Carnegie Mellon

Recitation: Cache Lab and Blocking

Carnegie Mellon

IMPORTANT INFORMATION

* Due date for Cache Lab

* First lab with coding and points for styling.

» Start preparing for the mid-term exam(previous years question
papers are a good place to start)

TODAY’S AGENDA
* Memory Organization
e Cache Organization

* Locality in Caches
e Cachelab

Carnegie Mellon

Memory Hierarchy

A
CPU registers hold words retrieved from L1
cache
Smaller, LO:
faster,)
costlier Registers
per byte
L1 cache holds cache lines retrieved from
L1: L1 cache L2 cache
(SRAM)
L2: L2 cache L2 cache holds cache lines retrieved
(SRAM) from main memory
Main Main memory holds disk blocks
L3: memory retrieved from local disks
Larger, (DRAM)
slower,
cheaper Local disks hold files
per byte Local secondary retrieved from disks on
storage remote network servers
(local disks)
Remote secondary storage
(tapes, distributed file systems, Web servers)

Memory Hierarchy

Registers

SRAM We will discuss this interaction

DRAM

Local Secondary storage

Remote Secondary storage

Carnegie Mellon

SRAM vs DRAM

« SRAM (cache)
» Faster (L1 cache: 1 CPU cycle)
« Smaller (Kilobytes (L1) or Megabytes (L2))
* More expensive and “energy-hungry”
» Closer to processor
« DRAM (main memory)
* Relatively slower (hundreds of CPU cycles)
« Larger (Gigabytes)
« Cheaper
« Farther away from processor

Locality

 Temporal locality

* Recently referenced items are likely
to be referenced again in the near future

e After accessing address X in memory, save the bytes in cache for
future access

 Example: Accessing a variable over and over again for printing onto
the screen

* Spatial locality

* Items with nearby addresses tend
to be referenced close together in time

* After accessing address X, save the block of memory around X in cache
for future access
 Example: Array access(think how this is spatial locality)

Memory Address

* Virtually or Physically addressed, the following is the format in
which the address is broken down to get the information required

to fetch a block of data from the cache

memory address

tag set index block offset

* Block offset: the least significant b bits

* Setindex: s bits(follows the block bits)
e Tag Bits: Address Size — b — s (the most significant bits remaining

after set bits and block bits)

Carnegie Mellon

Cache

« Acache is a set of 2”*s cache sets(S=2"s)

 Where “S” is the number of sets and “s” is the
number represented by the set bits.

« A cache setis a set of E cache lines
« E is called associativity
« If E=1, itis called “direct-mapped”

« Each cache line stores a block
« Each block has B = 2”b bytes

« Total Capacity = S*B*E

Carnegie Mellon

Visualization

E lines per set
A

e ~N
(
o000
Address of word:
eo0e t bits sbits | b bits
S = 25 sets Y Y Y
< eo0e tag set block
index offset
O 0 0000000000000 00OCOCEOGCEOGEOGEOSOEOSOSOO
o000
\.
data begins at this offset
v tag Ol1]2] *°-] B-1
. . ¥ J
valid bit ~—

B = 2P bytes per cache block (the data)

Cache

Memory

Carnegie Mellon

General Cache Concepts

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
00000000000 O0CDOCGOGEOG OO

Carnegie Mellon

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Block b is not in cache:
Cache 8 12 14 3 .
Miss!
Block b is fetched from
12 Request: 12
memory

Memory 5 N > 3 Block b is stored in cache
* Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 > 10 11 determines which block
12 13 14 15 gets evicted (victim)
00000000 000O0COCGOGOS OO

General Caching Concepts:

Types of Cache Misses

e Cold (compulsory) miss

— The first access to a block has to be a miss as the
corresponding block would not have been cached yet.

e Conflict miss

— Conflict misses occur when the level k cache is large enough,
but multiple data objects all map to the same level k block

* E.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

* Capacity miss

— Occurs when the set of active cache blocks (working set) is
larger than the cache

Carnegie Mellon

Cache Lab

e Part (a) Building a cache simulator:
If you have not started this do it right away.

e Part (b) Optimizing matrix transpose

This is where the concept of blocking comes
into play

Carnegie Mellon

Part (a) : Cache simulator

* A cache simulator is NOT a cache!
* Memory contents NOT stored
* Block offsets are NOT used — the b bits in your address don’t matter.
* Simply count hits, misses, and evictions
* Basically use the meta-data to calculate the above parameters

* Your cache simulator needs to work for different s, b, E, given at run
time.

* Use LRU — Least Recently Used replacement policy

e Evict the least recently used block from the cache to make room for
the next block.

* Pointer manipulations required for house keeping of these cache
blocks.

Getopt

egetopt() automates parsing elements on the unix
command line If function declaration is missing

— Typically called in a loop to retrieve arguments
— Its return value is stored in a local variable
— When getopt() returns -1, there are no more options

*To use getopt, your program must include the header
file unistd.h

*If not running on the shark machines then you will need
#tinclude <getopt.h>.

— Better Advice: Run on Shark Machines |

Getopt

* A switch statement is used on the local variable holding the
return value from getopt()

— Each command line input case can be taken care of separately

— “optarg” is an important variable — it will point to the value of
the option argument

 Think about how to handle invalid inputs

 For more information,
— look at man 3 getopt

— http://www.gnu.org/software/libc/manual/htm|_node/Getopt.
html

Part (a) : getopt Example

int main(int argc, char** argv){
int opt, X,Y;
/* looping over arguments */
while(-1 !'= (opt = getopt(argc, argv, “x:y:"))){
/* determine which argument it’s processing */
switch(opt) {
case 'x':
X = atoi(optarg);
break;

y':
y = atoi(optarg);
break;
default:
printf(“wrong argument\n");
break;

case

}
}
* Suppose the program executable was called “foo”. Then we would call

“/foo -x 1 —y 3“ to pass the value 1 to variable x and 3 to y.

Part (a) : Malloc/free

* Use malloc to allocate memory on the heap

* Always free what you malloc, otherwise may
get memory leak

* Some_pointer_you_malloced = malloc(sizeof(int));
* Free(some_pointer_you_malloced);

* Don’t free memory that you didn’t allocate

* Every allocated location is represented by a pointer, the
meta-data for the allocated locations are managed by
the memory allocator.

Carnegie Mellon

Part (b) Matrix Transpose

Matrix Transpose (A -> B)

Matrix A Matrix B
' GEE——
[T] 2 4 1] 5 9 13
c & 7 g 2| 6 10 14
\
9 10 11 12 3 7 11 15
13 14 15 16 4 8 12 16

How do we optimize this operation using the cache?

Optimization in our case Is to reduce the number of
cache misses, while performing the matrix transpose.

Carnegie Mellon

Part (b) : Efficient Matrix Transpose

m Suppose Block size is 8 bytes ?

Matrix A Matrix B

m Access A[0][0] cache miss Should we handle 3 & 4
m Access B[0][0] cache miss nextor5&6?

m Access A[0][1] cache hit

m Access B[1][0] cache miss

Part (b) : Blocking

* Blocking: divide matrix into sub-matrices, such that it is
feasible to have a row of the sub-matrix in a cache line,
and access them such that locality factor is taken
advantage of.

e Size of sub-matrix depends on cache block size, cache
Size, input matrix size.

 Try different sub-matrix sizes.

Carnegie Mellon

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; 1 < n; 1i++)
for (J = 0; J < n; J++)
for (k = 0; k < n; k++)
cli*n + j] += al[i*n + k] * b[k*n + J];

S o

Il
*

Carnegie Mellon

Cache Miss Analysis

e Assume:

— Matrix elements are doubles
— Cache block = 8 doubles
— Cache size C << n (much smaller than n)

* First iteration:
— n/8 +n =9n/8 misses

— Afterwards in cache:
(schematic) - I

I
*

I
*

8 wide

Carnegie Mellon

Cache Miss Analysis

* Assume:
— Matrix elements are doubles
— Cache block = 8 doubles
— Cache size C << n (much smaller than n)

e Second iteration:

— Again:
n/8 + n = 9n/8 misses

\
J

e Total misses: -
— 9n/8 *n?=(9/8) * n3

I
*

8 wide

Carnegie Mellon

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i1 < n; i+=B)
for (j = 0; 3 < n; J+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < 14B; i++)
for (j1 = j; Jjl1 < 3+B; Jj++)
for (k1 = k; k1l < k+B; k++)
c[il*n+j1l] += al[il*n + k1]*b[kl*n + j17;

j1

I

Block size B x B

Carnegie Mellon

Cache Miss Analysis

* Assume:
— Cache block = 8 doubles
— Cache size C << n (much smaller than n)
— Three blocks fit into cache: 3B2< C

* First (block) iteration:
— B2/8 misses for each block
— 2n/B * B2/8 =nB/4

(omitting matrix c) n/B blocks
A
'd N\
— Afterwards in cache N l.... .
(schematic)]
— * =

Block size B x B

I
*

Carnegie Mellon

Cache Miss Analysis

* Assume:
— Cache block = 8 doubles
— Cache size C << n (much smaller than n)
— Three blocks fit into cache: 3B2< C

. . n/B blocks
e Second (block) iteration: —N
— Same as first iteration™ ENEEN
— 2n/B * B2/8 = nB/4 = *

Block size B x B

* Total misses:
— nB/4 * (n/B)? = n3/(4B)

Carnegie Mellon

Part(b) : Blocking Summary

* No blocking: (9/8) * n3
* Blocking: 1/(4B) * n3

» Suggest largest possible block size B, but limit 3B? < C!

e Reason for dramatic difference:

— Matrix multiplication has inherent temporal locality:
* Input data: 3n?, computation 2n3
* Every array elements used O(n) times!

— But program has to be written properly

* For a detailed discussion of blocking:
— http://csapp.cs.cmu.edu/public/waside.html

Carnegie Mellon

Part (b) : Specs

« Cache:
— You get 1 kilobytes of cache
— Directly mapped (E=1)
— Block size is 32 bytes (b=5)
— There are 32 sets (s=5)
* Test Matrices:
— 32 by 32
— 64 by 64
— 61 by 67

Carnegie Mellon

Part (b)

* Things you'll need to know:
— Warnings are errors
— Header files
— Useful functions

Carnegie Mellon

Warnings are Errors

 Strict compilation flags

* Reasons:
— Avoid potential errors that are hard to debug
— Learn good habits from the beginning

* Add “~-Werror” to your compilation flags

Missing Header Files

e Remember to include files that we will be
using functions from

* |f function declaration is missing
— Find corresponding header files
— Use: man <function-name>

* Live example
— man 3 getopt

-
Style

* Read the style guideline
* But | already read it!

* Good, read it again.

 Some important points- andrew id, Program description,
function descriptions, freeing allocated memory, 80 character

line limit.
 There are many more of these in the style guideline.

* Pay special attention to Error checking
e Functions don’t always work
 What happens when a syscall fails??
* Take a look at the wrappers provided in csapp.c
* You are welcome to copy them over to csim.c

Carnegie Mellon

Read the Writeup over and over!
Questions?

