What is the impact of choosing one model form over the other in a case like tkis? 

To evaluate the performance of the estimation procedure, I compared how 

using a particular model performed if in fact the other mode1 was correct. 

Specificaliy, I compared the expected loss in yield that would resuIt from using 

the optimal uncertainty adjustment predicted by a depensatory model when 

depensatory predation mortality does not actually exist (but a Ricker mode1 

does), to the expected loss in yield caused by using the optimal uncertainty 

adjustment predicted by a Ricker model when depensatory rnortality actually 

exists. Each of these losses was estimated for the uncertain parameters cases 

using the expected yield for the particular optimal uncertainty adjustment, which 

is the best estimator of the rnodel outcome. For the Raft stock, the optimal 

uncertainty adjustment for the uncertain parameters case for the depensatory 

rnodel shown in Fig. 48 was -41% (i.e. to decrease escapement below the 

baseline target by 41%). If that were the actual model in nature then there would 

be no loss in yield associated with that approach (hence, the expected loss 

would be O for an uncertainty adjustment of -41% as shown in Fig. 7). However, 

if the stock actually behaved like a Ricker model without depensation, then the 

loss would be 6,753 fish per year (indicated as Loss 7 on Fig. 7). SimilarIy, if 

one incorrectly assumed a Ricker model when a depensatory model actually was 

correct, then the loss would be 17,571 fish per year (indicated as Loss 2 on Fig. 



7). The expected losses as a percentage of the expeded yields estirnated for 

the optimal uncertainty adjustment with the correct model were 13% for Loss 1 

(Le. 6,753 / 50,719 fish per year if the Ricker mode1 was correct) and 38% for 

Loss 2 (i.e. 17,571 / 46,532 fish per year if the depensatory model was correct). 

In other words, by assuming a Ricker model to detemine the optimal uncertainty 

adjustment when in fact depensatory mortality does exist leads to a larger 

expected loss in yield (in both absolute and percentage terms) than if a 

depensatory rnodel were used. 

The Raft was the only stock where the losses were expected to be larger 

if a manager incorredly assumed that a Ricker model was appropriate. For the 

Raft for the uncertain parameters case, the fosses for incorrectly assuming a 

Ricker model were larger than incorrectly assuming a depensatory rnodel 

because at a high abundance of spawners, the expected yield predicted by the 

depensatory model decreases more rapidly than the Ricker model for sub- 

optimal uncertainty adjustments above the uncertainty adjustment that is optimal 

(note the difference between the curves for uncertainty adjustrnents above UA* 

in Fig. 48 for the uncertain parameters cases of the Ricker and depensatory 

models). 

For 4 out of 5 stocks evaluated, dÎfferences in performance (Le. expected 

loss in yield) between the Ricker and the depensatory models were extremely 

small for a constant escapement policy. Uncertainty over the existence of 

depensatory predation mortality at a low abundance of spawners does not 

appear to affect the choice of an optimal uncertainty adjustment. (Note in Fig. 

4B that depensatory predation mortality reduces the yield but only at very low 

uncertainty adjustments of -80% to -100%). For the Adams, Chilko, Late Stuart, 

and Gates stocks, the differences between Loss 1 and Loss 2 (as percentages 

of the expected yield estimated with the correct rnodel) was not greater than 1%. 

In addition, losses (either Loss 1 or 2) not greater than 4% of the expected yield 

from the correct model resulted from incorrectly using the optimal uncertainty 



adjustment estimated with the wrong model. These losses are insignificant 

cornpared to other sources of error not considered here such as the inability to 

precisely achieve escapement targets because of irnprecise in-season 

forecasting and imperfect control of the fieet during harvesting. 

By choosing the 5 stocks that l did, a situation was created where, 

because of the strength of depensation, the chances of seeing a big difference 

between using the Ricker and depensatory models should have been 

rnaxirnized. The fact that these differences were not seen in 4 out of 5 stocks 

suggests that for the performance criterion used here (e-g. expected loss in 

yield), the differences between models are inconsequential. These r5sults were 

expected for the Chilko sockeye because there is not a strong indication of 

depensation in the spawner-recruit data for this stock. However, the negligible 

differences between the losses for the Adams, Gates, and Late Stuart stocks are 

inconsistent with other work that indicates that the presence of a threshold (e.g. 

such as one created by depensation) may dictate extremely conservative 

uncertainty adjustrnents and, hence, acting as if a threshold does not exist when 

in fact it actually does could result in large losses in yield (Frederick and 

Peterrnan 1995). To the contrary, the extremely conservative uncertainty 

adjustments seen here for some stocks are contingent on the strength of 

density-dependent survival at high spawner abundance and not on the possibility 

of a threshold created by depensatory predation. 

For a manager who uses a constant escapement policy to manage these 

stocks, the use of a Ricker rnodel or a depensatory rnodel appears to be 

approximately optimal. Ideally, under this policy, stocks are not harvested unless 

the number of recruits is above the escapement target. In such cases in the 

simulation rnodel, very small stock sizes were able to increase rapidly until they 

reached numbers of spawners above levels that rnight be susceptible to 

depensatory mortality. As a result, the optimal uncertainty adjustrnent was not 

affected by the spawner abundance used to initialize the rnodel. This suggests 

that depensatory dynamics alone (e.g. in the absence of an additional 



mechanism such as ha~esting) are not responsible for keeping a stock at a 

commercially unproductive, lower equilibrium. 

However, the absence of harvest on small off-year runs is not a realistic 

situation in the field because of imperfect control of the fishing fieet and the 

mixed-stock nature of the Fraser River fishery where smail off-year runs are 

harvested along with other larger runs returning at the same time. In the Pacific 

salmon fishery, high harvest rates of up to 80% are oflen imposed on small off- 

year runs (Collie and Walters 1986; Walters and Staley 1987). In addition, high 

harvest rates may be responsible for maintaining the small spawning 

escapements of the off-year cycle Pnes (Walters and Staley, 1987; Collie et al, 

1989). This suggests that the implications of depensatory mortality May be more 

serious for a constant hatvest rate policy. 

Constant Harvest Rate Policy 

In this and the following sections, references to the Ricker and 

depensatory rnodels are for the uncertain parameters cases unless stated 

otherwise. 

1 rnodified the simulation model to examine the effect of a constant 

harvest rate policy on the expected yields predicted by the Ricker and 

depensatory models. I examined a range of harvest rates on the simulated 

stock. The yield for each year was a fixed proportion of the available recruits; 

the unharvested recruits spawned. Unlike the constant escapement policy, 

harvests were taken from al1 retums, regardless of the size of the mn. I based 

these results on initial escapements of 2,000 spawners so that the results here 

could be compared to those for the constant escapement policy. 

The harvest rates that maxirnized the expected average yield over 10 

generations are shown in Table 3. For the best-fit parameters cases, harvest 

rates are 5% to 22% lower for the depensatory model than for the Ricker model 

(except for the Chilko) for reasons I discuss later for the uncertain parameters 



case. I do not discuss here the EVlU, but in contrast to some stocks that had a 

high EVlU for the constant escapement policy, the EVlU was srnall for al1 stocks 

for the constant harvest rate policy because the differences between the 

expected yields at optimal harvest rates for the best-fit and uncertain parameters 

cases for a gi;en model differed only slightly. 

For the uncertain parameters cases, the possibility of depensatory 

mortality dictates optimal harvest rates on the order of 5% to 13% lower than 

those predicted for the no depensation case (Le. Ricker model) for al1 of the 

stocks (except Chilko) (Table 3). Lower harvest rates are optimal for the 

depensatory model because they allow a stock to slowly rebuild out of the 

depensatory pit (Le. the region of reduced productivity at a low abundance of 

spawners). 

However, for al1 5 stocks the choice of a particular harvest rate (Le. 

management option) for the uncertain pararneters cases was relatively 

insensitive to whether a Ricker or a depensatory stock-recruitrnent rnodel was 

used in the analysis. Note that the harvest rates that maximired the expected 

yields for the Ricker and depensatory models differ by 13% or less (and by 5% or 

less for the Raft, Chilko, and Gates) (Table 3). In addition, the differences in 

performance (Le. expected loss in yield) between the Ricker and depensatory 

models were srnall. For example, for the Adams stock, the expected loss in yield 

associated with applying the optimal hanfest rate from the depensatory model 

when in fact a Ricker model should have been used was 338,458 fish per year 

(Loss ? in Fig. 8). This represents a loss of 10% compared to the expected yield 

that was estimated with the optimal harvest rate from the Ricker model (e.g. 

338,458 / 3,522,835). This compares with an expected loss of 196,566 fish per 

year (Loss 2 in Fig. 8) associated with the wrong application of the Ricker model. 

This represents a loss of 13% compared to the expected yield estimated with the 

optimal harvest rate from the depensatory model (e.g. 196,566 1 1,525,483). 

While the absolute value of the Loss 1 is significantly larger than Loss 2, the 



difference between the expected losses in yield is relatively small (in percentage 

ternis). This result is typical of the small percentage differences between the 

expected tosses in the 5 stocks. So if the fishery is managed under a constant 

harvest rate policy, the performance of the han/& rate estimated by the Ricker 

model should not be significantly difberent than the performance of the harvest 

rate estimated by the depensatory model. 

In contrast to the small differences in performance of the optimal harvest 

rates for the Ricker and depensatory models for the uncertain parameters case, 

the expected yield that will be realized by the fishery critically depends on the 

model that is correct. Notice that if depensatory dynamics adually do exist (Le. 

the depensatory model is correct), then the expected yield for the optimal harvest 

rate may be 57% less than is estimated by the optimal harvest rate from the 

Ricker model (e.g. the difference in expected yield between the models at H* in 

Fig. 8). This could have serious implications for people dependent on the fishery 

for their income. However, these results only apply to small initial run sizes of 

2,000 spawners. For a high initial abundance of spawners, the expected yields 

predicted by the Ricker and depensatory models are similar. But, because srnail 

escapements are a real-ity, the question is what to do about them. 

Implications of small mn sizes under a constant hanest rate policy 

While initial conditions do not affect the optimal harvest rates for a Ricker 

model, this contrasts with a depensatory model where the haniest rate is 

sensitive to how long the population is in the lower unproductive region of the 

stock-recruitment curve. If the initial abundance of spawners is high, then the 

stock will never be in the depensatory region and can be hawested at a higher 

rate than if it starts out in that region and remains there for some period. The 

harvest rates that maximized the expected average yield over the 10 simuiated 

generations are shown in Fig. 9 for different spawner abundances used to 

initialize the simulation. The lowest harvest rates were produced for an initial 



abundance of spawners in the region of depensatory predation mortality. 

However, the expected yield over 1 O generations is not the same as the optimum 

long-term sustainable yield that results once the population is above the Iower 

unproductive region caused by depensatory rnortality. For a larger initial 

abundance of spawners (e.g. above 50,000 in Fig. 9), the harvest rates that 

maximized the expected average yield predicted by the depensatory model were 

much higher and are relatively insensitive to changes in the initial number of 

spawners. On the other hand, the h a ~ e s t  rates predicted by the Ricker mode1 

were relatively insensitive to the initial abundance of spawners (Fig. 9) because 

there is not a depensatory region in the Ricker rnodel. 

For a constant harvest rate strategy, the 'optimal' harvest rate for a small 

off-year run rnaximizes the expected yield for that run given that the harvest rate 

is not changed over the duration of the simulation. For the depensatory model, 

one could argue that the harvest rate predicted for a higher abundance of 

spawners is a much better estimate of the long-terni 'optimal' harvest rate 

because the harvest rate asymptotes just above a harvest rate of 80%. Several 

authors have suggested that higher yields could be obtained for an off-year run 

by decreasing the harvest rate until the stock rebuilds to a higher level and then 

imposing a higher hawest rate (Collie et al. 1990; Welch and Noakes 1991). 

Stock Rebuilding under a Constant Harvest Rate Policy 

In this section, I evaluated several difierent constant harvest rate 

strategies to estimate the number of generations it would take for the abundance 

of spawners from an off-year cycle line to rebuild for a Ricker or depensatory 

modal for the uncertain parameters case. I considered rebuilding to have 

occurred when an arbitrary number of spawners equivalent to 50% of the best-fit 

optimal escapement for the Ricker model (as in Table 2) was reached. Then, in 

the following section (*Benefits of implementing a rebuilding policv") , 1 evaluated 



whether lowering the harvest rate and then applying a higher hatvest rate after 

some period of rebuilding produced any benefits, in ternis of a yield maximizing 

objective. 

1 used the Adams stock in the analyses for stock rebuilding because it 

represents the most extreme example of rebuitding among the 5 stocks. A 

spawning escapement of 2,000 fish for the Adams stock must undergo a roughly 

850-fold increase in abundance to achieve the rebuilding target escapement 

specified above. The rebuilding required for the 4 other stocks is not as 

pronounced; increases ranging from 12-fold for the Raft to 275-fold for the Late 

Stuart are needed for initial spawning escapements of 2,000 fish. Results for the 

other stocks are qualitatively similar to those for the Adams discussed below. 

The number of generations to rebuild an off-year cycle line depended on 

the initial abundance of the line as well as the harvest rate (Fig. 1 O). For the 

Adams stock, the number of generations required to rebuild the stock to 50% of 

the baseline escapement target decreases as the number of spawners used to 

initialize the simulation increases. Both models forecast regeneration times less 

than 5 generations for an initial abundance of spawners above 100,000, for 

h a ~ e s t  rates less than 70% (Fig. 10). This is because the productivity of the 

depensatory model is roughly the same as the Ricker model for large 

abundances of spawners above tevets where depensatory mortality reduces 

productivity. However, for numbers of spawners less than 80,000 rebuilding took 

significantly longer under the depensatory model compared with the Ricker 

rnodel for a given harvest rate. Far example, for a harvest rate of 70% and an 

initial abundance of 10,000 spawners, rebuilding would be expected to take 3 to 

4 times longer if depensatory dynamics actualIy do exist (Fig. 1 O). In addition, 

higher harvest rates drarnatically increased the number of generations to rebuild 

the stock for the depensatory model. Increases in the number of generations 

required for rebuilding the stock were also realized for the Ricker rnodel for a 

harvest rate of 70% because even if depensation does not exist, high harvest 

rates lead to recruitment overfishing. These resufts confirm the obvious effect, 



that regardless of which model is correct, a reduction in harvest rates can 

increase the rate at which a stock rebuilds. But in addition, if depensatory 

dynamics do exist, then rapid rebuilding of a stock (e-g. in under 5 generations) 

may not be possible unless harvest rates are substantially reduced. 

These results are consistent with the widespread conclusion that harvest 

rates should be lowered to allow off-year cycle lines to rebuild (Walters and 

Staley 1987; Collie et al. 1990; Welch and Noakes 1991). These results also 

support the evidence (Walters and Staley 1987; Welch and Noakes 1991) that 

high harvest rates may help maintain cyclic dominance by preventing the off-year 

cycle lines from recovering. 

I caution readers not to conclude that depensatory predation mortality in 

conjunction with high harvest rates is responsible for cyclic dominance. Note 

that the expected number of generations required for rebuilding under the Ricker 

model can approach 10 cycles (or 40 years) for small numbers of spawners 

exposed to a 70% harvest rate and thus, small run sites could also be 

maintained by nondepensatory dynamics. The only way to distinguish between 

the two models is to experimentally decrease harvest rates. If the Ricker rnodel 

is correct, the off-year runs should recover rapidly. If the depensatory model is 

correct, the off-year runs should remain depressed for a much longer time (Collie 

and Walters 1986). Reducing the harvest rate on off-year runs is thus of primary 

management importance regardless of whether depensatory dynamics actually 

do exist. In addition to harvest rate reduction, other experiments such as 

predator removal would be required to deterrnine the exact mechanisrn causing 

depensation (Collie et al. 1990). 

Benefits of implementing a rebuilding policy 

The benefits of increased yield associated with rebuilding off-year cycle 

lines through harvest rate reduction has been widely suggested (Walters and 

Staley 1987; Collie et al. 1990; Welch and Noakes 1990). On the other hand, 



reducing the harvest rate may result in a short-term loss in yield to the fiçheries. 

The question is whether the short-terni loss in yield associated with reducing the 

harvest rate to rebuild an off-year nin is justified given the uncertainty over 

whether depensatory predation mortality actually exists. 

To answer this question, I compared the benefits (Le. expected yield) 

associated with a rebuilding policy to the benefitç from maintaining a constant 

harvest rate policy for the Ricker and depensatory models, explicitly taking the 

uncertainty in parameter estimates of those models into account through the 

Bayesian anaiysis, unlike previous authors. Under the constant harvest rate 

policy, a constant harvest rate of 80% predicted by the best-fit Ricker madel was 

applied for 10 generations. For the rebuilding policy, a constant haivest rate of 

50% was applied for 4 generations to allow rebuilding and then increased to 80% 

for the remaining 6 generations (this was similar to the policy used in Collie et a 

1990). 1 used a 50% harvest rate for the rebuilding policy because it has been 

suggested as the lowest harvest rate that the fishing industry could consistently 

find acceptable (K. McGivney, D.F.O., in Collie et al. 1990). 

Large increases in the expected yield resulted for the depensatory model 

under the rebuilding policy compared to the constant harvest rate policy. For the 

Adams stock and an initial abundance of 2,000 spawners, the rebuilding policy 

produced a 17-fold increase (from 30,000 to 515,000) in the expected yield. A 5- 

fold increase (from 450,000 to 2.1 million) resulted from following a rebuilding 

policy for the Ricker model. Obviously, the benefits of pursuing a rebuilding 

policy are positive for both models, but if depensatory predation mortality actually 

does exist, then the rebuilding policy increases the yield dramatically. Therefore, 

it appears that the benefits of increased yield are sufficiently high to justify 

rebuilding through reduction of harvest rates. 

Clearly rebuilding is beneficial but, because of the mixed stock nature of 

the fishery, harvest rate reductions for the purpose of rebuilding frequently affect 

more than one stock. For example, attempts to rebuild off-year Adams River 

sockeye runs would also affect the CO-migrating Weaver Creek sockeye and to 



some extent the Fraser River pink salmon mn (Welch and Noakes 1990). 

Therefore, the problem is how to accomplish rebuilding of off-year runs while 

minimizing the loss in yield for larger runs that are harvested at the same time as 

the off-year run(s). This problem is beyond the scope of this study. but some 

attempts have been made to identify which off-year nins could be targeted for 

rebuilding while minimizing the loss in yield (e.g . from larger CO-migrating stocks) 

that is associated with reduced harvest rates (Collie et al. 1990; Welch and 

Noakes 1990) 

lmprovements to the decision analysis approach 

ln addition to the stock-recniitment data used in the Bayesian decision 

analysis, other information sources could be included in the analysis. I used a 

unifom prior, which placed equal probability on a wide range of reasonable 

combinations of stock-recruitment parameters for the models. However, other 

information can be used to assign higher prior probabilities to certain parameter 

values based on information about environmental variables such as spawning 

site conditions or lake productivity (Geiger and Koenings 1991; Hume et al. 

1996). In addition, information from biologists or managers familiar with salmon 

life history or the Ricker model can be used to fom prior probability distributions 

on model parameters. In this analysis, the use of an informative prior might 

dramatically alter the results for some stocks. For stocks where there was 

considerable uncertainty about the 'Pr or 'b' parameters, an informative prior 

could dramatically change the optimal harvest strategy. For example, if an 

infomative prior was used for the Late Stuart or Gates stocks that specified that 

large values for the 'P' or 'b' parameters were extremely unlikely (Le. there was a 

prion information that density dependence was strong at high numbers of 

spawners), then the optimal escapement targets produced by the decision 

analysis would probably be considerably lower. However, the choice of an 



informative or uninformative prior should be made with caution and only if there 

is a defensible justification (Watters 1986; Adkison and Peterman 1996). 

Decision analysis can also be improved upon by evaluating how updating 

the Bayesian analysis with new stock-recruitment data points each year would 

alter the optimal harvest decision. Passive adaptive management involves 

adding new years of stock-recruitment data to the analysis as they become 

available. This approach may help to further define the shape of the stock- 

recruitrnent curve by showing the extent of depensation at low abundance of 

spawners or the strength of densitydependence at high abundance. This 

approach relies on the natural variability in the abundance of spawners for 

contributing new information to the analysis. Another approach, active adaptive 

management, involves experimentally changing the harvest rate to gain 

information outside of the range of natural variation (Walters 1986). For 

example, experimentally increasing the spawning escapement might be 

favorable when there is high uncertainty about strength of densitydependence in 

a stock (such as the Late Stuart or Gates) (Walters and Ludwig 1987). However, 

active adaptive management is offen not acceptable to fishery participants 

because it involves reducing the current harvest in return for information about 

the stock that will not benefit the participants until some time in the future. My 

analysis shows that the expected benefits of increasing the escapement of 

stocks with weak density-dependence such as the Late Stuart may be large 

compared to maintaining lower escapements. 

To select optimal management strategies, I used management objectives 

of maximizing the expected yield or minirnizing the number of years required for 

a srnall off-cycle line to rebuild. However, these management objectives are just 

two of several that managers may wish to consider when using decision 

analysis. Other objectives might include minimizing the probability that the stock 

will become cornrnercially extinct (i.e. drop below some pre-determined 

threshold), reducing the between-year variability of the commercial harvest, or 

minimizing the chance that duration of commercial fishing drops below some 



predetermined value. Decision analysis can be used to address the tradeoff 

between any of these other objectives or even multiple objectives of managers. 

Limits of the Decision Analysis Approach 

Managers using decision analysis must be aware that they are making a 

decision based on an expected yield and not on a particular prediction of the 

yield that will be achieved. The optimal management action calculated by 

decision analysis does not necessan'ly guarantee a favorable outcome in any 

particular year. Decision analysis uses expected values to take into account the 

uncertainty in the naturai system and aids the selecüon of an optimal 

management action. In any given year, undesirable outcomes may be realized 

due to natural variability, but this does not necessarily mean a bad decision has 

been reached. For exampte, given an optimal uncertainty adjustment of 31 1 % 

(Ricker model) for the Late Stuart stock, the expected yield is 68% higher than if 

the best-fit Ricker escapement was used (Fig. 4A). These results do not imply 

that an optimal uncertainty adjustment of 31 1 % will definitely result in a 68% 

increase in yield compared to the best-fit Ricker case. Rather the difference is 

between "expected" yields, which are weighted averages of predicted yields 

across al1 of the uncettain states of nature (Le. parameter combinations) 

considered in the mode!. An optimal uncertainty adjustrnent of 31 1% is more 

likely, given the uncertainties in the shape of the stock-recruitment curve, to 

result in a higher yield than the optimal strategy for the best-fit Ricker case. 

Managers must therefore be careful not to assume that the expected 

yields predicted wiII actually be realized if a particular management strategy is 

followed. Over the long-terni, a carefully conducted decision analysis 

guarantees that the results predicted for a given management strategy will be 

superior to management decisions based on intuition or an incomplete 

acknowledgment of uncertainty. For this reason, it is important that managers 



who advocate Bayesian decision analysis do so based on the resulting long-terni 

performance, rather than on any particular year's results. 

CONCLUSIONS 

This research graphically illustrates when there are benefits from using a 

depensatory model instead of a Ricker model and from including uncertainty in 

parameter estimates. This approach was more comprehensive than other 

studies because Bayesian decision analysis was used to explicitly incorporate 

uncertainties in the model parameters and also to quantify the management 

implications (e.g. expected yield) of depensatory predation mortality over a range 

of management policies. Although there are no general rules for when to use a 

depensatory model instead of a Ricker model, Bayesian decision analysis 

provides a rational basis for determining the best approach on a stock-by-stock 

basis. 

The inclusion of uncertainty in stock-recruitment parameters may 

significantly improve management performance in some circumstances. For 

example, for sorne stocks for the constant escapement policy, large "uncertainty 

adjustmentsn (Le. increases to the target escapement) may be beneficial for 

stocks with a high degree of uncertainty about the ffi of the stock-recniitrnent 

curve at high abundances of spawners. The calculation of the expected value of 

including uncertainty (EVIU) illustrates how large the benefits associated with 

including uncertainty in the decision making process can be compared to a best- 

fit approach which ignores uncertainty. 'The EVlU was small for al1 stocks for the 

constant harvest rate policy because expected yields of the optimal hawest rates 

for the best-fd and uncertain parameters cases for a given mode1 differed only 

slig htly. 

In general, the inclusion of uncertainty in stock-recruitment parameters 

means that harvest strategies are more robust to uncertain states of nature than 

strategies fomulated based solely on a best-fit approach which essentially 



ignores uncertainty. In addition, including uncartainty in the parameters of the 

depensatory stock-recniitment model allowed the model to have varying degrees 

of depensation including no depensation (e.g. such as a Ricker model) 

depending on the stock-recruitment data and thus the possibility of depensation 

could be quantified for a given stock. A cornparison of the benefits of harvest 

strategies based on the depensatory rnodel to those based on the Ricker model 

showed that the possibility of depensatory predation mortality may have 

important management implications for stocks with few spawners (e.g. 2,000) but 

this depends on the type of harvest policy used. 

For example, for a constant escapement strategy, the possibility of 

depensation at a small spawner abundance did not affect the optimal uncertainty 

adjustment because small spawning escapements below the escapement target 

were not harvested. Therefore, very small stock sizes were able to increase . 

rapidly until they reached numbers of spawners above levels that might be 

susceptible to depensatory predation mortality. Consequently, differences in 

performance (Le. expected loss in yield) between the Ricker and depensatory 

models for the uncertain parameters cases were extremely srnaIl for this policy. 

In addition, this also suggests that a depensatory predation mortality mechanism 

alone (e.g. in the absence of another mechanism such as harvesting) is not 

strong enough to maintain an off-year line at a low abundance and thus is likely 

not the sole explanation for cyclic dominance in Fraser River sockeye salmon. 

In contrast, under a constant harvest rate policy, the possibility of 

depensatory predation mortality generally required lower harvest rates compared 

to the Ricker model to rnaxirnize the expected yield over 10 generations when 

initial abundances of spawners were small (e.g. 2,000). Although the differences 

in performance between the Ricker and depensatory models were relatively 

small, if depensation actually exists, then the absolute value of the expected 

yield rnay be much lower than if depensation does not exist for stocks with few 

spawners. The expected yield for the depensatory model was comparable to the 

Ricker model when the initial abundance of spawners was large because the 



stock was rarely at risk of being in the depensatory region and could be 

ha~ested at a h a ~ e s t  rate comparable to the optimal harvest rate estimated for 

the Ricker model, Preliminary analyses of stock-rebuilding policies indicated that 

high harvest rates similar ta historic levels (e-g. 80%), in conjunction with the 

possibility of depensatory predation mortality, may prevent the rebuilding of mal1 

abundances of spawners characteristic of off-year lines. Hence, for small off- 

year runs, a reduction in the harvest rates are necessary to allow the spawning 

stock size to rebuild and should result in increases - in expected yield. Lower 
\ 

harvest rates benefit srnall numbers of spawners even if depensatory mortality 

does not exist because the stock is allowed to rebuild much more quickly. 

However, dramatic increases in yield may result if depensatory mortality actually 

exists. 

1 have reached a similar conclusion to others about the importance of 

reducing harvest rates on small off-year runs to allow the spawning stock to 

rebuild. If in fact cyclic dominance is caused in part by depensatory predation 

rnortality in Fraser River sockeye stocks, then dramatic increases in the 

expected yield could be realized from reducing hanrest rates on off-year runs to 

allow stock rebuilding. Thus, these results are consistent with other 

recommendations to reduce h a ~ e s t  rates on off-year runs (Walters and Staley 

1987; Collie et al 1990; Welch and Noakes 1991). 
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Table 1. Sumrnary of the analyses done (denoted by an X) for each policy 

and level of uncertainty considered in the stock-recniitment model. 

Policy 

Constant 

escapement 

Constant 

harvest rate 

Stock 

rebuilding 

Sockeye 

salmon 

Stocks 

Analyzed 

Adams, 

Raft, Late 

Stuart, 

Gates, 

Chilko 

Adams, 

Raft, Late 

Stuart, 

Gates, 

Chilko 

Adams 

'off-cycle' 

years 

Stock-recruitment model and 

level of uncertainty considered 

Best-fit 

Ricker 

model 

X 
(baseline 

escape 

ment 

target) 

Best-fit 

Depensatory 

model 

X 

Uncertain 

Parameters, 

Ricker 

model 

Uncertain 

Parameters, 

Depensatory 

model 

* Denotes the scenario detailed in the methods section 



Table 2. Optimal uncertainty adjustments for the constant escapement 

policy and difierent admissions of uncertainty in the Ricker and depensatory 

stock-recruitment rnodels for several Fraser River sockeye stocks. The optimal 

uncertainty adjuatrnent (as a percentage change in the best-fit Ricker 

escapement target) maximires the expected yield over 10 generations for an 

initial abundance of 2,000 spawners. A positive (or negative) % change 

indicates an increase (or decrease) in the escapement target relative to the 

baseline target estimated for a best-fit Ricker model. Optimal escapement 

targets in number of fish are shown in parentheses for each scenario. 

Sockeye 

salmon 

stock 

Stock-recruitrnent rnodel and level of uncertainty considered 

Best-fit 

Ricker model 

-baseline 

escapement 

target 

Adams 

Raft 

Late 

Best-fit 

Depensatory 

mode1 

- 30% 

(1.190 million) 

1.7 million 

Stuart 

Gates 

25,000 

550,000 

Chilko 

Optimal uncertainty adjustrnent as a % change 

in the baseline target escapement 

(actual escapement) 

Uncertain 

Parameters 

Ricker 

model 

8% 

(1.836 million) 

31,000 

Uncertain 

Parameters 

Depensatory 

mode1 

- 16% 

(1 -428 million) 

- 48% 

(1 3,000) 

- 21% 

530,000 

(434,500) 

- 6% 

5% 

(26,250) 

311% 

(29,140) 

- 15% 

(450,500) 

- 41% 

(14,750) 

261 % 

(2.261 million) 

129% 

(1.986 milfion) 

171% 

(70,990) 

35% 

(71 5,500) 

(84,010) 

48% 

(784,400) 



Table 3. Harvest rates that maximized expected yield for the constant 

harvest rate policy for several Fraser River sockeye salmon stocks and different 

admissions of uncertainty in the Ricker and depensatory stock-recruitment 

modeis. The table shows the results for I O  generations for an initial abundance 

of 2,000 spawners. 

Sockeye F 
1 salmon 

stock 

Gates 

1 Stock-recruitrnent model and level of uncertainty considered 

Best-fit 

Ricker 

rnodel 

Uncertain Best-fit 

68% 

Uncertain 

Depensatory 

model 

46% 

Parameters 

Ricker 

Parameters 

Depensatory 

model 

67% 

mode1 

54% 



Figure 1. Decision tree showing the calculation of an example performance 

masure, average annual yield (across t generations), for different management 

strategies. For simplicity, only a subset of branches is shown here. Each (...) 

indicates a repetition of the branch shown for that category. The management 

options emanating fmm the square decision node are variations from a best-fit 

Ricker escapement target modified by uncertainty adjustrnents that ranged from 

-99% to +100% in increments of 1 %. Different states of nature emanate from 

the circular uncertainty node and consist of discrete parameter sets for the stock- 

recruitment model (depensatory model in this example) each with probability, Pi- 

Each state of nature is defined by particular values for the parameters of that 

mode! (a, b, c, d, 4. For each branch of the decision tree, a model of salmon 

population dynamics is used to estimate a value for the average annuai yield 

from catching salmon (yieldi). The yield;s are then weighted by the probability 

associated with each branch (Le. Pi) and summed across ail branches to give an 

expected value (EV), or weighted average, of average annual yield for each 

uncertainty adjustment. 



Manaaement Options States of Nature 
Uncertainty adjustments Posterior Parameten of the 

probabilities depensatory S-R model 
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a.. u 
m m .  

Salmon 
population 
dynamics 
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Average 
Yield, 



Figure 2. Stock-recniitment data for the Late Stuart sockeye (1 949-1 990 

brood years (Panel A) and the Rafi River sockeye (1 948-1990 brood years) 

(Panel B). The relationships shown are the Ricker (dashed line) and 

depensatory (solid line) models using best-fit parameters for the relationship 

between log, (recruits/spawner) and spawners. 
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Figure 3. Flow chart of the simulation model used in the decision analysis for 

the case where the admission of uncertainty in the parameters of the 

depensatory stock-recruitment curve (Eqn. 2) was considered. The same 

decision analysis framework was also used to consider uncertainty in the 

parameters of the Ricker stock-recruitment curve (Eqn. 1). 
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Figure 4. Expected yield (in thousands of fish per year) for each uncertainty 

adjustment for a constant escapement policy. The x-axis represents the amount 

of adjustrnent (% change) in the optimal escapement goal from the one 

estimated for the best-fit Ricker case. The dashed line is for the Ricker mode[ 

and the solid line is for the depensatory mode1 (results for the uncertain 

parameters and best-fit cases are shown for each). Figure 4A is for the Late 

Stuart sockeye stock and Figure 4% is for the Raft sockeye stock. Optimal 

uncertainty adjustments are indicated by UA* for both modeis. These results are 

for an initial abundance of 2,000 spawners. 
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Figure 5. Marginal posterior probability distribution for the parameters of the 

Ricker (dashed line) and depensatory (solid Iine) models for the Late Stuart 

stock. These distributions reflect the posterior probability distributions that were 

used in the Bayesian analysis to quantify the probabilities associated with 

different states of nature. The marginal posterior pdfs are for the a (panel A) and 

(panel B) parameters of the Ricker mode1 and for the a (panel A), b (panel B), c 

(panel C) and d (panel D) parameters for the depensatory model. 
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Figure 6. Similar to Fig. 5, except the marginal posterior pdfs are for the Raft 

stock-recruitment data. 
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Figure 7. Expected Ioss in yield (in thousands of fish per year) for each 

uncertainty adjustment for the Raft River sockeye and a constant escapement 

policy. The x-axis represents the amount of adjustment (% change) in the 

escapement goal from the best-ft Ricker case. The dashed line is for the Ricker 

model and the solid line is for the depensatory model, both for the uncerbin 

parameters case only. Solid circles are the optimal uncertainty adjustments for 

the Ricker and depensatory models, taking uncertainty into account. Open 

circles designate the expected Ioss if the optimal strategy for the wrong model 

was applied (see text for explanation). 
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Figure 8. Expected yield (in thousands of fish per year) as a function of the 

harvest rate applied for the Adams River sockeye for a constant harvest rate 

policy. The dashed line is for the Ricker model and the solid line is for the 

depensatory model, both for the uncerbin parameters case. The constant 

harvest rate that generated the highest expected yield is indicated by H* for each 

rnodel. These results are for an initial abundance of 2,000 spawners. 
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Figure 9. Sensitivity of the optimal harvest rate on the Adams River stock to 

the initial abundance of spawners for the uncertain parameters cases of the 

Ricker (dashed curve) and depensatory (solid curve) models. The horizontal line 

is the optimal harvest rate for the best-fit Ricker mode1 at an escapement target 

of 1.7 million spawners. 
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Figure 10. The expected number of generations required to rebuild one cycle 

line of the Adams River sockeye as a function of the initial abundance of 

spawners in the cycle line. The cycle line was considered to be rebuilt when it 

reached a spawning escapement equivalent to 50% of the escapement target (of 

1.7 million, Table 2) calculated for the best-fit Ricker model. The curves for 

several different harvest rates (h.r.) are shown for the Ricker (dashed line) and 

the depensatory models (solid line) for the uncertain parameters cases. 
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Appendix A: 
Best-fit parameters for the Ricker and depensatory stock-recruitment models 

Raft 

Stock 

Late Stuart 
1949-1 990 2.1 1 1353.32 I I 

Ricker Model 

Chilko 

Gates 
1952-1 990 2.23 83.47 

MSE MSE Depensatory Model 
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