JOSEPH Y. HALPERN AND YORAM MOSES

TAKEN BY SURPRISE: THE PARADOX OF THE
SURPRISE TEST REVISITED

A teacher announced to his pupils that on exactly one of the days of the following
school week (Monday through Friday) he would give them a test. But it would be a
surprise test; on the evening before the test they would not know that the test would
take place the next day. One of the brighter students in the class then argued that the
teacher could never give them the test. "It can’t be Friday,” she said, “'since in that
case we'll expect it on Thurday evening. But then it can’t be Thursday, since having
already eliminated Friday we’ll know Wednesday evening that it has to be Thursday.
And by similar reasoning we can also eliminate Wednesday. Tuesday, and Monday.
So there can't be a test!™

The students were somewhat baffled by the situation. The teacher was well-known
1o be truthful, so if he said there would be a test, then it was safe to assume that there
would be one. On the other hand, he also said that the test would be a surprise. But it
seemed that whenever he gave the test, it wouldn't be a surprise.

Well, the teacher gave the test on Tuesday, and, sure enough, the students were
surprised.

1. INTRODUCTION

Was the teacher telling the truth? It seems that he was. After all, the
test was given, and the students were surprised. Yet where was the
flaw in the student’s reasoning?

The story described above is the well-known Surprise Test Paradox,
also known as the Class A Blackout, the Hangman Paradox, the
Prediction Paradox, etc. It was circulated by word of mouth in
the 1940s, and was first discussed in print in 1948 [OC]. Interestingly
enough, the first few authors who discussed it viewed it simply as an
example of a statement that could not be fulfilled, and were unaware
of the potential “twist” at the end. It was not until 1951 that Scriven
pointed out that the teacher can give the test and surprise the students
[Sc]. Since then, numerous authors have discussed the problem and
presented solutions, although none apparently definitive. (See [Ga]
for an eminently readable introduction to the paradox, and [MB] for
a thorough survey of the literature, with a bibliography listing 40
papers).
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With some trepidation, we offer yet another solution to this para-
dox. The solution uses elements present in a number of other solutions,
yel puts them together in what seems to be a novel way.

The most important step in our analysis (and, we would argue, the
most important step in any analysis of this paradox) is making precise
exactly how we should interpret the phrase “on the evening before the
test they would not know . . . ", Of course, the crucial word here is
know. One approach we can take is to try to formulate this in terms
of a modal logic, with a modal operator K for knowledge. This
approach has been taken by a number of authors (e.g. [Bi, Kv, Le]),
and tends to reduce the problem to a variant of Moore’s “pragmati-
cally paradoxical™ sentence.'

Our approach, which goes back to Shaw [Sh], is to interpret “the
students know™ as “‘the students can deduce from the information
given by the teacher”. But with this approach a number of questions
need 10 be answered. Exactly what information did the teacher give
the students? And what rules of deduction can the students use? In
what logic are they working?

As has been noticed by many previous authors (the first of which
again seems to have been Shaw [Sh]), the teacher’s statement has
some self-referential features (this is discussed in more detail in the
next section). We enrich our logic with a fixed-point operator to cap-
ture these self-referential features. This i1s not the first use of fixed-
point operators to capture self-reference; they have been used fre-
quently before, particularly in the computer science literature (cf.

[SD, Pa, Pr, Ko]).
As Margalit and Bar-Hillel point out [MB]:

Within the logical framework, Shaw and others demonstrated convincingly several
things: (i) that there are more than one set of rules which can be substituted for the
teacher’s decree; (ii) that the differences between them are often subtle and casy to
overlook, even with careful analysis, although they are crucial to the issue at hand;
(11i) that some, though not all, of the rules are genuinely contradictory; (iv} that some,
though not all, allow the possibility of a surprise test being given.

The four points made above are all readily apparent in our discussion.
In fact, we suggest four ways to translate the teacher’s statement
formally into logic, all subtly different. The first of the translations
turns out to be contradictory, the second is consistent and allows the
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possibility of a surprise test being given on any day (including Friday",
the third rules out the possibility of the test being Friday, but is con-
sistent with the test being any other day, while the fourth does not
even admit of a reasonable semantic interpretation, and is paradoxical
in that it is consistent if and only if it is inconsistent. All of the trans-
lations attempt to directly capture the spirit of the teacher’s state-
ment, rather than avoiding it as some authors seem to have done. The
fact that the teacher’s statement allows four translations with such
wildly different properties may help explain the “staying power™ of
this puzzle.

We discuss our translations informally in the next section, and
formalize the details in Sections 3 and 4. We compare our approach
to the modal logic approach in Section §, and conclude in Section 6 -
with some general observations on the logical analysis of this and
similar paradoxes.

2. TRANSLATING THE PUZZLE INTO LOGIC: AN
INFORMAL DISCUSSION

How can we represent the puzzle in a formal system in order to
analyze 1t? The first step is to capture the information given by the
teacher. Certainly one piece of information given by the teacher is:

I, The test will take place on exactly one of the days of
the following school week.

I, can easily be represented in a propositional logic, using prop-
ositions of the form T, standing for *‘the test is given on day D”.
Representing the information that the test will be a surprise is
somewhat trickier. As suggested by the story, we take “‘surprise™ to
mean that the students will not know the evening before the test that
the test will take place the next day. But this does not seem to help
very much, How do we capture what the students know? Instead of
using a modal logic with a knowledge operator, we will take “know™
here to mean “can deduce from the teacher’s announcement”. But
with this reading, the teacher’s announcement then becomes, more or
less, that the students will not be able to deduce from the teacher’s
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announcement when the test will be. Clearly there is a case of self-
reference here!

Roughly speaking, following Shaw ([Sh]), we can capture this infor-
mation by

I If the test is held on day D, then on the previous even-
ing the students will not be able to deduce from I, and
I, that the test will take place on day D.

Suppose we could represent /, formally in our logic (we will show in
the next section how to do this using a provability operator and a
fixed point operator). Let */," be the formula that represents I;. (In
general we will use *;’ to denote the formula that represents the infor-
mation [;.) Not surprisingly, it will turn out that */;" A ‘£, is not
sauisfiable; in fact, it will be provably false in our logic. The proof will
follow exactly the same lines of reasoning as the student’s argument
in the story.

But in classical logic, from a false statement one can deduce any
thing at all. So (assuming we are working in the framework of classical
logic), the students can, still within the logic, now construct a proof
(using the assumptions ‘f;" A ‘L") that the test will be held Monday.
And on Tuesday and on Wednesday, for that matter! If we take
“surprise” to mean “‘not deducible from ‘1, A *I,’”, then the test
will not be a surprise at all®

According to this translation of what the teacher said, the teacher
is not telling the truth. The students are not surprised, because every
evening they can deduce that the test will be held on the next day.
But there seems to be something not quite right with this notion of
surprise. After all, if we “prove” the test is on Monday, and then
discover it isn’t, can we honestly say we are not surprised if we
“prove’ the test is on Tuesday, and it turns out to actually be Tuesday?

This suggests that we should slightly reinterpret out definition of
surprise. The crucial point here seems to be: can you really be said to
know something as a result of having deduced it from inconsistent
information? The classical logician may rub his hands with glee on
receipt of inconsistent information, since he can now prove anything.
But in everyday life, we don’t take this approach at all. If someone
gives us information we know to be inconsistent, we simply discard
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it as useless (and consider with some doubt all the other information
given to us by this apparently unreliable person!).

However, we are still interested in providing a logical analysis of
the paradox. If we grant that our first attempt at capturing the notion
of “surprise” is not quite right, we are still faced with the problem of
providing a translation that is more in the spirit of our understanding
of the story. One approach we might take is to adopt a non-classical
logic, such as relevance logic or one of its cousins (cf. [AB]), where it
is nor the case that from an inconsistency you can deduce everything.

We prefer a solution that captures somewhat more closely the idea
that you “discard” inconsistent information. There are two directions
we can go from here in translating the teacher’s information. The first
is for the students to be somewhat charitable to the teacher and, despite

the fact that he may have said [, to interpret his second piece of
information as

I If (I, and 1,) is consistent and the test is held on day D,
then on the previous evening the students will not be
able to deduce from (J, and L) that the test will take
place on day D.

We remark that in the logic that we present in the next section, we
have an explicit provability operator. Since consistency is just the
dual of provability, it will turn out to be straightforward to express [,
formally in the logic.

Of course, it is still the case that ‘/;" A *[,’ is inconsistent, but this
makes ‘I’ vacuously true. But I; does seem to capture part of the
process the average (intelligent) listener goes through on hearing the
story. He is told the proof that there can’t be a test on any day of the
week, and still grants that he is surprised when the test indeed takes
place on Tuesday. Of course, he is surprised because he realizes that
the “proof” that it can’t be Tuesday somehow doesn’t count. And /,
seems to capture exactly why it doesn’t count.

If the students interpret the teacher’s statement as ‘I,;" A ‘I3, then
not only is this consistent, but it is consistent with the students getting
the test on any day of the week, including the last day!

This seems to violate common sense. How can the teacher be telling
the truth and still give the test on Friday? All the students should be
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able to figure out on Thursday night that the test must be Friday if it
hasn't been held yet. But doesn’t similar reasoning let them figure out
on Wednesday night that the test will be on Thursday if it hasn’t been
held yet? After all, they have already eliminated Friday. Such reason-
ing quickly leads us down the road to inconsistency again. However,
there is one thing that distinguishes Friday from the other days: we
can conclude on Thursday night that the test will be on Friday (if it
hasn’t been held yet) just by using the information in f,. Of course,
interpretation [; does not allow us to use this information unless 7,
and [, together are consistent. But suppose we slightly modify I; to
allow the students to use [, alone, if that helps. This give us

I, If 7, 1s consistent and the test is held on day D, then
on the previous evening the students will not bé able to
deduce from 7, that the test will take place on day D;
and if (/, and I,) is consistent and the test is held on
day D, then on the previous evening the students will
not be able to deduce from (/, and £,) that the test will
take place on day D.

Now the second clause of [ is identical to J,, and holds vacuously just
as before. But it is easy to see that the first clause rules out the possi-
bility of having the test on the last day of the week. Thus ‘I;" A ‘[, is
consistent with the test being held any day of the week but the last one.

There is yet another, perhaps more natural, way of incorporating into
our translation the idea that inconsistent information should be dis-
carded. Rather than impose externally on the interpretation of the
teacher’s statement that we discard inconsistent information (as in f;),
we actually make it part of the translation of the teacher’s statement,
as in I, below:

I If (1, and I) is consistent and the test is held on day D,
then on the previous evening the students will not be
able to deduce from (J, and /) that the test will take
place on day D.

Translation £, is truly paradoxical. Informally, we can show that
‘I, a ‘I is consistent iff it is inconsistent. For suppose that it is
consistent. Then */;" essentially reduces to ‘L,’, and the standard
argument used by the bright student in the story can be used to show



TAKEN BY SURPRISE - 287
that *{;" A *I" 1s inconsistent. On the other hand, if '/ A ‘I is
inconsistent, then ‘J’ is vacuously true, so “I;" A ‘I is equivalent

to 'I;’, which is clearly consistent!

This argument must remain only informal. Due to a syntactic
restriction that we place on the application of fixed-point operators
in our logic, we cannot even express I (i.e., there is no formula ‘I’
in our logic). Indeed, we can even prove within the logic that if
there were any formula ¢ with the properties we require of [, then
‘I’ A @ would be consistent if and only if it were inconsistent.

We remark that the syntactic restriction we place on the appli-
cation of fixed-point operators is not an ad hoc restriction employed
expressly for dealing with this paradox, but rather is a standard
restriction imposed on logics with fixed-point operators. Attempts to
express other paradoxical sentences such as *“This sentence is false” in
the logic also violate this syntactic restriction. Of course, if we try to
enrich the logic so that it can express a sentence like /", we quickly
run into inconsistencies such as the well-known Knower’s Paradox
(cf. [KM]).

In summary, if we translate the teacher’s statement in the naive
way, as ‘I;” A I, then it is false, since the students can indeed
deduce the day of the test. But this translation does not seem to cap-
ture the intuitive notion of “surprise”. The translation ‘I,” A ‘L’
seems Lo come closer to capturing our intuitive reading of what the
teacher said, although it is not a direct translation of his statement.
Rather, it seems that it is the translation into logic of our interpre-
tation of the statement. If we interpret the teacher’s statement as
‘1" A ‘I, then no matter which day he gives the test, the statement
becomes true. A slight modification, ‘1, » ‘I, is true as long as the
test is not given on the last day of the week. Finally, we might
consider translating the teacher’s statement as ‘/," A ‘[, but the
self-reference in this version is such that we cannot even make semantic

sense out of this translation. No wonder the teacher's statement is so
baffling!

3. A TRANSLATION INTO A FORMAL LOGIC

As we mentioned above, we translate the teacher’s inforgation into
a propositional logic with a provability operator and a fixed-point
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operator. The syntax is straightforward: starting with a set of primi-
tive propositions p, g, r, . . . and two special propositions true and
false, we get more complicated formulas by closing off under nega-
tion, conjunction, disjunction provability, and fixed points. Thus, if
¢ and  are formulas, then so are ~¢, ® A Y, @ v ¥, and Pr(op)
(read “¢ is provable™). Furthermore, if p is a primitive proposition
such that all free’ occurrences of p in ¢ are positive and there is no
free occurrence of p in a subformula of ¢ of the form fix g.y, then
fix p.¢o (read “fix of ¢ (with respect to p)") is a formula. An occur-
rence of p in a formula ¢ is said to be positive if it is in the scope of
an even number of negations (cf. [Ko]). Note the second restriction
prevents fix p.(fix ¢.(g A p)) from being a well-formed formula. This
restriction is added for technical reasons in order to enable us .to give
semantics to our language easily. As we shall see when we give the
semantics, our interpretation of the Boolean connectives, ~, A, and
v is classical, so we can easily define implication and equivalence in
the standard way: ¢ =\ is an abbreviation for ~¢ v Y and ¢ = ¢
is an abbreviation for (¢ = ) A (Y = @).* We also take Con(¢)
(read “'¢ is consistent”) as an abbreviation for ~ Pr(~ ¢). Thus, as
usual, consistency is the dual of provability.

We now list a few properties (axioms and rules of inference) we
would like our logic to have, and show that these properties indeed
can be used to completely formalize the discussion of the previous
section. The semantics we give for the logic in the next section will
indeed have all the required properties.

Since we intend our logic to be an extension of classical proposi-
tional logic, we would like to be able to assume all the standard
properties of propositional logic. In particular, we should have as
axioms:

AQ. Every substitution instance of a tautology of prop-
ositional logic.

Thus, for example, Pr(¢) v ~ Pr(p) will be a valid formula. Of
course, we also want modus ponens:

@, 0 =\

RO. "
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The notion of provability has received much attention in the philo-
sophical literature (cf. [Bo]). Our notion of provability is a rather
unsophisticated one. The main properties we require of it are cap-
tured by the two axioms and one rule of inference given below:

Al Pr(o) = ¢

A2. Pr(o) A Pr(p = ) = Pr(y)
RI. :
Pr(ep)

Al guarantees that if something is provable then it is true, while A2
says that if both ¢ and ¢ = y are provable, then so is ¥. Finally, R1
says that if ¢ is provable then so is Pr(gp).

In our formal discussion of I, we will also require one further
property of Pr, or rather of its dual Con. In order to make it precise,
suppose v is a valuation; i.e., a mapping from primitive propositions
to the truth values T and F such that v(true) = T and v(false) = F.
We can extend v so that it gives truth values to all propositional
formulas (i.e., one with no occurrences of Pr or fix) in the standard
way: v(~@) = Tiffv(p) = F,uo(¢p v ) = Tiffv(p) = Tor
v(y) = T,and v(p A ) = Tiff v(p) = T and v(y) = T. As usual,
we will say that a propositional formula ¢ is satisfiable if v(¢) = T
for some valuation v. Clearly we want ¢ to be consistent if it is satis-
fiable. Thus, the following property should hold:

A3, Con(e) ifl ¢ is a satisfiable propositional formula.

Note that this property assures us that there are some consistent
formulas (or, more accurately, that there are formulas ¢ for which
Con(g) is provable). We could, of course, extend this property so that
it applies to non-propositional formulas as well; we will not need such
an extension here.

The intuitive idea behind the fixed-point operator is that if we view
a formula ¢ with a free propositional variable p as a ““function” of p,
then fix p.¢ is a fixed point of that function; i.e., ¢ = fix p.p is a
formula such that y is true iff @[y/p] is true, where we define ¢[y/p]
to be the formula that results when we replace all free occurrences of
p in @ by ¥ (renaming bound variables in ¢ if necessary to avoid
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“capturing” propositions free in ). Thus, we want the fixed-point
operator to satisfy:

Ad, fix p.o = o[fix p.o/p).

Note that it is not possible to find fixed-points of all formulas in such
a way as to satisfy A4. For example, there is no fixed-point of ~p
with respect to p, since if iy were such a formula, then from A4 it
would follow that y would be true iff ~ were true. Fortunately, our
syntactic restrictions guarantee that fix p. ~p is not a well-formed
formula (since p does not occur positively in ~ p). Indeed, this restric-
tion is there precisely to prevent formulas such as fix p. ~p from
being well-formed.

In Section 4 we give a semantics for this logic so that all instances
of A0—4 are valid, and RO and R1 are sound inference rules. But first
we show how to translate /,—/; in this logic and prove (using only
A0-Ad, RO, and R1) the properties that we claimed for them.

Let the primitive proposition Tp,, D = 1, 2, . . . stand for “the test
is held on day D" (where we take day | to be Monday, day 2 Tuesday,
etc.). To simplify matters, we will assume that a “week’ consists of
only three days: Monday, Tuesday, Wednesday. Then the formula ‘7’
which represents the fact that the test will be given on exactly one day
during the next week is simply

(Tyn ~Thn ~T)y v (T n ~T) A ~T)) v
vi(Tyn ~T A ~T,).
Using the provability operator, we can now capture in the logic
the notion ““cannot deduce  from ¢’ by a formula of the form
~ Pr(¢ = ). However, note that if the test is actually on Wednesday,
the students, when trying to decide on Tuesday evening whether the
test will be Wednesday, have more information than just /, and £,.
They also know that the test has not yet occurred; i.e. that ~ 7, A
~ T, holds. They certainly can (and do!) use this information in their
deduction. Thus, the formula ‘7," must satisfy
(*) o= [Ty= ~Pr(ly Al =T) A
Tz = "’Pr(‘!;, M '!3‘ M "“'T] == Tz) at
Ty= ~Pr('l) Al A ~Ty A ~T, = T3)].
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Of course, all the occurrences of ‘/;” here are just abbreviations for
the formula 7, v T, v T;.

This immediately suggests that the information [, can be captured
by a fixed-point operator. Indeed, suppose we take ‘I’ to be

fix q.0,,

where ¢, 1s the right-hand side of the equivalence above, with all
occurrences of *f," replaced by ¢. Thus, *[," is

fix ¢.[T, = ~Pr(’I’ A g=T)) A
Ty= ~Pri’l’ A gnan ~T) =T, A
Ti=~Prl ngnrn ~T, A ~T,=T))).

Note that each occurrence of g in ¢, is positive (once we rewrite sub-
formulas of the form ¢ = ¥ as ~¢ v ). By A4, this representation
of I, in our language indeed has property (x), as desired. Now it is a
straightforward exercise to show that *I,” A *I,’ is inconsistent using
the axioms and inference rules given above. We follow the student’s
argument as given at the beginning of this paper. First we show that
*I,) = ~ T, is provable, and then use that to show that *l,;" = ~ T is
provable, and finally show that *f;" = ~ T is provable. From this we
can conclude that ‘" A ‘I, is inconsistent. We sketch a few of the
formal details below:

1. I A ~T, A ~T,=T; (propositional reasoning)
2. DAL A ~To A ~Ty =T, (1)

3. Pril Al A ~Ty A ~T, =T,) (2,R])

4, L=~ T, (3, (%)

5. AL oA ~T, =T, (4)

6. Pril’ A~ 'L’ n ~T, = T,) (5 RI)

7. 0y = ~T, (6,(x)

8. A = ~T (4,7)

9. PrCl) AL’ = ~T,) (8, RI)
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10. A= AT, (9, (%)

1. L= ~1 (4,7, 10)

12. ~CI A L) (1D

3. Pr(~(C1I} A L)) (12, R1)

The inconsistency of ‘f;” A I’ leads us to consider /;. We can cap-
ture ‘/;" easily in our logic. It is just the formula:

Con(‘l A 1)) = L.

We leave it to the reader to check that this formula indeed captures
I, as described in the previous section. Since we have already shown
Pr(~(I A L) (e, ~Con(l" A L), it follows that ‘I, 'is
vacuously true and thus */," A ‘/; is equivalent to ‘/,”. Now using
A2 we can show that for any day of the week D, we have Con(‘f” A
I A T,) = Con('ly” A °Tp). Using A3 we can easily prove

Con(‘l," A T)p) for any day of the week D. Thus Con(‘/," A ‘I, A
T,) is provable for every day D. So if we interpret the teacher’s state-
ment as ‘/;’ A I, then it is consistent for the teacher to give the test
on any day of the week.

I is like *1;°, but it has one extra clause allowing us to use ‘[’
alone in trying to deduce when the test will be. This extra clause is
essentially the same as (*), but without the self reference to *J,". Thus
‘1. is the formula:

A [Con(L)) = (T = ~Pr(*l = T) A
= ~Pr(l A ~T,=>T,) A
Ty=~Pr(’l A ~T), A ~ T, =T,)))

Just as before ‘/;” is vacuously true, and clearly ‘7,” is consistent, so
that Con(*1,"} is true. It is of course easy to see using propositional
reasoning that *f;" A ~ T, A ~T, = T,is provable, so Pr(‘l," A

~ T, A ~T,= T,) holds. Thus ‘I, implies ~ Ty, thereby ruling
out the last day. But no other days are ruled out, so that if we inter-
pret the teacher’s statement as ‘f;” A “I;°, then it is consistent for the
teacher to give the test on any day of the week but the last.
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Finally, in order to ca-plurc 15, note that */{" would have to satisfy
(*+) IS = [Con(l A L) =

T, = ~Pr(’l] Ay =T) A

T= ~Pr(‘l Al A ~ T/ =T) A

Ty= ~Pr(l A I A ~ T & ~T,=T))

Note that this is the same as (*) with the extra hypothesis that
Con(*l" ~ 'I) (and all occurrences of *f," replaced by ‘["). It would
seem that we could now capture ‘/" by means of a fixed-point oper-
ator, just as we did *1,". But this time there is a problem. When we
replace abbreviations such as ¢ = by ~¢ v  in the right-hand
side of the identity (*#), it is easy to see that the occurrence of ‘I in
Con(*l,’ A 1) is in the scope of an odd number of negations. Thus
we cannot replace ‘Iy" with g and take a fixed point with respect to g.
without violating our syntactic constraints on fixed points.

This syntactic constraint is there for a reason! We discuss its need
formally below, but for now we show that there can be no formula
[ in our logic that satisfies the equivalence (*#). For suppose there
were such a formula. Let ¢, be the formula

Ty = ~Pr(Cl’ A 'l =T) A
T,= ~Prl Al A ~T) =T, A
Ty= ~Pr('I]) AL A ~T) AN ~Ty=T))

Then we would have:

1. A K = Con(l' A ‘L) (dual of Al)

2. (I A ConCL™ A L)) = @ ((**))

3. ¢, = ~ I, (same as the argument that '/, = ~ [
sketched above; we omit details here)

4. CI0 ALY = ~CL ALY (1,2,3)

5. ~CL A CK) 4

6. Pr(~Cl" A7) (5, RD)
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7. U o= true (6, (*=%))

8. I ALYy =1 (D

9 Con(*l;’) (A3)

10. Con('l;" A L) (9, A2, and some propositional
reasoning)

Lines 6 and 10 now give us the desired contradiction.

Thus, attempting to translate the teacher’s statement by ‘1> ~ ‘I
is semantically meaningless! We cannot give a truth value to such an
assertion (at least, not without running into contradictions).

4. A SEMANTICS FOR THE LOGIC

We now show how to give semantics to the logic introduced in the
previous section in such a way as to make all the axioms and rules of
inference sound. It turns out to be easy to give semantics to a prop-
ositional logic with a provability operator or with a fixed-point oper-
ator in such a way as to make all the required properties hold. How-
ever, having both a fixed-point operator and a provability operator
adds a number of complications.

We begin by giving semantics to a propositional language with a
provability operator, but no fixed-point operator. As mentioned
above, a valuation v 1s a function mapping primitive propositions to
{T, F} (with v(true) = T and v(false) = F). We now show how to
extend valuations so they assign truth values to all formulas. We pro-
ceed by induction on the structure of formulas:

1. v(i~@) = Tifov(p) = F

2. oe A ¥) = Tiffo(e) = Tandv(y) = T
3. vl v ) = TiTo(e) = Toro(y) =T
4, v(Pr(9)) = Tiff v'(¢) = T for all valuations v".

We define a formula to be valid if it is true in all valuations; i.e., @ is
valid if v(p) = T for all valuations v. Note that we have identified
provability with validity, since v(Pr(p)) = T exactly if ¢ is valid.
Similarly, we identify consistency with satisfiability. ’
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It is easy to check that AO-A3 are sound with respect to this
semantics, as are both rules of inference. Moreover, since the truth of
a formula of the form Pr(y") or ~ Pr(y") does not depend on the
valuation, it is easy to see that the following axiom is also sound:

A5, Con(p) n Y = Con(p A ),
if  is of the form Pr(y’) or ~ Pr(y).

In fact, it can be shown that A0-A3, A5, RO, and R1 provide an
elegant complete axiomatization for this logic (without the fixed-point
operator), although we will not present this proof here.

In order to understand the semantics of the fixed-point operator,
let us first consider the logic without the provability operator. In this
case, we can extend valuations to formulas with fixed-point operators
(but no provability operators) by adding the following clause to the
first three clauses in the definition of valuation above:

5. v(fix p.p) = v(p[false/p])

To see why axiom A4 is sound with respect to this definition (at least

as long as we do not have a provability operator in the language), we
need two preliminary lemmas.

LEMMA 4.1. For all formulas ¢, ¥ with no occurrences of the prov-
ability operator, and all valuations v, if o())) = F then v(¢p[false/p]) =
v(@[¥/p]), while if v(y) = T then v(e[true/p]) = v(e[¥/p]).

Proof. By a straightforward induction on the structure of
formulas. | |

Before we can state the next lemma, we need a few definitions. Sup-
pose we put an ordering on {7, F} by taking F < T, We will say
that a formula ¢ is moenotenic in p if for all valuations v, v(¢[false/p]) <
v(o[true/p]). Intuitively, a formula is monotonic in p if, viewed as a
function of p, its truth value increases as the truth value of p increases.

LEMMA 4.2. If each free occurrence of p in ¢ is positive, then ¢ is
monotonic in p.

Proof. By induction on the structure of ¢. Details left ta the
reader. | |
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Now suppose that ¢ is a formula with no occurrences of the prov-
ability operator such that every occurrence of p in ¢ is positive.

If v(fix p.@) = F, then by the definition above, v(fix p.¢) =
v(p[false/p]), and by Lemma 4.1, v(gp[false/p]) = v(o[fix p.¢/p]).
And if o(fix p.¢) = T, then by definition v(¢p[false/p]) = T. From
Lemma 4.2 it follows that v(¢[true/p]) = 7, and then by Lemma 4.1
it follows that v(e[fix p.¢@/p]) = T. Thus, no matter what the truth
value of v(fix p.¢), we have that v(fix p.p) = v(e[fix p./p]), so A4
is sound.’

Unfortunately, these arguments no longer hold if we allow both
a provability operator and a fixed-point operator in the language,
and give semantics by taking all five clauses in the definition of valu-
ations. For example, let ¢ be the formula Con(p) v ¢ and let v, 2’
be valuations such that v(g) = Fand v'(g) = T. It is easy to see
that v(¢p[false/p]) = F and v’(¢p[false/p]) = T. From Clause 5 in
the definition of valuations, it follows that we have v(fix p.@) = F
and v'(fix p.@) = T. Since v'(fix p.¢) = T, it follows that
v(Con(fix p.p)) = T. Now ¢l[fix p.¢/p] is exactly the formula
Con(fix p.@) v g, so it follows that v(¢[fix p.¢/p]) = T. Thus
v(fix p.@) # vlp[fix p.e/p]). Axiom A4 is not sound with these
semantics!

The problem is that although Lemma 4.2 still holds if we allow
provability predicates in the language, Lemma 4.1 doesn’t. An easy
counterexample is provided by taking i to be Pr(p), ¢ 10 be p, and »
1o be a valuation such that »(p) = T. It is certainly not the case that
v(Pr(p)) = v(Pr(true)). It might seem that this problem is due to the
fact that we consider p to be free even if it is in the scope of Pr. This
is indeed the case. However, if we consider it to be bound, then it will
not be possible to translate [, using the fixed-point operator, since we
want the fixed-point operator to bind something in the scope of Pr.

There are in fact two special features of the language without Pr
that make Clause 5 work.® The first is that the language is extensional:
the value of v(p) depends only on the value of ©(p) for the primitive
propositions p that appear in ¢. However, Pr is an intensional oper-
ator. The value of v(Pr(¢)) depends on the value of ¢ under other
valuations, The second feature is somewhat more subtle. Suppose we
want to calculate v(fix p.¢). As the arguments above show, we can
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hypothesize that its value is F, the same as that of the primitive prop-
osition false. We can then check if v(fix p.¢) = v(p([false/p])). If

s0, then we also have that v(fix p.¢) = v(e[fix p.¢@/p]). and our
hypothesis is correct. If not, then we revise our hypothesis, taking
v(fix p.@) = T. As we have shown, this then gives us a value satisfy-
ing A4. Once we include Pr in the language, our hypotheses about the
value of fix p.¢ must become more complicated. Since Pr is inten-
sional, we must make a hypothesis about the value of fix p.¢ under
all valuations, not just v. Further, we can no longer calculate the
effects of this hypothesis in v by calculating v(¢[/p]) for some
formula . Getting a semantics for the full language where A4 is
sound requires more work.

We proceed inductively as follows. Suppose we are given a formula®
fix p.¢, and we have already defined v(y) for every subformula y of
@ (including ¢ itself) and every valuation v in such a way that uv(y)
depends only on the primitive propositions free in . Thus if v and v’
agree on the primitive propositions free in , then () = 2'(). (Of
course, we assume that Clauses 1-4 in the definition of valuation are
used when they apply.)

We define the @-formulas to be those obtained by starting with
the subformulas of ¢ and then closing off under negation, conjunc-
tion, disjunction, and provability (but not fixed-points!). It is import-
ant to note that in particular o[fix p.¢/p) is a ¢-formula. This
observation would not be true without our syntactic restriction that p
does not appear free in the scope of a subformula of ¢ of the form
fix g. .

Let an Aypothesis about the value of fix p.¢ be a function that
yields a truth value for each valuation. Intuitively, h(v) represents our
hypothesis for the truth value of fix p.¢ in valuation v. We further
assume that A{v) depends only on the primitive propositions free in
fix p. o, so that A(v) = A(?’) if v and v’ agree on all the primitive
propositions free in fix p.¢. Note that this assumption guarantees
that there are only finitely many hypotheses. Given a valuation v and
an hypothesis h, let the g-valuation vh be the function extending v
that assigns truth values to all g-formulas by taking va(fix p.¢) =
h(v), and applying Clauses 1-4 in the obvious way (so that, for
example, vh(Pr(y)) = T iff v'A(y) = T for all valuations v"), We
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immediately get the following straightforward lemma; note that part
(2) of the lemma is an analogue of Lemma 4.1,

LEMMA 4.3.

1. If ¢ is a @-formula which does not havé fix p.¢ as a subformula,
then for all valuations v and hypotheses h and &', we have
vh(y) = vh'(Y).
2. For all valuations v, all hypotheses A, and all subformulas y of ¢,
if h(v) = F then vh(y([false/p]))) = vh(Y([fix p.¢/p])), and if
h(v) = T then vh(y([true/p))) = vh(y((fix p.¢/p)).
Proof. By a straightforward induction on the structure of . How-
ever, again note that we need to use the syntactic restriction that
p does not appear free in formulas of the form fix ¢.¢ to prove
Part (2). [ |

Now we can define the revision rule R (formally, a mapping from
hypotheses to hypotheses) by taking R(h)(v) = vh(o[fix p.o/p)).

Conceptually, we are working with the same idea that was described
above for the language without Pr. We hypothesize some values for
fix p.¢ and then calculate values for @[fix p.¢/p] based on these
hypotheses. These become the new hypotheses for the values of
fix p.¢. This transition is captured by the revision rule R Note that
without Pr, extensionality ensured that there were only two relevant
hypothesis to consider: whether the value of fix p.¢ under v is T or
F. To find »(p[fix p.¢o/p]) with the former hypothesis, we need only
calculate v(¢[true/p]), and with the latter v(¢p[false/p]). But now there
are many more hypotheses to consider, and their effect cannot be
taken into account as easily. It is this that leads us to the notion of
vh.

We put the obvious ordering on hypotheses, taking & < &’ if
h(v) < H'(v) for all valuations v. Let A, be the least hypothesis with
respect 1o this ordering. Thus h,(v) = F for all valuations ». Define
hy. hy, .. . inductively via h, ., = R(h,).

LEMMA 4.4. hy, hy, hy, . . . is a monotonically increasing sequence.
Proof. We prove by induction on { that s, < h,,,. The base case is
trivial, since A, is the least hypothesis. So suppose we have the result
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for i and we wish to prove it for i + 1. Let v be any valuation. If
h(v) = F, then clearly we have h(v) € h,,,(v). If h(v) = T, then we
must have i = 1 (since hy(v) = F for all v by definition) and, again
by definition, h(v) = R(h,_,)(v) = vh,_(e[fix p.@/p]) and A, (v) =
R(h)(v) = vh(elfix p.@/p]). Since A (v) = T, by Lemma 4.3(2),
vhplfix p.o/p]) = vh(p[true/p]). Since @[true/p] does not have

fix p.p as a subformula, by Lemma 4.3(1) we have vh,(@[true/p]) =
vh,_, (@[true/p]). Now by Lemma 4.3(2) again, vh,_ (p[fix p.o/p]) is
either equal to vh, _,(¢@[false/p]) or vk, _,(@|true/p]), depending on
whether vh, _, (fix p.¢) equals T or F. Now by our syntactic restric-
tions on the application of fix, we have that ¢ is monotonic in p, so

in either case we have vh,_,(@l[fix p.¢/p]) < vh(elfix p.¢@/p]). Thus
h(v) < h,,,(v), as desired. [ ]

Since Ay, hy, h,, . . . is an increasing sequence of hypotheses and there
are only finitely many hypothesis, this sequence must have a fixed point;
i.¢., there must be some n such that &, = A, ,. Define v(fix p. ) =
h,(v). We extend v to all ¢-formulas using Clauses 1-4. It 1s easy to
see that we now have »(y) = vh, () for all p-formulas y and

v(fix p. o) h(v) = h,,,(v) = vh(olfix p.e/p])

v(plfix p.o/p]),

I

so that Ad is sound.’

We remark that using the fact that »(¢) only depends on v(p)
for the primitive propositions p that appear free in ¢, it is straight-
forward to show that the validity problem for this logic is decidable,
and can in fact be computed in time exponential in the size of the
formula.

5. A COMPARISON WITH THE MODAL LOGIC APPROACH

In this section we compare our approach to that of Binkley [Bi]. We
take the liberty of slightly modifying Binkley’s notation to make

the comparison proceed more smoothly. Binkley has a propositional
language enriched with a modal operator K,, D = 1, 2, ... where
K, @ can be interpreted as “on the evening before day D the students
know ¢ to be the case™.® In our notation, K, essentially corresponds
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to Pr(S, = ¢), where S, is the stock of information that the students
have on the evening before day D.

Binkley requires that X, satisfy the following axioms and rule of
inference:

Al Kpp = ~Kp ~ ¢
A2 Koo ~ Kplop = §) = Ky
A%, Kpp = Ky, Kpo
7
RI".
Koo

If, as suggested above, we interpret K,¢ to mean Pr(S, == ¢), then
for any choice of S, these axioms and inference rule are easily seen to
hold, given our semantics for Pr. Indeed, if we had added the follow-
ing (sound) axiom to our system

A6. Pr(g) = Pr(Pr(p)),

then A1, A2, A3, and R1" would be provable from A0, Al, A2, A6,
RO, and R1,

Binkley in addition requires the following two axioms:
Ad'. ~Ty =K, ~T,, iIfD =D
A5 Kpp = Ky, if D" > D

A4’ says that if the test does not happen on day D, then on the
evening before any later day, this fact will be known, while A5’ says
that the students do not forget facts that were previously known.
(Actually, as Binkley points out, it suffices for his arguments that we
replace A5’ by the weaker K, = K, K, ¢ for D' > D))

Provided that S, is such that ~ T, = (5, = ~7T,) for D’ > D,
then it is easy that the translation of K, into our logic will satisfy
A4’. And if D’ > D implies that S, = §,, it will satisfy A5 as well.

Binkley considers the case of a two-day week for simplicity and
claims that in this case the teacher’'s announcement amounts to the
following four assertions:

1. T, v T,
2. ~(T, A T))
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3. T, = ~KT,

4. T, = ~KT,

This should of course strike the reader as quite reiminscent of our
translation. In particular, the first two clauses together are just a re-
statement of our ‘[’ in the two-day case, while the last two corre-
spond to ‘I,

Binkley then claims that these assertions can all be true together.
This amounts to saying that there are some choices of §, satisfying
the axioms above such that the conjunction of these statements (when
translated into our logic) is consistent. He then goes on to prove
formally that although these statements can be true together, they
cannot be known by the students to be true. But in our terms, the
fact that the students know these statements to be true is just to say
that each S, implies the conjunction of these four statements (i.e.,
they are part of the students’ stock of information on each of the
days). Once we assume this, then in some sense the minimal assump-
tions we can make on S, is that they satisfy the fixed-point descrip-
tions as in our translation of *Z,". Not surprisingly, Binkley’s proof
that K, ¢ is inconsistent, where ¢ is the conjunction of these four
statements, has very much the same flavor as our proof of the incon-
sistency of *1;" A 'L,

6. CONCLUSIONS

We have analyzed the Surprise Test Paradox by translating it into a
formal logic with fixed-point operators and provability. We have
given four possible translations of the teacher’s statement. The first is
provably false, the second is consistent, and is true no matter which
day the teacher gives the test, the third is consistent but rules out the
last day, and the fourth is paradoxical in that it cannot be given a
truth value in our semantics.

The puzzle gains its force from the interplay between the translations.
On first hearing the puzzle, most people seem to take some variant of
translation 1, and agree that the teacher cannot give the test on any
day of the week. When told that the test is given on Tuesday, they
switch to some variant of translation 2 or translation 3, and admit
(somewhat doubtfully) that the teacher did indeed seem to be telling
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the truth, However, further thought usually leads to a realization of
a possible paradox that amounts to some variant of translation 4.

The subtlety of the reasoning here is further reinforced by the
apparent difficulty involved in giving semantics to a language with
both a provability operator and a fixed-point operator. Both of these
operators (or some-variant of them) are necessary in order to fully
capture the student's understanding of the teacher’s statement.

Of course, by doing a translation into formal logic along the lines
we have suggested here, it becomes much easier to carefully analyze
exactly what is going on. In particular, it becomes clear that the para-
doxical translation 4 is paradoxical exactly because of the attempt to
take a fixed-point with respect to p of a formula where p does not
occur positively. This approach also helps explain much simpler para-
doxes like the Liar Paradox. In attempting 1o translate a statement
like " This statement is false’” into our logic, we end up with a formula
like fix p. ~p. Again the p does not occur positively, so this is nota
well-formed formula.
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NOTES

' A “pragmatically paradoxical™ sentence is one of the form “p, but a doesn't know
that p”* for some fact p and agent a. Although this sentence is consistent, it is incon-
sistent {with the usual axioms for knowledge) for @ to know it.

* This line of reasoning essentially appears already in [Au). However, we carry it a bit
further here.

* We omit the precise definition of free and bound propositions here, but intuitively, it
is identical to the notion of free and bound variable in first-order lbgic, with the bind-
ing operation here being fix p rather than Vx.
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¢ We could, of course, also define disjunction in terms of negation and conjunction,
For technical reasons, we prefer 10 have both A and v as primitive operations.

* Here we have taken fix to be the least fixed-point operator. Intuitively, we have taken
o(fix p.@) to be false whenever this is consistent with A4. We should have also defined
v(fix p.¢) = w(p[true/p]). This would have given us the greatest fixed point. Essentially
the same proof we have given shows that A4 is still sound with this definition.

* The exposition in the remainder of this section draws heavily on comments made by
Amnil Gupta, In particular, the notions of an Aypothesis and a revision rule as described
below are due to him.

" Using this procedure we are again taking fix 10 be the least fixed-point. We could
have instead started with the greatest hypothesis, A°, defined by #°(v) = T for all
valuations v, and then used the revision rule to get a monotonically decreasing
sequence of hypotheses. The fixed point obtained in this way is the greatest fixed point.
* Binkley uses J, rather than X, 10 indicate that he is interested in an ideal seeker after
knowledge, not necessarily someone who already possesses knowledge. Thus J;, is
supposed lo represent what the ideal knower judges or believes to be true, not what he
knows. These differences do not affect our discussion below.
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