
Binary Decision Diagrams
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Example
Directed acyclic graph non-terminal node

terminal node

What function
is represented
by the graph?
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Shannon Decomposition

ABC + A
C

BC
C

Apply the decomposition recursively

high edgelow edge
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Ordered BDD
ABC + AC
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Reduced Ordered BDD

Merge isomorphic
subtrees
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Reduced Ordered BDD

Remove redundant 
nodes

X

X
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ROBDD
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ROBDD
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BDD
A Binary Decision Diagram (BDD) is a rooted,

directed acyclic graph
• with one or two terminal nodes of out-degree

zero labeled 0 or 1, and a set of variable
nodes u of out-degree two.

• The two outgoing edges are given by two
functions low(u) and high(u). (In pictures,
these are shown as dotted and solid lines,
respectively.) A variable var(u) is associated
with each variable node.
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ROBDD
• A BDD is Ordered (OBDD) if on all paths through the

graph the variables respect a given linear order x1 <
x2 <  …  < xn. An OBDD is Reduced (ROBDD) if

1. (uniqueness) no two distinct nodes u and v have
the same variable name and low- and high-
successor, i.e.,
var(u) = var(v); low(u) = low(v); high(u) = high(v) implies u = v;

and
2. (non-redundant tests) no variable node u has

identical low- and high-successor, i.e.,
low(u) = high(u)
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Canonicity
• For any function f : Bn →B there is exactly

one ROBDD u with variable ordering x1 < x2 <
… < xn such that fu = f(x1, … , xn).

Proof:
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Consequences of Canonicity
• How do you represent a tautology?

(i.e. all variable assignments yield 1)
• How do you know that the function is

satisfiable?
(i.e. there is at least one assignment for the
variables such that the function evaluates to 1)
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Variable Order

x1x2y1y2 ∨ x1x2y1y2 ∨ x1x2y1y2 ∨ x1x2
y1y2
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Constructing and manipulating BDDs

• Nodes will be represented as numbers 0, 1,
2, … with 0 and 1 reserved for the terminal
nodes.

• The variables in the ordering x1 < x2 < … < xn

are represented by their indices 1, 2, …, n.
• The ROBDD is stored in a table T:u →(i, l, h)

which maps a node u to its three attributes
var(u) = i, low(u) = l, and high(u) = h.
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Example
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The H Table
• In order to ensure that the OBDD being

constructed is reduced, it is necessary to
determine from a triple (i, l, h) whether there
exists a node u with var(u) = i, low(u) = l, and
high(u) = h. For this purpose we assume the
presence of a table H : (i, l, h) → u mapping
triples (i, l, h) of variable indices i, and nodes
l, h to nodes u. The table H is the “inverse" of
the table T, i.e., for variable nodes u, T(u) = (i,
l, h), if and only if, H(i, l, h) = u.
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Operations on T and H
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The Function Mk

What is the complexity of Mk?
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The Build Function
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Example
• Show build Build(A ⊕ B ⊕ C)

• What is the running time of Build?
• Can it be improved?
• How?
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Apply
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The Function Apply

Complexity?
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The Function Apply

Complexity?

Dynamic programming
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Example
f = ABCD

add function
g = ABCD

4015
0324
2033
1042

51
50

hlvi
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Example
f = ABCD g = ABCD

4015
3026
0617

0324
2033
1042

51
50

hlvi
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Example
• APPLY(f,g,+)

0617
4618

4015
3026

0324
2033
1042

51
50

hlvi

How many 
nodes can a
forest have?

This is a forest
(many trees)
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Restrict

x2 = 0
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Restrict
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SatCount
• Count the number of assignment for which

the function is true
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AnySat
• Find an assignment for which the function is

true
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AllSat
• Find all assignments for which the function is

true
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Simplify
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Optimizations
• deleted nodes

– memory management
• negated edges
• variable reordering

– sifting


