
Binary Decision Diagrams

ROBDDs Slide 2

Example
Directed acyclic graph non-terminal node

terminal node

What function
is represented
by the graph?

ROBDDs Slide 3

Shannon Decomposition

ABC + A
C

BC
C

Apply the decomposition recursively

high edgelow edge

ROBDDs Slide 4

Ordered BDD
ABC + AC

ROBDDs Slide 5

Reduced Ordered BDD

Merge isomorphic
subtrees

ROBDDs Slide 6

Reduced Ordered BDD

Remove redundant
nodes

X

X

ROBDDs Slide 7

ROBDD

ROBDDs Slide 8

ROBDD

ROBDDs Slide 9

BDD
A Binary Decision Diagram (BDD) is a rooted,

directed acyclic graph
• with one or two terminal nodes of out-degree

zero labeled 0 or 1, and a set of variable
nodes u of out-degree two.

• The two outgoing edges are given by two
functions low(u) and high(u). (In pictures,
these are shown as dotted and solid lines,
respectively.) A variable var(u) is associated
with each variable node.

ROBDDs Slide 10

ROBDD
• A BDD is Ordered (OBDD) if on all paths through the

graph the variables respect a given linear order x1 <
x2 < … < xn. An OBDD is Reduced (ROBDD) if

1. (uniqueness) no two distinct nodes u and v have
the same variable name and low- and high-
successor, i.e.,
var(u) = var(v); low(u) = low(v); high(u) = high(v) implies u = v;

and
2. (non-redundant tests) no variable node u has

identical low- and high-successor, i.e.,
low(u) = high(u)

ROBDDs Slide 11

Canonicity
• For any function f : Bn →B there is exactly

one ROBDD u with variable ordering x1 < x2 <
… < xn such that fu = f(x1, … , xn).

Proof:

ROBDDs Slide 12

Consequences of Canonicity
• How do you represent a tautology?

(i.e. all variable assignments yield 1)
• How do you know that the function is

satisfiable?
(i.e. there is at least one assignment for the
variables such that the function evaluates to 1)

ROBDDs Slide 13

Variable Order

x1x2y1y2 ∨ x1x2y1y2 ∨ x1x2y1y2 ∨ x1x2
y1y2

ROBDDs Slide 14

Constructing and manipulating BDDs

• Nodes will be represented as numbers 0, 1,
2, … with 0 and 1 reserved for the terminal
nodes.

• The variables in the ordering x1 < x2 < … < xn

are represented by their indices 1, 2, …, n.
• The ROBDD is stored in a table T:u →(i, l, h)

which maps a node u to its three attributes
var(u) = i, low(u) = l, and high(u) = h.

ROBDDs Slide 15

Example

ROBDDs Slide 16

The H Table
• In order to ensure that the OBDD being

constructed is reduced, it is necessary to
determine from a triple (i, l, h) whether there
exists a node u with var(u) = i, low(u) = l, and
high(u) = h. For this purpose we assume the
presence of a table H : (i, l, h) → u mapping
triples (i, l, h) of variable indices i, and nodes
l, h to nodes u. The table H is the “inverse" of
the table T, i.e., for variable nodes u, T(u) = (i,
l, h), if and only if, H(i, l, h) = u.

ROBDDs Slide 17

Operations on T and H

ROBDDs Slide 18

The Function Mk

What is the complexity of Mk?

ROBDDs Slide 19

The Build Function

ROBDDs Slide 20

Example
• Show build Build(A ⊕ B ⊕ C)

• What is the running time of Build?
• Can it be improved?
• How?

ROBDDs Slide 21

Apply

ROBDDs Slide 22

The Function Apply

Complexity?

ROBDDs Slide 23

The Function Apply

Complexity?

Dynamic programming

ROBDDs Slide 24

Example
f = ABCD

add function
g = ABCD

4015
0324
2033
1042

51
50

hlvi

ROBDDs Slide 25

Example
f = ABCD g = ABCD

4015
3026
0617

0324
2033
1042

51
50

hlvi

ROBDDs Slide 26

Example
• APPLY(f,g,+)

0617
4618

4015
3026

0324
2033
1042

51
50

hlvi

How many
nodes can a
forest have?

This is a forest
(many trees)

ROBDDs Slide 27

Restrict

x2 = 0

ROBDDs Slide 28

Restrict

ROBDDs Slide 29

SatCount
• Count the number of assignment for which

the function is true

ROBDDs Slide 30

AnySat
• Find an assignment for which the function is

true

ROBDDs Slide 31

AllSat
• Find all assignments for which the function is

true

ROBDDs Slide 32

Simplify

ROBDDs Slide 33

Optimizations
• deleted nodes

– memory management
• negated edges
• variable reordering

– sifting

