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Web data record extraction aims at extracting a set of similar object records from a single Web page. These
records have similar attributes or fields and they are presented with a regular format in a coherent region
of the page. To tackle this problem, most existing works analyze the DOM tree of an input page. One major
limitation of these methods is that the lack of a global view in detecting data records from an input page re-
sults in a myopic decision. Their brute-force searching manner in detecting various types of records degrades
the flexibility and robustness. We propose a Structure Knowledge Oriented Global Analysis (Skoga) frame-
work which can perform robust detection of different kinds of data records and record regions. The major
component of Skoga framework is a DOM structure knowledge driven detection model which can conduct a
global analysis on the DOM structure to achieve effective detection. The DOM structure knowledge consists
of background knowledge as well as statistical knowledge capturing different characteristics of data records
and record regions as exhibited in the DOM structure. The background knowledge encodes the semantics of
labels indicating general constituents of data records and regions. The statistical knowledge is represented
by some carefully designed features that capture different characteristics of a single node or a node group
in the DOM. The feature weights are determined using a development data set via a parameter estimation
algorithm based on structured output Support Vector Machine. An optimization method based on divide-
and-conquer principle is developed making use of the DOM structure knowledge to quantitatively infer and
recognize appropriate records and regions for a page. Extensive experiments have been conducted on four
data sets. The experimental results demonstrate that our framework achieves higher accuracy compared
with state-of-the-art methods.
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1. INTRODUCTION
Traditional information extraction (IE) task aims at extracting data from basically
unstructured free text. In contrast, Web IE deals with Web documents (or Web pages)
which are semi-structured and coded with HTML. Typically, a Web page may describe
either a single object or a group of similar objects. For example, the description page
of a digital camera describes different aspects of the camera. On the other hand, the
faculty list page of a department presents the information of a group of professors. Cor-
responding to the above two types, Web IE methods can be broadly categorized into two
classes, namely, description details oriented extraction [Wong et al. 2006; Yang et al.
2010; Zhai and Liu 2007] and object records oriented extraction [Liu et al. 2003; Miao
et al. 2009]. The former aims at extracting the description details of a single object from
its description page, while the latter aims at extracting a set of similar object records.
In this paper, we focus on the latter task. Many Web sites make use of regular format
to present information units, known as data records, which have similar attributes or
fields in a coherent region of a Web page, known as data record region. Some sites
prefer to display the record information in a semi-structured way in static Web pages
to facilitate easy browsing, such as a list of faculty members, a list of breaking events,
etc. This brings in a large amount of relational Web tables [Cafarella et al. 2008], Web
lists [Elmeleegy et al. 2009], and generic type of data record sets [Miao et al. 2009].
Some sites run a server-side program to fill products’ information, retrieved from back-
end databases, in a predefined template to generate Web pages, which are referred to
as deep or dynamic Web pages [Cafarella et al. 2011; He et al. 2007; Madhavan et al.
2008]. Therefore, semi-structured information on the Web is tremendously popular. If
such information can be exploited, it is very useful for developing various applications
such as online market intelligence [Baumgartner et al. 2009], knowledge base popula-
tion [Bing et al. 2013], etc.

Two samples of record regions are depicted in Figs. 1(a) and 1(b) with their DOM
tree structures given in Figs. 1(c) and 1(d) respectively. In the first record region, each
row of the table, excluding the header row S1, is a data record with the record R1 cor-
responding to S2 and the record R2 corresponding to S3. While in the second record
region, each row of the table contains three data records. Fig. 2 depicts two more com-
plex record regions. In the record region in Fig. 2(a) with its DOM given in Fig. 2(c),
each data record is composed of several table rows. For example, the record R1 is com-
posed of three rows, i.e., S2, S3, and S4. In the record region in Fig. 2(b) with its DOM
given in Fig. 2(d), different fields of R1 and R2 are intertwined in the first three sub-
trees, i.e., S1, S2, and S3. To tackle the problem of record detection, most existing works,
such as MDR [Liu et al. 2003], DEPTA [Zhai and Liu 2006], NET [Liu and Zhai 2005],
ViPER [Simon and Lausen 2005], FiVaTech [Kayed and Chang 2010], and our pervi-
ous method RST [Bing et al. 2011], analyze the DOM tree of an input page so as to
detect data record regions as well as record boundaries. One major limitation of these
methods is that the lack of a global view in detecting data records from an input page
results in a myopic decision. For example, consider the record region given in Fig. 1(d).
Myopic searching methods cannot conduct a comprehensive analysis that takes the
three layers, namely, <table>, <tr>, and <td>, into global consideration. Precisely,
each <tr> is processed separately and the similarity of records in different <tr>’s is
not exploited. Consequently, the local decision on each <tr> cannot lead to a global
optimal detection result. It is also possible that the <tr>’s in Fig. 1(d) are wrongly
recognized as data records. In addition, this traversal searching manner is time con-
suming and cannot support real-time extraction needs.

Another limitation of most existing works is due to their heuristic criteria related
to characteristics embedded in the HTML source code or visual perception. When pro-
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(a) A page fragment of a flat record region (a record re-
gion with its data records arranged one by one and each
record is composed of one sub DOM tree).

(b) A page fragment of a nested record region (a
record region with several subregions and each
subregion has its records arranged one by one).
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Fig. 1. Flat and nested record regions. Si is a sub DOM tree, Ri is a data record.

cessing a new page, the heuristic criteria, such as the similarity between the subtree
groups in MDR, DEPTA, and RST, as well as the tag path similarity in TPC [Miao
et al. 2009], are applied to determine whether a fragment of Web page should be recog-
nized as a record region. However, the heterogeneous characteristics of Web data make
it infeasible to use some heuristic criteria to accurately capture different types of for-
matting manners. Moreover, MDR and DEPTA have limitations brought in by their
assumption on the length of generalized nodes, i.e., all generalized nodes in the same
record region must have the same number of subtrees. This criterion will fail when
handling some cases in which the records contain different number of subtrees such
as the record region in Fig. 2(c). Noticing this limitation, ViPER only calculates the
similarity for single subtree pairs and constructs a similarity matrix. However, some
heuristic rules are employed to process this matrix to detect the record region as well
as record boundaries.

Statistical models were also exploited in Web data extraction in some existing
works [Yang et al. 2009; Zhu et al. 2006]. Zhu et al. proposed a model based on Hi-
erarchical Conditional Random Field (HCRF) to conduct record detection as well as
attribute labeling and achieved some good performance in tackling product record ex-
traction [Zhu et al. 2006]. The overall design of HCRF in [Zhu et al. 2006] focuses
extensively on product records and it involves some specific product-oriented labels
such as product name and price, although it may be able to utilize the model in gen-
eral record extraction after necessary modifications on label and feature design. An-
other issue is that the authors assume that the boundaries of the visual blocks ob-
tained from VIPS [Cai et al. 2003] are coincident with the boundaries of the records
with multiple subtrees. However, the page rendering operation may encounter troubles
when the separated cascading style sheet (CSS) and JavaScript files are not available.
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(a) A page fragment of a complicated flat record region (a
record region with its data records arranged one by one
and each record is composed of several sub DOM trees).

(b) A page fragment of an intertwined record
region (a record region with the records whose
attributes intertwined with other records’ at-
tributes).
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Fig. 2. Complicated flat and intertwined record regions. Si is a sub DOM tree, Ri is a data record.

Consequently, the boundaries of the visual blocks may not be reliable. Furthermore,
HCRF only defines local similarity based features between adjacent nodes in a sib-
ling sequence. It thus cannot exploit the global regularity of the subtree sequence in a
particular record region as exemplified in Figs. 1 and 2.

In this paper, we present a Structure Knowledge Oriented Global Analysis (Skoga,
pronounced as [s@UgA:]) framework which adopts a uniform manner to perform ro-
bust detection of different kinds of data records and record regions, namely, flat record
region as exemplified in Fig. 1(a), nested record region as exemplified in Fig. 1(b), com-
plicated flat record region as exemplified in Fig. 2(a), and intertwined record region as
exemplified in Fig. 2(b). One major component of Skoga framework is a DOM structure
knowledge driven detection model which can conduct a global analysis on the DOM
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structure addressing the major limitations of existing methods and achieve effective
detection. Let us consider a Web page and its corresponding DOM tree structure. The
extraction of data records from the page is equivalent to identifying, in its DOM tree,
the subtree corresponding to the record region and the subtrees corresponding to the
data records. For the flat record region in Fig. 1(a) with its DOM given in Fig. 1(c), our
framework can quantitatively assign the highest score to a recognition that correctly
identifies S2, S3, etc. as data records and the subtree corresponding to the <table>
node as a record region. With respect to the nested record region in Fig. 1(b) with its
DOM given in Fig. 1(d), our framework can quantitatively identify the subtrees corre-
sponding to the <td> nodes as data records. At the same time, it identifies the subtrees
corresponding to the <tr> nodes as subregions but not data records even though these
subtrees have similar structures. For the complicated flat record region in Fig. 2(a)
with its DOM given in Fig. 2(c), whose records have variable number of subtrees, our
framework detects the complicated flat records by recognizing the beginning segments
such as S2 and the inside segments such as S3 of the records in the subtree sequence
with global analysis. With respect to the intertwined example in Fig. 2(b) with its DOM
given in Fig. 2(d), our framework first detects the composite records, each of which is
composed of three subtrees (e.g., S1, S2, and S3) and contains two intertwined records
(e.g., R1 and R2). Then, the intertwined records are assembled from the detected com-
posite records with an assembling stage of our framework. Although the subtree S1’s
in Figs. 1(c) and 2(c) are also part of the regions, they are not part of any record and
should be regarded as region note providing only some note information of the region
and records.

The DOM structure knowledge in Skoga framework consists of background knowl-
edge as well as statistical knowledge capturing different characteristics of data records
and record regions. Specifically, the background knowledge encodes the semantics of
labels indicating general constituents of data records and regions. In addition, it cap-
tures some logical relations governing certain structural constraints among the labels
to be assigned to the nodes in the DOM structure. The statistical knowledge is repre-
sented by some carefully designed features that capture different characteristics of a
single node or a node group in the DOM, such as the similarity of the neighboring sub-
trees, the similarity of one subtree with its siblings, etc. To allow different impacts for
different features, there is a weight associated with each feature. The feature weights
in the DOM structure knowledge are determined using a development data set via a
parameter estimation algorithm based on structured output Support Vector Machine
model [Tsochantaridis et al. 2005]. This model can tackle the inter-dependency among
the labels on the nodes of the DOM structure and its superiority in Web IE from struc-
tured representation of Web pages was also investigated in other tasks [Zhao et al.
2011]. Another advantage is that our model can capture long range features in a sib-
ling sequence such as the occurrence-related features that exploit the global regularity
of the sequence. In our proposed parameter estimation algorithm, a record region ori-
ented loss function is designed so that the acquired statistical knowledge can deal with
multiple regions in one page. The development data set was arbitrarily collected from
different Web sites covering different kinds of record regions such as the examples
given in Figs. 1 and 2. An optimization method based on divide and conquer principle
is developed making use of the DOM structure knowledge to quantitatively infer the
best record and region recognition for a page. Extensive experiments have been con-
ducted on four data sets. The experimental results demonstrate that our framework
achieves higher accuracy compared with state-of-the-art methods.

In summary, the contributions of the paper are as follows:
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• We propose a framework which can perform robust detection of different kinds of
data records and record regions with a DOM structure knowledge driven detection
model by conducting a global analysis on the DOM structure.

• The DOM structure knowledge is carefully designed and it consists of background
knowledge and statistical knowledge. The former can encode the semantics of la-
bels indicating general constituents of data records and regions. And the latter can
capture different characteristics of a single node or a node group in the DOM.

• We develop a parameter estimation algorithm based on structured output Support
Vector Machine model to determine the feature weights in the statistical knowledge.
This algorithm can tackle the inter-dependency among the labels on the nodes of the
DOM structure.

• An optimization method based on divide-and-conquer principle is developed making
use of the DOM structure knowledge to quantitatively infer the best record and
region recognition for a page.

The remainder of this paper is organized as follows. In Section 2, the overview of
Skoga framework is introduced. The design of DOM structure knowledge is presented
in Section 3. The inference of optimal label assignment is presented in Section 4. The
determination of feature weights of the DOM structure knowledge is presented in Sec-
tion 5. After that, the assembling method of intertwined data records is given in Sec-
tion 6. Then, the experimental results as well as discussions are presented in Section 7.
Section 8 provides more comprehensive discussions on related works. We conclude our
work and propose some future directions in Section 9.

2. OVERVIEW OF SKOGA FRAMEWORK
In our proposed Structure Knowledge Oriented Global Analysis (Skoga) framework,
the goal of record region detection and data record extraction is tackled by identifying
appropriate portions in the DOM structure as record regions as well as data records in
a region. It can be formulated as a problem of assigning suitable labels to the nodes of
the DOM tree. Taking the flat region in Fig. 1(a) with its DOM tree given in Fig. 1(c) as
an example, the label “REC-S” (namely, record composed of a single subtree) should be
assigned to the <tr> tags which are the roots of the subtrees S2, S3, etc. Furthermore,
the label “REGION” should be assigned to the root <table> tag of the table, and the label
“REGNOT” (namely, region note node as explained in Section 1) should be assigned to the
<tr> tag of S1. For the nested region in Fig. 1(b) with its DOM tree given in Fig. 1(d),
the label “REC-S” should be assigned to the <td> tags. Also the label “SUBREG” (namely,
subregion of records) should be assigned to the <tr> tags which are the roots of the
subtrees S1, S2, etc., and the label “REGION” should be assigned to the root <table> tag.

Formally, let x denote the DOM tree of a particular Web page, and a single node in
x is denoted by x. Let y denote a label assignment for x, and a single label is denoted
by y ∈ Y where Y is the set of all possible labels. To achieve the goal of record region
detection and data record extraction, we can formulate it as an optimization problem
via a global objective function to obtain y∗ such that:

y∗ = argmax
y

F (x,y;w), (1)

where F is an objective function that evaluates the fitness of y for x with the guidance
of the DOM structure knowledge w. Such design facilitates a global analysis on the
DOM structure to achieve accurate detection of records and regions. The DOM struc-
ture knowledge is composed of background knowledge and statistical knowledge. The
background knowledge encodes the semantics of labels indicating general constituents
of data records and regions. In addition, it captures some logical relations governing
certain structural constraints among the labels to be assigned to the nodes of the DOM
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structure. The statistical knowledge consists of the design of features capturing differ-
ent characteristics of a single node or a node group in the DOM. Furthermore, these
features are able to distill the difference among different types of record regions so as
to identify them accurately. Some examples of the features are the structure feature of
a single node, the similarity of the neighboring subtrees, the similarity of one subtree
with its siblings, etc. To allow different impacts for different features, each feature is
associated with a weight.

Fundamentally, some existing methods such as DEPTA [Zhai and Liu 2006],
ViPER [Simon and Lausen 2005], FiVaTech [Kayed and Chang 2010], and RST [Bing
et al. 2011] can also be represented in the form of F (x,y;w). For example, MDR and
DEPTA calculate the similarity between two neighboring generalized nodes in a par-
ticular region derived from the DOM tree x. According to the degree of satisfaction on
some predefined heuristic criteria such as similarity threshold, a certain label assign-
ment y is returned. The criteria they employ can also be regarded as a simple kind of
DOM structure knowledge. Different from these methods, our model conducts a global
analysis on the fitness of y for x driven by the DOM structure knowledge and it takes
the inter-dependency among the labels on the nodes into consideration. To infer the
best label assignment y∗ for x, an efficient optimization method is developed using
divide-and-conquer principle in polynomial time.

Let us return to the complicated flat region given in Fig. 2(c). Our model is able
to detect the data records accurately by assigning the label “REC-B” (beginning seg-
ment of a record) to the subtrees S2, S5, S8, etc., and the label “REC-I” (inside segment
of a record) to the subtrees S3, S4, S6, S7, S9, etc. The challenges raised by the vari-
able number of subtrees in these records are tackled with the global analysis on the
characteristics of the subtree sequence in this record region. Specifically, all possible
label sequences are evaluated during the inference of the best label assignment for
the sequence S1, . . . ,Sn. Finally, the label sequence “ ‘REGNOT’, ‘REC-B’, ‘REC-I’, ‘REC-I’,
‘REC-B’, ‘REC-I’, ‘REC-I’, ‘REC-B’, ‘REC-I’, ‘REC-B’, . . . ” achieves the highest value for the
global objective function. With respect to the intertwined example given in Fig. 2(d),
our model assigns the label “REC-B” to the subtrees S1, S4, etc., and the label “REC-I” to
the subtrees S2, S3, S5, S6, etc. Thus, the composite data records such as S1:3 and S4:6

are detected. Each segment <tr> in the composite records contains the constituents
of two intertwined data records. And then, our Skoga framework invokes a separate
assembling stage to assemble the intertwined records R1, R2, R3, and R4 from the
detected composite records in Fig. 2(d).

The feature weights in the DOM structure knowledge are determined using a de-
velopment data set via a parameter estimation algorithm. To allow better generaliza-
tion capability of the estimated feature weights when tackling the heterogenous Web
pages, the maximum margin principle with soft margin is employed. Specifically, the
parameter estimation algorithm is developed based on structured output Support Vec-
tor Machine (SVM) model [Tsochantaridis et al. 2005]. The label output of a node in
the DOM structure exhibits a tight interaction with the labels of its connected nodes
such as its parent node and siblings. The structured output SVM model is able to
tackle the inter-dependency among the labels on the nodes of the DOM structure so
as to provide more accurate labeling solutions. Furthermore, a record region oriented
loss function is designed to penalize the missing of record regions. Therefore, the ac-
quired statistical knowledge can effectively identify multiple regions, if exist, in a sin-
gle page. The development data set was arbitrarily collected from different Web sites
covering different kinds of record regions such as the examples given in Figs. 1 and 2.
An optimization method, namely hierarchical Viterbi algorithm, is developed based
on divide-and-conquer principle, which makes use of the DOM structure knowledge

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 L. Bing et al.

to quantitatively infer the optimal label assignment of record and region recognition
from a page in polynomial time.

Once the DOM structure knowledge including the feature weights is determined,
Skoga framework can be directly applied to detect common kinds of record regions and
data records as illustrated above from any Web sites and domains without the need of
labeled data or training. As a result, our framework is more robust when processing
different types of record regions so that it can achieve better effectiveness and higher
efficiency. Note that we do not generate any wrapper and Skoga is site-independent.
Another characteristic of Skoga is that when there is a need to detect application ori-
ented record regions and data records which are different from the common kinds of
regions or records, Skoga can conduct a training process with the application-specific
labeled data to generate a tailor-made detection model for the intended application.

3. DESIGN OF DOM STRUCTURE KNOWLEDGE
3.1. Background Knowledge
As mentioned above, each node in the DOM tree is assigned a label. We design eight
types of labels denoted as Y to capture general constituents of record regions and data
records. The details of the labels are given as follows.

REGION: The DOM node with this label is the root node of a subtree corresponding
to a record region. The region should contain either a set of data records or a set of
subregions. A data record under this region may be composed of several subtrees of
the current region, such as the examples given in Fig. 2.
SUBREG: The DOM node with this label is the root node of a subtree corresponding to

a subregion. A subregion should contain a set of data records such as the examples
given in Fig. 1(b). Each data record under this subregion may be composed of several
subtrees of the current subregion.
REC-S: The DOM node with this label is the root node of a subtree corresponding to a

complete data record and it may be composed of a group of components. For example,
each data record in Fig. 1(d) contains an image <img> and a link <a>.
REC-B: The DOM node with this label is the root node of a subtree corresponding to

the beginning segment of a data record such as S2, S5 in Fig. 2(c) and S1, S4 in Fig. 2(d).
REC-I: The DOM node with this label is the root node of a subtree corresponding to

an inside segment of a data record such as S3, S4 in Fig. 2(c) and S2, S3 in Fig. 2(d).
Note that a segment node (labeled with REC-B or REC-I) may be composite and contain
constituents of several data records such as S1, S2, etc. in Fig. 2(d).
REGNOT: The DOM node with this label is the root node of a subtree containing some

explanation information on the data records in a record region or a subregion, such as
S1’s in Figs. 1(c) and 2(c). Note that such node is not a part of any data record.
RECCMP: The DOM node with this label is the root node of a subtree corresponding to

a component of a data record. Each constituent with any granularity in a data record
or record segment can be regarded as a component. Thus, each descendant node under
a data record or record segment has this label, such as the nodes <img> and <a> in
Fig. 1(d).
OTHNOD: The DOM node with this label is the root node of a subtree corresponding to

any other portion located outside record regions. Therefore, such node is not a part of
any record region.

Fig. 3 shows an example of label assignment for the record region in Fig. 2(a) with
DOM structure given in Fig. 2(c). Our label design allows broad and general types of
data records and record regions. We also design some logical relations among the labels
based on the common understanding of data records and record regions. Let xp denote
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Fig. 3. Label assignment for Fig. 2(c).

a particular node and xc denote one child node of xp. Let y denote the label assignment
of the DOM x from where xp and xc originate; y(xp) and y(xc) denote the labels of xp

and xc given by y. The logical relations, namely BK1 to BK8, are presented as follows.

• BK1: y(xc) = REGION → y(xp) = OTHNOD
• BK2: y(xc) = SUBREG → y(xp) ∈ {REGION, SUBREG}
• BK3: y(xc) = REC-S → y(xp) ∈ {REGION, SUBREG}
• BK4: y(xc) = REC-B → y(xp) ∈ {REGION, SUBREG}
• BK5: y(xc) = REC-I → y(xp) ∈ {REGION, SUBREG}
• BK6: y(xc) = REGNOT → y(xp) ∈ {REGION, SUBREG, REGNOT}
• BK7: y(xc) = RECCMP → y(xp) ∈ {REC-S, REC-B, REC-I, RECCMP}
• BK8: y(xc) = OTHNOD → y(xp) = OTHNOD

Taking BK3 as an example, if a particular node is labeled as REC-S, we only need to
consider two candidate labels for its parent node, namely, REGION and SUBREG. These
logic formulae are employed to provide guidance and constraints for the inference al-
gorithm (presented in Section 4) when labeling a new DOM tree so that the inference
results are more robust against noise and the inference algorithm is more efficient.
These logic formulae are also used in the feature weight estimation algorithm (pre-
sented in Section 5) in which the inference for the optimal and the second optimal
label assignments is needed during the optimization of the cost function.

3.2. Statistical Knowledge
As mentioned above, our Skoga framework captures the statistical knowledge rep-
resented as features and their corresponding weights. This knowledge is utilized to
quantitatively evaluate the fitness of a label assignment y for the DOM tree x of a
particular Web page via an objective function F . Let Ψ(x,y) denote the combined fea-
ture representation of x and its label assignment y. Thus, the objective function F in
Equation 1 is formulated as:

F (x,y;w) ≡ 〈Ψ(x,y),w〉, (2)

which is the linear combination of the features in Ψ(x,y) with their corresponding
weights given in w. To exploit the tree structure and capture the inter-dependency
among labels, we design three types of features in Ψ(x,y), namely, single node fea-
tures, sibling features, and parent-children features.

Single node features are summarized from a single DOM node. Let Φ(x) denote the
feature vector related to a particular node x. The combined feature map of x and its
label y ∈ Y is defined as:

Ψ(x, y) ≡ Φ(x)⊗Λc(y), (3)
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Table I. The features used in the statistical knowledge.

Single Node Features
Tag features: These features indicate whether the current node is a special tag type, such as <table>, <ol>,
<dl>, etc. These tags have higher chance to be used in formatting data records. Although the examples in
Figs. 1 and 2 are rooted at <table>, it should be noted that our framework is not tag-dependent and the tag
features only add some contribution in the overall evaluation.
Text appearance features: These features summarize the general characteristics of the text content con-
tained by the current node, such as the fraction of anchor text, the number of different fonts used, etc.
Structure features: These features capture the aggregated characteristics of the subtree rooted at the
current node, such as the number of child nodes, the number of different tags among its children, standard
deviation of child subtrees’ height, etc.
Special functionality features: These features capture some special characteristics that are often ob-
served in data records, such as URL string, cash symbol, image, etc.

Sibling Features
Structure similarity: This feature is defined as the similarity of the subtrees rooted at xct and xct+1 .
Normally, the neighboring records as well as subregions as exemplified in Fig. 1 share higher similarity,
while the neighboring record segments as exemplified in Fig. 2 share less similarity.
Skeleton similarity: Different from the structure similarity, these features capture the similarity of the
skeletons of the subtrees rooted at xct and xct+1 . Skeleton refers to the top level structure of a subtree, for
instance, 2-layer or 3-layer skeletons. Skeleton similarity can overcome the dissimilarity caused by optional
fields, such as the <a> node in the bottom right portion of R2 in Fig. 1(c).
Text similarity features: These features summarize the text similarity between the contents of xct and
xct+1 . For example, the text overlapping feature indicates the fraction of the overlapping words between the
text contents. The text length difference feature indicates the length difference of the text contents.

Parent-children Features
Occurrence based on structure similarity: The number of occurrences of xc (or 〈xct , xct+1 〉) among its
sibling sequence based on structure similarity. For example, the subtree structure corresponding to the data
records in Fig. 1(c) occurs many times in the child sequence of the table.
Occurrence difference between siblings: The difference of the occurrence number between xct and
xct+1 . This feature can help us capture the beginning of the record sequence more precisely, such as the
ones given in Figs. 1(c) and 2(c).
Occurrence interval: These features capture the characteristics of the intervals between two successive
occurrences of xct (or 〈xct , xct+1 〉). For example, the interval length feature is defined as the average length
of the intervals. The standard deviation feature indicates whether the intervals are regular, such as the
subtree structure corresponding to the beginning segment of the records (i.e., S2, S5, etc.) in Fig. 2(c) which
occurs regularly.
Occurrence span: The number of siblings spanned by the first occurrence and the last occurrence of xc (or
〈xct , xct+1 〉). Normally, records occupy a large fraction of the subtree sequence in a record region.
Occurrence-based pivot score: This feature is defined to capture the beginning segment of a record and
it is calculated as:

ps(xct ) =

{
ps(xck ) if xct is a reoccurence of xck (k < t)
f(xct )

1
I var(xct )+σ

−max{ps(xc1 ), . . . , ps(xct−1 )} otherwise ,

where f(xct ) is the number of occurrence of xct ; I var(xct ) is the variance of the occurrence intervals;
σ = 0.01 is used to avoid zero denominator. Considering the example in Fig. 2(c), ps(S2) is large, ps(S3) and
ps(S4) are small, ps(S5) is also large since S5 is a reoccurrence of S2.

where ⊗ is the operator of tensor multiplication. Λc(y) is the canonical representation
of the label y:

Λc(y) ≡ (δ(y1, y), δ(y2, y), · · · , δ(y|Y|, y)), (4)

where δ is an indicator function which has the value 1 if yi = y and the value 0 other-
wise. From Equation 3, it can be seen that each single feature is mapped to a dimen-
sion according to the label y of x. We design four types of single node features to depict
different characteristics of a single node and they are described in the first section of
Table I. Note that Skoga is tag-independent and the tag related features only add some
contribution in the overall evaluation.

Sibling features capture the relations between two neighboring nodes. Let xct and
xct+1

be the root nodes of a pair of neighboring sibling subtrees, and their labels are
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yct and yct+1 respectively. The combined feature map of the pair 〈xct , xct+1〉 and the
corresponding labels is defined as:

Ψ(〈xct , xct+1
〉, yct , yct+1

) ≡ Φ(〈xct , xct+1
〉)⊗Λc(yct)⊗Λc(yct+1

), (5)

where Φ(〈xct , xct+1
〉) represents the features summarized from this sibling pair, ⊗ and

Λc(·) are defined as above. We design three types of sibling features and they are
described in the second section of Table I.

Parent-children features are designed to capture the relations between a particular
node and its entire sibling sequence. Let 〈xp, xc〉 denote a parent-child pair, and their
labels are yp and yc respectively. The combined feature map of the pair 〈xp, xc〉 and the
corresponding labels is defined as:

Ψ(〈xp, xc〉, yp, yc) ≡ Φ(〈xp, xc〉)⊗Λc(yp)⊗Λc(yc), (6)

where Φ(〈xp, xc〉) represents the features summarized from this parent-child pair. Sim-
ilarly, the feature map for the triple 〈xp, xct , xct+1〉 and the corresponding labels can be
defined as:

Ψ(〈xp, xct , xct+1
〉, yp, yct , yct+1

) ≡ Φ(〈xp, xct , xct+1
〉)⊗Λc(yp)⊗Λc(yct)⊗Λc(yct+1

), (7)

where Φ(〈xp, xct , xct+1
〉) represents the features summarized from the triple. We design

five types of parent-children features and they are described in the third section of
Table I.

The combined feature representation of the DOM tree x and its label assignment y
is the combination of the above types of feature maps:

Ψ(x,y) ≡

⎛
⎜⎜⎜⎜⎝

∑
x Ψ(x, y)

T∑
〈xct ,xct+1

〉 Ψ(〈xct , xct+1
〉, yct , yct+1

)
T∑

〈xp,xc〉 Ψ(〈xp, xc〉, yp, yc)T∑
〈xp,xct ,xct+1

〉 Ψ(〈xp, xct , xct+1
〉, yp, yct , yct+1

)
T

⎞
⎟⎟⎟⎟⎠

T

. (8)

As shown above, different features are combined and the difference of their impacts
will be captured by the corresponding weights in w determined via a parameter esti-
mation algorithm with the guidance of a development data set.

4. FINDING OPTIMAL LABEL ASSIGNMENT
One major task in Skoga framework is to find the optimal label assignment of a DOM
tree by maximizing F (x,y;w) as in Equation 1 with F defined in Equation 2. As a
result, the aim is to solve the following optimization problem:

y∗ = argmax
y

F (x,y;w)

= argmax
y

〈Ψ(x,y),w〉. (9)

It is referred to as the inference task. The inference algorithm of the entire DOM tree
can be tackled with divide-and-conquer principle. Specifically, a hierarchical Viterbi al-
gorithm is designed to obtain the optimal label assignment in polynomial time. It con-
ducts the inference in a bottom-up manner and starts from the subtree whose height
is 1. After that, the intermediate results are utilized in the inference of their parent
trees.

4.1. Inference for Bottom Subtrees
We first describe the inference algorithm for the subtrees whose height is 1. Let xp

denote the parent node and xct denote a child node under xp. Let yp = {yp,1, yp,2, · · · }
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Fig. 4. Inference lattice structure of a subtree whose height is 1.

denote the candidate labels of xp and yct = {yct,1, yct,2, · · · } denote the candidate labels
of xct . Take the tree x = {xp, xc1 , xc2 , · · · , xcT } in Fig. 4 as an example, where the
filled nodes represent the root node and the leaf nodes respectively. The unfilled nodes
represent the label candidates of the corresponding DOM nodes. T is the total number
of the children. We first fix the label of the root xp to be yp,k, and infer the optimal
labels for the child sequence from their candidate label sets. The inference mechanism
considering different combinations of labels can be represented as a lattice structure.
After that, we enumerate all possible candidate labels of xp in yp to obtain the global
optimal labeling.

Let F̂ p,k
ct,i

denote the intermediate maximum objective value on x = {xp, xc1 , · · · , xct}
achieved by an assignment that assigns the label yp,k to the root xp and yct,i to the
child xct . Then, F̂ p,k

ct+1,j
is calculated as follows:

F̂ p,k
ct+1,j

= max
yct,i∈yct

{F̂ p,k
ct,i

+ΔF p,k
(ct,i),(ct+1,j)

}, (10)

where ΔF p,k
(ct,i),(ct+1,j)

denotes the increment of the objective value when taking the
node xct+1 into account with label yct+1,j , and it is calculated as:

ΔF p,k
(ct,i),(ct+1,j)

= 〈ΔΨ(xp, xct , xct+1
, yp,k, yct,i, yct+1,j),w〉, (11)

where ΔΨ is the change of the feature vector including the single node features of
xct+1 , the sibling features of 〈xct , xct+1〉, and the parent-children features of 〈xp, xct+1〉
and 〈xp, xct , xct+1〉. To be precise, ΔΨ is represented as:

ΔΨ(xp, xct , xct+1 , yp,k, yct,i, yct+1,j) =

⎛
⎜⎜⎝

Ψ(xct+1 , yct+1,j)
T

Ψ(〈xct , xct+1
〉, yct,i, yct+1,j)

T

Ψ(〈xp, xct+1
〉, yp,k, yct+1,j)

T

Ψ(〈xp, xct , xct+1〉, yp,k, yct,i, yct+1,j)
T

⎞
⎟⎟⎠

T

. (12)

The contributed objective value by xp and xc1 is included in F̂ p,k
c1,i

, which is calculated
as:

F̂ p,k
c1,i

=

〈⎛
⎜⎜⎝

Ψ(xc1 , yc1,i)
T
+Ψ(xp, yp,k)

T

0

Ψ(〈xp, xc1〉, yp,k, yc1,i)T
0

⎞
⎟⎟⎠

T

,w

〉
. (13)

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



Robust Detection of Semi-structured Web Records Using DOM Structure Knowledge Driven ModelA:13

Recall that the labels of xp and its child xct should satisfy the logic formulae in Sec-
tion 3.1. Taking these formulae into consideration in the calculation of Equation 10,
when a particular yct+1,j together with yp,k violates any formula, it can be automati-
cally pruned. Similarly, Equation 13 is also constrained by these logic formulae.

For a pre-assigned label yp,k of xp, the maximum objective value that can be achieved
by labeling its child nodes is denoted by F̂ p,k, which is calculated as:

F̂ p,k = max
ycT ,i∈ycT

F̂ p,k
cT ,i, (14)

Finally, the maximum objective value achieved by the optimal label assignment can be
obtained by enumerating all possible yp,k for xp:

F̂ = max
yp,k∈yp

F̂ p,k. (15)

The time complexity of the above inference for a bottom single-depth tree can be
derived from that of the standard Viterbi algorithm [Ryan and Nudd 1993]. For each
candidate label of the root xp, the standard Viterbi algorithm is invoked to infer the
optimal labels for the children. Therefore, the time complexity is O(|Y|3 ∗ T ), where
Y is the set of all possible labels. Note that the above time complexity analysis has
not taken the logical relations (see Section 3.1) into consideration. Incorporating the
logical relations makes the inference algorithm even more efficient.

4.2. Recursive Inference for Higher Subtrees
In the previous subsection, each child node is assumed to be a leaf. When process-
ing the higher level subtrees, the intermediate results from the lower level subtrees
rooted at each child xct are taken into consideration. Let F̂ ct,i denote the optimal value
achieved in labeling the subtree rooted at xct which is labeled with yct,i. The objective
value increment ΔF p,k

(ct,i),(ct+1,j)
is calculated as:

ΔF p,k
(ct,i),(ct+1,j)

= F̂ ct+1,j + 〈ΔΨ′(xp, xct , xct+1
, yp,k, yct,i, yct+1,j),w〉, (16)

where ΔΨ′ is calculated as:

ΔΨ′(xp, xct , xct+1
, yp,k, yct,i, yct+1,j) =

⎛
⎜⎜⎝

0

Ψ(〈xct , xct+1
〉, yct,i, yct+1,j)

T

Ψ(〈xp, xct+1〉, yp,k, yct+1,j)
T

Ψ(〈xp, xct , xct+1
〉, yp,k, yct,i, yct+1,j)

T

⎞
⎟⎟⎠

T

. (17)

Similarly, F̂ p,k
c1,i

is calculated as:

F̂ p,k
c1,i

= F̂ c1,i +

〈⎛
⎜⎜⎝

Ψ(xp, yp,k)
T

0

Ψ(〈xp, xc1〉, yp,k, yc1,i)T
0

⎞
⎟⎟⎠

T

,w

〉
. (18)

With the above recursive property, the inference is conducted layer by layer starting
from the bottom of the DOM tree. After the recursion is finished at the root of the DOM
tree, the global optimal value of F is obtained.

Fig. 5 shows the recursive inference procedure for the nested region in Fig. 1(b).
When inferring the labels of the subtrees rooted at <tr>’s, referring to Fig. 5(a), the
optimal label for the <tr>’s is “REGION” and the optimal label for the <td>’s is “REC-S”.
Currently, the label “SUBREG” for <tr> is not the optimal choice. When coming to the
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(a) Inference results for the subtrees rooted at <tr>’s.
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(b) Inference result for the nested region <table>.

Fig. 5. Recursive inference for the nested region in Fig. 1(b).

higher level <table>, referring to Fig. 5(b), the label of <tr>’s favors towards “SUBREG”
and <table> tends to be labeled as “REGION”.

Given that the inference of all lower level subtrees has been done, the time complex-
ity of the higher level subtree inference is O(|Y|3 ∗ T ′) where T ′ is the child number
of this subtree. Therefore, the time complexity of the entire DOM tree inference can
be decomposed into those of all child sequences in any layer of the DOM tree. Let Ti

denote the length of a particular child sequence, the overall time complexity for the
entire DOM tree is computed as O(

∑
i |Y|3 ∗ Ti) = O(|Y|3 ∗ |x|) where |x| denotes the

total number of nodes in the DOM x.

4.3. Backtracking for the Optimal Label Assignment
The backtracking of the optimal label for the entire DOM tree is carried out with a
top-down manner starting from the root of the tree. The best label of the root node is
obtained by:

yp,∗ = argmax
yp,k∈yp

F̂ p,k. (19)

Let yct,∗ denote the label of xct in the optimal label assignment for the child sequence
with the root node xp labeled with yp,∗. Thus, the optimal label of the last child xcT is:

ycT ,∗ = argmax
ycT ,i∈ycT

F̂ p,∗
cT ,i. (20)

By backtracking, yct,∗ is obtained as:

yct,∗ = argmax
yct,i∈yct

{F̂ p,∗
ct,i

.+ΔF p,∗
(ct,i),(ct+1,∗)} (21)

After the optimal label yct,∗ of each xct is obtained, we can repeat the same procedure
as given in Equations 20 and 21 to obtain the optimal labels for the children of xct .

The above backtracking can be implemented by keeping backward pointers during
the recursive calculation of the global optimal objective value. Thus, given the optimal
label yp,∗ of the DOM root, we can obtain the optimal label assignment for the entire
DOM tree by backtracking through backward pointers in a top-down manner.

4.4. Second Optimal Label Assignment
Owning to the fact that the feature weight estimation is conducted with a maximum
margin principle based algorithm, the second optimal label assignment is needed when
maximizing the margin.

4.4.1. Second Optimal Inference for Bottom Subtrees. Returning to the example in Fig. 4,
recall that its optimal label assignment is denoted as (yp,∗, yc1,∗, yc2,∗, · · · , ycT ,∗). The
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second optimal objective value is achieved by one of the following cases: (1) The label
of xp is not yp,∗ and the labels of the children also change accordingly. Let F̈ p,∗̄ denote
the achieved value in this case; (2) The label of xp is still yp,∗, but the label sequence of
the children is different from (yc1,∗, yc2,∗, · · · , ycT ,∗). Let F̈ p,∗ denote the achieved value
in this case. Then the second optimal objective value is obtained by:

F̈ = max {F̈ p,∗̄, F̈ p,∗}. (22)

F̈ p,∗̄ and F̈ p,∗ are calculated by Equations 23 and 24:

F̈ p,∗̄ = max
yp,k∈yp\yp,∗

F̂ p,k, (23)

F̈ p,∗ = max { max
ycT ,i∈ycT

\ycT ,∗
F̂ p,∗
cT ,i , F̈

p,∗
cT ,∗}. (24)

The first term of Equation 24 is the best value achieved by labeling the last child with
another label other than ycT ,∗. The second term of Equation 24 denotes the second
optimal value achieved by still labeling the last child with ycT ,∗, which can be recur-
sively calculated. Let F̈ p,∗

ct:T ,∗ denote the second optimal value achieved by labeling the
child sequence from t to T with the optimal labels (yct,∗, · · · , ycT ,∗). F̈ p,∗

ct:T ,∗ is recursively
calculated as:

F̈ p,∗
ct:T ,∗ = max{F̈ p,∗

ct−1:T ,∗ , max
yct−1,i∈yct−1

\yct−1,∗
{F̂ p,∗

ct−1,i
+ΔF p,∗

(ct−1,i),(ct,∗)}+ΔF p,∗
ct:T ,∗}, (25)

where the second term is composed of two parts, namely, the partial second optimal
value achieved up to the child xct which is labeled with yct,∗, and the objective value
increment ΔF p,∗

ct:T ,∗ achieved by the optimal labels (yct,∗, · · · , ycT ,∗). ΔF p,∗
ct:T ,∗ is calcu-

lated as:

ΔF p,∗
ct:T ,∗ =

T−1∑
t′=t

ΔF p,∗
(ct′ ,∗),(ct′+1,∗). (26)

Since we assume that each child node is a leaf, the termination condition of the recur-
sion in Equation 25 is t = 2, i.e., the label of the first child changes and the remaining
children’s labels do not change:

F̈ p,∗
c2:T ,∗ = max

yc1,i∈yc1\yc1,∗
{F̂ p,∗

c1,i
+ΔF p,∗

(c1,i),(c2,∗)}+ΔF p,∗
c2:T ,∗. (27)

4.4.2. Second Optimal Inference for Higher Subtrees. When processing the higher level sub-
trees, we can take the lower level subtrees rooted at each child xct into consideration.
Thus, the global second optimal value may be achieved in the case that all labels of xp

and its children xct ’s are still the same as those for the global optimal value, and the
labels of some descendants of a certain xct change. Following the above notation, this
value is denoted as F̈ p,∗

c1:T ,∗, which is calculated as:

F̈ p,∗
c1:T ,∗ = max

xct

{F̂ − F̂ ct,∗ + F̈ ct,∗}, (28)

where F̈ ct,∗ denotes the second optimal value achieved in labeling the subtree rooted
at xct which is still labeled with yct,∗. F̈ ct,∗ can be calculated by Equation 24. Finally,
the global second optimal objective value F̈ is calculated as:

F̈ = max {F̈ p,∗̄, F̈ p,∗, F̈ p,∗
c1:T ,∗}. (29)
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ALGORITHM 1: Finding feature weights via structured output SVM learning.
1: initialization: {(xi,yi)}ni=1, C, ε, ∀i : Si ← ∅
2: repeat
3: for i = 1, · · · , n do
4: H(y) ≡ (1− 〈δΨi(y),w〉)Δ(yi,y) //cost function
5: y∗ = argmaxy∈Y|xi| H(y) //cutting plane
6: ξi = max {0,maxy∈Si H(y)}
7: if H(y∗) > ξi + ε then
8: Si ← Si ∪ {y∗}
9: update α’s and w with ∪iSi

10: end if
11: end for
12: until no Si has changed during iteration

Thus, F̈ can be obtained with a recursive manner starting from the bottom of the DOM
tree. Similarly, backward pointers are kept for backtracking the second optimal label
assignment.

5. STATISTICAL KNOWLEDGE ACQUISITION
In this section, we discuss the determination of the feature weights of the statisti-
cal knowledge using a development data set via a parameter estimation algorithm
based on structured output Support Vector Machine (SVM) model [Tsochantaridis
et al. 2005]. This model can tackle the inter-dependency among the labels on the nodes
of the DOM structure. Meanwhile, the maximum margin principle of SVM allows the
determined feature weights a better generalization capability to harness the hetero-
geneity of Web content.

5.1. Finding Feature Weights via Structured Output SVM Learning
Let {(xi,yi)}ni=1 denote a set of development data instances, and Δ(yi,y) denote the
loss caused by assigning the label assignment y to xi. The quadratic program form of
the SVM model with slack re-scaled by the loss is:

min
w,ξ

1

2
||w||2 + C

n

n∑
i=1

ξi

s.t. ∀i, ∀y ∈ Y |xi| \ yi : 〈δΨi(y),w〉 ≥ 1− ξi
Δ(yi,y)

, (30)

where ξi is the slack variable of xi, C > 0 is a tradeoff constant of the two parts, and
〈δΨi(y),w〉 = F (xi,yi;w) − F (xi,y;w) is the margin between the objective values of
yi and y. Tsochantaridis et al. proposed a cutting plane based algorithm to solve this
optimization problem in its dual formulation [Tsochantaridis et al. 2005]. It selects a
subset of constraints from the exponential full set Y |xi| to ensure a sufficiently accu-
rate solution. The procedure of finding the feature weights is briefly summarized in
Algorithm 1. Si is the working set of selected constraints for the instance xi, α’s are
the Lagrange multipliers, and ε is the precision parameter. The algorithm proceeds by
finding the most violated constraint for xi involving y∗ (refer to Line 5). If the margin
violation of this constraint exceeds the current ξi by more than ε (refer to Line 7), the
working set Si of xi is updated. α’s and w are also updated with the updated working
set accordingly. We refer the reader to [Tsochantaridis et al. 2005] for more details of
the algorithm.
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5.2. Region-oriented Loss
In record region detection and data record extraction, we wish to avoid the missing of
data record regions since it will result in false negative predictions on all data records
in this region. As observed in the existing works [Simon and Lausen 2005], one major
difficulty of record region detection is to find out all the regions in a given Web page.
Some existing methods only reported the largest region and missed the others [Zhao
et al. 2005]. To tackle this issue, we define a loss function that penalizes the missing
of record regions.

Let xreg denote the set of root nodes of the subtrees corresponding to record regions
in a Web page, the loss function is defined as:

Δ(yi,y) ≡ exp {
∑

x∈xreg
δ̄(yi(x),y(x))

|xreg| }, (31)

where δ̄ is an indicator function which has the value 0 if yi(x) = y(x) and the value 1
otherwise. The loss function Δ is monotonically increasing with respect to the number
of wrongly labeled regions. Note that we do not adopt zero diagonal loss function. The
reason is that our loss function does not consider all the nodes of a DOM tree and it
concentrates on the essential parts, namely, record regions.

5.3. Cost Function Optimization
In the learning procedure as depicted in Algorithm 1, it is required to optimize the cost
function in Line 4 for finding the most violated constraint corresponding to y∗:

y∗ = argmax
y∈Y|xi|

H(y). (32)

When H(y∗) ≤ 0, y∗ will not be added into the working set Si since the margin
〈δΨi(y

∗),w〉 is larger than or equal to 1 (refer to Line 7). Thus, we only need to consider
the cases when H(y∗) > 0, i.e., 〈δΨi(y

∗),w〉 < 1.
We first conduct inference for xi based on the current w. Let ŷ denote the label

assignment that achieves the optimal objective value F (xi, ŷ;w) denoted as Fi(ŷ)
for short. If 〈δΨi(ŷ),w〉 ≥ 1, we directly move to xi+1. The reason is that given
Fi(ŷ) ≥ Fi(y

∗), 〈δΨi(ŷ),w〉 = Fi(yi) − Fi(ŷ) and 〈δΨi(y
∗),w〉 = Fi(yi) − Fi(y

∗), we
have 〈δΨi(y

∗),w〉 ≥ 〈δΨi(ŷ),w〉 ≥ 1. If 〈δΨi(ŷ),w〉 < 1, we utilize ŷ to derive y∗.

PROPOSITION 1. If all regions in xreg are wrongly labeled in ŷ and given
〈δΨi(ŷ),w〉 < 1, then we have y∗ = ŷ.

PROOF. Note that the loss function Δ is monotonically increasing with respect to
the number of wrongly labeled regions. Then Δ(yi, ŷ) is maximized when all regions
in xreg are wrongly labeled. In addition, ŷ maximizes F so that 1− 〈δΨi(ŷ),w〉 is also
maximized. Taking Δ(yi, ŷ) > 0 and 〈δΨi(ŷ),w〉 < 1 into consideration, H(ŷ) is the
maximum.

PROPOSITION 2. Let y′ be a label assignment that has less than or equal number of
wrongly labeled regions than ŷ and given 〈δΨi(ŷ),w〉 < 1, then we have H(y′) ≤ H(ŷ).

PROOF. Because ŷ maximizes F , Fi(y
′) ≤ Fi(ŷ). Thus, we have (1− 〈δΨi(y

′),w〉) ≤
(1 − 〈δΨi(ŷ),w〉). In addition, 0 < Δ(yi,y

′) ≤ Δ(yi, ŷ) and (1 − 〈δΨi(ŷ),w〉) > 0,
therefore H(y′) ≤ H(ŷ).

Based on Proposition 2, we only need to optimize H(y) among the label assign-
ments that have more wrongly labeled regions than ŷ, at the same time satisfying
〈δΨi(y),w〉 < 1. Let x×

reg denote the regions labeled wrongly in ŷ. The procedure of
deriving y∗ is summarized as Proposition 3.
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ALGORITHM 2: Assembling intertwined data records.
1: input: data record R = {Si..j},
2: where i < j for each Si..j
3: output: intertwined data records R′

4: c← 0, R′ ← ∅
5: for Si..j ∈ R do
6: if is composite record(Si..j) then
7: c← c+ 1
8: end if
9: end for
10: if c/|R| ≥ θ′ then
11: for Si..j ∈ R do
12: Sk ← subtrees of Sk, where i ≤ k ≤ j
13: Sk

l denotes the l-th subtree of Sk
14: size← maxj

k=i |Sk|
15: for l = 1, · · · , size do
16: R′ ← R′ ∪ {Si

l . . .Sj
l }

17: end for
18: end for
19: end if

1: proc is composite record(Si..j)
2: s1 ← 0, s2 ← 0, c1 ← 0, c2 ← 0
3: Sk ← subtrees of Sk, where i ≤ k ≤ j
4: for k = i, · · · , j do
5: for Sk

l ,Sk
r ∈ Sk and l �= r do

6: s1 ← s1 + sim(Sk
l ,Sk

r )
7: c1 ← c1 + 1
8: end for
9: for t = i+ 1, · · · , j do
10: for Sk

l ∈ Sk and St
r ∈ St do

11: s2 ← s2 + sim(Sk
l ,St

r)
12: c2 ← c2 + 1
13: end for
14: end for
15: end for
16: if s1/c1 ≥ θ and s2/c2 < θ then
17: return true
18: else
19: return false
20: end if

PROPOSITION 3. Let {x′
reg} be all subsets of xreg having more elements than x×

reg,
and let y′ be the label assignment that achieves the largest F value when all regions in
x′
reg are wrongly labeled and all regions out of x′

reg are correctly labeled. The label y∗

maximizing H(y) is from ∪x′reg{y′} ∪ {ŷ}.

We can first fix the loss value to a constant by selecting an x′
reg and removing the

label REGION from the candidate label set of the regions in x′
reg, meanwhile the label

REGION is pre-assigned to the other regions out of x′
reg. Then, the term (1−〈δΨi(y),w〉)

in H is maximized with the inference algorithm and y′ is obtained. If 〈δΨi(y
′),w〉 ≥ 1,

y′ is pruned. Otherwise, y′ is one candidate for finding y∗. The same procedure is
repeated for all the other x′

reg. Typically, the number of regions in a page is limited,
normally, no more than 5. So the above enumeration method can work in affordable
time in practice. To save the computational time, some existing intermediate results
in the computation of ŷ can be reused.

Note that it is possible that ŷ is the same as yi. To tackle this issue, we infer the
second best label assignment and use it instead of ŷ to go through the same procedure
as above.

6. ASSEMBLING INTERTWINED RECORDS
Intertwined records, also known as non-continuous records in DEPTA [Zhai and Liu
2006] and cross records in [Zheng et al. 2009], refer to records whose attributes inter-
twine together with other records’ attributes. One example and its DOM tree are given
in Figs. 2(b) and 2(d) respectively. Each record has 3 attributes, namely, image, title,
and price, and these attributes are scattered in 3 successive <tr>’s, such as S1, S2 and
S3. Such subtree group, e.g., S1..3, is named composite record.

Our Skoga framework described above is able to detect the composite records to-
gether with the complicated flat records using a global analysis. To determine and
assemble possible intertwined records, Skoga invokes the method depicted in Algo-
rithm 2. Let R = {Si..j} denote such a set of data records from the same record region.
We first judge whether R is a set of composite data records. In Line 6 of the main proce-
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dure on the left-hand side, each Si..j is passed to the sub-procedure is composite record
depicted on the right-hand side to determine whether it is a composite record. Refer-
ring to Line 16 of is composite record, if the average similarity s1/c1, calculated as in
Lines 5 to 8, of the subtree pairs from a single Sk (i ≤ k ≤ j) is greater than or equal
to a threshold θ and the average similarity s2/c2, calculated as in Lines 9 to 14, of the
subtree pairs with two subtrees from Sk and St (k 
= t) is less than θ, we are confident
to determine that Si..j is a composite record. If the ratio of composite records in |R|
is no less than a ratio threshold θ′, as shown in Line 10 of the main procedure, we
conclude that R is a composite record set. Then, the intertwined records can be easily
assembled from the composite records, as shown in Lines 11 to 18 of the main proce-
dure. Returning to the example given in Figs. 2(b) and 2(d), two records (image 1, title
1, price 1) and (image 2, title 2, price 2) are assembled from the first three <tr>’s.

7. EXPERIMENTS
7.1. Evaluation Data Sets
In our experiments, four evaluation data sets are used to evaluate the performance of
the proposed Skoga framework. The first data set is the testbed collected by Yamada
et al. [Yamada et al. 2004]. It can be considered as a benchmark data set 1 which
has been used for evaluation in some works such as ViPER [Simon and Lausen 2005]
and TPC [Miao et al. 2009]. It is referred to as TB1 in this paper. TB1 has 253 Web
pages from 51 Web sites randomly drawn from 114,540 Web pages with search forms of
various search engines, such as picture search, product search and document search.
One sample data record of each record region in the pages was given by the collectors
of this data set. Almost all pages contain flat regions or complicated flat regions. In
our experiment, two sites were excluded because of garbled code or ambiguous record
annotation. Thus, we used the remaining 49 sites including 243 pages and 4,326 data
records in total.

Different from TB1, in which the records are search results in dynamic Web pages
generated by server-side programs with predefined templates, the second data set is
composed of static Web pages in which the data records are presented in formats ex-
hibiting some regularities. This data set is referred to as TB2 2. The pages were col-
lected from different online shopping and university Web sites. The targeted university
pages are the ones that contain the faculty list of a particular department. To obtain
such kind of pages, we issued a synthetic query in the form of “faculty list site:xxx.edu”
to Google and then browsed the result pages to find the ones with record regions. To
collect the shopping Web pages, we investigated the online shopping Web sites one
by one in an online shopping yellow page http://www.usaonlineshoppingguide.com/.
There are 37 categories such as “Art Collectibles” and “Baby Stores” in this yellow page,
and each category has 10 recommended shopping Web sites on average. We clicked the
navigation links in the randomly selected sites to obtain record pages and at most 2
pages were collected from a single site. This data set contains 200 pages and 5,713
data records in total.

We prepared the third data set to examine the performance of Skoga on complicated
flat regions and intertwined regions. The pages with flat and complicated flat regions
were collected from different online shopping sites and university sites. The pages with
intertwined regions were only collected from online shopping sites since very few uni-
versity Web sites adopt the intertwined manner in presenting the faculty information.
This data set was collected in the same manner as above and it is referred to as TB3 3.

1It is publicly available at http://daisen.cc.kyushu-u.ac.jp/TBDW/.
2It is publicly available at http://www.se.cuhk.edu.hk/~textmine/.
3It is publicly available at http://www.se.cuhk.edu.hk/~textmine/.
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TB3 contains 100 pages and 2,158 data records in total. There are 50 pages containing
some product lists and at most 5 pages were collected from a single shopping site. The
other pages were collected from department sites of different universities.

The last data set contains data records of user-generated content such as reader
comments, customer reviews, and forum posts. The pages were collected from news
channels, such as BBC, CNN, ABC, etc., online shopping sites, such as Amazon,
eBay, AliExpress, etc., and online forums, such as forums.asp.net, forums.d2jsp.org,
forums.phpfreaks.com, etc. The posts or reviews are written by the users and embed-
ded in the predefined templates of the corresponding Web sites. We regard each of them
as one data record and test whether Skoga framework can accurately extract them. In
total, this data set contains 100 pages and 2,318 data records coming from about 30
different Web sites and at most 4 pages were collected from a single site. This data is
referred to as TB4.

7.2. Experimental Setup
One of the comparison methods is MDR [Liu et al. 2003] 4 which is able to deal with
flat, nested, and intertwined records. DEPTA [Zhai and Liu 2006] is another com-
parison method in our experiment. DEPTA employs some rendering information to
construct the DOM tree and uses tree edit distance instead of string edit distance in
the calculation of generalized node similarity. Since no implementation of this method
is available, we implemented this method by following the pseudo-code presented
in [Zhai and Liu 2006]. To enhance it so that it can take the advantage of the de-
velopment data set, we develop a parameter estimation process for automatically de-
termining a major model parameter on top of the basic DEPTA algorithm using the
development data set. Specifically, the basic DEPTA algorithm has one major param-
eter that affects the performance of record detection, namely, the threshold τ of the
normalized tree distance between generalized nodes. Basically, we varied this parame-
ter and determined the parameter value that achieves the highest performance in the
development data set. The found value for τ was 0.36. Considering the heterogeneity
of the record regions, the maximum generalized node length used was 12 in our ex-
periments and it is lager than the value 10 in [Zhai and Liu 2006] to obtain better
performance although it increases the running time of the program. This enhanced
DEPTA is referred to as DEPTA+ in this paper. The authors of FiVaTech [Kayed and
Chang 2010] kindly provided us the demo system. Therefore, we can also conduct com-
parison with FiVaTech on all the evaluation data sets except TB3 since this method
is not designed to tackle intertwined record regions. We also compared with another
existing method, namely, TPC [Miao et al. 2009] by simply retrieving the experimental
results of TPC available on TB1 data set we used.

We employ the commonly used precision, recall, and F-measure as the evaluation
metrics. They are calculated as follows:

precision =
|{true data records} ∩ {identified data records}|

|{identified data records}| , (33)

recall =
|{true data records} ∩ {identified data records}|

|{true data records}| , (34)

F = 2 · precision · recall
precision+ recall

. (35)

4MDR is publicly available at http://www.cs.uic.edu/~liub/WebDataExtraction/.
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Both micro-averaged and macro-averaged values are reported to provide a more com-
prehensive perspective on the performance. A micro-averaged value is computed by
first aggregating the ground truth data records and the identified data records from
all the pages. Then micro-averaged precision, recall, and F-measure are calculated
based on these two global sets. In contrast, macro-averaged values are calculated by
first calculating precision, recall, and F-measure for each Web page and finally taking
the average values of all the pages.

As mentioned before, a separate development data set was collected to conduct the
estimation of feature weights of statistical structure knowledge. It was also used to en-
hance the existing method DEPTA for comparison. This data set contains Web pages
originated from different types of sources. Some pages come from the data set 3 in
ViNTs [Zhao et al. 2005] 5. This data set is originated from Omini [Buttler et al.
2001] testbed collected by Buttler et al. which consists of more than 2,000 Web pages
collected from 50 Web sites. ViNTs took one random page per Web site to construct
its data set 3. The pages in this set are mainly search result pages from different
search engines including vertical search engines and general search engines. The re-
gions in these pages are of flat type or complicated flat type. We also collected some
other pages from the online shopping Web sites listed in another online shopping yel-
low page http://www.toponlineshopping.com/. There are 22 categories such as “Art
& Collectibles” and “Beauty & Fragrances” in this yellow page, and each category has
about 6 sub-categories on average. Under each sub-category, we arbitrarily selected 3
recommended Web sites. We directly clicked the navigation links in the home page to
obtain data record pages. In this way, we collected 100 data record pages presenting
some product lists. About half of these pages contain nested record regions, and the
other pages contain other types of data record regions.

A Firefox plug-in program was developed to assist the annotators in preparing the
development data instances from the pages in the development data set. The annota-
tors appended the labels as attributes to the DOM nodes inside record regions with
the plug-in program. Take the nested region in Fig. 1(d) as an example, after the an-
notation, each <td> node becomes the form of “<td label=‘REC-S’>”, each <tr> node
becomes the form of “<tr label=‘SUBREG’>”, etc.

The parameters C and ε in the feature weight estimation algorithm depicted in Al-
gorithm 1 were set to be 5 and 0.5 respectively. The similarity threshold for counting
the occurrence in the parent-children features in Section 3.2 was set to be 0.6 and the
similarity measure used is the same as the one proposed in RST [Bing et al. 2011]. In
Algorithm 2, the average similarity threshold θ is set to be 0.65 and the ratio threshold
θ′ is set to be 80%. We ran MDR on the evaluation data sets with the default similarity
threshold 60% and extracted the records reported.

7.3. Experimental Results on TB1
TPC [Miao et al. 2009] also conducted experiment on this data set. The authors kindly
provided us the Web site IDs in the subset they used, which contains 43 sites out of
49 sites we use. Therefore, without implementing their method, we can still conduct
a fair comparison. MDR could not produce output for two Web sites because the MDR
program terminated abnormally. We report the results without these two sites.

The experimental results on TB1 are given in Table II. “MDR handled” refers to the
subset that MDR program can handle, “TPC reported” refers to the subset used by the
TPC method reported in [Miao et al. 2009], and “ALL” refers to the entire set of pages.
“Ground” denotes the number of ground truth records. “TP” denotes the number of
true positives detected by a method, and “FP” denotes the number of false positives.

5 It is publicly available at http://www.data.binghamton.edu:8080/vints/.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 L. Bing et al.

Table II. Experimental results on TB1.

Ground TP FP P-mi R-mi F-mi P-ma R-ma F-ma

MDR handled MDR 4261 2692 230 0.920 0.640 0.754 0.620 0.636 0.622
Skoga 4261 4226 27 0.994 0.992 0.993 0.991 0.979 0.983

TPC reported TPC 3897 NA NA NA NA NA 0.904 0.931 NA
Skoga 3897 3873 27 0.993 0.994 0.993 0.989 0.985 0.983

ALL
DEPTA+ 4326 3550 704 0.835 0.823 0.829 0.788 0.807 0.802
FiVaTech 4326 3782 340 0.918 0.874 0.895 0.883 0.889 0.871

Skoga 4326 4289 49 0.989 0.991 0.990 0.989 0.976 0.975

“P-mi”, “R-mi”, “F-mi”, “P-ma”, “R-ma” and “F-ma” are the micro-averaged and macro-
averaged precision, recall, and F-measure values respectively. “NA” means that the
corresponding result was not reported in [Miao et al. 2009]. In P-ma calculation, if
both TP and FP are 0 for a particular page, its precision is set to be 0.

Skoga outperforms MDR, DEPTA+, FiVaTech, and TPC. The recall of Skoga is signif-
icantly better than that of MDR. Compared with DEPTA+, Skoga achieves 15% to 20%
improvement in both precision and recall. Compared with FiVaTech, the improvements
achieved are 7% to 12%. In addition, the precision and recall of Skoga outperform TPC
about 8% and 5% respectively. For MDR, the macro-precision is much smaller than the
micro-precision. It is because for some pages, although the MDR program terminated
normally, it could not give any output. Thus, both true positive and false positive are
0.

The details of the extracted records on TB1 are given in Fig. 6. Skoga produces some
false positives for the sites 14 and 21. After checking the pages manually, we found
that each page in the site 14 contains several record regions presenting the search
results from different sources. The given ground truth by the collectors of TB1 only
contains two regions, and regards the others as non-record regions. Some pages in the
site 21 contain several recommended books on the right side bar. These books were
not regarded as data records in the given ground truth since they are more likely to
be advertisement items. Only the books formatted with <table> in the center of the
page were included in the ground truth. For this site, MDR only outputs the books
annotated. Skoga missed a few results in the sites 14, 18, 23, and 25. The main rea-
son is that some regions adopt a different formatting manner in the first few data
records compared with the remaining records. For example, the heading information
is included in the first data record. Consequently, this record is identified as REGNOT.
For the site 36, we find that each field of a record is packed in a single subtree, such
as id, title, URL, each of digest sentences, etc. Since different records have different
number of subtrees, both DEPTA+ and FiVaTech output some false positives. DEPTA+
wrongly outputs many records in some sites such as 19, 23, etc. It is mainly because
DEPTA+ has limitations in region detection and record identification brought in by
the constraints on the length of generalized node.

7.4. Experimental Results on TB2
On data set TB2, we conducted comparison with MDR, DEPTA+, and FiVaTech. MDR
could not produce output for 13 pages because the MDR program terminated abnor-
mally. The experimental results on TB2 are given in Table III. The headers of the rows
and columns have the same meaning as those in Table II. The recall of Skoga is sig-
nificantly better than that of MDR. The reason is that for quite a few pages the MDR
program could not give any output, although it terminated normally. Compared with
DEPTA+, Skoga achieves 14% to 21% improvements in both precision and recall, and
about 18% improvements in both micro and macro F-measure values. Compared with
FiVaTech, improvements achieved are about 6% to 9%.
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Fig. 6. Extracted records for each site in TB1. TP number and FP number are shown by the bars above and
below the axis respectively.

Table III. Experimental results on TB2.

Ground TP FP P-mi R-mi F-mi P-ma R-ma F-ma

MDR handled MDR 5364 3451 832 0.806 0.643 0.715 0.629 0.637 0.634
Skoga 5364 4893 441 0.917 0.912 0.915 0.902 0.896 0.897

ALL
DEPTA+ 5713 4503 1854 0.708 0.788 0.746 0.697 0.767 0.731
FiVaTech 5713 4712 804 0.854 0.825 0.840 0.843 0.832 0.834

Skoga 5713 5325 472 0.919 0.932 0.925 0.906 0.914 0.908

When tackling nested record regions, DEPTA+ first identifies the record region by
regarding each subregion, such as <tr>’s in Fig. 1(d), as a generalized node. In the
record identifying step of DEPTA+, it attempts to identify the data records by finding
lower level generalized nodes from each generalized node in the detected region. The
performance of DEPTA+ in this record identifying step is affected by three difficulties.
First, if the similarity among the records in the subregion is lower than the required
similarity threshold, the entire subregion is regarded as one data record. The second
difficulty is caused by the lack of a global analysis. Precisely, the record identification
from one subregion does not consider the identification results from other subregions.
Therefore, the identification results from different subregions can be significantly dif-
ferent. The third difficulty for DEPTA+ is that, if the neighboring records in one sub-
region are separated by separator subtrees, DEPTA+ cannot identify the records accu-
rately. Regarding FiVaTech, after checking the pages that cannot be well tackled, we
found that FiVaTech suffers from the difficulty brought in by the optional tags in data
record templates. FiVaTech does not perform tree matching across multiple layers in
peer node recognition so that it may not be able to induce effective wrappers when the
templates have more variants.

In general, Skoga can better handle these difficulties with the global analysis that
evaluates the entire nested region as a whole. However, the heterogeneity of Web data
records also causes some failure cases for Skoga. In some pages from the university
sites, the professors are grouped according to their titles and formatted with different
formats in the same region. This causes some difficulty for Skoga which adopts a global
analysis to favor the regions whose records follow similar formats.

7.5. Experimental Results on TB3
On data set TB3, we conducted comparison with MDR and DEPTA+. FiVaTech was
not used for comparison since it is not designed to tackle intertwined record regions.
MDR could not produce output for 5 pages because the MDR program terminated ab-
normally. The experimental results are given in Table IV. The headers of the rows and
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Table IV. Experimental results on TB3.

Ground TP FP P-mi R-mi F-mi P-ma R-ma F-ma

MDR handled MDR 2049 1468 179 0.891 0.716 0.794 0.715 0.694 0.702
Skoga 2049 1993 42 0.979 0.972 0.976 0.973 0.969 0.970

ALL DEPTA+ 2158 1853 457 0.802 0.859 0.827 0.796 0.833 0.811
Skoga 2158 2099 54 0.975 0.973 0.974 0.981 0.969 0.972

Table V. Experimental results on TB4.

Ground TP FP P-mi R-mi F-mi P-ma R-ma F-ma
MDR 2318 1809 266 0.872 0.780 0.824 0.857 0.768 0.816

DEPTA+ 2318 1979 287 0.873 0.854 0.863 0.858 0.837 0.850
FiVaTech 2318 2056 335 0.860 0.887 0.873 0.859 0.842 0.853

Skoga 2318 2185 96 0.958 0.943 0.950 0.947 0.936 0.938

columns have the same meaning as those in Table II. Compared with DEPTA+, Skoga
achieves 11% to 18% improvements in both precision and recall, and more than 14%
improvements in both micro and macro F-measure values.

In the detection of intertwined data records, DEPTA+ first detects each intertwined
field as one pseudo data record region. In reality, each record in the pseudo-region
is a record field. Then it assembles the true data records from the adjacent pseudo-
regions. However, the record region detection step in DEPTA+ would face a difficulty in
detecting the desirable pseudo-regions in certain kinds of intertwined regions. Taking
the region shown in Fig. 2(b) with its DOM given in Fig. 2(d) as an example, with
the top-down searching detection manner DEPTA+ first identifies that the table is
one record region and it has the generalized nodes S1..3, S4..6, etc. In the next step of
identifying data records, DEPTA+ regards each generalized node, e.g., S1..3, as a data
record but not a pseudo-region since the subtrees, i.e., S1, S2, and S3, are dissimilar to
one another. Skoga can tackle this type of intertwined regions well. It first identifies
the composite records with the labels “REC-B” and “REC-I”, such as S1..3 and S4..6. Then,
the assembling algorithm assembles the true data records from each composite record
based on the regularity that each single subtree, e.g., S1, has several repetitive fields
and the neighboring subtrees, e.g., S1 and S2, have different repetitive fields. Finally,
the correct records can be reassembled.

7.6. Experimental Results on TB4
On data set TB4, we conducted comparison with MDR, DEPTA+, and FiVaTech. The
experimental results on TB4 are given in Table V. The headers of the rows and columns
have the same meaning as those in Table II. In this data set, most of the data records
are composed of a single subtree and the data items are embedded in predefined tem-
plates. In general, all methods can achieve good performance except MDR which can-
not generate output for a few pages. Skoga outperforms DEPTA+ and FiVaTech by
around 8% in micro and macro F-measure values. One major type of difficulty in this
data set is caused by the quotations. The users usually quote the record of previous
users when giving their own comments, reviews or posts. This behavior results in em-
bedding format of some data records so that the dissimilarity among records is en-
larged and the detection accuracy is affected. Another type of difficulty is the content
length diversity of this type of user-generated content resulting in different number of
<p>’s or <div>’s for paragraphs. Skoga and FiVaTech can overcome the difficulty of
repeating content by tandem repeat detection and set detection respectively. MDR and
DEPTA+ are not able to tackle this difficulty properly.
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Fig. 7. The running time of Skoga for each site in TB1. The reported time for each site is the average time
needed for processing its pages. T1 indicates the time for loading a Web page and building its DOM tree
structure. T2 indicates the time for calculating feature values. T3 indicates the time for generating feature
vectors and saving the testing instance of a page into the disk. T4 indicates the time for loading a testing
instance from the disk and rebuilding tree structure. T5 indicates the time for inferring the optimal label
assignment for a testing instance.

7.7. Running Time
The running time of Skoga framework for each site in TB1 is reported in Fig. 7. The
reported time for each site is the average time needed for processing its pages. The im-
plementation of the feature extraction part is in Java and the running time on different
steps of this part is depicted by T1, T2 and T3. The inference part is implemented by
extending the structured output SVM framework [Tsochantaridis et al. 2005] in C and
the inference time is depicted by T4 and T5. The experiment is run on a PC with Quad
core CPU @2.66 GHz and 3GB RAM. In fact, the program has one thread and con-
sume relatively low memory, so it does not require powerful computing resource. From
Fig. 7, it can be observed that Skoga is very efficient and one page takes around 200ms
on average.

7.8. Empirical Case Study
An empirical case study on the page given in Fig. 8(a) with its DOM tree in 8(b) is
presented to offer a close look at how our proposed model can effectively tackle this
difficult case. The intermediate computational results in our model are also presented
to show the procedure how the correct labels are assigned for this studied page. This
case study can also provide explanations on the failure of existing methods. In this case
study, each publication item should be regarded as one data record. The heading rows
of the published year, namely, S1, S5, S20, etc., pose challenges for existing methods to
conduct accurate record extraction.

Recall that DEPTA+ requires all the generalized nodes in the same region have the
same length and they are all adjacent. Thus it recognizes that the first region is com-
posed of several generalized nodes and each of which contains four table rows, such
as S1..4, S5..8 and S9..12. In the record identifying step, DEPTA+ identifies data records
from each single generalized node in the regions. The main idea is that if a generalized
node contains two or more data records, one more iteration of finding finer generalized
nodes in the current generalized node can find the data records. It assumes that the
lower level finer generalized nodes, i.e., data records, need to satisfy the condition of
covering all the data items in the original generalized node. This assumption makes
DEPTA+ fail to detect the correct records from the first two generalized nodes. Pre-
cisely, the existence of S1 and S5 hinders the accurate detection of data records in the
corresponding generalized nodes, namely, S1..4 and S5..8.
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(a) A page fragment of noisy subtree region.
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(b) DOM tree of (a).

Fig. 8. Case study on a more challenging record region.

Table VI. Portion of intermediate computational results of Skoga for record detection from the Web page in Fig. 8(a) with the
root node <table> labeled with REGION. L is the label ID, specifically, REC-S=3 and REGNOT=6. N is the subtree ID in Fig. 8(b).
������L

N 1 2 3 4 5 6 7 8 9 10 11

3
07.679
(5.194)

636.868
(29.156)

366.059
(29.153)

395.250
(29.156)

3100.452
(5.194)

6129.630
(29.156)

3158.833
(29.158)

3188.040
(29.173)

3222.156
(34.082)

3246.417
(24.227)

3270.681
(24.229)

6
07.702
(5.218)

636.801
(29.180)

666.055
(29.172)

395.219
(29.167)

3100.472
(5.218)

6129.559
(29.178)

3158.820
(29.170)

3188.011
(29.183)

3222.175
(34.141)

6246.388
(24.217)

3270.627
(24.216)

������L
N 12 13 14 15 16 17 18 19 20 21 22

3
3294.947
(24.230)

3319.214
(24.231)

3348.401
(29.151)

3372.673
(24.236)

3400.330
(27.622)

3429.528
(29.163)

3453.779
(24.218)

3489.429
(35.617)

6494.646
(5.194)

6518.949
(24.250)

3543.215
(24.231)

6
3294.896
(24.220)

3319.162
(24.221)

3348.378
(29.170)

3372.621
(24.225)

3400.294
(27.627)

3429.508
(29.184)

3453.735
(24.211)

3489.409
(35.693)

3494.699
(5.218)

6518.934
(24.223)

3543.165
(24.221)

������L
N 23 24 25 26 27 28 29 30 31 32 33

3
3572.408
(29.157)

3596.670
(24.227)

3620.935
(24.229)

3642.504
(21.536)

3671.693
(29.156)

3700.898
(29.171)

3730.095
(29.162)

3754.355
(24.226)

3783.556
(29.166)

3807.815
(24.225)

3832.101
(24.253)

This case also hinders the accurate record detection of other existing methods such
as FiVaTech and RST. FiVaTech identifies each group of publications in a particular
year as one data record. The wrapper induction manner in FiVaTech favors a wrap-
per that can achieve a record recognition covering longer repeats. Thus, it induces a
wrapper that treats each publication as one repetitive field in a detected “record”, i.e.
a group of publications in one year. Note that the output given by FiVaTech can also
be regarded to be correct from a more general perspective on record definition. RST
outputs the data records such as S1..2, S3, S4, S5..6, S7, etc. We can see that the heading
rows of the published year are fused into the neighboring records and inaccurate data
records are reported such as S1..2 and S5..6.

Skoga framework can consider the entire sequence of subtrees in Fig. 8(b) to conduct
more accurate record detection with a global analysis. It identifies all data records cor-
rectly and also labels all heading rows of the published year with REGNOT. A portion of
intermediate computational results of Skoga for record detection is given in Table VI.
L is the label ID and N is the subtree ID in Fig. 8(b). The optimal label of the root
node <table> is REGION. Following the notations in Section 4, we have yp,∗ = REGION.
In each cell of the table, the superscript is the backtracking pointer, i.e. yct,∗, and the
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superscript 0 indicates that the backtracking pointer is ineffective. The value after
the superscript is the intermediate maximum objective value, i.e. F̂ p,∗

ct,i
. The value in

the brackets is the optimal value for the corresponding subtree with the root labeled
with the corresponding label, i.e. F̂ ct,i. Take the cell at N = 3 and L = 3 as an ex-
ample, we have yc2,∗ = 3, F̂ p,∗

c3,3
= 66.059, and F̂ c3,3 = 29.153. From the intermediate

maximum objective values in the last column in the third section of Table VI, we can
obtain that yc33,∗ = 3. Thus, the optimal label sequence of the subtrees can be obtained
by backtracking the pointers starting from yc33,∗. Finally, the subtrees S1, S5 and S20

corresponding to the published year rows are correctly labeled with REGNOT. The pub-
lication records are correctly labeled with REC-S.

8. RELATED WORK
The task of record-level extraction from an arbitrary single input page is one active
direction in Web IE [Liu et al. 2003; Simon and Lausen 2005; Wang and Lochovsky
2003; Zhai and Liu 2006]. Such data record information is very useful for developing
various applications such as online market intelligence [Baumgartner et al. 2009],
knowledge base population [Bing et al. 2013], entity semantic network building [Luo
et al. 2011], etc. Techniques that address record extraction from a single page can
be categorized into the following types: early methods based on heuristics [Buttler
et al. 2001; Embley et al. 1999b], repetitive pattern based methods [Chang and Lui
2001; Wang and Lochovsky 2003], similarity-based extraction methods [Liu et al. 2003;
Simon and Lausen 2005; Zhai and Liu 2006], tag path based methods [Miao et al.
2009], visual feature based methods [Gatterbauer et al. 2007; Liu et al. 2010; Zhao
et al. 2005], and automatic record-level wrapper induction methods [Kayed and Chang
2010]. Methods based on heuristic rules cannot be generalized well. Repetitive pattern
based methods such as IEPAD [Chang and Lui 2001] and DeLa [Wang and Lochovsky
2003] show some potential in solving this issue because similar templates used in
formatting the records make it feasible to mine some repetitive patterns as clues for
locating records in the page. However, one limitation of such pattern mining methods
is that they are not robust against optional data and tags appeared in the records.

The similarity-based method tackles this limitation with approximate matching to
identify repeating objects. MDR [Liu et al. 2003], DEPTA [Zhai and Liu 2006], and
NET [Liu and Zhai 2005] are such techniques, which utilize string or tree edit distance
to assess whether two adjacent subtree groups, known as generalized nodes, are repe-
titions of the same data type. ViPER [Simon and Lausen 2005] is another work which
computes the similarity of each pair of single subtrees to detect record region. Then
it involves some visual perception to segment the detected regions into records. Since
these methods highly depend on the pairwise similarity computation of subtrees or
subtree groups, they separate the task into two steps, namely, record region detection
and record segmentation. They search the possible record regions in the entire DOM
tree with a traversal manner. In contrast, our framework can efficiently analyze the
DOM tree structure with a global view and find the regions and data records. Further-
more, our framework is free from their limitations regarding the subtree grouping, for
instance, fixed length of generalized node or single subtree pairs. The concept of nested
records in NET [Liu and Zhai 2005] is significantly different from nested regions pro-
cessed in this paper. In our framework, the sub-records nested in a particular record
are detected as tandem repeats so that the super record is recognized as a normal
data record. The extraction of sub-records can be tackled with simple postprocessing
operation. Miao et al. investigated tag paths in a Web page to perform record extrac-
tion [Miao et al. 2009]. Their method transforms a DOM tree into pieces of tag paths,
and clusters the paths according to the defined similarity measure to detect record
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regions. One limitation of this method is that it cannot take into account the record
boundary information during region detection. Hence, it needs a separate step to seg-
ment records after region detection. Furthermore, their method clusters the tag paths
across the entire page and does not consider the proximity relations of the paths. Thus,
the same tag path may be used in different blocks of the page, even these blocks are
far away from each other.

Although ViPER [Simon and Lausen 2005] and the work by Miao et al. [Miao et al.
2009] utilize some visual information from rendered Web page to assist record seg-
mentation, they depend on the tag structure to detect record regions. In contrast,
ViNTs [Zhao et al. 2005] utilizes the visual information first to identify content reg-
ularities and then combines them with the tag structure regularities to generate
wrappers. ViNTs cannot separate horizontally arranged records, e.g., the records in
a nested region, and identify multiple regions. Zhao et al. enhanced ViNTs in their
later work [Zhao et al. 2006] to address the multi-section cases in search engine re-
sult pages. Pure visual feature based methods such as VENTex [Gatterbauer et al.
2007] and ViDE [Liu et al. 2010] are effective to extract records from pages with well
organized visual features. With the help of visual information of the rendered pages,
these methods are able to select some major blocks that may have high potential of
containing data records. However, they suffer from two limitations, namely, the inef-
ficiency of Web page rendering, and the difficulty of accurate rendering. For a single
Web page in a repository, its related cascading style sheet (CSS) and JavaScript files
are normally not cached by the repository. Therefore, it is very likely that this page
cannot be correctly rendered. Furthermore, the rendering operation is time consum-
ing. In this paper, we do not use these expensive features although our framework is
open to incorporate them.

Kayed and Chang proposed an automatic template induction method called FiVaT-
ech [Kayed and Chang 2010] that can achieve record extraction from a single page.
This method does not consider different HTML tags with the same meaning since it is
assumed that the template is fixed for the same data type. In addition, level crossing
is not permitted in the detection of peer nodes. These assumptions reduce its flexibil-
ity and it cannot handle cases with more variants well which are often observed in
manually edited record regions. Furthermore, this method induces possible wrappers
at each level of the DOM tree leading to high computational cost.

Zhu et al. proposed a model based on Hierarchical Conditional Random Field
(HCRF) to conduct record detection as well as attribute labeling and achieved good per-
formance in tackling product record extraction [Zhu et al. 2006]. The overall design of
HCRF in [Zhu et al. 2006] focuses extensively on product records and it involves some
specific product-oriented labels such as product name and price. Necessary modifica-
tions on label and feature design are needed if one wants to utilize HCRF in general
record extraction as we do in this paper. One limitation is that the authors assume that
the boundaries of the visual blocks are coincident with the boundaries of the records
with multiple subtrees. However, the page rendering operation may encounter trou-
bles when the separated CSS and JavaScript files are not available. Consequently, the
boundaries of the visual blocks may not be reliable and the above assumption may
not hold for such cases. In our framework, we do not need the above assumption. An-
other limitation is that HCRF only defines local similarity based features between
adjacent nodes in a sibling sequence. It thus cannot exploit the global regularity of
the subtree sequence in a particular record region as we do in our model via long
range features in a sibling sequence such as the occurrence-related features. Yang et
al. proposed a model based on Markov Logic Networks to tackle the task of post in-
formation extraction from Web forums [Yang et al. 2009], which is also investigated
by other researchers [Song et al. 2010]. Considering the specialized properties of the
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forum data, the authors utilized site level knowledge and defined some specific fea-
tures to conduct accurate extraction. Thus, the model cannot be readily applied to deal
with general record extraction. Some other researchers employed predefined domain
ontology [Embley et al. 1999a] or automatically generated domain ontology [Su et al.
2009] to assist the record extraction task. The reader can refer to some surveys [Chang
et al. 2006; Sleiman and Corchuelo 2012] for more comprehensive information on the
existing works of data record extraction.

Another branch of structured Web data extraction mainly depends on manually-
constructed wrappers [Arocena and Mendelzon 1999; Liu et al. 2000]. These methods
are difficult to maintain and be applied to different Web sites, because they are very la-
bor intensive. Semi-automatic methods [Hogue and Karger 2005; Hsu and Dung 1998;
Kushmerick 2000; Laender et al. 2002; Muslea et al. 2001; Zhai and Liu 2007; Zheng
et al. 2007; Zheng et al. 2009], known as wrapper induction, were proposed to tackle
this problem. These methods need some labeled pages in the target domain as input
to perform the induction. First, the target data or record in a set of training pages are
labeled manually. The system then learns the extraction rules from the labeled data
automatically, and uses them to extract records from new pages originated from the
target domain. To enhance the adaptation capability of the induced wrappers, domain
oriented methods were proposed in [Hao et al. 2011; Wong et al. 2009; Wong and Lam
2010]. These methods take some labeled examples of a particular site as input and
learn attribute related knowledge of this site. After that, this knowledge is adapted to
a new Web site of the same domain to learn new wrappers. Some attempts were made
by Zhao et al. [Zhao et al. 2011] in conducting domain-independent Web IE aiming at
extracting open-domain attribute name and value pairs from Web pages. They formu-
lated the task as a structured classification problem, which shares some resemblance
to our framework, on the structured representation of Web pages. However, our frame-
work targets at extracting different information, namely, data records. Furthermore,
we propose a record region oriented loss function as well as a refined training method
taking into account this loss function.

It should be noted that the problem setting in our framework is significantly dif-
ferent from the unsupervised instance-based learning data extraction methods, such
as RoadRunner [Crescenzi et al. 2001] and EXALG [Arasu and Garcia-Molina 2003].
Their methods tackle the task of site-oriented data extraction by taking several pages
coming from the same Web site as input, and extract the underlying template or
schema automatically. However, our objective is to detect data records and regions
not limited to particular sites and does not require that several pages from the same
site are available.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a new framework, named Skoga, to perform robust detection
of different kinds of Web data records. Skoga can address some major limitations of
existing works. It conducts a quantitative analysis of the DOM structure in a global
manner for the detection of record regions and data records with a DOM structure
knowledge driven model. To allow different impacts for different features in the struc-
ture knowledge, there is a weight associated with each feature which is determined
using a development data set via a parameter estimation algorithm based on struc-
tured output Support Vector Machine model. An optimization method based on divide-
and-conquer principle is developed making use of the DOM structure knowledge to
quantitatively infer the best record and region recognition for a page. The experimen-
tal results on four evaluation data sets demonstrate the effectiveness of the proposed
framework.
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Several directions are worth exploring in the future work. One direction is to en-
hance Skoga by incorporating some reliable visual perception features from the ren-
dered Web pages. Visual perception features such as background color, font size, and
margin space are very useful and commonly used in Web page analysis. Skoga is open
to incorporate them and it is a worthwhile enhancement for upgrading the accuracy
when the real-time performance is not the major concern. Another direction is to trans-
fer the proposed DOM structure knowledge driven model to tackle other Web page
understanding tasks, such as the extraction of description details from the pages de-
scribing a single object, where the specific labels and features need to be appropriately
designed with the characteristics of the tasks considered.
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