
IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 6, NO. 2, JUNE 2007 149

A Fast Job Scheduling System for a Wide Range of
Bioinformatic Applications

Angelo Boccia, Gianluca Busiello, Luciano Milanesi, and Giovanni Paolella*

Abstract—Bioinformatic tools are often used by researchers
through interactive Web interfaces, resulting in a strong demand
for computational resources. The tools are of different kind and
range from simple, quick tasks, to complex analyses requiring
minutes to hours of processing time and often longer than that.
Batteries of computational nodes, such as those found in parallel
clusters, provide a platform of choice for this application, espe-
cially when a relatively large number of concurrent requests is
expected. Here, we describe a scheduling architecture operating at
the application level, able to distribute jobs over a large number
of hierarchically organized nodes. While not contrasting and
peacefully living together with low-level scheduling software, the
system takes advantage of tools, such as SQL servers, commonly
used in Web applications, to produce low latency and performance
which compares well and often surpasses that of more traditional,
dedicated schedulers. The system provides the basic function-
ality necessary to node selection, task execution and service
management and monitoring, and may combine loosely linked
computational resources, such as those located in geographically
distinct sites.

Index Terms—Cluster computing, job scheduling, PHP, Web in-
terface.

I. INTRODUCTION

I N THE LAST decade a large number of Web sites offering
bioinformatic services have been created, and their use is

now part of a scientist’s daily “routine.” In addition to docu-
ments and databases, they often provide interactive access to
the execution of programs, ranging from simple tasks, such
as simple manipulations of nucleotide or protein sequences,
to sophisticated database searches and structural predictions,
that may require powerful computational resources and that
take advantage of the ability of the system to transfer the
execution onto specialized computational nodes. In this sense,
the availability of clusters of computing units has emerged, as
a viable alternative to monolithic multiprocessor servers, for

Manuscript received November 21, 2006; revised March 1, 2007. This work
was supported by the Ministero dell’Istruzione dell’Università e della Ricerca
(MIUR) under the PON 2004 (SCoPE), FIRB (LITBIO), PRIN 2005, and Bioin-
foGRID European projects. Asterisk indicates corresponding author.

A. Boccia is with CEBSMA, Universià degli Studi di Napoli Federico II,
Napoli, Italy, and also with Ceinge Biotecnologie Avanzate, 80145 Napoli, Italy
(e-mail: boccia@ceinge.unina.it).

G. Busiello is with Ceinge Biotecnologie Avanzate, 80145 Napoli, Italy
(e-mail: busiello@ceinge.unina.it).

L. Milanesi is with Biomedical Technologies Institute (ITB), National
Research Council, 20090 Segrate, Italy, and also with CILEA, Segrate, Italy
(e-mail: luciano.milanesi@itb.cnr.it).

*G. Paolella is with Dipartimento di Biochimica e Biotecnologie Mediche,
Universià degli Studi di Napoli Federico II, 80121 Napoli, Italy, and also with
Ceinge Biotecnologie Avanzate, 80145 Napoli, Italy (e-mail: paolella@dbbm.
unina.it).

Digital Object Identifier 10.1109/TNB.2007.897474

their ability to provide, at a reasonable cost, a highly scalable
and operationally fast co mputing engine.

The distribution of the load, generated by a large number of
requests coming from the users, requires a specific software
architecture, where a central role is played by the job sched-
uler, a piece of software which is responsible for efficiently
distributing the execution of the jobs to the available nodes.
There are today several implementations of scheduling systems,
which include several batch job schedulers, such as openPBS
[1], PBSPro [2], Maui [9], MauiME [10], Torque [11], and
LoadLeveler [12]. Specific alternatives are Sun Grid Engine
(SGE) [3], a scheduling system oriented to the grid environ-
ment, and Condor [7], a high throughput scheduler, tuned to
deliver large amounts of processing capacity over long periods
of time. An efficient job distribution may also be obtained, but
with deeper system administration involvement, with standard
cluster software acting at the kernel level, such as openMosix
[4]–[6], a load balance system for high throughput computing.
More recently, new roads have been explored, which use more
unconventional tools, such as OAR [8], an attempt to implement
a PERL cluster resource manager operating at the application
level.

One problem with batch schedulers is that most of them are
optimized for the solution of large scale problems, requiring
long computation times, and mainly focus on the completion
of job execution. In this sense, these schedulers do not repre-
sents the best choice in an interactive situation, such as program
execution through a Web interface. As it is not always easy to a
priori distinguish between quick and slow tasks, given that the
same program may end up by being very fast or really slow, ac-
cording to the specific combination of parameters and datasets
involved, an important point becomes the ability to avoid un-
necessary delays in job submission, which would result in long
latency, unacceptable for interactive jobs.

Here we present a new scheduling system, named FJS, de-
signed according to the requirements of a typical Web environ-
ment, which, by focusing on the essential operations needed to
handle the submitted jobs, only require very little activity to
launch the requested task. The system, which may easily coexist
with other schedulers on the same hardware, has been developed
by using PHP [13], a high-level scripting language, and relies
on a SQL DBMS, MySql [14], for managing the node status
information.

II. SYSTEM ARCHITECTURE

Some schedulers appear, to the user who is trying to submit a
job, as a monolithic entity, which takes care of matching the re-
quest to the best available node, and then executes the task, often

1536-1241/$25.00 © 2007 IEEE

150 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 6, NO. 2, JUNE 2007

Fig. 1. Global architecture of the scheduling system, showing the central role of the broker, used to provide the requester with the best available resources.

also allowing monitoring and optional interruption of execution.
An alternative model, used for example in Condor [7], uses a
broker mechanism in order to find the most suitable node; all
subsequent interactions between requesting and executing hosts
is not mediated by the broker, resulting in lighter load on the
broker itself and better scalability. This second approach was
used in FJS, as illustrated in Fig. 1, where at the core there is a
broker, able to quickly respond to requests for the best resource,
available in the distributed computational system. Submission
of a job consists of a request for a node from the broker, followed
by remote execution of the command on that node. To match
the request to the current load and to the resources available on
the nodes, the broker makes use of the information contained in
the DB server, a relational database continuously updated with
information coming from the nodes. A small script, running on
each node, periodically carries out the updates. The information
contained in the DB is also used to manage the configuration of
nodes and services and to interactively display the status of the
cluster.

A. Node Status Collector

Each node in the cluster is independently responsible for
getting its own state, and communicating it to the DB server.
The state consists of static information, describing the hardware
configuration and software version, the presence in active form
of specific services and the continuously changing load of the
node. In detail the state consists of:

— machine type;
— number and type of processors;

— RAM configuration;
— OS version;
— list of installed services;
— load level;
— memory usage;
— swap memory state.
Most information is directly taken from the /proc virtual file

system, made available by the kernel; for installed services a
specific directory, maintained by the administrator, contains a
file for each installed service, whose content is used to record
the current state.

A simple script, running as a daemon on each node, periodi-
cally collects the described information, and immediately stores
it in the DB server, by using an SQL update command. This pe-
riodic update is also used as a heartbeat signal, which flags the
node itself as active to the system.

B. DB Server

A relational SQL server contains the configuration and status
information provided by each node, together with additional
info on the recent usage of each node by the scheduling system.
For each node, the DB stores the information indicated in
Table I, which reports the organization of the “nodes” table.

Another table, “hosts,” is used to keep track of the node re-
quests, granted to each client host. The table is used to limit the
number of node assignments granted to each host and is period-
ically flushed to guarantee acceptable performance. Additional
tables on the DB-server are used to contain the descriptive in-
formation, relative to the various available services and other.

BOCCIA et al.: A FAST JOB SCHEDULING SYSTEM FOR A WIDE RANGE OF BIOINFORMATIC APPLICATIONS 151

TABLE I
INFO STORED IN “NODES” TABLE

C. Broker

The broker has been implemented in the form of a Web ser-
vice and operates by retrieving the load and configuration data
from the DB server and by giving back the IP address of the se-
lected node. The node is chosen from a list of nodes matching
a number of requirements, which take into account parameters
such as system load, memory and disk space resources, number
of times the node has been used in the last second, and, option-
ally, additional service requirements as described below. When
no suitable node may be given back, the search is repeated sev-
eral times, at short defined intervals, until a node is obtained or a
timeout is reached, thus providing a short term, internal queuing
system. The approach, involving simple SQL requests and fast
computation, results in very fast response times.

D. Job Execution

A number of alternative methods may be used to submit the
job to the node. As for other systems, rsh may be used in a closed
environment, with ssh as a slower, but more secure alternative
for communication over an open connection. Another approach
we used is to create a php wrapper for program execution, which
is installed on the nodes and used as a Web service.

E. Web Application or Other Clients

The role of the Web application server is to provide Web ac-
cess to the bioinformatic tools and to remotely launch the task,
by using the IP previously obtained from the broker. For each
command, a handler is present on the Web application server,
which transparently translates the incoming requests into com-
mand execution on the selected node. If no suitable node is
found available, within the requested amount of time, the client
is expected to handle the negative reply in the best possible
way, for example by trying again, if possible, or submitting to
a batch queue or returning a “Not enough computational re-
sources, please try later” message.

Other applications, such as scripts in PHP or other languages,
may also directly request nodes from the broker Web service,
and then submit the request to the node. Also in this case it is re-
quested that the client handle the “no node available” situation.

F. Virtual Nodes
The system is currently installed on a 56 node cluster, and is

expected to scale up easily within a factor of at least ten times.
However, as at some point the system is going to hit a ceiling,
an additional mechanism was introduced, aimed to organize the
nodes in a hierarchical way. This turns out to be flexible enough
to virtually join the system to sets of nodes located in a sepa-
rated site, or not directly accessible from the scheduler, or char-
acterized by fundamentally different performance. The resulting
system is able to transparently handle requests, without any need
for the requester to know where the program is being executed.

The hierarchy may be produced by grouping together nodes,
located, for example, in an external network, and making them
available to the local cluster as a single, more powerful, but
slower to respond node. The scheduler has now the option to
distribute job requests to the virtual node, when the local re-
sources are not suitable to execute the job or simply not enough
for the currently requested load.

The system merges distinct computational resources by using
the following strategy.

— The nodes of the remote cluster are configured on the local
cluster as a single “virtual” node with extended resources.

— A “status collector” on the remote cluster gathers the status
statistics from each node, summarizes them as a global
cluster status, and store this information as the virtual node
status.

— The scheduler, in computing the best available resources,
takes into account the limitations introduced by virtual
nodes, such as higher network latency, and an additional
delay, due to the transfer of input and output files.

— An http service, installed on a cluster gateway, listens for
a remote job submission and translates the remote submis-
sion request into a standard job submission to the local
cluster. It is in charge of getting all the command parame-
ters, store the input and output data as temporary files, set
up the execution environment, launch the command, and
return the results.

Considering the expected scheduling and execution overhead,
the job submission to the virtual nodes is of course preferred in
case of batch jobs and in case of overload of local resources.
This approach is currently being tested to combine two different
clusters located in geographically distinct sites, as in Fig. 2.

G. Configuration and Monitoring

Several aspects of the system can be configured by means of
a Web application (clusterManager), which also doubles as a
monitoring tool, used to display the current status of the cluster.

clusterManager (Fig. 3) is used to store the necessary config-
uration information into the DB. For each node the DB stores
parameters such as the maximum number of jobs that can be
submitted per second per node, maximum number of nodes to
grant per host, and other settings used for performance tuning.
clusterManager allows to temporary disable one or more nodes
in the cluster, to remove them from the pool of usable nodes. In

152 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 6, NO. 2, JUNE 2007

Fig. 2. Hierarchical architecture of the nodes, as viewed from the broker.

Fig. 3. clusterManager, a tool for configuring and monitoring the system.
(a) Node configuration page. (b) Dynamic graphical representation of the
current cluster status.

this way, for example, system maintenance may be carried out
on the cluster without interfering with overall system activity.

The information describing the available services is stored
in the DB, and is accessed through the same Web interface
described above. However service availability is not directly
configured, but independently controlled by the nodes them-
selves. In detail, the daemon running on each node periodically
checks for the presence of a configuration file—one for each
service—in a specific directory of the file system. Flags in this
file indicate if the service is installed and active on that node.

During the updates, the daemon transfers this information to the
central DB. This approach provides different modes of control.
In most cases the service configuration file is directly managed
by the administrator. In a more complex environment, with the
various services administered by different people, each admin-
istrator signals the availability of the service by modifying his
own file. A script might, for example, set the file to “not ac-
tive,” carry out the maintenance and then reset the file content to
“active.” The file might even be substituted by a custom script,
which, by itself might verify a number of conditions, such as
available ports, running processes, and so on.

Monitoring consists of querying the DB, and presenting the
information obtained in tabular or graphic form. A graphical
representation of the current status of the cluster is provided in
the form of a bar graph [Fig. 3(b)] which reports node avail-
ability, processor load, and number of running processes, to-
gether with some historical information. The refresh frequency
can be directly modified by the user from the Web interface.
In order to make it accessible by many contemporary users, the
system provides image caching, to reduce the load on the system
and to keep low the resources dedicated to monitoring.

III. JOB SCHEDULING

The scheduling routine returns a suitable node on the basis
of computational resources and hardware and software config-
uration requirements. The scheduler tries to avoid overloading
the nodes, by keeping track of the number of nodes assigned
and the number of requests from each client within one second.
This granularity was chosen by taking into account the update
frequency of the status on the DB.

A. Node Availability

In order to be selected, nodes must be configured as active
by the administrator and must be running regularly. The DB
update executed from the node doubles as a heartbeat signal,
with longer delays since the last update interpreted as a dead or
temporarily unavailable node.

B. Job Execution Type

Processor load and usage of swap memory are probably the
parameters that affect the performance most, once the job has
been scheduled and submitted. However, different jobs have dif-
ferent requirements in terms of interactivity. We defined three
typical situations, which correspond to different interactivity
requirements:

— fast, interactive jobs, which require the best possible per-
formance from the system;

— slower, but still interactive jobs, which, being intrinsically
slower, can tolerate somewhat lower performance;

— batch jobs, which do not pose specific requirements, but
must be executed in all cases, no matter how long the whole
process will take.

The behavior can be modulated by means of the configuration
options; the standard parameters correspond to the selection of:

— nodes with system load 25% and free swap memory
90% for faster jobs;

— nodes with system load 75% and free swap memory
90% for slower jobs;

BOCCIA et al.: A FAST JOB SCHEDULING SYSTEM FOR A WIDE RANGE OF BIOINFORMATIC APPLICATIONS 153

— all available nodes without special constraints on system
loading and swap memory for batch jobs.

C. Available Memory

If a job needs that a minimum amount of RAM is available
on the execution node, it may be indicated as a requirement, that
will be honored while choosing the node to be returned.

D. Service Availability on Node

Many tasks do not require specific configuration or installation
on the node, but some require that specific libraries or datasets are
available. This is taken into account by allowing the job request to
specify a service tag, that will force checking for the availability,
in active state, of the specific service on the node.

E. Job Distribution

By default the scheduler controls the load balance by dis-
tributing the processes to nodes with the highest free resources.
A random factor is added to the load status in order to avoid res-
electing always the same one, when more nodes share the same
load status.

F. Node Reuse

Balanced distribution is not always desirable. Sometimes, for
example when a large dataset has to be read from disk at the
beginning of a job, the shortest execution times are achieved by
reusing the same node (up to a point). In this case a requirement
can be specified to force the usage of the nodes already allo-
cated, before a new node is selected. A typical example is repre-
sented by multiple searches with blast against the same dataset;
in that case, the reuse of preloaded datasets, considerably im-
proves the performance.

G. Limiting the Number of Jobs Per Second

Considering the low latency provided by the broker in the se-
lection of the node, especially if compared to the granularity of
the status DB updates, additional control is used to try to avoid
overloading a given node, by repeatedly selecting it during the
relatively large time window before the execution is started and
the load becomes high enough to prevent its selection. To do
this, the system keeps track of the total number of times each
node has been used within the current second, by storing this
information in the DB as part of the node status. When this
number reaches the predefined maximum number of processes
to be submitted per second, the node is excluded from subse-
quent selections. This value depends on the number and type of
processors, and may be separately configured for each node.

Similarly, the number of processes launched from a specific
client may be limited, in order to obtain a better job distribution
and to prevent a single user from blocking the system with a
flood of repeated requests.

IV. ANALYSIS AND DISCUSSION

FJS was created as a result of a specific need for low la-
tency execution of interactively requested jobs on a collection
of nodes, as typical of current clusters. This emphasis is vis-
ible in Table II, where the main architectural features of FJS are
shown, compared with other job schedulers.

TABLE II
FJS ARCHITECTURAL FEATURES, COMPARED WITH OTHER JOB SCHEDULERS

TABLE III
BROKER PERFORMANCE TEST—AVERAGE OF 10000 REQUESTS

The system was tested in a typical environment where a single
http server was acting as a frontend, submitting jobs to a cluster
of 56 3 GHz P4 biprocessor nodes. The hardware used for the
DB server consisted of a 1000 MHz biprocessor PIII with 1 GB
RAM, and a 3 GHz P4 broker server. With the described config-
uration, the nodes updated the DB server once per second, with
each update taking around 2 ms. The resulting load on the DB
server was around 9% CPU time. In order to test the throughput
and the latency of the system, 1000 requests for nodes were
carried out from one to seven contemporary requesting clients.
The results are reported in Table III, where it appears that by
increasing the number of clients, the response time becomes
longer, but even at the heaviest load, the time to obtain a node
is well below 100 ms, for a total of over 130 nodes per second.
Of course with more reduced loads, the time is better, up to only
10 ms in the best case.

The reported performance indicates that, although the chosen
language is more typical of less critical scripts, such as dynamic
Web pages, the overall behavior of the system results in very fast
answers, with a job typically able to start within a few millisec-
onds of the request, even under relatively high load. This delay
is much shorter than that observed in other, batch oriented, sys-
tems, which may typically imply waits of up to a few seconds
before execution is started.

The various options for tuning node selection help to opti-
mize resource usage when parallel execution of many jobs is re-
quested. Scheduling execution of increasing number of BLAST
searches, a typical bioinformatics application, which depends
on the preload of a large dataset from disk, is reported in Fig. 4.
For a small number of processes (up to five to ten), execution on
a single node may be even faster than by using random distri-
bution on cluster nodes, thanks to the effect of dataset preload;
only when the number of processes goes beyond ten, the effect
of parallel execution on cluster nodes becomes relevant. Selec-
tion of the “node reuse” feature allows to take advantage of both

154 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 6, NO. 2, JUNE 2007

Fig. 4. Performance of the system on BLAST runs. A variable number of si-
multaneous BLAST searches was run on a single node (diamonds), with stan-
dard distribution (squares) or with node reuse (triangles). Total execution time
is reported.

preloading effect and cluster distribution, and results in the best
performance for both low and high numbers of simultaneous
searches.

The system is organized around a MySQL database, which is
known to be tuned for good performance, especially with small
datasets that can easily be kept in memory, as in this type of ap-
plication. Scaling up to around 500 nodes or a little more should
not be a problem, especially if better hardware is used for the DB
server, but well before reaching these numbers, it would prob-
ably be better to take advantage of the hierarchical option. This
would also allow to include in the system machines of different
level or location, especially considering that the requirement on
the node is minimal in terms of installation, and that the system
does not take over the calculating node or impose specific limi-
tations. In this sense it is fully compatible with other job sched-

uling software tools. Finally a useful benefit of this approach is
that the DB server, based on SQL language, can also be used
for data analysis, thus allowing easy internal system monitoring
and management.

ACKNOWLEDGMENT

The authors would like to thank M. Petrillo for suggestions
and useful discussions, and L. Cozzuto and C. Cantarella for
testing the system.

REFERENCES

[1] OpenPBS [Online]. Available: http://www.openpbs.org
[2] PBSPro [Online]. Available: http://www.altair.com/software/pbspro.

htm
[3] Sun Grid Engine [Online]. Available: http://www.sun.com/software/

gridware/index.xml
[4] OpenMosix [Online]. Available: http://openmosix.sourceforge.net
[5] OpenMosix, presented by Dr. Moshe Bar and MAASK [Online]. Avail-

able: http://openmosix.sourceforge.net/linux-kongress_2003_open-
Mosix.pdf

[6] openMosix past, present and future, a peek at 2.6 [Online]. Available:
http://howto.x-tend.be/openMosix.UKUUG2005/

[7] Condor [Online]. Available: http://www.cs.wisc.edu/condor/
[8] OAR [Online]. Available: http://oar.imag.fr
[9] Maui [Online]. Available: http://www.clusterresources.com/pages/

products/maui-cluster-scheduler.php
[10] Maui Scheduler Molokini Edition (MauiME) [Online]. Available:

http://mauischeduler.sourceforge.net
[11] Torque [Online]. Available: http://www.clusterresources.com/pages/

products/torque-resource-manager.php
[12] Tivoli Workload Scheduler LoadLeveler [Online]. Available:

http://www-03.ibm.com/systems/clusters/software/loadleveler.html
[13] PHP [Online]. Available: http://www.php.net
[14] MySql [Online]. Available: http://www.mysql.com

Authors’ photographs and biographies not available at the time of publication.

