Instruction Booklet

\author{

-
 103-462
 VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (10 MHz)
}

June 1977

TRADE SECRETS

The information contained in/on this document constitutes trade secrets of Microdyne Corporation and, therefore, the user of this information covenants and agrees that he/it will not, nor will he/it cause others to copy or reproduce said information, either in whole or in part, or manufacture, produce, sell or lease any product copied from or essentially based upon the information contained herein without prior written approval of Microdyne Corporation.

ADDENDUM

The receiver for which this manual is provided has been modified for either short-loop phase lock or long-loop phase lock operation. To convert from one operation to the other requires only the replacement of module A10.

For long-loop operation, the 100-089 Calibration/Reference Oscillator is employed in the receiver; the loop is centered around the second local oscillator. For short-loop operation, the 103-462 VCXO module is employed; the loop is centered around the VCXO (reference) oscillator. The short-loop is limited to a $\pm 5 \mathrm{kHz}$ search range.

To permit the standard 100-089 Calibration/Reference Oscillator to be used in the modified receiver, a jumper must be placed across pins 9 and 10 of the module.

The second local oscillator receptacle XA5 and the receptacle for A10 have had wiring changes as part of the modification. These are shown below.

10 MHz VCXO MODULE

DESCRIPTION

The 103-462 VCXO Module is designed for use in the Microdyne series of telemetry receivers which has the requirement for a short loop phase lock system. The VCXO Module permits a phase lock loop centered around the reference oscillator in lieu of the second local oscillator as in the long loop phase system.

A schematic diagram of the VCXO module is shown in figure 3. The module consists basically of a summing amplifier U1, crystal oscillator Q1, buffer amplifier Q2, and output drivers Q3 and Q4. U1 sums its two inputs (PM humbucking and AFC/APC control) to develop a control voltage for the crystal oscillator. The mean frequency of the oscillator is 10.005 MHz , controlled by Y1. The control voltage for U1 sets the actual frequency of the oscillator. The output of the oscillator is buffered by Q2 and applied through the output drivers to the LO monitor and LO output terminations.

MAINTENANCE

The following equipment is recommended for servicing and maintaining the VCXO module; equivalent equipment may be used:

Extender Module	Microdyne 300-355
DC Voltmeter	Fluke 8000A
Power Supply	HP6216
Frequency Counter	HP5300B
RF Millivoltmeter	HP411A

PREVENTIVE MAINTENANCE

The design of the module eleminates the need for any extensive preventive maintenance. Preventive maintenance is limited to a semiannual check of the connector for corrosion and loose pins, and the module itself for signs of damage and loose components.

TROUBLESHOOTING

In the event of a malfunction, the trouble should be isolated to one of the circuits employed in the module. This may be accomplished using normal signal tracing methods. Once the defective circuit is found, the individual components can then be checked to locate the cause of the fault.

ALIGNMENT

The following are the recommended alignment procedures for the VCXO module. These procedures should be conducted after any repair of the module and may be used as a troubleshooting aid.
a. Remove the cover from the module and connect the module to the parent receiver through the extender module, Microdyne 300-355.
b. Remove the demodulator from the receiver. Place the receiver in the BAL operate mode. Using a cliplead, ground E9 of the VCXO module.
c. Apply power to the receiver.
d. Connect the DC voltmeter to pin 6 of U 1 on the VCXO module. Adjust R 1 for $0.000(\pm 0.001) V$ DC.
e. Connect the frequency counter to connector J7 (Ref Osc Out) on the rear panel of the receiver. Adjust R 3 for a counter reading of $10.000 \mathrm{MHz}, \pm 200 \mathrm{~Hz}$.
f. Connect the DC voltmeter to R 4 and adjust R 4 for an approximate +15 V DC indication on the voltmeter.
g. Remove the ground from E9 of the module. Using the power supply, apply $+500(\pm 2) \mathrm{mV}$ DC to E9. Adjust R2 for a $10.005 \mathrm{MHz}, \pm 200 \mathrm{~Hz}$, indication on the frequency counter (J7).
h. Apply $-500(\pm 2) \mathrm{mV}$ DC to E9. Adjust R 4 for a $9.995 \mathrm{MHz}, \pm 200 \mathrm{~Hz}$, indication on the frequency counter.
i. Disconnect the frequency counter and connect the RF millivoltmeter to J7. Verify that the output level is $-20(\pm 3) \mathrm{dBm}$.

This completes the alignment; remove power from the receiver. Disconnect the test equipment and install the module in the receiver.

REPLACEABLE PARTS LIST

The following replaceable parts list provides the reference designation, description, manufacturer, and manufacturer's part number for each electrical component used in the VCXO Module. Include all information when ordering spare or replaceable components.

Module Housing

Reference
 Designation

A1 $\quad 10.0 \mathrm{MHz}$ VCXO Printed Circuit Board; see breakdown listing below
P1 Connector, Cannon DBM-13W3P
P1A1 Insert, p/o W1, Cannon DM53740-1
P1A2 Not Assigned
P1A3 Insert, p/o W2, Cannon DM53740-1

W1 Cable Assembly, Microdyne 203-714-7
W2 Cable Assembly, Microdyne 203-714-4

A1, Printed Circuit Board Assembly
Reference $\quad \underline{\text { Description }}$
$\underline{\text { Designation }}$

C1
thru Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V-103M
C3
C4
C5
Capacitor, ceramic, $0.33 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-100-651-334M
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie $8131-\mathrm{B} 106-\mathrm{X} 5 \mathrm{~V}-103 \mathrm{M}$
C6
Capacitor, ceramic, $150 \mathrm{pF} \pm 5 \%$, 100V, Erie 8111-100-COG-151J
C7
Capacitor, ceramic, $750 \mathrm{pF} \pm 5 \%$, 100V, Erie 8111-100-COG-751J
C8
Capacitor, ceramic, $620 \mathrm{pF} \pm 5 \%$, 100V, Erie 8111-100-COG-621J
C9
C10
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V-103M

C11
Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V-103M

C12
C13
C14
thru Capacitor, ceramic, $0.01 \mu \mathrm{~F} \pm 20 \%$, 100V, Erie 8131-B106-X5V-103M
C18
CR1 Diode, silicon, 1N914
CR2 Diode, varactor, Microdyne 201-268
CR3 Diode, varactor, Microdyne 201-268

Replaceable Parts List - A1, Printed Circuit Board Assembly, continued

Reference
 Designation

Description

E1	Termination, AMP 61067-1
E2	Termination, AMP 61067-1
E3	Termination, p/o W1
E4	Termination, p/o W2
E5	
thru	Termination, AMP 61067-1
E10	

L1 Inductor, $1000 \mu \mathrm{H}$, Jeffers 1331-35J
L2 Inductor, $120 \mu \mathrm{H}$, Jeffers 1315-14J
L3 Inductor, $120 \mu \mathrm{H}$, Jeffers 1315-14J
L4
L5
L6
Inductor, $27 \mu \mathrm{H}$, Jeffers 4455-2J
Inductor, $120 \mu \mathrm{H}$, Jeffers 1315-14J
Inductor, $0.47 \mu \mathrm{H}$, Jeffers $4425-2 \mathrm{M}$
Q1
thru Transistor, RCA 2N5179
Q4
R1 Potentiometer, 10K, Bourns 66XR10K
R2
Potentiometer, 20K, Bourns 66XR20K
R3
Potentiometer, 100 K , Bourns 66XR100K
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
Potentiometer, 10K, Bourns 66XR10K
Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5125
Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB5125
Resistor, fixed composition, $110 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB1145
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1 045
Resistor, fixed composition, $100 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1045
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $4.3 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB4325
Resistor, fixed composition, $620 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB6215
Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1025
Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5125
Resistor, fixed composition, $9.1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB9125
Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 025
Resistor, fixed composition, $39 \Omega \pm 5 \%$, $\frac{1}{4} w$, Allen Bradley CB3905
Resistor, fixed composition, $10 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1 005
Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{~W}$, Allen Bradley CB5 125
Resistor, fixed composition, $9.1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB9125
Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 025
Resistor, fixed composition, $1 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1 025

Replaceable Parts List - A1, Printed Circuit Board Assembly, continued
Reference
Designation

R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34

U1
Y1

Resistor, fixed composition, $150 \Omega \pm 5 \%, \frac{1}{4} w$, Allen Bradley CB1515 Resistor, fixed composition, $33 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB3305
Resistor, fixed composition, $150 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1515
Resistor, fixed composition, $150 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1515
Resistor, fixed composition, $33 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB3305
Resistor, fixed composition, $150 \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB1515
Resistor, fixed composition, $47 \mathrm{~K} \Omega \pm 5 \%$, $\frac{1}{4} \mathrm{w}$, Allen Bradley CB4735
Resistor, fixed composition, $100 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1 015
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $47 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB4705
Resistor, fixed composition, $10 \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB1005
Resistor, fixed composition, $5.1 \mathrm{~K} \Omega \pm 5 \%, \frac{1}{4} \mathrm{w}$, Allen Bradley CB5125
Operational Amplifier, Analog Devices AD502J
10. 005 MHz Crystal, Piezo 0152617

Figure 1. Module Wiring Diagram

Figure 2. A1, PC Board Assembly, Component Location

