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Spontaneous breaking of a continuous symmetry leads to the
appearance of extra gapless degrees of freedom, the
Nambu-Goldstone bosons.

Superfluid: spontaneous breaking of a U(1) symmetry.
Order parameter: complex scalar. Mexican hat potential.
The vev of the condensate is given by the modulus, the NGB by its
phase.
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At weak coupling, a CDW
develops due to a
electron-(lattice) phonon
interactions which gaps out the
Fermi surface [Peierls’55].

Formation of a collective
electron-hole mode at
k = 2kF .

Order parameter: complex
scalar

ρ(~x) = ρ0+ρ1 cos
(
2 ~kF · ~x + φ

)
φ: CDW sliding mode, NGB. [Grüner’88]

2d Wigner crystals: all translations are broken, longitudinal and
transverse phonon λ‖ = ∇ · φ, λ⊥ = ∇× φ, φi , i = {x , y}.
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An important property of Goldstones is that they are
shift-symmetric: they realize non-linearly the broken symmetry.
More concretely, take broken translations along x

x → x + c ⇒ φ→ φ+ c

Shift symmetry: only gradient terms in the effective IR action:

f ∼ 1
2ρφ∇φ

2 + . . .

ρφ is the ’stiffness’ of the order parameter:
Superfluids, ρφ = ρs the superfluid density;
CDW, ρφ: CDW modulus.
2d Wigner crystal, ρφ: bulk K and shear G moduli.
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Low energy effective field theory constructed based on symmetry
principles. Describes late time, long wavelength dynamics:
ω � 1/τeq extreme dominance of interactions.

Basic ingredients:
Write down conservation equations
Give constitutive relations to conserved currents in a
gradient expansion.

Compute retarded Green’s functions using [Kadanoff & Martin’63]

Example: charge diffusion

∂tρ+∇ · j = 0j , = −σo∇µ+ O(∇2) , ρ0(k) = χµ0(k)

〈ρ(ω, k)〉 = ρ0(k)
−iω + σoχk2 = χµ0(k)

−iω + Dk2

GR
ρρ(ω, k)− GR

ρρ(ω = 0, k) = −iω 〈ρ(ω, k)〉
µ0(k) ⇒ GR

ρρ(ω, k) = χDk2

−iω + Dk2
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If Q is the charge that generates the symmetry, then

[φ(x),Q(y)] = iδ(x − y) + . . .

The effective Hamiltonian contains a term

H ∼
∫

ddx sQ(x)Q(x)

which leads to the ‘Josephon’ equation

∇φ̇ ≡ ∂t∇φ = [H,∇φ] = ∇sQ

Superfluids: Q = ρ (U(1) charge) and sQ = −µ (chemical
potential);

Translationally-ordered phases: Q = π (momentum) and sQ = v
(velocity) along the direction with broken symmetry.
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Conservation of Q + Josephson equation for φ:
new sound modes with velocity v2

s ∼ ρφ (superfluid sound = NGB
+ U(1), shear sound = NGB + π⊥)
enhances existing sound velocity + new diffusive mode (λ‖)

Figure: Credit: Luca V. Delacrétaz
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The new sound poles (propagating modes) give rise to ω = 0 poles in
the ‘conductivity’ of the current associated to the broken density

superfluid: σjj = i
ω
GR

jj = σo + ρ2
n

χππ

i
ω

+ ρs
µ

i
ω

2d WC: σxy = i
ω
GR
τ xyτ xy = η + G i

ω

Reflects that the new dofs are gapless.
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There are obstructions to the existence of true long range order for
continuous symmetries in d ≤ 2 [Coleman-Mermin-Wagner] (d ≤ 4 in the
presence of random couplings, [Imry & Ma’75]).
The destruction of long range order occurs via the proliferation of
topological defects, [Berezenski-Kosterlitz-Thouless]:

Concretely, the defects relax the phase gradients

∇φ̇ = ∇µ− Ω∇φ
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∇φ̇ = ∇µ− Ω∇φ

The Goldstone relaxation rate gaps out the
ω = 0 poles discussed above, ω = −iΩ + . . . .

This gives to large diffusivities

superfluid: σjj = i
ω
GR

jj = σo+ ρ2
n

χππ

i
ω

+ρs
µ

1
Ω− iω ⇒ D ∼ σo+ ρs

µΩ

2d WC: σxy = i
ω
GR
τ xyτ xy = η + G

Ω⊥ − iω ⇒ D ∼ η + G
Ω⊥

Important phenomenological consequences: destruction of
superconductivity in two-dimensional films, melting of Abrikosov
lattices in a magnetic field.

Occurs because the Goldstones become shorter and shorter lived
as Ω increases: gradual loss of phase coherence.
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These Goldstone relaxation rates can be computed from the
following Kubo formula:

Ω = lim
ω→0

lim
Ω→0

1
ω
ImGR

˙Jφ
˙Jφ

(ω, k = 0) , Jφ =
∫

T 2/{d.c.}
∇φ

Crucial technical crutch: consider a Hamiltonian deformation
involving the square of the density.

∆H = 1
2χ

∫
dx Q(x)2 ⇒

J̇φ = ∂tJφ + i [∆H, Jφ] = − 2
χ

∫
T 2/{d.c.}

∇Q = 2
χ

∫
{d.c.}

∇Q

Ω = 4
χ2 lim

ω→0

1
ω

∫
{d.c.}

dx
∫

{d.c.}
dy∇x∇y ImGR

QQ(ω; x − y) ,

12



Assumption: Large enough cores that the hydro expression for GR
QQ can

be used. Assume that Q diffuses inside cores

GR
QQ = − χDk2

iω − Dk2

Disordered superfluid: recovers flux-flow resistance [Bardeen &

Stephens’65]

Ω = 2ρs
nf πr2

v
σn

Clean 2d WC: [Halperin & Nelson’80]

Ω = 2G nf πr2
v

ηn

Ω is controlled by the ‘conductivity’ of the unbroken phase inside
the cores.
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Spacetime symmetries can be explicitly broken: focus on the case of
broken translations.

Impact on the Goldstones: ’tilts the Mexican potential’, the
Goldstones become massive, which breaks their shift symmetry

f ∼ 1
2ρφ∇φ

2 + · · · → f ∼ 1
2ρφ∇φ

2 + 1
2m

2φ2 + . . .

The Goldstones now resonate at a pinning
frequency ωo = m

√
(G/χππ).

Should also expect that the Goldstone are
damped at a rate Ω (distinct from the
contribution from defects).

Combined, these effects gap the sound
modes.
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If ωo � 1/τeq, the pinned Goldstones remain light and must be kept in
the EFT: pinning peak in eg ac conductivity:

[Gruener’88]
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In real materials, if disorder is too strong, ωo does not remain in the
IR and no collective peak is observed.

Strong magnetic fields offer a way to bring the peak back to the IR.

Application to the Wigner solid phase of 2d electron systems
(GaAs/GaAlAs heterostructures). Vicinity to Quantum Hall phases.
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Now turn on a magnetic field: the longitudinal and transverse sound
modes hybridize into (gapless) magnetophonons and gapped
magnetoplasmons ω ∼ ωc ∼ B [Fukuyama & Lee’78].

Upon turning on disorder, the magnetophonons are pinned at
ωpk ≡ ω2

o/ωc ∼ O(1/B): within hydrodynamics at large magnetic
fields, even for strong disorder.

So if ωpk � 1/τeq � ωc , hydro theory of the magnetophonon
alone.

Write down a similar hydrodynamic theory as before: conservation
of charge, Josephson equation for magnetophonon, constitutive
relations, solve and get conductivity.

Also positivity of entropy production bound.

Compute the relaxation rate due to mobile defects.

new: relaxation due to dissipation into currents.
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Magnetic translations in a transverse B field√
ρBPi = Pi +

∫
d2xρAi , ~A = (−By , 0) .

⇒ [Pi ,Pj ] = −iRBεij

We want to break magnetic translations. When broken
generators do not commute, reduction on the number of expected
Goldstones [Watanabe & Muruyama’12].

Under magnetic translations, Goldstones ϕi → ϕi + δxi . Leads to

L = εijϕi ϕ̇j

Upon quantizing

[ϕi (x), ϕj(y)] = −iεijδ(x − y)

The Goldstones are not independent fields!

From Noether, conserved densities are πi ∼ εijϕj , which leads to the
magnetic translation algebra.

18



Extend the Lagrangian to include pinning and spatial gradients

L = εijϕi ϕ̇j − ϕj
[
δijωpk +

(
Kk ik j + Gk2δij)+ . . .

]
ϕj

Leads to the modes [Fukuyama & Lee’78]

ω(k) = ±
√

(ωpk + Gk2) (ωpk + (K + G)k2){
ωpk = 0 ⇒ ω(k) = ±k2

k = 0 ⇒ ω = ±ωpk
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Enter relaxation(
j i
ϕi

)
=
(
σij

o γ ij

γ ij Ωij/ωpk

)(
Ej

sj − ωpkϕj

)
σij

o = σoδ
ij + σH

o ε
ij , γ ij = γδij +

√
νεij ,Ωij = Ωδij + ωpkε

ij

Conductivity

σxx (ω) = σo + ν ωpk
(1− a2)(−iω + Ω)− 2aωpk

(−iω + Ω)2 + ω2
pk

ν = ρ

B .

new: a ≡ γ/
√
ν asymmetry parameter.

Positivity of entropy production:

γ2 ≤ σoΩ
ωpk
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Fit to data on GaAs heterojunctions (2DEG) [YP Chen at al, Nature Physics’06],
[YP Chen et al, International Journal of Modern Physics B’07], [YP Chen, PhD thesis’05]
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Ω increases as melting is approached: shorter-lived magnetophonon.
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The fits require a nonzero asymmetry parameter a 6= 0:
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a 6= 0 leads to a violation of the Fukuyama-Lee sum rule

S = π

2 (1− a2)νωpk

Consistent with previous violations reported in [YP Chen et al PRL’03].
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Compute relaxation parameters? Use Kubo formulas

Ω = ωpk lim
ω→0

lim
Ω,γ→0

1
ω
ImGR

ϕ̇x ϕ̇x
(ω) ,

γ = lim
ω→0

lim
Ω,γ→0

1
ω
ImGR

jx ϕ̇x
(ω) ,

Now need to compute ϕ̇.
Mobile dislocations

Ωvor = 2x
σn
νωpk , γvor = x

√
ν
σH

n
σn

⇒ Ω
aωpk

= 2 .

Relaxation into current Hdis = 1√
ν

∫
d2xεijϕi (x)jj(x) .

Ωdis = ωpkσ0
ν

, γdis = σ0√
ν
⇒ Ω

aωpk
= 1 .

25



Different microscopic relaxation mechanisms appear to be at play in
the different samples:
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I have described how to construct EFTs of pseudo-Goldstones (weak
explicit symmetry breaking): applications to superfluids, CDWs, 2d
Wigner crystals.

Hydrodynamic theory of the magnetophonon: quantitatively
accounts for experimental data on 2DEG.

Distinct relaxation mechanisms observed in data: mobile defects or
universal relaxation into currents.

At zero field, detailed checks of the hydrodynamic theory of relaxed
density waves using Gauge/Gravity duality.

Similar universal relaxation into currents observed in [arXiv:1812.08118],
[arXiv:1904.11445] with Andrea Amoretti, Daniel Areán and Daniele
Musso.

27


