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ABSTRACT

An approach to proving temporal properties of concurrent programs that does not use tem-
poral logic as an inference system is presented. The approach is based on using Buchi auto-
mata to specify properties. To show that a program satisfies a given property, proof obliga-
tions are derived from the Buchi automata specifying that property. These obligations are
discharged by devising suitable invariant assertions and variant functions for the program.
The approach is shown to be sound and relatively complete. A mutual exclusion protocol il-
lustrates its application.
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1. Introduction

Experience has shown that while it may be possible to convince oneself of the correctness of a
sequential program by considering some subset of its executions, this is impossible for concurrent
programs. Consequently, methods have been devised to deduce properties of program behavior from
the program text itself. The program text obviously contains all the information needed to decide
what executions are possible. Moreover, while the number of possible executions is likely to be very

large, only a single program text need be analyzed.

An execution of a program can be viewed as an infinite sequence of states called a history. In a
history, the first state is an initial state of the program and each following state results from executing
a single atomic action in the preceding state. Terminating executions are extended to infinite his-
tories by repeating the final state. In a concurrent or distributed program, a history is the sequence of
states that results from the interleaved execution of atomic actions of the processes.

A property is a set of sequences of states; a program satisfies a property if each of its histories is
in the property. Specifying a property as a predicate on sequences allows the essence of that property
to be made explicit. Formulas of temporal logic can be interpreted as predicates on sequences of
states, and various formulations of such temporal logics have been used for specifying properties—
called temporal propertiés—of interest to designers of concurrent programs [Lamport 83a] [Lamport
83b] [Manna & Pnueli 81a] [Wolper 83]. While there is not general agreement on the details of such
a specification language, there is agreement that temporal logic provides a good basis for such a
language and it, or something close to it, is sufficiently expressive.

Temporal logic has also been used in proving temporal properties of concurrent programs
[Pnueli 77] [Manna & Pnueli 81b] [Manna & Pnueli 84] [Owicki & Lamport 82]. Here, a program is
regarded as defining a collection of temporal logic axioms. The programmer proves that a program
satisfies some property of interest by using these axioms along with program-independent axioms and
inference rules of temporal logic [Manna & Pnueli 83b] to show that the temporal formula character-
izing the property is a theorem of the logic. Thus, proving that a program satisfies a property is
reduced to theorem-proving in a temporal logic.

This paper describes a different approach for proving temporal properties of (concurrent) pro-
grams. The approach is based on specifying a property as a Boolean combination of deterministic
Buchi automata. Proof obligations are extracted from these automata. These obligations generalize
the invariant and variant function used to prove partial correctness and termination of sequential pro-
grams and define verification conditions that must hold for any program satisfying the property. The
verification conditions themselves can be formulated as Hoare triples [Hoare 69], so reasoning in

temporal logic is not required.



We proceed as follows. Section 2 gives the semantics of the programs that we consider. Sec-
tion 3 reviews Buchi automata and explains how they can be used to specify properties. Extraction of
proof obligations from Buchi automata is discussed in section 4. Section § illustrates our method on
a mutual exclusion protocol. Section 6 compares our approach to related work and section 7 is a

summary.

2. Programs
A program I is specified by
S a countable set of program states,
InitpSS a set of possible initial states, and
Ar, a finite set of atomic actions.

An atomic action defines a set of pairs of program states and is therefore a subset of SgxSy.
Atomic action o is enabled in a state s provided (3 ¢: (s, t) € o). The statement
(if b - C fi)

is used to specify an atomic action containing those elements (s, ¢) such that (predicate) b holds on s

and ¢ is the state produced by executing (assignment) C starting in state s.

A program is usually presented as a text, where statements or phrases in the text denote atomic
actions. Rather than enumerating the atomic action of a program directly, it is frequently convenient
to identify in such a text the control points that delimit atomic actions. In this paper, control points
are denoted by marking and numbering them and an atomic action is described by the text between
these marks. For example, program fragment of process A

.. {3:} x=23 {4} ...
defines a single atomic action

a3: (if pca=3 - pcs =4; x =23 fi)
where pc,4 simulates the program counter for process A. Thus, o4 is enabled in any state in which
pca=3.

Formally, a history of a program IT is any sequence of states from S such that the first state is
in Init; and every subsequent state is the result of executing an enabled atomic action from A on
the previous state in the sequence. Notice that no restriction is made about the choice of an atomic



action when more than one is enabled.! To ensure that all histories are infinite, we include in 4p an
atomic action that has no affect on the program state and is enabled when no other atomic action is.

An example program MEP is shown in Figure 2.1. It is a simplified version of the solution to
the two-process critical section problem described in [Peterson 81).2 Based on the control point anno-
tations, we obtain set of atomic actions Aygp of Figure 2.2. In those atomic actions, variable pcy
simulates the program counter for process A and pcp simulates the program counter for process B.
Finally, we have

Initygp = {s|5se Sygp A SE(pca=pcg=1A(turn=A v turn=B))}

because when execution is begun, both processes start at the beginning of their loops and turn is ini-
tialized.

3. Specifying Properties Using Buchi Automata

A property is a set of infinite sequences of program states. We restrict attention to properties
that can be specified by formulas of some linear-time, temporal logic with first-order monadic
predicates—that is, formulas composed of temporal operators, boolean connectives, and atoms that

MEP: cobegin
A ::dotrue — {1:} ncsy;
{2: )} activey =true;

{3:} turn .=B;
{4: } do activeg Aturn=B — {5: } skip od;
{6: } csa;
{7:} active, :=false
od
1
B :: do true — {1: } ncsp;
{2: } activep —true,
{3: } turn =
{4:} do actzveAAturn—A — {5:} skip od;
{6:} csp;
{7: } activeg :=false
od
coend.

Figure 2.1. Peterson’s Mutual Exclusion Protocol

Eairness is discussed in Section 5.2.

To simplify the presentation, we have assumed that the non-critical section (ncs) always terminates. However, the al-
gorithm and our proof do not rely on this assumption.



Aygp = {oci: (if pca=1 > pcy =2; nesy fi),
a%: (if pca=2 — pca = 3; activey = true fi),
of: (if pcy=3 = pcy :=4; turn =B fi),
(xj: (if pca=4 A activeg Aturn=B — pc, =5 fi),
of: (if pcy=4 A—(activeg Anturn=B) — pc, := 6 fi),
ocg: (if pca=5 > pcy =4 fi),
of: (if pca=6 = pcy =7, cs4 fi),
: (if pcy=7 > pcy = 1; active, =false fi),
(xb: (if pce=1 - pcp =2; ncsp fi),
o%: (if pcg=2 — pcp = 3; activep = true fi),
ong: (if pcg=3 = pcp :=4; turn :=A fi),
ocﬁ: (if pcg=4 A active, nturn=A — pcp =5 fi),
ongz (if pcg=4 A—(active, Aturn=A) — pcg =6 fi),
ocg: (if pcg=5 — pcp =4 fi),
ocl: (if pcg=6 — pcg =7, csp fi),
og: (if pcg=7 = pcp = 1; activeg =false fi) }

Figure 2.2. Atomic Actions Zygp

are first-order predicates of the program states. Such logics are slightly more expressive than proposi-
tional temporal logics where the atoms are propositions. However, our temporal formulas can be
treated as if they were propositional temporal formulas over different sequences. The elements of
these sequences are the equivalence classes of the program states under the monadic predicates.

A Buchi automaton is a finite-state machine that accepts or rejects infinite sequences of input
symbols [Eilenberg 74]. Such an automaton m can be used to specify the property containing those
sequences of program states accepted by m. Procedures exist to translate propositional temporal for-
mulas into Buchi automata where automaton state transitions are defined in terms of the atoms of the
temporal formula [Emerson & Sistla 83] [Alpemn 86]. Therefore, restricting consideration to proper-
ties that can be specified by Buchi automata—as we do in this paper—is not an additional restriction.
Moreover, Buchi automata have natural diagrammatic representations and this is sometimes a con-

venient way to specify a property.

An example of a Buchi automaton m,, is given in Figure 3.1. It accepts infinite sequences in
which after a finite prefix each state satisfies the program state predicate p. In temporal logic, this
property is specified as OUJp. Automaton m,, contains three automaton states labeled qq, g1, and q,.
The start state, qg, is denoted by an edge with no origin, and accepting state, q,, is denoted by two
concentric circles. A Buchi automaton accepts a sequence ¢ if and only if it enters an accepting state
infinitely often while reading ¢ (assuming non-deterministic choices are resolved in favor of accep-
tance). Notice, there is no way in m,, to get from g, to an accepting state. Such states are called

dead states. If an automaton is in a dead state, it cannot accept its input.
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Figure 3.1. m,,

Edges between automaton states are labeled by program-state predicates that are called transi-
tion predicates and define transitions between automaton states. If a program state satisfies the transi-
tion predicate on an edge, then the edge is defined for that program state. For example, because there
is an edge labeled p from ¢q¢ to ¢, in m,,, whenever m,, is in g and the next symbol read is a pro-
gram state satisfying p, then a transition to ¢, can be made. We adopt the convention that there be at
least one edge defined from each automaton state for each input symbol.

In order to define a Buchi automaton formally, the following notation will be useful. For any
sequence G =5¢51 ... ,

oli] = si,

ol..i] 5081 .- 8i1>

ofi..] SiSitl oo

lol = the length of 6 (w if G is infinite),
INF(o) = ({s|s appears infinitely often in G}.

A Buchi automaton m for a property of a program IT is a five-tuple (S, @, Q0. A, J), where

S is the (countable) set® of program states of IT,

Q is the (finite) set of automaton states of m,

QocQ is the set of start states of m,

ACQ is the set of accepting states of m,

S e (OxS) » 22-Q is the transition function of m.

Transition function & can be extended to handle finite sequences of program states in the usual way:

. [t iftel=0
8 (q, 0) = {q’l Bq”: q”e at(q’ G[ICI—I]) q’e S(q”, C[ICI—I])} 1f0<|(5| <®

It is often convenient to represent by using transition predicates, as in the diagram above. The tran-
sition predicate #; associated with the edge from automaton state g; to g;, holds for a program state s

if and only if ¢; € 8(g;,s).

3Technically, this is the finite set of equivalence classes (under the monadic predicates of the temporal formula being
specified) of program states.



A sequence of automaton states that m might occupy while reading o is called a run. Thus, p is
a run of m on ¢ if and only if
p[0le Qo and (Vi: 0<i<Iol: pli]e d(pli—-1],0(i-1])).

A Buchi automaton m accepts a sequence & if and only if there is a run p of m on ¢ for which
INF(p)NA=D.

Notice in m,, (Figure 3.1) that two transitions are possible from g for a program state satisfy-
ing p, because any program state that satisfies p also satisfies true. When there is more than one start
state or more than one transition is possible from some automaton state for a given input symbol, the
automaton is non-deterministic; otherwise, it is deterministic. Thus, m,, is non-deterministic. Using
a non-deterministic Buchi automaton, it is possible to specify a property that cannot be specified by a
single deterministic Buchi automaton. However, any property that is specified by a non-deterministic
automaton can be specified as a Boolean combination of properties each of which can be specified by
a deterministic Buchi automaton. For example, OUlp the property specified by m,, is the negation of
the property [X>— p specified by the deterministic Buchi automaton m;, of Figure 3.2.

Examples of Property Specifications

A Buchi automaton m,,,,, that specifies the property of Mutual Exclusion for two processes is
given in Figure 3.3. Mutual Exclusion is the set of sequences in which there is no state where the
program counters for two or more processes denote control points inside critical sections. In m .y,
we assume cs4 (csg) holds for any state in which process A (B) is executing in its critical section.

The property Partial Correctness for pre and post includes all sequences of program states
where, if the first state in the sequence satisfies pre then in any state where the program counter
denotes the end of the program, post is satisfied. A Buchi automaton m,, that specifies this property
is shown in Figure 3.4. Init, done is a predicate that holds for program states in which the program

Figure 3.2. m;,



—(csq ACSB) true

CSA ACS 91

Figure 3.3. My,

counter denotes the end of the program.

4. Proof Obligations

Every temporal property P is a Boolean combination of properties that can be specified by
deterministic Buchi automata. Without loss of generality, we assume that this combination is in con-
junctive normal form. Thus, Pis the conjunction of clauses Py, P,, ... F,,. To prove that a program
IT satisfies %, one proves separately that the program satisfies each of these clauses. This establishes
that every history of program IT is in the property (i.e. set of sequences of program states) specified
by each clause, so we can conclude that every history of IT is in the intersection of the properties
specified by the clauses and the program satisfies . Thus, it suffices to derive proof obligations for a

single clause.

The proof obligations for a single clause involve exhibiting three proof instruments. The first
proof instrument, an invariant, handles the safety aspects of the proof; the second, a variant function,

fQ done = post true
pre A(done = post) ' done A= post
pre Adone A—post
true
Figure 3.4. m,,



The invariant relates program states in a history to automaton states occupied while reading that his-
tory. The candidate function identifies negative automata that might never again enter an accepting
state. And, the variant function bounds the number of times that the candidate function can become
empty before one of the positive automata enters an accepting state.

If the invariant, candidate function, and variant function satisfy the obligations below, then IT
will satisfy ;. In these obligations, x and y denote elements of JS (‘%;, IT), and predicate x — y abbre-
viates

xel A A §x9,xM)=yD A Qo oe Aq: (xT, yMye o),
1<isn+p

The obligations are:
Ol: Forall xe JS(Z,II): ( A x(i)=q,~0 AxMe Initp) =>xel
1<isn+p

02: Forallx,ye JS(F,II): xo>y=yel
03: Forallx,ye JS(P,II): x>y =(Pos(@y) v vx)2v(y))
O4: Forallx,ye JS(PZ,II): x5y = Pos(y) v v(x)>v(y) v Dcu(y)cu(x)—neg(y)).

The first two obligations ensure that / holds throughout any joint history. O1 requires that the
first state of a joint history be in /; O2 requires that if one state in a joint history is in /, then so must

the next.

The third proof obligation requires that variant function v increase only upon entering a positive
state. It ensures that either (i) some positive automaton enters an accepting state infinitely often (and
the history is accepted) or (ii) after some point v never increases and no positive automaton subse-

quently enters an accepting state.

The final proof obligation, O4, ensures that a history not accepted by a positive automaton is
rejected by some negative automaton. To see how, observe that after some initial prefix of a history
that is not accepted by a positive automaton, there will be no positive state and v will be constant
(since its range is well founded). In this case, O4 requires that after executing an atomic action, the
candidate function on the new state

e contain only negative automata that were in the candidate function on the old state,
e not contain automata that are accepting in the new state, and
e not be empty.

Thus, unless a positive automaton accepts a history, there must be some negative automaton that,
after some point in the history, is thereafter in the candidate function. This automaton rejects the his-
tory since it cannot be in an accepting state after the prefix.

9-



We can now prove:

Soundness Theorem: If there are proof instruments /, v, and u that satisfy obligations O1
through O4 then program IT satisfies property Z,.

Proof: Let p be a joint history of I and ?,. p[0] € I by construction (O1). By O2 and induction,
pljle I for all 0<j. We must show that p causes some positive automaton to be in an accepting
state infinitely often or some negative automaton to be in an accepting state only finitely often.
Assume that no positive automaton is in an accepting state infinitely often. Thus, there is an
index [; such that p[/;..] contains no positive states. By O3, the variant function is non-
increasing on p[/,..]. Since its range is well-founded, there must be an index I/, such that [, </,
and the variant function is constant on p[l,..]. By O4, there is a negative automaton m, such that
forall j>1,,
ke uljDake neg (D).

Therefore, m, does not enter an accepting state after /,. This means that m, rejects p, so I
satisfies P.

We now show that the method is relatively complete.

Completeness Theorem: If program IT satisfies property P; then there exist proof instruments /,
v, and u that satisfy obligations O1 through O4.

Proof: Form a directed graph where the nodes are the joint states and there is an edge from node
x to y iff y is not a positive accepting state and x immediately precedes y in some joint history.
Define transitive, antisymmetric, relation > on the nodes of this graph such that x>y iff x=y,
there is a path from x to y, and an accepting state for each negative automaton appears some-

where on this path.

Relation » is well-founded, as is shown by the following proof by contradiction. If » were
not well-founded then there would be an infinite descending chain x>x,.... By construction of
the graph, this implies the existence of a joint history that includes x;. Let 6, be a prefix of such
a joint history that ends with x;. For each x; in the infinite descending chain, let ¢; be the path
from x; to x;,; that includes an accepting state for every negative automaton. Such a path exists
by definition, because x;>x;,;. Finally, let ¢ be 0y0;.... Notice that ¢ is a joint history, that ¢
contains no positive accepting states after 6y, and that there are infinitely many accepting states
for each negative automaton in 6. Thus, ¢ does not satisfy %;. This is a contradiction, and we

conclude that > is well-founded.

Since » is well-founded, the following ordinal function is well defined:

-10-



H(x) = sup{H(y)+1}.
x>y

If there is no y such that x»y then H(x)=0 by definition of sup, so H is total. Notice that if x>y
then H (x)>H (y). Moreover, if there is any path from x to y in the graph then H (x)2>H (y).

The variant function will be constructed using H and the level [(x) of a node x, defined as
follows. Level I(x) is the largest integer i such that for any collection of i negative automata
there exists some node w with H (w)=H (x) such that there is a path from w to x and there is an
accepting state for each automaton in the collection somewhere on the path. Note that by
definition of H, the level of a node will be less than or equal to n. (The equality will hold only if
x itself is accepting for all negative automata.)

The three proof instruments can now be defined. Choose / to be the characteristic predicate
for the set of joint states that appear in joint histories of IT and ?;. Choose v(x) to be o= if x is
positive and (H(x),n—I(x)) otherwise. The range of v with lexicographic ordering of pairs with
oo larger than any pair is well-founded because the ordinals are. Finally, choose u(x) to be the set
of negative automata that do not have accepting states on any path to x from any w such that
v(w)=v(x). (Note that u (x)=O only if there is no such w different from x.)

Proof obligations O1 and O2 follow immediately from the definition of /.

To see that O3 holds, notice that if x —» y and y is not positive then there is a path (of
length 1) from x to y in the graph. Thus, H(x)=H(y). Suppose H(x)=H(y). Since any path to x
can be extended to y, I(x)<I(y). Therefore, v(x)=v(y).

To see that O4 holds, suppose that x — y, y is not positive, and v(x)=v(y) holds. First,
note that neg (y)nu (y) is empty, since there is a trivial path from y to itself. Because there is a
path from x to y, if m, has an accepting state on a path from w to x, then m, must have an accept-
ing state on a path from w to y. Therefore, u (y) is contained in u (x). Further, since x#y holds,
u(y)=J. 04 follows immediately. This completes the proof.

4.2, Verification Conditions

Obligations O1 through O4 can be translated into verification conditions formulated as Hoare

triples [Hoare 69] and predicate logic formulas. The Hoare triple {P} o {Q} for an atomic action o

asserts that any execution of o started in a state satisfying P terminates in a state satisfying Q. Thus,
{P} o {Q} is valid iff (V (s5,2): (s,t)e a: (SEP)= (tFQ)).

SSince o is an atomic action, it must terminate once execution commences.

-11-



To reformulate O1 through O4 in terms of Hoare triples, we define slight variations of the three
proof instruments. Define PJS (%;), the projection of JS (&, IT) with respect to program states, as
PJS(B)=Q1X - XQp+a. Elements of PJS(®;) are called projected joint states. We write X to
denote the projection of a joint state x. The projected joint state in which every automaton is in its
start state is called the projected joint start state and denoted qg. A projected joint state X is con-
sidered positive if it is the projection of a positive state. For X the projection of x and s e Sy, we
define:

Iz = {slseSpga{x,s)el}

vi(s) = V(. $)

uz(s) = u((x,s))
Posz; = Pos(x)
negz = neg(x)

Finally, we define a projected joint state transition predicate tz to be a predicate that holds for
any program state causing a transition from a projected joint state x to a projected joint state y. t5
can be formed by taking the conjunction over all m; of the transition predicates labeling the edge
from x ® to i(i).

Satisfying the following two verification conditions implies that O1 through O4 hold. The first
one implies O1.

VCI1: Initgp =15

The next implies O2 through O4.

VC2: Forallx,y e PJS(®,) and a.e An:
{Iz Avz=V A uz=U A 155}
o
{5 A(Posy v v5<V v (v5=V A @cu;SU-negy))}

To see that 02, O3, and O4 are implied by VC2, choose
x=&,s)andy =(,s)

and assume x — y. Thus, there is an ace A such that (s, s) e @, sF/z, and sFtz. Choose V and U
such that vz(s)=V and uz(s)=U hold. From VC2, we conclude that postcondition

I5 A (Posy v v5<V v (v5=V A @Cu;CU—negy))

holds in y. However, this is equivalent to

I5 A (Posy v v5<V) A(Posy v v5<V v DcuzcU—negy)).

02 then follows from the first conjunct, O3 from the second, and O4 from the last.

-12-



Conversely, assume O1 through O4 hold. VC1 follows from O1. From O2 we get
{IzA tz—y} o {Iy}.

From O3 we get

{I,—,AV;=VAtE} o {POS;VVySV}

Finally, from O4 we get
{Ie Avs=V Auz=U} a {Posy v v5<V v Dcu;cU—negy}.

Together, these three Hoare triples imply VC2.

We have shown that obligations O1 through O4 are equivalent to verification conditions VCl1
and VC2. If the underlying assertion language is expressive enough to capture the preconditions and
postconditions of the Hoare triples of VC2, then the verification conditions can be expressed in this
logic. Since Hoare Logic is semantically complete relative to the completeness of the assertion
language, our proof technique is complete relative to the semantic and expressive completeness of

this logic.

4.3. Eliminating the Candidate Function

The invariant and variant function above are generalizations of standard proof instruments used
to prove partial correctness and termination of sequential programs. The candidate function is not
standard. It can be a useful proof tool, as illustrated in the example of section 5.2, but—as we now
show—is not necessary for proving temporal properties.

Although the set of properties that can be specified by deterministic Buchi automata is not
closed under negation, it is closed under conjunction and disjunction. Thus, any property P; can be
written Mv —A{ where M= Dy v ... v D, and is accepted by deterministic Buchi automaton n 4,
and N = Dy41 A ... ADp4p and is accepted by deterministic Buchi automaton m 4. Having made this
observation, the proof obligations for %, can now be stated without using a candidate function
because there exists only one negative automaton. Obligations O1—-0O3 remain as before. O4
becomes

04" Forallx,ye JS(F,I): x>y =>@Pos(y) v Neg(y)=vx)>v())),

where Neg(y) holds when m 4 is in an accepting state in y.

The verification conditions can also be simplified. VC1 is unchanged, and VC2 becomes

VC2'; Forall x,y e PJS(®,) and o.e Ap:
{Iz Avz=V Atg}
a
{l5 A(Posy v (V2v5 A (Negy = V>vy)) }

-13-



where Negy holds when my is in an accepting state in y.

5. Example: Peterson’s Protocol

To illustrate our verification method, we prove two properties of Peterson’s Protocol (Figure
2.1). First, we prove that it prevents two processes from concurrently executing in critical sections.

Then, we prove that a process attempting to enter its critical section will succeed eventually.

5.1. Mutual Exclusion

To prove that the protocol satisfies Mutual Exclusion as specified by m,., (Figure 3.3), we use
the following proof instruments:

I = {{q0,POL), {(q,.false)}

where POL = (turn=A v turn=B) A

pca=3= activey A

pca=4 = actives A

pca=5S=activey A

pca=6=>activey A(turn=A v —activeg v pcg=3) A
pca=T=>activey A(turn=A v —activeg v pcg=3) A
pcg=3 = activeg A

pcp=4 = activeg A

pcp=5S=>activeg A

pcp=6 = activeg A (turn=B v —active, v pc4=3) A
pcg=T1=>activeg A (turn=B v —active, v pcy=3)

v =0
u=g9
We now show that verification conditions VC1 and VC2 are satisfied with these proof instruments.
To demonstrate VC1, we must show that Init; = I'g holds, where I is POL. This is trivial.
To show that VC2 is satisfied, a number of Hoare triples must be checked. For every atomic
action q, they are:
{Ionte} o {15}

{Ioator) o {17}
Uiang) o {17}

For the program of Figure 3.3,
csp = 6 <pcy<7
csp = 6 <pcp<7.
Because

-14-



too = —(csancsp)
1ol = CSAACSE
t1] = true

and POL =>—(csu A csg) holds, these Hoare triples simplify to:

{POL} o {POL}

{false} o {false}

{false} o {false}
There are 16 atomic actions in the program. Since {false} o {false} is trivially valid for any o, a
total of 16 triples must, therefore, be checked. Establishing that these 16 triples are valid can be done
by inspection.

Most of the work in this proof concems invariant / and verifying its invariance. To make this

easier to handle, / can be presented as a property outline. A property outline is a program that has
been annotated by asserting at each control point the subset of the joint state space in / corresponding

to that control point.® Subsets of the joint state space are described by enumeration or by a charac-
teristic predicate, whichever is more convenient. A property outline equivalent to / above is given in
Figure 5.1. Given such a property outline, it is usual possible to verify the triples for VC2 by inspec-

tion.

5.2. Starvation Freedom and Fairness

In addition to mutual exclusion, a solution to the critical section problem should ensure that
processes attempting entry to critical sections actually do enter eventually. A process of MEP is said
to starve if it trys to enter its critical section but never succeeds. Process A of MEP should eventually

enter cs, whenever
trys: pca=4 v pcay=5
holds,” and similarly process B should eventually enter csp whenever
tryg: pcg=4 v pcg=5
holds. The Non-Starvation Property ASyep asserts that neither process starves. This can be formal-
ized in temporal logic as
NSpmep: (OO—trys) A (OKO—tryp).

Proof outlines serve the same purpose in Hoare's Logic [Lamport & Schneider 84].
™This choice of try is stronger than it needs to be, but simplifies the proof.
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MEP: cobegin

A ::dotrue — {1: {qo, true),{q,, false) }
nesys
(2: (g0, true), (a1 false)
activey = true;
{3: (qo, active,), {q., false) }
turn =B,
{4: {qo, actives), {q1, false) }
do activeg Aturn=B — {5: {(qq, activey), {q1,false) }

skip od;

{6: {(go.activey A(turn=A v = activeg v pcg=3)),{q 1, false) }
CSAs
{7: (qo.actives A(turn=A v —activeg v pcg=3)),{q1,false) }
active, = false

od
/
B ::dotrue — {1: {qo, true),{q., false) }
ncsp,
{2: {qo, true),{q1, false) }
activep = true,
{3: (qo, activep),{q,, false) }
turn =A;
{4: {qo, activep),{q1, false) }
do active, Aturn=A — {5: {qq, activeg),{q1, false) }
skip od;
{6: {go.activeg A(turn=B v —active, v pc4=3)),{q 1, false) }
cSg,
{7: {qo.activeg A(turn=B v —active, v pcs=3)),{q 1, false) }
activep = false
od
coend.

Figure 5.1. Property Outline for /

It is easy to see that MEP does not satisfy ASygp for some histories in which one or the other
process is not given sufficient opportunity to execute. A fairness assumption asserts that an atomic
action that is enabled *‘often enough’’ will be executed eventually. Let ¥, be a fairness assumption

for atomic action o.® A fairness assumption for a program IT is the conjunction of faimess

assumptions—one for each atomic action in Ap. Thus, Fyep the faimess assumption for MEP is
defined by

8See [Francez 86] for various types of fairness assumptions.
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FuEP 0 S Fa
To show that MEP satisfies ASygp for all histories satisfying Fyzp, we must prove that MEP
satisfies Fyep = NSyep. Putting this property into conjunctive normal form, we get

FNSmeEP: (v =Fo v OO=trys) A (v =Fy v OO—tryp)
ae Aypp o€ Aygp

Each of the two clauses (conjuncts) in FASyep is proved separately. However, since the two clauses

are symmetric, only the first one is proved here; the proof of the second is similar.

As a fairness assumption for atomic actions, we choose weak fairness, which asserts that an
atomic action that becomes enabled is eventually executed or otherwise becomes disabled. This is
expressed in temporal logic as

WFy: OO—enabled(o).

where enabled(c) holds in any program state s where atomic action « is enabled. Thus, the first con-
junct of FASyep is
TWEP: \4 —IWa \ DO-ﬂtryA
o€ Aygp

= v = [X—enabled(0) v TX—try,
o€ Ayrp

This clause contains seventeen disjuncts because | Aygp| =16; all but one of these disjuncts is
negated. Each disjunct is of the form [X>—p, so the Buchi automaton specification for each is m;, of
Figure 3.2.

To prove that FASSgzp holds we use the following proof instruments.

I = JS(FNShgp, MEP)

r oo —ITy4
pca—3 trys Atryg Aturn=A
Y =) 2+@-pcp)mod 7 iry Aitryp
7+pcg-3 trya Atryg Aturn=B
%) —trys
u =< {ilenabled(0f)} trys atryp Aturn=A

{i |enabled(of)} trys A (—tryg v turn=B)
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Rather than checking that verification conditions VC1 and VC2 hold, we argue informally that obli-
gations O1—04 are satisfied by this choice of proof instruments.

O1 and O2 are trivially satisfied by the choice of invariant, since the invariant rules out no joint

state.

03 follows from the construction of the variant function, as follows. When —try, holds, then
an automaton for a positive disjunct is in an accepting state, so O3 is satisfied in that case. If
trys Atryg Aturn=A, then v is the number of atomic actions that A must execute before entering cs,.
Since mrn=A, subsequent execution by B does not alter this value. If try4, A—tryp then v includes the
number of atomic actions B must execute to establish the previous case (trys Atryg Aturn=A).
Clearly, execution by A does not alter this value. Finally, when try, A tryg Aturn=B, then v is the
maximum value of v in the preceding case (tryq A —tryg) plus the number of atomic actions that B

must execute to make tryq A —tryg hold.

04 follows from the construction of the candidate function, which always contains the index of

the automaton corresponding the faimess assumption for the enabled atomic action that will reduce v.

Note that this proof is an instance of the method of helpful directions for weak fairness [Francez
86]. Each process corresponds to a direction. Execution of an enabled atomic action in the helpful
direction decreases the variant function. Execution of an enabled atomic action in some other direc-
tion does not increase the variant function nor does it disable any helpful atomic action. Thus, when
trys Atryp Aturn=A, the helpful direction is process A; when tryy A (—tryg v turn=B) the helpful
direction is process B. The weak faimess assumption guarantees that the variant function decreases

eventually.

The method of helpful directions is a special case (for proving properties that assume weak fair-
ness) of the technique given in this paper. To see this, observe that the helpful directions identify
atomic actions that decrease the variant function. The stipulation that a non-helpful atomic action not
increase the variant function guarantees O3. The value of the candidate function can be taken to
correspond to any subset of the helpful atomic actions. The stipulation that a non-helpful atomic
action leave helpful ones enabled guarantees O4.

6. Discussion

We have shown how to reduce a temporal property into proof obligations that can be formulated
as formulas of predicate logic and Hoare’s logic. The idea that temporal properties can be proved
without temporal logic is not new. For example, [Manna & Pnueli 79] point out that it is possible to
prove temporal properties using a partially interpreted first-order logic with operators that correspond
roughly to the right-hand sides of the definitions of the temporal modalities. The use of invariance
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and well foundedness for proving temporal properties is suggested in [Lehmann et al. 81] and [Manna
& Pnueli 83a]. And [Manna & Pnueli 84] advocate using temporal logic along with invariance and
well-foundedness. What is new in this paper is a systematic method for reducing a temporal property
to non-temporal proof obligations.

Other investigations into decomposing temporal properties include [Barringer et al. 84], [Gerth
84], [Jones 83], [Misra et al. 82], [Nguyen et al. 85] and [Stark 84]. Most of that work is concemned
with decomposing various classes of global temporal properties of a system into local properties of
the system components, resulting in so-called compositional proof systems. The work in [Gerth 84]
is most similar to ours in that temporal properties are reduced to primitive formulas that resemble tri-
ples. That work, however, is concemed only with finite sequences (both as properties and programs)
and therefore does not address the problem we are most concemed with.

Another, related, approach to verifying that a program satisfies a property is model checking
[Clarke et al. 83] [Emerson & Lei 85] [Lichtenstein & Pnueli 85]. Here, a program IT is viewed as
specifying a Kripke structure K. %q is a model for a temporal property 2 if and only if IT satisfies
P. To determine if IT satisfies 2P it suffices to check whether Xy is a model for 2, and this amounts
to checking each state in the state space to see which sub-formulas of 2 hold in that state. Thus, for
programs with finite state spaces, it is possible to mechanically verify whether the program satisfies a

given temporal property.

Recently, [Vardi & Wolper 86] observed that for programs with finite state spaces, X can be
viewed as a Buchi automaton that accepts exactly the histories of II. From this automaton and one
that recognizes sequences satisfying — P, a Buchi automaton mpy, _, ¢ can be constructed that accepts
all histories of IT not satisfying P. The decision procedure for the emptyness problem for m, _,p can
then be used to determine if IT satisfies 2. A similar approach was developed independently by
Kurshan [Kurshan 87a] [Kurshan 87b].

Model checking is restricted to programs with finite state spaces® but is algorithmic. Since it is
algorithmic, it can be mechanized and does not require creativity in devising invariants, variant func-
tions, or candidate functions. And, model checking is always guaranteed to get the correct answer.
In contrast, the methods presented in this paper are not limited to finite-state programs. Unfor-
tunately, the methods are, in general, undecidable. Moreover, they may require creativity in devising
suitable proof instruments, although this might be viewed as an asset since the proof instruments can

give insight into why a program works.

SHowever, proponents of the model checking approach have made progress in weakening the finite state assumption
so that it applies only to certain key parts of the program [Clarke & Grumberg 87] [Sistla & German 87].
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The first Buchi automaton based method for extracting first-order proof obligations for temporal
properties was proposed by us in [Alpermn & Schneider 85] [Alpern 86]. That work applied to those
properties that can be specified using a single deterministic Buchi automaton. Formulated in the ter-
minology of this paper, the method requires the program prover to exhibit an invariant / and a variant
function v satisfying:

AS1: Forall x e JS (2, II): (x(1)=q 10 AxDemitp)=>xel
AS2: Forallx,ye JS(RII): xo>y=yel
AS3: Forallx,ye JS(P,II): x -5y = (Pos(y) vv(y)<v(x))

AS1 and AS2 are obligations O1 and O2 of the approach outlined in Section 4. Consider the remain-
ing obligations (O3 and O4) of that approach. The property is a single clause that consists of a single,
non-negated property, so there are no negative automata. Thus, u(x) = for every joint state x, so
the final disjunct of O4 must be false. AS3 and O4 are therefore equivalent, and each implies O3.
Thus, the two techniques yield essentially the same proof obligations when applied to properties that
they both can handle.

The method in [Alpern & Schneider 85] is unsatisfactory for properties specified by non-
deterministic Buchi automata. To use it to prove that a program IT satisfies such a property 2, a
deterministic property 2 that is contained in 2 is found. Proof obligations are then extracted from
the deterministic Buchi automaton for 2. If a (finite-state) program IT satisfies P, an appropriate D
always exists but may be big and difficult to find. Furthermore, the proof obligations for a non-
deterministic property now depend on the program as well as on the Buchi automaton for the property
to be proved. The approach of Section 4 does not suffer from these difficulties since every property
that can be specified using a non-deterministic Buchi automaton can be specified as a Boolean combi-

nation of properties specified by deterministic ones [Eilenberg 74].

In [Manna & Pnueli 87], Manna and Pnueli concurrently and independently developed a dif-
ferent technique for extending the approach of [Alpem & Schneider 85] to obtain proof obligations
for properties specified by non-deterministic Buchi automata. The approach is based upon a V-
automaton for a property. Simplifying slightly,'® a V-automaton is a Buchi automaton that accepts
its input iff every run on that input eventually is restricted to accepting states. Using the parlance of
Section 4, to show that every history of a program will be accepted by a V-automaton m, one must
exhibit an invariant / that satisfies obligations O1 and O2 and a variant function v satisfying:

19We are ignoring the behavior of V-automata on finite sequences, the placement of transition predicates in states rath-
er than on edges, and V-automata with recurrent states (which are shown to be equivalent V-automaton without such states
in [Manna & Pnueli 87]).
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MP1: Forallx,ye JS(BII): x >y =>v(@)<v(x)
MP2: For all x, y € JS (P, IT): (x—>yAx(1)eA1)=>v(y)<v(x)

The V-automaton for a property is isomorphic to the Buchi automaton for the negation of that
property.“ This suggests there might be a connection between the proof obligations that are obtained
from a V-automaton for the negation of a deterministic property and the proof obligations we obtain
for a clause with a single negated property. And, there is. Since there are no positive joint states with
a single negated property, O3 and MP1 are equivalent. We can choose the candidate function such
that O4 and MP2 are equivalent—define u to be empty whenever the Buchi automaton is in an
accepting state and to be {1} when it is not. Therefore, the two techniques yield the same proof obli-
gations for a property whose negation can be specified by a deterministic Buchi automaton.

The key insight underlying the approach of [Manna & Pnueli 87] is that proof obligations for
the negation of a property can be extracted directly from a Buchi automaton for the property—

whether or not this automaton is deterministic.'? Given a property specified by a Buchi automaton, to
extract proof obligations using the approach of [Manna & Pnueli 87], the Buchi automaton for the
negation of the property is constructed. With the technique presented in this paper, the property is
decomposed into a Boolean combination of properties where the non-negated terms must be specified
by deterministic Buchi automata. Depending on the property, one or the other approach may be
easier. An added advantage of our Boolean decomposition approach is that parts of the proof may be
reusable since other properties might be constructed from these parts.

A final insight into the difference between the approach of [Manna & Pnueli 87] and our earlier
approach in [Alpern & Schneider 85] is obtained by considering clauses of the form N = M, as was
done in section 4.3. The technique in [Alpern & Schneider 85] is a restriction to the special case
true = M and the technique in [Manna & Pnueli 87] treats the other special case, N= false. Of
these "special cases", the second is general; the first is not.

7. Summary

We have described an approach to proving temporal properties of concurrent programs. This
approach is based on using deterministic Buchi automata to specify properties. Such automata are
quite expressive—any temporal property can be formulated as a Boolean combination of properties
specified by them. Proof obligations for a property are extracted directly from the automata for that
property. These proof obligations are discharged by devising suitable proof instruments. The

11T obtain a V-automaton for P from a Buchi automaton for =%, exchange the accepting and non-accepting states.
12Consequently, when the approach of section 4 is used, the negative automata of P, need not be deterministic.
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adequacy of the proof instruments is established by verifying predicate logic formulas and triples.
Thus, temporal inference is not necessary for proving temporal properties. The same techniques that
prove total correctness of sequential programs can prove arbitrary temporal properties of concurrent

ones.
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