
Carnegie Mellon

Recitation: Cache Lab and Blocking

Carnegie Mellon

TODAY’S AGENDA
• Memory Organization
• Cache Organization
• Locality in Caches
• Cache Lab

IMPORTANT INFORMATION
• Due date for Cache Lab
• First lab with coding and points for styling.
• Start preparing for the mid-term exam(previous years question

papers are a good place to start)

Carnegie Mellon

Memory Hierarchy

We will discuss this interaction

• Registers

• SRAM

• DRAM

• Local Secondary storage

• Remote Secondary storage

Carnegie Mellon

SRAM vs DRAM

• SRAM (cache)

• Faster (L1 cache: 1 CPU cycle)

• Smaller (Kilobytes (L1) or Megabytes (L2))

• More expensive and “energy-hungry”

• Closer to processor

• DRAM (main memory)

• Relatively slower (hundreds of CPU cycles)

• Larger (Gigabytes)

• Cheaper

• Farther away from processor

Carnegie Mellon

Locality

• Temporal locality
• Recently referenced items are likely

to be referenced again in the near future
• After accessing address X in memory, save the bytes in cache for

future access
• Example: Accessing a variable over and over again for printing onto

the screen

• Spatial locality
• Items with nearby addresses tend

to be referenced close together in time
• After accessing address X, save the block of memory around X in cache

for future access
• Example: Array access(think how this is spatial locality)

Carnegie Mellon

Memory Address

• Virtually or Physically addressed, the following is the format in
which the address is broken down to get the information required
to fetch a block of data from the cache

• Block offset: the least significant b bits
• Set index: s bits(follows the block bits)
• Tag Bits: Address Size – b – s (the most significant bits remaining

after set bits and block bits)

Carnegie Mellon

Cache

• A cache is a set of 2^s cache sets(S=2^s)

• Where “S” is the number of sets and “s” is the
number represented by the set bits.

• A cache set is a set of E cache lines
• E is called associativity

• If E=1, it is called “direct-mapped”

• Each cache line stores a block
• Each block has B = 2^b bytes

• Total Capacity = S*B*E

Carnegie Mellon

Visualization
E lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

Carnegie Mellon

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Carnegie Mellon

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Carnegie Mellon

General Caching Concepts:
Types of Cache Misses

• Cold (compulsory) miss
– The first access to a block has to be a miss as the

corresponding block would not have been cached yet.

• Conflict miss
– Conflict misses occur when the level k cache is large enough,

but multiple data objects all map to the same level k block
• E.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

• Capacity miss
– Occurs when the set of active cache blocks (working set) is

larger than the cache

Carnegie Mellon

Cache Lab

• Part (a) Building a cache simulator:

If you have not started this do it right away.

• Part (b) Optimizing matrix transpose

This is where the concept of blocking comes
into play

Carnegie Mellon

Part (a) : Cache simulator

• A cache simulator is NOT a cache!
• Memory contents NOT stored
• Block offsets are NOT used – the b bits in your address don’t matter.
• Simply count hits, misses, and evictions
• Basically use the meta-data to calculate the above parameters

• Your cache simulator needs to work for different s, b, E, given at run
time.

• Use LRU – Least Recently Used replacement policy
• Evict the least recently used block from the cache to make room for

the next block.
• Pointer manipulations required for house keeping of these cache

blocks.

Carnegie Mellon

Getopt

•getopt() automates parsing elements on the unix
command line If function declaration is missing
– Typically called in a loop to retrieve arguments
– Its return value is stored in a local variable
– When getopt() returns -1, there are no more options

•To use getopt, your program must include the header
file unistd.h

•If not running on the shark machines then you will need
#include <getopt.h>.

– Better Advice: Run on Shark Machines !

Carnegie Mellon

Getopt

• A switch statement is used on the local variable holding the
return value from getopt()

– Each command line input case can be taken care of separately
– “optarg” is an important variable – it will point to the value of

the option argument

• Think about how to handle invalid inputs

• For more information,
– look at man 3 getopt
– http://www.gnu.org/software/libc/manual/html_node/Getopt.

html

Carnegie Mellon

Part (a) : getopt Example
int main(int argc, char** argv){

int opt, x,y;
/* looping over arguments */
while(-1 != (opt = getopt(argc, argv, “x:y:"))){

/* determine which argument it’s processing */
switch(opt) {

case 'x':
x = atoi(optarg);
break;

case ‘y':
y = atoi(optarg);
break;

default:
printf(“wrong argument\n");
break;

}
}

}

• Suppose the program executable was called “foo”. Then we would call
“./foo -x 1 –y 3“ to pass the value 1 to variable x and 3 to y.

Carnegie Mellon

Part (a) : Malloc/free

• Use malloc to allocate memory on the heap

• Always free what you malloc, otherwise may
get memory leak

• Some_pointer_you_malloced = malloc(sizeof(int));

• Free(some_pointer_you_malloced);

• Don’t free memory that you didn’t allocate
• Every allocated location is represented by a pointer, the

meta-data for the allocated locations are managed by
the memory allocator.

Carnegie Mellon

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Part (b) Matrix Transpose

• Matrix Transpose (A -> B)

Matrix A Matrix B

• How do we optimize this operation using the cache?

• Optimization in our case is to reduce the number of
cache misses, while performing the matrix transpose.

Carnegie Mellon

Part (b) : Efficient Matrix Transpose
 Suppose Block size is 8 bytes ?

 Access A[0][0] cache miss Should we handle 3 & 4

 Access B[0][0] cache miss next or 5 & 6 ?

 Access A[0][1] cache hit

 Access B[1][0] cache miss

Carnegie Mellon

Part (b) : Blocking

• Blocking: divide matrix into sub-matrices, such that it is
feasible to have a row of the sub-matrix in a cache line,
and access them such that locality factor is taken
advantage of.

• Size of sub-matrix depends on cache block size, cache
size, input matrix size.

• Try different sub-matrix sizes.

Carnegie Mellon

Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];

}

Carnegie Mellon

Cache Miss Analysis
• Assume:

– Matrix elements are doubles
– Cache block = 8 doubles
– Cache size C << n (much smaller than n)

• First iteration:
– n/8 + n = 9n/8 misses

– Afterwards in cache:
(schematic)

*=

n

*=

8 wide

Carnegie Mellon

Cache Miss Analysis
• Assume:

– Matrix elements are doubles
– Cache block = 8 doubles
– Cache size C << n (much smaller than n)

• Second iteration:
– Again:

n/8 + n = 9n/8 misses

• Total misses:
– 9n/8 * n2 = (9/8) * n3

n

*=

8 wide

Carnegie Mellon

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*

c

=
c

+

Block size B x B

Carnegie Mellon

Cache Miss Analysis
• Assume:

– Cache block = 8 doubles
– Cache size C << n (much smaller than n)
– Three blocks fit into cache: 3B2 < C

• First (block) iteration:
– B2/8 misses for each block
– 2n/B * B2/8 = nB/4

(omitting matrix c)

– Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks

Carnegie Mellon

Cache Miss Analysis
• Assume:

– Cache block = 8 doubles
– Cache size C << n (much smaller than n)
– Three blocks fit into cache: 3B2 < C

• Second (block) iteration:
– Same as first iteration
– 2n/B * B2/8 = nB/4

• Total misses:
– nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks

Carnegie Mellon

Part(b) : Blocking Summary

• No blocking: (9/8) * n3

• Blocking: 1/(4B) * n3

• Suggest largest possible block size B, but limit 3B2 < C!

• Reason for dramatic difference:
– Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3

• Every array elements used O(n) times!

– But program has to be written properly

• For a detailed discussion of blocking:
– http://csapp.cs.cmu.edu/public/waside.html

Carnegie Mellon

Part (b) : Specs

• Cache:

– You get 1 kilobytes of cache

– Directly mapped (E=1)

– Block size is 32 bytes (b=5)

– There are 32 sets (s=5)

• Test Matrices:

– 32 by 32

– 64 by 64

– 61 by 67

Carnegie Mellon

Part (b)

• Things you’ll need to know:

– Warnings are errors

– Header files

– Useful functions

Carnegie Mellon

Warnings are Errors

• Strict compilation flags

• Reasons:

– Avoid potential errors that are hard to debug

– Learn good habits from the beginning

• Add “-Werror” to your compilation flags

Carnegie Mellon

Missing Header Files

• Remember to include files that we will be
using functions from

• If function declaration is missing
– Find corresponding header files

– Use: man <function-name>

• Live example
– man 3 getopt

Style

• Read the style guideline
• But I already read it!
• Good, read it again.
• Some important points- andrew id, Program description,

function descriptions, freeing allocated memory, 80 character
line limit.

• There are many more of these in the style guideline.

• Pay special attention to Error checking
• Functions don’t always work
• What happens when a syscall fails??
• Take a look at the wrappers provided in csapp.c
• You are welcome to copy them over to csim.c

Read the Writeup over and over!
Questions?

Carnegie Mellon

