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Overview

® multilayer neural
network inspired by
the mammalian visual
system

® unsupervised image
classification, tolerant
to shifts and
deformations

® improvement on the
cognitron

Kunihiko Fukushima
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Task

® Unsupervised handwritten character recognition
® input - unlabeled images

® output - vector, with each bit hopefully
encoding a distinct class of images
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Design
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Design - High Level

® multiple (usually about 3 ® Successive layers recognize
hidden) layers higher-level patterns

recognized

pattern

feature
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Design -
Makeup of a Layer

® cach layer has k S-planes
® cach S-plane feeds into its own C-plane

® Vs-planes and Vc-planes inhibit S-planes and
C-planes, respectively
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Design - S-plane

® cells in each plane are arranged in a 2-d grid

® cach S-cell looks at a sliding 2-d window in
the previous layer

® S-cells in a plane all have the same
coefficients (i.e. they are convoluted), but
look at a different window
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Design - S-plane
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Design - C-plane

® an S-plane learns to recognize one feature
no matter where it is

® the corresponding C-plane ORs a region of
S-cells to recognize that feature anywhere in
that region (achieving a level of shift
invariance)

® C-cell input weights are not learned
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Design - C-plane
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Design - Output

® |n the final layer, each C-plane has only one
cell, which effectively looks at the entire
Image
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Design -
All Together Now
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Learning




Learning - Cognitron

® weights get initialized with small positive
values

® for each training instance, if a cell is the most
active in its region and in its plane, then its
active weights get reinforced

® show the same few training instances over
and over again
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Learning - Cognitron
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Learning - Cognitron

® similar to Hebbian learning (“fire together,
wire together”), but only one cell maximum
per layer and region gets reinforced

® note: were not doing gradient descent, and
not minimizing any objective
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Learning

® mostly glossing over inhibitor cells and and
mathematical formulas. refer to paper

® math works out so that an S-cell’s weights
directly correspond to the feature it is
recognizing, and activation = cosine similarity
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Fig 12 Receptive fields of the cells of each of the 24 S-planes
of layer U,, which has finished learning
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Learning -
Example Activations
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Fig 10 Response of the cells of layers U,, Uy, Ue, and Ug, to each of the five siimulus patterns
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Discussion

® Experiment was a toy problem. Does this
work on anything real?

® Does it need to be so complicated?
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Problems -
Not Really Scale-Invariant

® the amount of shift/deformation-invariance is
hardcoded into the structure, by how big a
region each C-cell covers e.g.

® intuitively: only one training example is used
for each digit; how could it possibly be
learning what kinds of deformations to allow?

® empirically demonstrated by Barnard and
Casasent, 1990
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Questions!




